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ABSTRACT

Reconstructing dynamics using samples from sparsely time-resolved snapshots is
an important problem in both natural sciences and machine learning. Here, we
introduce a new deep learning approach for solving regularized unbalanced opti-
mal transport (RUOT) and inferring continuous unbalanced stochastic dynamics
from observed snapshots. Based on the RUOT form, our method models these
dynamics without requiring prior knowledge of growth and death processes or
additional information, allowing them to be learned directly from data. Theo-
retically, we explore the connections between the RUOT and Schrödinger bridge
problem and discuss the key challenges and potential solutions. The effective-
ness of our method is demonstrated with a synthetic gene regulatory network,
high-dimensional Gaussian Mixture Model, and single-cell RNA-seq data from
blood development. Compared with other methods, our approach accurately iden-
tifies growth and transition patterns, eliminates false transitions, and constructs
the Waddington developmental landscape.

1 INTRODUCTION

In machine learning and natural sciences, a key challenge is coupling high-dimensional distribu-
tions from observed samples, exemplified by Variational Autoencoders (VAEs) (Kingma & Welling,
2013) which map complex data to simpler latent spaces. It is also important in multi-modal anal-
ysis for integrating diverse data types (Lahat et al., 2015), particularly in biology through aligning
multi-omics data into unified cellular state representations (Demetci et al., 2022; Cao et al., 2022;
Gao et al., 2024b; Cang & Zhao, 2024). Recently, there has been growing interest in understand-
ing the dynamics of how distributions are coupled over time, such as diffusion models (Ho et al.,
2020; Sohl-Dickstein et al., 2015) and stochastic differential equations (SDEs) (Song et al., 2021).
The task is useful for interpolating paths between arbitrary distributions and learning the underlying
dynamics (Tong et al., 2024b; Neklyudov et al., 2023; De Bortoli et al., 2021; Wang et al., 2021).

Due to the destructive nature of technology, the analysis of time series data in single-cell RNA
sequencing (scRNA-seq) provides an important application scenario for the high dimensional prob-
ability distribution coupling and dynamical inference problem (Schiebinger et al., 2019; Sha et al.,
2024; Peng et al., 2024; Lavenant et al., 2024; Jiang et al., 2022; Jiang & Wan, 2024; Bunne et al.,
2024; 2023b; Tong et al., 2023). Trajectory inference in scRNA-seq data have been extensively
studied (Saelens et al., 2019), and optimal transport (OT)-based methods has emerged as a central
tool for datasets with temporal resolution (Bunne et al., 2024; Schiebinger et al., 2019; Klein et al.,
2023a;b). Often, there is a need to learn the continuous dynamics of cells over time and fit the
mechanistic model that transforms the initial cell distributions into the distributions at later temporal
points. This could be solved through dynamical formulation of OT (Benamou & Brenier, 2000) ,
also known as B-B form. However, the formulation has not fully taken the stochastic dynamical
effects into account, especially the intrinsic noise in gene expression and cell differentiation (Zhou
et al., 2021a;b), which is prevalent in biological processes on single-cell level (Elowitz et al., 2002).

By incorporating stochastic dynamics, the Schrödinger bridge (SB) problem aims to identify the
most likely stochastic transition path between two arbitrary distributions relative to a reference
stochastic process (Léonard, 2014), and has been applied in a wide range of contexts, including

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

scRNA-seq analysis and generative modeling (Pariset et al., 2023; Liu et al., 2022a). Meanwhile,
recent regularized unbalanced optimal transport (RUOT) offers a promising approach for model-
ing both stochastic unbalanced continuous dynamics (Chen et al., 2022b; Baradat & Lavenant, 2021;
Buze & Duong, 2023; Janati et al., 2020), which can be viewed as an unbalanced relaxation of the
dynamic formulation of Schrödinger bridge problem. However computational methods for learn-
ing RUOT or such high-dimensional unbalanced stochastic dynamics from snapshots are relatively
lacking, especially when there is no prior knowledge of unbalanced effect.

Here we develop a new deep learning method (DeepRUOT) for learning general RUOT and in-
ferring continuous unbalanced dynamics from samples based on the derived Fisher regularization
form without requiring prior knowledge. We demonstrate the effectiveness of DeepRUOT on both
synthetic and real-world datasets. Compared to the common SB method, our approach accurately
identifies growth and transition patterns, eliminates false transitions, and constructs the Waddington
developmental landscape of scRNA-seq data.

Overall, our main contributions can be summarized as follows:

• We reformulate RUOT with a Fisher regularization form and explore the connections be-
tween RUOT and unbalanced SB. The formulation transforms the SDE into the ordinary
differential equation (ODE), which is computationally more tractable.

• We propose DeepRUOT, the neural network algorithm for learning high dimensional un-
balanced stochastic dynamics from snapshots. Through the neural network modeling for
growth and death, our framework does not require prior knowledge of these processes.

• We validate the effectiveness of DeepRUOT on both synthetic data and real scRNA-seq
datasets, showing its promising performance compared with existing approaches.

2 RELATED WORKS

Deep Learning Solver for Dynamical OT To tackle the dynamical OT (i.e. B-B form) in high
dimensions, many methods (Tong et al., 2020; Huguet et al., 2022; Zhang et al., 2024a; Ruthotto
et al., 2020; Liu et al., 2021; Cheng et al., 2024a; Wan et al., 2023; Pooladian et al., 2024; Lipman
et al., 2023; Tong et al., 2024a; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023b; Jiao et al.,
2024b; Gao et al., 2024a; Liu et al., 2022b; Wu et al., 2023; Jin et al., 2024; Chow et al., 2020;
Cheng et al., 2024b) have been developed based on continuous normalizing flow and neural ODE
formulation either in original or latent space. To account for sink and source terms in unnormalized
distributions, (Sha et al., 2024; Peng et al., 2024; Tong et al., 2023; Pan et al., 2024; Wan et al.,
2024) formulated the neural-network based solver in the unbalanced dynamical OT setup. However,
the appropriate formulation along with an effective deep learning solver to simultaneously account
for unbalanced term and stochastic effects in dynamical OT remains largely lacking.

Computational Methods for Schrödinger Bridge Problem Many methods have recently been
developed to solve the static SB problem (Lavenant et al., 2024; Pariset et al., 2023; Ventre et al.,
2023; Chizat et al., 2022; Shi et al., 2024; De Bortoli et al., 2021; Pooladian & Niles-Weed, 2024;
Liu et al., 2022a). To tackle the dynamical Schrödinger Bridge, methods based on neural SDE
solver, neural ODE solver with fisher information regularization or flow matching (Koshizuka &
Sato, 2023; Neklyudov et al., 2023; 2024; Zhang et al., 2024b; Bunne et al., 2023a; Chen et al.,
2022a; Albergo et al., 2023; Wang et al., 2021; Jiao et al., 2024a; Zhou et al., 2024a; Liu et al.,
2023a; Zhou et al., 2024b) have been proposed. However, these methods either fail to account for
unnormalized distributions resulting from cell growth and death, or require prior knowledge of
these processes (e.g., growth/death rate) (Schiebinger et al., 2019; Lavenant et al., 2024; Pariset
et al., 2023; Chizat et al., 2022) or additional information (e.g., cell lineage) (Ventre et al., 2023).

Study of RUOT The RUOT has recently formulated (Chen et al., 2022a), also known as unbal-
anced Schrödinger Bridge. The existing studies are mostly focused on the theoretical side. For
instance, (Janati et al., 2020) derived a closed-form formula for entropic OT between unbalanced
Gaussian measures. (Baradat & Lavenant, 2021) investigates relations between RUOT with branch-
ing Brownian motion. (Buze & Duong, 2023) investigates different formulations of the problem.
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3 PRELIMINARIES AND BACKGROUNDS

In this section, we provide an overview of stochastic effects and unbalanced forms within the dy-
namical framework. Specifically, considering only stochastic effects leads to the Schrödinger bridge
problem (Section 3.1), whereas addressing solely the unbalanced aspect results in unbalanced dy-
namic optimal transport (Section 3.2). By integrating these two perspectives, we motivate the for-
mulation of the Regularized Unbalanced Optimal Transport (RUOT) framework.

3.1 STOCHASTIC EFFECT: SCHRÖDINGER BRIDGE PROBLEM

The Schrödinger Bridge problem aims to identify the most likely evolution between a given initial
distribution ν0 and a terminal distribution ν1 (assumed to have density in this paper), relative to a
given reference stochastic process. Formally, this problem can be formulated as the minimization of
the Kullback-Leibler (KL) divergence in the optimal control perspective (Dai Pra, 1991) as below:

min
µX
0 =ν0, µX

1 =ν1

DKL

(
µX
[0,1]∥µ

Y
[0,1]

)
, (1)

where µX
[0,1] denotes the probability measure induced by stochastic process Xt (0 ≤ t ≤ 1) defined

on the space of all continuous paths C([0, 1],Rd), with the distribution of Xt at given time t charac-
terized by the measure µX

t with density function p(x, t). In this work, we consider Xt the stochastic
process characterized by the following stochastic differential equation (SDE):

dXt = b (Xt, t) dt+ σ (Xt, t) dW t, (2)

and the reference measure µY
[0,1] is chosen as the probability measure induced by the process dY t =

σ(Y t, t)dW t, where W t ∈ Rd is the standard multidimensional Brownian motion defined on
a probability space (Ω,F ,P) with P the Wiener measure for the coordinate process W t(ω) =
ω(t), and σ(x, t) ∈ Rd×d is the diffusion matrix which is typically assumed as bounded, coercive
and invertible. Under this formulation, the solution to Eq. (1) is also referred to as the diffusion
Schrödinger bridge. The diffusion Schrödinger bridge also possesses a dynamic formulation, which
can be formally stated as the following theorem.
Theorem 3.1. Consider the diffusion Schrödinger bridge problem (1) where µY

[0,1] the reference
measure induced by dY t = σ(Y t, t)dW t. Then (1) is equivalent to

inf
(p,b)

∫ 1

0

∫
Rd

[
1

2
bT (x, t)a−1(x, t)b(x, t)

]
p(x, t)dxdt, (3)

where the infimum is taken over all function pairs (p, b) such that p(·, 0) = ν0, p(·, 1) = ν1, p(x, t)
absolutely continuous, and

∂tp(x, t) = −∇x · (p(x, t)b(x, t)) +
1

2
∇2

x : (a(x, t)p(x, t)) , (4)

where ∇2
x : (a(x, t)p(x, t)) =

∑
ij ∂ij(aijp) and a(x, t) = σ(x, t)σT (x, t), coupled with van-

ishing boundary condition: lim
|x|→∞

p(x, t) = 0.

This theorem or its variants have been stated and proven in various forms, such as in (Gentil et al.,
2017; Chen et al., 2016; Dai Pra, 1991). Here, we provide a simple direct proof for illustration
in Appendix D.1. We note that in this dynamic formulation, it accounts for the stochastic aspects
but does not incorporate unbalanced effects. As we will discuss below, RUOT can be motivated by
incorporating unbalanced effects in the dynamic formulation of SB.

3.2 UNBALANCED DYNAMIC OPTIMAL TRANSPORT

The optimal transport problem has been extensively studied in various fields. Given two prob-
ability distributions α ∈ Rn

+ and β ∈ Rm
+ , its primary goal is to find the optimal cou-

pling π ∈ Rn×m
+ to transport a given distribution of mass (or resources) from one location

to another while minimizing the cost associated with the transportation. The static optimal
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transport problem can be mathematically formulated as minπ∈Π(α,β)⟨π, c⟩, where Π(α, β) ={
π ∈ Rn×m

+ : π1m = α, πT1n = β, π ≥ 0
}
. The cost matrix c ∈ Rn×m defines the transporta-

tion cost between each pair of points, where cij := c(xi,yj) represents the cost of moving a unit
mass from point xi to point yj . We refer to (Peyré et al., 2019) for more details. Next we briefly
state some well-known results on the dynamical formulation of the OT.

Dynamical Optimal Transport The formulation is also known as the Benamou-Brenier formula-
tion (Benamou & Brenier, 2000), which can be stated as follows:

W (ν0, ν1) = inf
(p(x,t),b(x,t))

∫ 1

0

∫
Rd

1

2
∥b(x, t)∥22p(x, t)dxdt,

s.t. ∂tp+∇ · (b(x, t)p) = 0, p|t=0 = ν0, p|t=1 = ν1.

Compared to SB, in OT the distributions are connected by deterministic transport equation instead
of diffusion. It can be shown that this dynamical formulation corresponds to a static Kantorovich’s
optimal transport problem with cost function c(x,y) = ∥x− y∥22.

Regularized Optimal Transport The regularized optimal transport is defined by a dynamical
form of the general Schrödinger bridge by taking diffusion rate as constant and scaled by σ2 in Eq.
(3):

W (ν0, ν1) = inf
(p(x,t),b(x,t))

∫ 1

0

∫
Rd

1

2
∥b(x, t)∥22p(x, t)dxdt,

s.t. ∂tp+∇ · (b(x, t)p)−
σ2

2
∆p = 0, p|t=0 = ν0, p|t=1 = ν1,

It can be demonstrated that as σ2 approaches zero, the solution to this problem converges to that of
the Benamou-Brenier problem (Mikami & Thieullen, 2008). And it is equivalent to the SB problem
(Gentil et al., 2017; Baradat & Lavenant, 2021; Léonard, 2014).

Unbalanced Dynamic Optimal Transport To account for unnormalized marginal distributions
and effects such as growth and death, an unbalanced optimal transport problem with Wasser-
stein–Fisher–Rao (WFR) metric has been proposed (Chizat et al., 2018a;b) or its extensions (Gangbo
et al., 2019). Here we adopt the WFR unbalanced optimal transport:

W (ν0, ν1) = inf
(p(x,t),b(x,t),g(x,t))

∫ 1

0

∫
Rd

(
1

2
∥b(x, t)∥22 + α|g(x, t)|22

)
p(x, t)dxdt,

s.t. ∂tp+∇ · (b(x, t)p) = g(x, t)p, p|t=0 = ν0, p|t=1 = ν1.

Here g(x, t) is a scalar function denotes the growth or death rate of particles at the state x and time
t, and is also optimized in the total energy term. α is the hyperparameter of weight. We should
also note that in this case, ν0 and ν1 are not necessarily the normalized probability densities, but are
generally densities of masses.

4 REGULARIZED UNBALANCED OPTIMAL TRANSPORT

To simplify the notation and illustrate a commonly used setting, we take a special case considering
a(x, t) = σ2(t)I , and the general case is left to Appendix D.4 for further discussions. Inspired by
unbalanced dynamic optimal transport, the dynamical formulation Theorem 3.1 suggests a natural
approach to relaxing the mass conservation constraint by introducing a growth/death term gp in Eq.
(4) as ∂tp = −∇x ·(pb)+ 1

2∇
2
x :

(
σ2(t)Ip

)
+gp. Meanwhile, we also define a loss functional in Eq.

(5) which incorporates the growth penalization and Wasserstein metric considered in Eq. (3) (with
a rescaling by σ2(t)). We refer to this formulation as the regularized unbalanced optimal transport.

Definition 4.1 (Regularized unbalanced optimal transport). Consider

inf
(p,b,g)

∫ 1

0

∫
Rd

1

2
∥b(x, t)∥22 p(x, t)dxdt+

∫ 1

0

∫
Rd

αΨ(g(x, t)) p(x, t)dxdt, (5)
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where Ψ : Rd → [0,+∞] corresponds to the growth penalty function, the infimum is taken over all
pairs (p, b) such that p(·, 0) = ν0, p(·, 1) = ν1, p(x, t) absolutely continuous, and

∂tp = −∇x · (pb) +
1

2
∇2

x :
(
σ2(t)Ip

)
+ gp (6)

with vanishing boundary condition: lim
|x|→∞

p(x, t) = 0.

Note that in the definition if Ψ(g) = +∞ unless g = 0 and Ψ(0) = 0, then it implies g(x, t) = 0
and the RUOT degenerates to the regularized optimal transport problem. If σ(t) → 0 and
Ψ(g(x, t)) = |g(x, t)|2, this degenerates to the unbalanced dynamic optimal transport with WFR
metrics. Meanwhile when σ(t) is constant, it coincides with the definition of RUOT provided in
(Baradat & Lavenant, 2021). Then, we can reformulate Definition 4.1 with the following Fisher
information regularization.

Theorem 4.1. The regularized unbalanced optimal transport problem (5) is equivalent to

inf
(p,v,g)

∫ 1

0

∫
Rd

[
1

2
∥v(x, t)∥22 +

σ4(t)

8
∥∇x log p∥22 −

σ2(t)

2
(1 + log p) g + αΨ(g)

]
p(x, t)dxdt,

(7)
where the infimum is taken over all triplets (p,v, g) such that p(·, 0) = ν0, p(·, 1) = ν1, p(x, t)
absolutely continuous, and

∂tp = −∇x · (pv(x, t)) + g(x, t)p (8)

with vanishing boundary condition: lim
|x|→∞

p(x, t) = 0.

Here v(x, t) represents a new vector field. The proof is left to Appendix D.2. In (Baradat &
Lavenant, 2021), they proposed another Fisher regularization form of RUOT, expressed in the for-
mula Eq. (15). The formulation here is equivalent to theirs but more computationally tractable, as
we avoid differentiation and vector multiplication in the cross-term.

Remark 4.1. When g = 0 and Ψ(0) = 0, then Eq. (7) is the same as the dynamic entropy-
regularized optimal transport form as discussed in (Bunne et al., 2023a; Li et al., 2020; Gentil
et al., 2017; Pooladian & Niles-Weed, 2024; Neklyudov et al., 2024; Léger & Li, 2021).

Remark 4.2. The term I(p) =
∫
Rd ∥∇x log p(x, t)∥22p(x, t)dx in Eq. (7) is referred to as the Fisher

information. Notably, when considering growth/death factors, Eq. (7) includes not only the Fisher-
Rao metric but also an additional cross-term

∫
Rd − 1

2σ
2(t) (1 + log p(x, t)) g(x, t)p(x, t)dx.

Remark 4.3. From the Fokker-Plank equation and the proof of Theorem 4.1, the original SDE
dXt = (b (Xt, t)) dt+ σ (t) dW t can be transformed into the probability flow ODE

dXt =

(
b (Xt, t)−

1

2
σ2(t)∇x log p(Xt, t)

)
︸ ︷︷ ︸

v(Xt,t)

dt.

Conversely, if the probability flow ODE’s drift v(x, t), the diffusion rate σ(t) and the score function
∇x log p(x, t) are known, then the the drift term b(x, t) of the SDE can be determined by b(x, t) =
v(x, t) + 1

2σ
2(t)∇x log p(x, t). Thus, to specify an SDE is equivalent to specifying the probability

flow ODE and the corresponding score function∇x log p(x, t) (Tong et al., 2024b).

In (Buze & Duong, 2023), the authors defined a RUOT problem with nonlinear Fokker-Planck
equation constraints. In Appendix D.3, we show that the proposed form is indeed consistent
with the RUOT defined here when σ(t) is constant and Ψ(g(x, t)) takes the quadratic form (i.e.,
Ψ(g(x, t)) = |g(x, t)|22). We then explore the connections between RUOT and SB problem in
Appendix E.

5 LEARNING RUOT THROUGH NEURAL NETWORKS

Given unnormalized distributions at T discrete time points, Xi ∼ µi for fixed timepoints i ∈
{0, . . . , T − 1}, we aim to learn continuous stochastic dynamics satisfying the RUOT from data.

5
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Similarly, to simplify the exposition and illustrate a commonly used case, we consider Defini-
tion 4.1 with the stochastic dynamics dXt = b (Xt, t) dt + σ (t) dW t. As previously discussed,
we approach this by transforming the problem into learning the drift v(x, t) of the probability ODE
and its score function 1

2σ
2(t)∇x log p(x, t) in Theorem 4.1. We parameterize v(x, t), g(x, t), and

1
2σ

2(t) log p(x, t) using neural networks vθ, gθ and sθ respectively (Fig. 1). To solve Theorem 4.1,
the overall loss composed of energy loss, reconstruction loss and the Fokker-Planck constraint:

L = LEnergy + λrLRecons + λfLFP. (9)

The LEnergy loss promotes the least action of kinetic energy Eq. (7). The reconstruction loss LRecons
promotes the dynamics to match data distribution at later time point (i.e., p(·, 1) = ν1), and the LFP
promotes the three parameterized neural network to satisfy the Fokker-Planck constraints Eq. (8).

5.1 ENERGY LOSS

To compute the integral in Eq. (7), the direct calculation is infeasible due to the high dimensionality.
Thus, we need to transform it into an equivalent form that can be evaluated using Monte Carlo
methods. Adopting the approach in (Sha et al., 2024) (see Appendix A.4), Eq. (7) is equivalent to
the following form

LEnergy =Ex0∼p0

∫ T

0

[
1

2
∥vθ(x(t), t)∥22 +

1

2
∥∇xsθ∥22 −

(
σ2(t)

2
+ sθ

)
gθ + αΨ(gθ)

]
wθ(t)dt,

(10)
where wθ(t) = e

∫ t
0
gθ(x(t),s)ds and x(t) satisfy dx/dt = v(x, t)dt. We compute through Monte

Carlo sampling and a Neural ODE solver.

5.2 RECONSTRUCTION LOSS

x
y
t

velocity

growth
x
y
t

score

x
y
t

ODE solver

B
L = L      + L       + LEnergy    Recons       FP

A X

noise

growth death

vspace-1em

Figure 1: Overview of DeepRUOT.

The reconstruction loss aims to match the final dis-
tribution in Theorem 4.1 (i.e., p(·, 1) = ν1). Many
works use the balanced optimal transport to evalu-
ate the distance between two distributions. However
due to the unnormalized effect, here we aim to use
the unbalanced optimal transport instead. To realize
this we need to tackle two parts:

LRecons = λmLMass + λdLOT (11)

where λm and λd are hyperparameters. The mass
matching loss LMass promotes to align the number of
cells. We then normalize the distributions according
to the matched masses. The LOT uses these weights
to perform optimal transport matching.

For LMass, we propose a local mass matching strategy. We denote Ai (i = 0, 1, · · ·T − 1) as the
dataset observed at different time points, and define ϕθ : Rd×T → Rd|T | as the function represent-
ing the Neural ODE, with T being a set of time indices. Starting with an initial set A0, the Neural
ODE function ϕθ predicts the subsequent sets of data points over the time indices in T . Specif-
ically, the predicted sets Â1, . . . , ÂT−1 are obtained by applying the Neural ODE function to A0

and the full range of time indices from 1 to T − 1, i.e., Â1, . . . , ÂT−1 = ϕθ (A0, {1, . . . , T − 1}) .
Assume the sample size N0 at the initial time point, with the relative total masses at subsequent
time points denoted as ntk = Nk/N0 for k = 0, 1, · · · , T − 1. Along the trajectory, each sampled
particle i has a weight wi(t) and it follows that d logwi(t)/dt = gθ(xi(t), t), wi(0) = 1/N0.
We then establish a mapping hk from points at time tk to the sampled particles (total number N0)
predicted at time tk, which links the real data points in Ak to its closest point in sampled parti-
cles at Âk, i.e., hk : Ak → Âk, hk(xtk) = argminy∈Âk

∥xtk − y∥22. The mass matching er-

ror at time tk is then defined as Mk =
∑N0

i=1

∥∥∥wi(tk) − card
(
h−1
k (xi(tk))

)
1
N0

∥∥∥2
2
. Here card(A)

denotes the cardinality (i.e., number of elements for finite set) of set A. This error metric en-
sures the matching of local masses. So the LMass =

∑T−1
k=1 Mk Furthermore, when Mt = 0, we

6
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have
∑N0

i=1 wi(tk) =
∑N0

i=1 card
(
h−1
t (xi(tk))

)
/N0 = Nk/N0 = ntk . So the local matching loss

also encourages the matching of total mass, since the left hand side is the unbiased estimator of∫
Rd p(y, tk)dy.

Once we have determined the weights wi(t), we utilize these weights to perform optimal transport
matching of the distributionsLOT :=

∑T−1
k=1 W2

(
ŵk,w(tk)

)
, where ŵk = (1/Nk, 1/Nk, ..., 1/Nk)

is the uniform distribution of Ak at time t, w(tk) = (w1(tk), w2(tk), ..., wN0(tk))/
∑N0

i=1 wi(tk) is
the predicted weight distribution of sample particles at time tk and W2 represents the Wasserstein
distance between Ak and Âk with normalized distribution defined by ŵk and w(tk).

5.3 FOKKER-PLANCK CONSTRAINT AND TWO STAGE TRAINING

In addition to the energy loss defined in Eq. (10) and the reconstruction loss defined in Eq. (11), it
is necessary to incorporate a physics-informed loss (PINN-loss) (Raissi et al., 2019) to constrain the
relationships among the three neural networks, i.e., the Fokker-Planck constraint Eq. (8). Here we
utilize a Gaussian mixture model to estimate the initial distribution (Appendix A.3), ensuring that it
satisfies the initial conditions p0, and the PINN-loss is defined as

LFP = ∥∂tpθ +∇x · (pθvθ)− gθpθ∥+ λw ∥pθ(x, 0)− p0∥ , (12)

where pθ = exp 2
σ2 sθ. Therefore, the total loss function (9) is defined as the weighted sum of

the energy, the reconstruction error and the Fokker-Planck loss with the loss weights as hyper-
parameters. This allows us to develop a neural network algorithm for solving the RUOT problem
(Algorithm 1 and Appendix A.1).

Here we adopt a two-stage training approach to deal with multiple loss terms and stabilize the train-
ing process. For the pre-training stage, initially, we use reconstruction loss only to train vθ and gθ,
ensuring a required matching as the initial value. Subsequently, we fix vθ and gθ and employ a flow-
matching method to learn an initial and well-optimized log density function (sθ(x, t)). Specifically,
it is conducted by conditional flow matching (Lipman et al., 2023; Tong et al., 2024a;b) (Appendix
A.2). Based on these warmup steps in the pre-training stage, in the post-training stage, we use the
obtained vθ, gθ, and the optimized log density function as the starting point, then use Algorithm 2
to get the final result by minimizing the total loss (9). In summary, by integrating all the discussed
methodologies, we derive the Algorithm 1 for training the regularized unbalanced optimal trans-
port (Appendices A.2 and C.3) in practice. We discuss the loss weighting strategy and settings in
Appendix C.2

Algorithm 1 Training Regularized Unbalanced Optimal Transport
Require: Datasets A0, . . . , AT−1, batch size N , maximum ode iteration node, maximum log density

iteration nlog-density, initialized ODE vθ, growth gθ and log density sθ
Ensure: Trained neural ODE vθ, growth function gθ and log density function sθ.

1: Pre-Training Stage:
2: for i = 1 to node do ▷ Distribution Reconstruction training
3: for t = 0 to T − 2 do
4: Ât+1 ← vθ

(
Ât, t+ 1

)
, log ŵ(Ât+1)← gθ

(
ŵ(Ât), t+ 1

)
.

5: LRecons ← λmMt + λdW2

(
ŵt,w(t)

)
(11), update vθ and gθ w.r.t. the loss L

6: for t = 0 to T − 2 do
7: Ât+1 ← vθ

(
Ât, t+ 1

)
▷ Generating samples from learned vθ.

8: for i = 1 to nlog-density do ▷ CFM Score matching (Tong et al., 2024b)
9: (x0,x1) ∼ q(x0,x1); t ∼ U(0, 1); x ∼ p(x, t | (x0,x1)) at generated datasets

Â0, · · · , ÂT−1, Lscore ← ∥λs(t)∇xsθ(x, t) + ϵ1∥22 (13) , update sθ w.r.t. the loss Lscore
10: Post-Training Stage: Algorithm 2 (L ← LEnergy + λrLRecons + λfLFP) (9)

6 NUMERICAL RESULTS

In this section, we evaluate the effectiveness of our DeepRUOT solver from two perspectives: (1)
Compared to the balanced diffusion Schrödinger bridge, whether it can accurately recover the correct
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growth and transition processes, especially eliminating false transitions caused by neglecting growth.
(2) Compared to unbalanced optimal transport, whether the results obtained from the stochastic dy-
namics are more realistic, and can we construct a reasonable Waddington’s developmental landscape
based on it. We take Ψ(g(x, t)) = |g(x, t)|22 in the following computations.

Synthetic Gene Regulatory Network Inspired by (Sha et al., 2024), we adopt the same three-gene
simulation model (Appendix B.1 ) to explore the stochastic dynamics of gene regulation, as illus-
trated in Fig. 2(a). The resulting gene regulatory and cellular dynamics are illustrated in Fig. 2(b),
(c), where a quiescent region and an area exhibiting both transition and growth can be observed. We
focus on the projection of these dynamics onto the two-dimensional space of (X1, X2) since on X3

it remains quiescent.

In Fig. 2(d-e), we compare DeepRUOT with the balanced diffusion Schrödinger bridge method as
described in (Tong et al., 2024b). We find that neglecting the growth in the balanced diffusion
Schrödinger bridge leads to a false transition, incorrectly attracting cells in the quiescent state to
the transition and growth region. The underlying reason is that the growth factor causes an increase
in the number of cells. If the growth factor is ignored, the regions with increasing cell numbers
will attract cells to transition into them to maintain balance. Our approach, which explicitly incor-
porates growth dynamics, indeed eliminates false transitions and yields results consistent with the
ground truth dynamics Fig. 2(b). Furthermore, the growth rates inferred by DeepRUOT (Fig. 2(f))
closely match the ground truth after normalization, demonstrating the robustness and accuracy of
the DeepRUOT solver (Fig. 2(c)).

Figure 2: (a) Illustration of the synthetic gene regulatory dynamics. (b) The ground truth cellular
dynamics project on (X1, X2). (c) The ground truth growth rates. (d) The dynamics learned by
balanced Schrödinger bridge (SF2M (Tong et al., 2024b), σ = 0.25). (e) The dynamics learned by
our DeepRUOT solver (σ = 0.25). (f) The growth rates inferred by our DeepRUOT solver. (g) The
Waddington developmental landscape learned at t = 1 (σ = 0.25). (h) The constructed landscape
at t = 4 (σ = 0.25).

In Table 1, we present quantitative metrics (W1 and W2, Appendix C.1) to evaluate the perfor-
mance of our proposed algorithm in comparison with several representative baseline methods (Bal-
anced OT, Balanced SB, Unbalanced OT, Unbalanced Action Matching (AM), Unbalanced SB).
The results demonstrate that DeepRUOT is quantitatively more accurate than the competing meth-
ods. Furthermore, we observe that our algorithm can benefit from the incorporation of stochasticity,
outperforming the solver without diffusion (Unbalanced OT). We include the detail ablation studies
in Appendix B.5.

Learning Waddington Developmental Landscape In biophysics, the Waddington’s landscape
metaphor is a well-known model for representing cell fate decision process. Constructing such a
potential landscape has been widely studied (Zhou & Li, 2016; Shi et al., 2022; Zhao et al., 2024; Li
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Table 1: Wasserstein distance (W1 and W2) of predictions at different points across five runs on
gene regulatory data (Appendix C.1). We show the mean value with one standard deviation.

t = 1 t = 2 t = 3 t = 4

Model W1 W2 W1 W2 W1 W2 W1 W2

MIOFlow (Huguet et al., 2022) 0.098±0.000 0.113±0.000 0.250±0.000 0.295±0.000 0.421±0.000 0.536±0.000 0.614±0.000 0.802±0.000

SF2M (Tong et al., 2024b) 0.174±0.010 0.303±0.023 0.430±0.027 0.719±0.032 0.686±0.054 1.050±0.047 0.871±0.072 1.242±0.065

Unbalanced SB (Pariset et al., 2023) 0.729±0.009 0.846±0.012 0.747±0.009 0.823±0.012 0.612±0.012 0.725±0.018 0.572±0.029 0.944±0.031

uAM (Neklyudov et al., 2023) 0.448±0.000 0.495±0.000 0.650±0.000 0.691±0.000 0.661±0.000 0.749±0.000 0.672±0.000 0.864±0.000

Unbalanced OT (Sha et al., 2024) 0.047±0.000 0.060±0.000 0.059±0.000 0.088±0.000 0.073±0.000 0.084±0.000 0.107±0.000 0.124±0.000

DeepRUOT (ours) 0.044±0.001 0.058±0.001 0.056±0.002 0.084±0.002 0.071±0.002 0.083±0.002 0.104±0.001 0.121±0.000

& Wang, 2013; Wang et al., 2010; Li & Wang, 2014; Bian et al., 2023; 2024; Zhou et al., 2024c;d),
however it still remains a challenging problem in the single-cell omics data. The energy landscape
is defined by U = −σ2 log pss/2 where pss is the steady-state PDF satisfying the Fokker-Planck
equation −∇ · (pssb) + σ2

2 ∆pss = gpss. In this work, leveraging our model, we can naturally in-
fer the time-varying potential energy landscape through the learned log density function, and use
−σ2(t) log p(x, t)/2 to represent the landscape at time t. The lower energy function indicates more
stable cell fates in landscape.

In Fig. 2(g-h), we can observe the temporal evolution of the potential landscape in the synthetic
gene regulation system. The quiescent cells always occupy a potential well, indicating its stability.
Interestingly, the location of potential wells belonging to the transitional cell population is moving
in a consistent direction with ground truth cell-state transition dynamics. Overall, the results suggest
the accuracy and usefulness of DeepRUOT algorithm.

Synthetic Gaussian Mixtures Inspired by (Ruthotto et al., 2020), we employed a high-
dimensional Gaussian mixture model to evaluate the scalability of DeepRUOT. Initially, we gener-
ated a 10-dimensional Gaussian mixture distribution. The initial density is represented as a Gaussian
mixture derived from the average of two Gaussians, with their projections onto the (x1, x2) plane
depicted in Appendix B.2. The final density is also modeled as a mixture of three Gaussians, with
its projection onto (x1, x2) planes.

Fig. 5 (Appendix B.2) demonstrates that our model effectively incorporates growth while learning
the stochastic dynamics that transition from the initial to the target distribution. We observe that
the cells in the upper region exhibit proliferation without transport. If the true cell dynamics indeed
follow this pattern, models that neglect the growth factor, such as conventional balanced methods,
would fail to capture these dynamics. Conversely, if the true dynamics involve transport from the
lower to the upper cells, our model can still recover such dynamics, provided more detailed tempo-
ral resolution data is available. This highlights the robustness of our approach in capturing complex
dynamical behaviors involving both growth and transport. Similarly, we visualized the energy land-
scapes at the initial and final time points Fig. 5 (Appendix B.2). The results reveal that the cells
ultimately differentiate into three distinct fate states.

Real Single-Cell Population Dynamics Next, we evaluate our algorithm on a real scRNA-seq
dataset. We use the same dataset as in (Sha et al., 2024; Weinreb et al., 2020), which involves
mouse hematopoiesis analyzed by using a lineage tracing technique. After batch correction across
different experiments, the data was projected onto 2D reduced-dimension force-directed layouts
(SPRING plots). A clear bifurcation is observed where early-stage progenitor cells differentiate into
two distinct fates (Fig. 3(a)). Using the RUOT-based approach, we learn the underlying stochastic
dynamics of the data, along with the growth rates and developmental landscape at different times
(Fig. 3(b),(c),(d)). We similarly evaluated quantitative metrics to compare our method with several
baseline approaches (Table 2). We find that our method outperforms others (Appendix B.3). We
then test our method on a time-series single cell dataset from an A549 cancer cell line, where cells
were exposed to TGFB1 to induce EM (Sha et al., 2024). We project the data with PCA on a ten-
dimensional latent space as the input of our algorithm. The results are shown in Appendix B.4,
which indicates that DeepRUOT remains effective and applicable in higher-dimensional settings,
demonstrating its versatility and robustness in modeling complex single-cell dynamics.
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Table 2: Wasserstein distance (W1 and W2) of predictions at different points across five runs on
scRNA-seq data (Appendix C.1, σ = 0.25). We show the mean value with one standard deviation.

t = 1 t = 2

Model W1 W2 W1 W2

MIOFlow (Huguet et al., 2022) 0.276725±0.000 0.312102±0.000 0.307610±0.000 0.402190±0.000

SF2M (Tong et al., 2024b) 0.167477±0.003 0.213489±0.006 0.190020±0.016 0.241516±0.022

Unbalanced SB (Pariset et al., 2023) 0.387538±0.009 0.460603±0.008 0.128254±0.003 0.188339±0.009

uAM (Neklyudov et al., 2023) 0.744918±0.000 0.851704±0.000 0.777237±0.000 0.889527±0.000

Unbalanced OT (Sha et al., 2024) 0.313522±0.000 0.396947±0.000 0.342230±0.000 0.469342±0.000

DeepRUOT (ours) 0.145026±0.002 0.172878±0.002 0.132411±0.006 0.167328±0.010

Figure 3: Application in hematopoiesis scRNA-seq data (σ = 0.25). (a) The stochastic dynamics
learned by RUOT (σ = 0.25). (b) The growth rates learned by DeepRUOT (σ = 0.25). (c) The
constructed Waddington developmental landscape at t = 0 (σ = 0.25). (d) The landscape at t = 2
(σ = 0.25).

7 CONCLUSION

We have introduced DeepRUOT for learning regularized unbalanced optimal transport (RUOT) and
continuous unbalanced stochastic dynamics from time-series data. By leveraging Fisher regulariza-
tion, our method transforms an SDE problem into an ODE constraint. Through the use of neural
network modeling for growth and death, our framework models dynamics without requiring prior
knowledge of these processes. We have demonstrated the effectiveness of our method on a synthetic
gene regulatory network, high-dimensional Gaussian Mixture Model, and single-cell RNA-seq data,
showing its ability to eliminate false transitions caused by neglecting growth processes.

Future directions involve extending the methodology to learn the cell latent embedding space jointly
with the dynamics, and developing more computationally efficient algorithms. We expect future
work to address these aspects and improve trajectory inference problems in various scenarios, in-
cluding multi-omics data (e.g. single-cell ATAC-seq, spatial transcriptomics) and other scenarios
beyond biology in machine learning.
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A TRAINING REGULARIZED UNBALANCED OPTIMAL TRANSPORT

A.1 POST-TRAINING OF REGULARIZED UNBALANCED OPTIMAL TRANSPORT

After the pre-training stage, once we have obtained initial vθ, gθ and sθ, then we can continue
training by minimizing the total loss:

L = LEnergy + λrLRecons + λfLFP.

To compute the each component of the loss, the temporal integral and ODEs were numerically
solved using the Neural ODE solver (Chen et al., 2018). The gradients of the loss function with
respect to the parameters in the neural networks for v(x, t), g(x, t) and s(x, t) were computed
using neural ODEs with a memory-efficient implementation. For computing the Wasserstein dis-
tance between discrete distributions, we utilize the implementation provided by the Python Optimal
Transport library (POT) (Flamary et al., 2021). The algorithm is detailed in Algorithm 2.

A.2 TRAINING LOG DENSITY FUNCTION

To utilize conditional flow matching (CFM) to learn an initial log density, first we choose
pair samples (x0,x1) from the optimal transport plan q(x0,x1) and then construct Brown-
ian bridges between these pair samples. We first consider σ(t) = σ is constant. The log
density function is then matched with these Brownian bridges, i.e., p(x, t | (x0,x1)) =

N
(
x; tx1 + (1− t)x0, σ

2t(1− t)
)

and ∇x log p(x, t | (x0,x1)) = tx1+(1−t)x0−x
σ2t(1−t) , t ∈ [0, 1].

We then utilize the fully connected neural networks sθ(x, t) to approximate the log density function
1
2σ

2 log p(x, t) with a weighting function λs. Then we have

Lus = λ2
s∥∇xsθ −

1

2
σ2∇x log p(x, t)∥22.

And the correspongding CFM loss is

Lscore = EQ′λ2
s∥∇xsθ −

1

2
σ2∇x log p(x, t | (x0,x1))∥22,

where Q′ = (t ∼ U(0, 1))⊗ q(x0,x1)⊗ p(x, t | (x0,x1)). We take the weighting function as

λs(t) =
2

σ2
σ
√

t(1− t) =
2
√

t(1− t)

σ
.
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Algorithm 2 Post-Training of Regularized Unbalanced Optimal Transport
Require: Datasets A0, . . . , AT−1, batch size N , maximum ode iteration node, maximum log den-

sity iteration nlog-density, initialized neural ODE vθ, growth function gθ and log density
function sθ. Pre-Training Stage in Algorithm 1.

Ensure: Trained neural ODE vθ, growth function gθ and log density function sθ
1: for i = 1 to node do
2: Estimate the initial distribution through

p0 =

N0∑
i=1

exp
(
− 1

2 (x− xi(t0))
T
Σ−1 (x− xi(t0))

)
√
(2π)d|Σ|

,Σ = σI ∈ Rd×d.

▷ Overall training
3: for t = 0 to T − 2 do
4: Ât+1 ← vθ

(
Ât, t+ 1

)
5: log ŵ(Ât+1)← gθ

(
ŵ(Ât), t+ 1

)
6: LEnergy ← Ext∼pt

∫ t+1

t

[
1
2 ∥vθ(x(z), z)∥22 +

1
2 ∥∇xsθ∥22 −

(
σ2(z)

2 + sθ

)
gθ + αΨ(gθ)

]
ŵx(z)(z)dz (10)

7: LRecons ← LRecons ← λmMt + λdW2

(
ŵt,w(t)

)
(11)

8: LFP ← ∥∂tpθ +∇x · (pθvθ(x, t))− gθ(x, t)pθ∥+ λw ∥pθ(x, 0)− p0∥ (12)
9: L ← LEnergy + λrLRecons + λfLFP (9)

10: update vθ, gθ and sθ with gradient descent w.r.t. the loss L

Then we have

Lscore =λs(t)
2

∥∥∥∥∇xsθ(x, t)−
σ2

2
∇x log p (x | x0,x1)

∥∥∥∥2
2

,

=

∥∥∥∥λs(t)∇xsθ(x, t)− λs(t)
σ2

2
∇x log p (x | x0,x1)

∥∥∥∥2
2

,

= ∥λs(t)∇xsθ(x, t) + ϵ1∥22 ,

(13)

where ϵ1 ∼ N (0, 1). This is also numerically stable. For the case where σ(t) is not constant, a
similar approach can be applied. One may refer to (Tong et al., 2024b) for further details.

A.3 ESTIMATING INITIAL DISTRIBUTION FOR FOKKER-PLANCK EQUATION

The initial distribution is estimated by a Gaussian mixture model to generate density

p(x, 0) =p0(x) =

N0∑
i=1

exp
(
− 1

2 (x− xi(t0))
T
Σ−1 (x− xi(t0))

)
√
(2π)d|Σ|

,Σ = σI ∈ Rd×d.

A.4 ENERGY LOSS

In (Sha et al., 2024), it introduces the following theorem to transform the high-dimensional integral
to the Monte Carlo integral.

Theorem A.1. If smooth density p(x, t) : Rd×[0, 1]→ R+, velocity field v(x, t) : Rd×[0, 1]→ Rd

and growth rate g(x, t) : Rd × [0, 1]→ R satisfy{
∂tp(x, t) +∇ · (v(x, t)p(x, t)) = g(x, t)p(x, t),

p(x, 0) = p0(x),

for all 0 ≤ t ≤ 1 with dx(t)
dt = v(x, t) and x(0) = x0, then for any measurable function f(x, t) :

Rd × [0, 1]→ Rd, we have
∫ 1

0

∫
Rd f(x, t)p(x, t)dxdt = Ex0∼p0

∫ 1

0
f(x, t)e

∫ t
0
g(x,s)dsdt.
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B ADDITIONAL RESULTS

B.1 SYNTHETIC GENE REGULATORY NETWORK

The system dynamics are governed by the following set of stochastic ordinary differential equations
(ODEs):

dX1

dt
=

α1X
2
1 + β

1 + α1X2
1 + γ2X2

2 + γ3X2
3 + β

− δ1X1 + η1ξt,

dX2

dt
=

α2X
2
2 + β

1 + γ1X2
1 + α2X2

2 + γ3X2
3 + β

− δ2X2 + η2ξt,

dX3

dt
=

α3X
2
3

1 + α3X2
3

− δ3X3 + η3ξt.

Genes X1 and X2 mutually inhibit each other and self-activate, forming a toggle switch. An ex-
ternal signal β uniformly activates both X1 and X2 independently of gene expression levels. Gene
X3 inhibits the expression of both X1 and X2. Here, Xi(t) represents the concentration of gene i
at time t, with αi and γi denoting the strengths of self-activation and inhibition, respectively. The
parameters δi represent gene degradation rates, while ηiξt accounts for the stochastic effects with
additive white noise. The probability of cell division correlates positively with the expression of
X2, calculated as g = αg

X2
2

1+X2
2
%, where αg = 0.065. Upon division, cells inherit the gene expres-

sion states (X1(t), X2(t), X3(t)) of the parent cell, subject to independent perturbations ηdN (0, 1)
for each gene, and transition independently thereafter. The hyper-parameters are listed at Table 3.
The initial cells are chosen independently and identically distributed from two normal distributions
N ([2, 0.2, 0], 0.01) and N ([0, 0, 2], 0.01). At each step, we corrected the negative expression value
to 0.

Table 3: Simulation parameters on gene regulatory network.
Parameter Value Description
α1 0.5 Strength of self-activation for X1

γ1 0.5 Strength of inhibition by X3 on X1

α2 1 Strength of self-activation for X2

γ2 1 Strength of inhibition by X3 on X2

α3 1 Strength of self-activation for X3

γ3 10 Half-saturation constant for inhibition terms
δ1 0.4 Degradation rate for X1

δ2 0.4 Degradation rate for X2

δ3 0.4 Degradation rate for X3

η1 0.05 Noise intensity for X1

η2 0.05 Noise intensity for X2

η3 0.01 Noise intensity for X3

ηd 0.014 Noise intensity for cell perturbations
β 1 External signal activating X1 and X2

dt 0.2 Time step size
Time Points [0, 40, 80, 120, 160] Time points at which data is recorded

We conducted a comprehensive evaluation of the methodologies proposed by (Neklyudov et al.,
2023; Pariset et al., 2023) utilizing our simulated dataset. As detailed in Table 1, our approach con-
sistently outperforms the referenced methods across multiple quantitative metrics, thereby demon-
strating its superior ability to capture the underlying dynamics of the system. Furthermore, Fig. 4
provides the outcomes produced by the UDSB (Pariset et al., 2023). While their method predicts
an overall increase in cell population, a closer examination reveals the presence of false dynamics
within the predicted transitions.
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Figure 4: Results obtained by UDSB (Pariset et al., 2023) on gene regulatory network. (a)
The trajectory learned by UDSB, where black dots indicate particle death, red dots signify particle
growth, orange dots represent the target distribution, dark blue dots denote the source distribution,
and gradient blue dots illustrate particle trajectories. (b) Predicted changes in cell population at
intermediate time points, with dots representing the actual mass.

B.2 SYNTHETIC GAUSSIAN MIXTURES

For the initial distribution, we generated 400 samples from the Gaussian located lower in the (x1, x2)
plane, and 100 samples from the Gaussian positioned higher. For the final distribution, we generated
1,000 samples from the upper Gaussian, and 200 samples each from the two lower Gaussians. We
then tested the RUOT-based model’s ability to learn the stochastic dynamics using the samples
generated in this manner.

To further evaluate the scalability of our algorithm, we simulated Gaussian mixture models with 20,
50, and 100 dimensions, as illustrated in Fig. 6. We similarly visualize the results on the first and
second dimensions. The results demonstrate that our model remains effective and applicable across
these higher-dimensional settings.

Similar to the frameworks such as TrajectoryNet (Tong et al., 2020), MIOflow (Huguet et al., 2022)
and (Koshizuka & Sato, 2023), which involve simulating an ODE/SDE and performing optimal
transport for distribution matching, the computational cost and scalability of our method are com-
parable to these existing approaches. Notably, the score matching in our method is conducted via
conditional flow matching (Lipman et al., 2023; Tong et al., 2024a;b), which is simulation-free and
thus highly efficient. Consequently, our approach does not introduce significant additional com-
putational overhead, since the cost of each component is similar to previous works. Meanwhile,
when it extends to thousands of dimensions, our approach similarly encounters challenges, ne-
cessitating the development of simulation-free training methods akin to flow matching to handle
higher-dimensional settings effectively (Tong et al., 2024b; Lipman et al., 2023; Tong et al., 2024a).
However, in the field of single-cell biology, dimensionality reduction of gene expression data is
routinely employed, making hundreds of dimensional space sufficient for practical applications.

B.3 SINGLE CELL DYNAMICS IN MOUSE HEMATOPOIESIS

We conducted a comparative evaluation of the methodologies proposed by (Neklyudov et al., 2023;
Pariset et al., 2023) using our mouse hematopoiesis dataset. As detailed in Table 1, our approach
consistently outperforms the referenced methods across a range of quantitative metrics, underscor-
ing its superior efficacy in capturing the underlying biological dynamics. In Fig. 7, we present the
results generated by the UDSB (Pariset et al., 2023). Fig. 7(a) displays the learned trajectory, where
black dots indicate particle death, red dots signify particle growth, orange dots represent the target
distribution, dark blue dots denote the source distribution, and gradient blue lines illustrate the parti-
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(a) (b)

0

1
Learnt growth rate

(c) (d)

Figure 5: Results of DeepRUOT on Gaussian mixtures (σ = 0.01, 10D). (a) The learned trajec-
tory by DeepRUOT (σ = 0.1). (b) The growth rate inferred by our model. (c) The Waddington
developmental landscape at t = 0 (σ = 0.1). (d) The Waddington developmental landscape at t = 1
(σ = 0.1).

Figure 6: Results of DeepRUOT on higher dimensional Gaussian mixtures (σ = 0.01). The first
column presents the trajectories learned by DeepRUOT (σ = 0.1), the second column displays the
growth rates inferred by our model, the third column shows the Waddington developmental land-
scape at t = 0 (σ = 0.1), and the fourth column depicts the Waddington developmental landscape
at t = 1 (σ = 0.1). (a) 20 dimensions, (b) 50 dimensions, (c) 100 dimensions.
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cle trajectories. This visualization highlights the dynamic trajectory of cell population changes over
time. Fig. 7(b) illustrates the predicted changes in cell population at intermediate time points, with
each dot representing the actual mass observed. Finally, Fig. 7(c) shows the predicted cell distribu-
tions at various time points in red, while the blue distribution at the final time point represents the
initial distribution. This panel underscores the model’s ability to track and predict the evolution of
cell distributions from the initial state to subsequent stages.

Notably, although this method achieves a marginally higher W1 metric at the final time point, a
closer examination reveals that the predicted distributions at intermediate time points, as illustrated
in Fig. 7(c), deviate from the true data distributions. This indicates that the (Pariset et al., 2023)
method may have challenges to accurately model the transitional dynamics that occur between the
initial and final stages of hematopoiesis.

Furthermore, Fig. 7(a) and Fig. 7(b) demonstrate that the growth locations predicted by the UDSB
algorithm are consistent with those identified by our model. This consistency provides a form of
cross-validation, affirming that our algorithm effectively captures both the growth and migration
dynamics inherent in the cell population. So the ability of our model to maintain accurate predictions
across all time points, including the intermediate stages, demonstrates its enhanced capacity for
modeling unbalanced dynamics within complex biological systems.

Figure 7: Results obtained by UDSB (Pariset et al., 2023) on mouse hematopoiesis. (a) The tra-
jectory learned by UDSB, where black dots indicate particle death, red dots signify particle growth,
orange dots represent the target distribution, dark blue dots denote the source distribution, and gradi-
ent blue dots illustrate particle trajectories. (b) Predicted changes in cell population at intermediate
time points, with dots representing the actual mass. (c) Red denotes the predicted cell distributions
at various time points, while the blue distribution at the final time point represents the initial distri-
bution.

B.4 SINGLE CELL DYNAMICS IN EMT

Subsequently, we applied DeepRUOT to a time-series single-cell RNA sequencing dataset derived
from the A549 cancer cell line. In this study, cells were treated with TGFB1 to induce epithelial-
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mesenchymal transition (EMT) during the initial four-time points (Sha et al., 2024). Cells harvested
at each time point were cultured in vitro with identical initial cell numbers, ensuring that the cell
counts directly reflect the dynamics of the cell population over time.

We employed Principal Component Analysis (PCA) to reduce the dimensionality of our single-cell
RNA sequencing (scRNA-seq) data to a ten-dimensional latent space. This latent representation
was subsequently utilized as the input for DeepRUOT. To aid in the interpretation of the results,
we projected the algorithm’s outputs onto the first and second principal components, which capture
the majority of the variance in the data and thus provide meaningful insights into the underlying
biological phenomena.

The trajectories inferred by DeepRUOT exhibited consistent and biologically plausible transition
dynamics, effectively mapping the progression of cells through different developmental states. Fur-
thermore, we visualized the growth rates estimated by the algorithm alongside the developmental
landscapes at various time points, providing a comprehensive view of both the quantitative and
qualitative aspects of cellular dynamics.

Notably, the growth patterns inferred by DeepRUOT displayed elevated values during the initial and
intermediate stage of epithelial-mesenchymal transition (EMT) compared to the epithelial (E) and
mesenchymal (M) stages, as illustrated in Fig. 8. This observation aligns with previous studies that
have reported enhanced stemness and proliferative capacity in cells at the intermediate stage.

Moreover, our landscape analysis revealed that the inferred developmental landscapes are consistent
with the observed data distributions at corresponding time points. The developmental landscapes
provide a representation of the cell states, illustrating how cells traverse through different regions of
the latent space as they progress through various stages of differentiation and migration.

Figure 8: Results of DeepRUOT on EMT scRNA-seq data (σ = 0.05). (a) The stochastic dynam-
ics learned by RUOT (σ = 0.25). (b) The growth rates learned by DeepRUOT (σ = 0.05). (c) The
constructed Waddington developmental landscape at t = 1 (σ = 0.05). (d) The landscape at t = 2
(σ = 0.05).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.5 ABLATION STUDIES

We conducted ablation experiments on the gene regulatory dataset to evaluate the contributions of
key components in our algorithm. Specifically, we examined the impact of the growth term g(x, t).
Then we assessed the necessity of the mass loss term LMass within the reconstruction loss function
LRecons and LFP in the total loss (9). These analyses demonstrate the critical roles that the growth
term, the mass loss component, and the Fokker-Planck constraint play in enhancing the performance
and accuracy of our model.

Table 4: Ablation studies across five runs on gene regulatory data (σ = 0.25). We show the mean
value with one standard deviation.

t = 1 t = 2 t = 3 t = 4

Model W1 W2 W1 W2 W1 W2 W1 W2

SF2M (Tong et al., 2024b) 0.174±0.010 0.303±0.023 0.430±0.027 0.719±0.032 0.686±0.054 1.050±0.047 0.871±0.072 1.242±0.065

DeepRUOT w/o growth 0.173±0.005 0.198±0.004 0.324±0.007 0.371±0.005 0.481±0.010 0.576±0.004 0.772±0.009 0.877±0.011

DeepRUOT w/o LMass 0.159±0.006 0.186±0.006 0.308±0.005 0.349±0.007 0.465±0.011 0.553±0.011 0.690±0.007 0.816±0.009

DeepRUOT w/o LFP 0.090±0.004 0.107±0.005 0.108±0.003 0.132±0.002 0.133±0.006 0.156±0.007 0.165±0.008 0.197±0.011

DeepRUOT 0.095±0.005 0.115±0.006 0.104±0.002 0.130±0.007 0.130±0.003 0.157±0.003 0.140±0.007 0.168±0.007

We observe that when our algorithm does not account for growth, i.e., by setting g(x, t) = 0 , it
reduces to regularized optimal transport, which is equivalent to the Schrödinger bridge problem.
Consequently, SF2M (Tong et al., 2024b) corresponds to the scenario where g(x, t) = 0 within our
approach. Our experiments have demonstrated that omitting the growth factor leads to inaccurate
trajectory reconstructions, underscoring the necessity of modeling unbalanced dynamics. To fur-
ther substantiate this finding, we conducted an explicit ablation study with g(x, t) (Table 4). The
results from this experiment align with those of the SF2M , confirming that disabling the growth
rate adversely affects performance by neglecting essential growth and death processes. This com-
parison reinforces the importance of the growth rate component in accurately capturing unbalanced
stochastic dynamics, thereby validating the enhanced performance of DeepRUOT.

Next, we assess the impact of the mass loss term, LMass, within the reconstruction loss function
LRecons = λmLMass + λdLOT during all training stage. By setting λm = 0, we observed that the ex-
clusion of this component results in inaccurate trajectory reconstructions (see Table 4). This finding
underscores the crucial role of incorporating local mass matching in unbalanced settings, demon-
strating that the omission of LMass significantly impairs the model’s ability to accurately capture the
system’s dynamics.

Subsequently, we investigate the post-training stage using the loss functionL = LEnergy+λrLRecons+
λfLFP. By setting λf = 0, thereby excluding the Fokker-Planck constraint, the results presented in
Table 4 reveal that incorporating this loss term enhances our model’s performance, particularly at
the final time point. These results collectively highlight the importance of both mass matching and
the Fokker-Planck constraint in improving the accuracy and reliability of trajectory reconstructions
within our framework.

C EXPERIENTIAL DETAILS

C.1 EVALUATION METRICS

We evaluate the empirical 1-Wasserstein distance (W1) and 2-Wasserstein distance (W2) on the gene
data and scRNA-seq data. It is defined as follows:

W2(p, q) =

(
min

π∈Π(p,q)

∫
∥x− y∥22dπ(x,y)

)1/2

,

and

W1(p, q) =

(
min

π∈Π(p,q)

∫
∥x− y∥2dπ(x,y)

)
,

where p and q represent empirical distributions.

We evaluate our method by first learning the dynamics using data from all time points. We then
apply these inferred dynamics to the initial data point to generate data for subsequent time points.
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Next, we compute theW1 andW2 distances between the generated data and the real data. For the
gene regulatory network data, we ensure that the number of generated data points matches that of
the real data since we have the true dynamics. In the scRNA-seq dataset, since the true dynamics are
unknown, we apply the inferred dynamics to the initial data and compute theW1 andW2 distances
between the generated data and all the data at that time point. Because our method could assign
weights to the sample points, we compute the weighted W1 and W2 distances accordingly in the
evaluation of our methods. We take the weight computed by DeepRUOT without diffusion to use
for simplicity. For other methods we used the default uniform distribution to evaluate.

To evaluate the performance of SF2M and DeepRUOT on scRNA-seq datasets we take the same
diffusion coefficient as σ = 0.25. To evaluate the performance on synthetic gene regulatory data,
we choose σ = 0.05 for our DeepRUOT method and σ = 0.25 for SF2M. This is due to we observe
some numerical instability when using SF2M with σ = 0.05. So to ensure a fair comparison, we
choose the parameter as default in SF2M.

To evaluate the performance of (Sha et al., 2024) on gene regulatory network data and single-cell
RNA sequencing (scRNA-seq) mouse hematopoiesis data, as we observed certain instabilities on the
datasets, to ensure a fair comparison, we independently reimplemented the method and conducted
additional evaluations (by setting σ = 0 in DeepRUOT).

To evaluate the performance of (Neklyudov et al., 2023) and (Pariset et al., 2023) on gene regulatory
network data and single-cell RNA sequencing (scRNA-seq) mouse hematopoiesis data, we utilized
their default parameter settings. Specifically, for (Pariset et al., 2023), whose default configuration
involves three-time points, we selected samples at time points 0, 2, and 4 from the gene regulatory
network dataset as inputs for the algorithms.

C.2 IMPLEMENTATION DETAILS AND LOSS WEIGHTING

We use one A100 Nvidia GPU along with 16 CPU cores for computation at a shared high-
performance computing cluster. For the two-stage training of DeepRUOT, each stage necessitates
the selection of distinct parameters tailored to its specific requirements.

In the pre-training phase, we need to select the parameters in LRecons, i.e., λm and λd in LRecons =
λmLMass + λdLOT. Parameter selection is important during this stage, as in the ablation studies we
have shown that both the two components are important. Initially, we set the hyperparameters λm

and λd and train the model for a predefined number of epochs. Following this, we set λm = 0 and
conduct an additional epoch of training. This strategy is grounded in the rationale of first aligning
growth patterns and subsequently refining the transition process based on the established growth
metrics. The specific parameters employed for each dataset are detailed in Table 5.

During the post-training stage, the pre-training phase provides robust initial values, thereby reducing
the sensitivity to parameter variations in L = LEnergy + λrLRecons + λfLFP. As a result, we utilize
the set of parameters and train the model for 10 epochs consistently across different datasets.

C.3 TRAINING INITIAL LOG DENSITY FUNCTION

In our gene regulatory network example training, we utilize the following steps to stabilize train-
ing. Here since we parameterize σ2

2 log p(x, t) using sθ(x, t) when we compute Fokker-Planck
constrained loss, we need to do the exponential operations, which may cause numerical instability
during computations. To mitigate this issue, we augment the CFM loss with an additional penalty
term defined as L = αpenalty max(sθ(x, t), 0) prior to training sθ(x, t). This penalty encourages
sθ(x, t) to adopt negative values, thereby preventing instability caused by the subsequent exponen-
tial function. Our training procedure is conducted in two stages:

1. Initial Training Phase: We optimize the combined CFM loss and penalty term for 3,000
epochs. This stage ensures that s remains negative, stabilizing the training process by
avoiding potential numerical issues associated with positive values of s.

2. Secondary Training Phase: After the initial phase, we remove the penalty term and con-
tinue training solely with the CFM loss for an additional 6,000 epochs. This allows the
model to fine-tune the parameter s without the constraint imposed by the penalty, facilitat-
ing more accurate learning.
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Table 5: Parameter Settings for Different Datasets Across Training Stages

Parameter Datasets
Regulatory Network Mouse Hematopoiesis EMT Gaussian Mixtures

10D 20D 40D 100D
Pre-Training Stage (Phase I)
λm 1.0 1.0 1.0 1.0 1.0 1.0 1.0
λd 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Epochs 20 30 20 35 30 35 35

Pre-Training Stage (Phase II)
λm 0.0 0.0 0.0 0.0 0.0 0.0 0.0
λd 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Epochs 10 30 0 80 90 120 100

Post-Training Stage
λm 1e+3 1e+3 1e+3 1e+3 1e+3 1e+3 1e+3
λd 1.0 1.0 1.0 1.0 1.0 1.0 1.0
λr 1.0 1.0 1.0 1.0 1.0 1.0 1.0
λf 1.0 1.0 1.0 1.0 1.0 1.0 1.0
λw 0.1 0.1 1.0 1.0 1.0 1.0 1.0
Epochs 10 10 10 10 10 10 10

For the last two examples, such stabilization measures are unnecessary, as the dynamics of these
cases do not induce the same level of numerical instability. Consequently, we proceed with training
using only the CFM loss without incorporating the penalty term.

This issue may be avoided if we use the Hamilton–Jacobi–Bellman (HJB) equations to set the con-
straints rather than the direct Fokker-Planck equations (Zhao et al., 2024; Zhou et al., 2024b; Jiang
& Wan, 2024; Meng et al., 2024).

D TECHNICAL DETAILS FOR SCHRÖDINGER BRIDGE AND RUOT

D.1 PROOF OF DYNAMICAL FORMULATION OF SCHRÖDINGER BRIDGE

Proof. For Schrödinger bridge problems, the optimal solution can be found within the class of SDEs:

Xt ∼ µX
t : dXt = b (Xt, t) dt+ σ (Xt, t) dW t,

The Fokker-Planck equation for the SDE is

∂tp(x, t) = −∇x · (p(x, t)b(x, t)) +
1

2
∇2

x : (a(x, t)p(x, t)) ,

where a(x, t) = σ(x, t)σT (x, t). Then we need to compute the KL divergence of these two
stochastic processes. Define the auxiliary variable

γ(x, t) = σ(x, t)−1b(x, t)

and apply the Girsanov’s theorem, we get

DKL

(
µX
[0,1]||µ

Y
[0,1]

)
= EP

[
E1

(∫ 1

0

γ(Y t, t)dW t −
1

2

∫ 1

0

∥γ(Y t, t)∥22 dt
)]

, (14)

where {Et}t∈[0,1] is an exponential martingale with respect to the Brownian filtrations {Ft} defined
as

Et = exp

(∫ t

0

γ(Y t, t)dW t −
1

2

∫ t

0

∥γ(Y t, t)∥22 dt
)
.

It is well-known that the exponential martingale Et satisfies the SDE

dEt = Etγ(Y t, t)dW t, E0 = 1.
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So we obtain

E1 =

∫ 1

0

Esγ(Y s, s)dW s + 1.

Since E
∫ 1

0
γ(Y t, t)dW t = 0, we get

E
[
E1

∫ 1

0

γ(Y t, t)dW t

]
= E

[∫ 1

0

Etγ(Y t, t)dW t ·
∫ 1

0

γ(Y t, t)dW t

]
,

= E
∫ 1

0

Et ∥γ(Y t, t)∥22 dt,

= E
∫ 1

0

E
(
∥γ(Y t, t)∥22 E1 | Ft

)
dt,

=

∫ 1

0

E
(
E1 ∥γ(Y t, t)∥22

)
dt,

= E
[
E1

∫ 1

0

∥γ(Y t, t)∥22 dt
]
.

Combine with Eq. (14), we obtain that

DKL(µ
X
[0,1]||µ

Y
[0,1]) = E

[
E1

(∫ 1

0

1

2
∥γ(Y t, t)∥22 dt

)]
= E

∫ 1

0

1

2
∥γ(Xt, t)∥22 dt

=

∫ 1

0

∫
Rd

[
1

2
bT (x, t)a(x, t)−1b(x, t)

]
p(x, t)dxdt.

The proof is done.

D.2 PROOF OF FISHER REGULARIZATION OF RUOT

Proof. From (6) we obtain

∂tp = −∇x · (pb) +
1

2
∇2

x :
(
σ2(t)Ip

)
+ g(x, t)p,

= −∇x ·
((

b− 1

2
σ2(t)∇x log p

)
p

)
+ g(x, t)p.

Using the change of variable v(x, t) = b(x, t)− 1
2σ

2(t)∇x log p, we see that it is equivalent to

∂tp = −∇x · (pv(x, t)) + g(x, t)p.

Correspondingly, the integrand in the objective functional becomes∫ 1

0

∫
Rd

[
1

2
∥v(x, t)∥22 +

σ4(t)

8
∥∇x log p∥22 +

1

2

〈
v(x, t), σ2(t)∇x log p

〉
+ αΨ(g)

]
p(x, t)dxdt.

(15)

Letting H (p(x, t)) :=
∫
Rd p(x, t) log p(x, t)dx be the entropy, we have

H (p(x, 1))−H (p(x, 0) =

∫ 1

0

∂tH (p(x, t)) dt

=

∫ 1

0

∫
Rd

(1 + log p(x, t)) ∂tp(x, t)dxdt

=

∫ 1

0

∫
Rd

(1 + log p(x, t)) · (−∇x · (p(x, t)v(x, t)) + gp(x, t)) dxdt,

=

∫ 1

0

∫
Rd

p(x, t) ⟨∇x log p(x, t),v(x, t)⟩+ (1 + log p(x, t)) gpdxdt.
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Therefore,∫ 1

0

∫
Rd

[〈
σ2(t)∇x log p,v(x, t)

〉]
p(x, t)dxdt = σ2(t) (H (p(x, 1))−H (p(x, 0)))

−
∫ 1

0

∫
Rd

σ2(t) (1 + log p(x, t)) gpdxdt.

D.3 RUOT WITH NONLINEAR FOKKER-PLANCK EQUATION CONSTRAINTS

Note that when Ψ(g(x, t)) take the quadratic form i.e. Ψ(g(x, t)) = |g(x, t)|22, then by canceling
the cross term in Theorem 4.1 we will get another Fisher information regularisation form as below.

Theorem D.1. When Ψ(g(x, t)) = |g(x, t)|22, the regularized unbalanced optimal transport prob-
lem (7) is equivalent to

inf
(p,v,g̃)

∫ 1

0

∫
Rd

[
1

2
∥v(x, t)∥22 +

σ4(t)

8
∥∇x log p∥22 + α|g̃(x, t)|2 − σ4(t)

16α
(1 + log p)2

]
pdxdt

(16)
where the infimum is taken all pairs (p,v, g̃) such that p(·, 0) = ν0, p(·, 1) = ν1, p(x, t) absolutely
continuous, and

∂tp = −∇x · (pv(x, t)) + g̃(x, t)p+
σ2(t)

4α
(1 + log p)p. (17)

coupled with vanishing boundary condition: lim
|x|→∞

p(x, t) = 0.

Proof. Based on the formulation of Theorem 4.1, we proceed by introducing the following change
of variables:

g̃ = g − σ2(t)

4α
(1 + log p). (18)

Substituting this variable into Eq. (7), then it follows immediately.

From Theorem D.1, we can find that if we introduce a new term in the continuity equation Eq. (6)
as:

∂tp = −∇x · (pb) +
1

2
∇2

x :
(
σ2(t)Ip

)
+ gp− σ2(t)

4α
(1 + log p)p.

Then Eq. (17) now yields the standard continuity equation:

∂tp = −∇x · (pv(x, t)) + g̃(x, t)p.

So we introduce a new definition.

Definition D.1. We introduce

UOTD (ν0, ν1) := inf
(p,b,g)∈C(ν0,ν1)

∫ 1

0

∫
Rd

1

2
∥b(x, t)∥22 pdxdt+

∫ 1

0

∫
Rd

α |g(x, t)|22 pdxdt,

where, for (p, b, g) belonging to appropriate functions spaces,

C (ν0, ν1) :=
{
p, b, g

∣∣∣∣∂tp = −∇x · (pb) +
1

2
∇2

x :
(
σ2(t)Ip

)
+ gp− σ2(t)

4α
(1 + log p)p

∣∣∣∣} ,

where p0 = ν0 and p1 = ν1.

Remark D.1. Note that when σ(t) is constant Definition D.1 is consistent with the form provided in
(Buze & Duong, 2023), and it has been conjectured that it is the higher order approximation scheme
to the unbalanced optimal transport problem as σ → 0.
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D.4 RUOT IN THE GENERAL CASE

For the general case, we consider the following equation

∂tp = −∇x · (pb) +
1

2
∇2

x : (a(x, t)p) + gp, (19)

with the corresponding metric∫ 1

0

∫
Rd

1

2
∥b(x, t)∥22 p(x, t)dxdt+

∫ 1

0

∫
Rd

αΨ(g(x, t)) p(x, t)dxdt, (20)

where α and Ψ : R → [0,+∞] is the growth penalization. Then we can define the regularized
unbalanced optimal transport problem in the same way.
Definition D.2 (Regularized unbalanced optimal transport II). Consider

inf
(p,b,g)

∫ 1

0

∫
Rd

1

2
∥b(x, t)∥22 p(x, t)dxdt+

∫ 1

0

∫
Rd

αΨ(g(x, t)) p(x, t)dxdt, (21)

where the infimum is taken all pairs (p, b) such that p(·, 0) = ν0, p(·, 1) = ν1, p(x, t) absolutely
continuous, and

∂tp = −∇x · (pb) +
1

2
∇2

x : (a(x, t)p) + gp. (22)

coupled with vanishing boundary condition: lim
|x|→∞

p(x, t) = 0.

We similarly can reformulate Definition D.2 with the following Fisher information regularization.
Theorem D.2. Consider the regularized unbalanced optimal transport problem Definition D.2, it is
equivalent to

inf
(p,v,g)

∫ 1

0

∫
Rd

1

2
∥v(x, t)∥22 p(x, t)dxdt+

1

8
∥σ(x, t)∇x · log (a(x, t)p)∥22 p(x, t)dxdt

+
1

2
⟨v(x, t),a(x, t)∇x · log (a(x, t)p)⟩ p(x, t)dxdt+ αΨ(g(x, t)) p(x, t)dxdt,

(23)

where the infimum is taken all pairs (p,v, g) such that p(·, 0) = ν0, p(·, 1) = ν1, p(x, t) absolutely
continuous, and

∂tp = −∇x · (pv(x, t)) + g(x, t)p. (24)
coupled with vanishing boundary condition: lim

|x|→∞
p(x, t) = 0.

Proof. From Definition D.2 we know that the Fokker-Planck equation for the SDE is

∂tp = −∇x · (pb) +
1

2
∇2

x : (a(x, t)p) + g(x, t)p,

= −∇x ·
((

b− 1

2
a(x, t)∇x · log (a(x, t)p)

)
p

)
+ g(x, t)p.

with minimization problem

inf
(p,b)

∫ 1

0

∫
Rd

1

2
∥b(x, t)∥22 p(x, t)dxdt+

∫ 1

0

∫
Rd

αΨ(g(x, t)) p(x, t)dxdt.

Using the change of variable v(x, t) = b(x, t) − 1
2a(x, t)∇x · log (a(x, t)p), we see that it is

equivalent to
∂tp = −∇x · (pv(x, t)) + g(x, t)p.

On the other hand, since ∥b(x, t)∥22 = ∥v(x, t)∥22 + 1
4 ∥a(x, t)∇x · log (a(x, t)p)∥22 +

2
〈
v(x, t), 1

2a(x, t)∇x · log (a(x, t)p)
〉
, the integrand in the objective then becomes∫ 1

0

∫
Rd

1

2
∥v(x, t)∥22 p(x, t)dxdt+

1

8
∥σ(x, t)∇x · log (a(x, t)p)∥22 p(x, t)dxdt

+
1

2
⟨v(x, t),a(x, t)∇x · log (a(x, t)p)⟩ p(x, t)dxdt+ αΨ(g(x, t)) p(x, t)dxdt,
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Similarly, from the proof of Theorem D.2, the original SDE dXt = (b (Xt, t)) dt+σ (Xt, t) dW t

can be transformed into the probability flow ODE

dXt =

(
b (Xt, t)−

1

2
a(Xt, t)∇x · log (a(Xt, t)p (Xt, t))

)
︸ ︷︷ ︸

v(Xt,t)

dt.

Conversely, if the probability flow ODE’s drift v(x, t) the diffusion rate a(x, t) and the function
∇x · log (a(x, t)p(x, t)) are known, then the the SDE’s drift term b(x, t) can be determined by

b(x, t) = v(x, t) +
1

2
a(x, t)∇x · log (a(x, t)p(x, t)) .

So to specify an SDE is equivalent to specifying the probability flow ODE and the corresponding
log density function.

E CONNECTIONS WITH SCHRÖDINGER BRIDGE

Although the RUOT problem can be derived from the dynamical formulation of a Schrödinger bridge
relaxation, the relationship between the RUOT problem and the original static Schrödinger bridge
problem, the choice of the growth penalty form in RUOT as well as its microscopic interpretation,
remains unsolved. In this section, we will discuss two potential microscopic interpretations with the
choice of the growth penalty form and identify the persisting problems and challenges associated
with each.

E.1 CONNECTIONS WITH BRANCHING SCHRÖDINGER BRIDGE

In (Baradat & Lavenant, 2021), the authors explore the relationship between the RUOT and the
branching Schrödinger bridge, with the corresponding reference process identified as branching
Brownian motion. We will begin by reviewing their principal findings and subsequently highlight
the associated issues and challenges.

A Branching Brownian motion (BBM) can be characterized by its diffusivity ε, branching rate λ
(where each particle is associated with an independent exponential distribution with parameter λ ),
and the law of offspring denoted by p = (pk)k∈N ∈ P(N) (The probability measures on N with
nonnegative sequences summing to one), where pk is the probability of producing k descendants at
a branching event. We define qk = λpk and introduce the generating function of q as Φq .

Φq : z 7→
∑
k∈N

qkz
k = λ

∑
k∈N

pkz
k.

The branching mechanism is entirely determined by q , since λ and p can be recovered from q
by λ =

∑
k∈N qk and pk = λ−1qk for k ∈ N . Therefore, these parameters are sufficient to

fully characterize the BBM with diffusivity ν , branching mechanism q = λp , and initial law
R ∼ BBM(ε, q, ν0) . Their core result indicates that consider Definition 4.1 where σ(t) = σ is
constant and ε = σ2 then if the growth penalty term is defined as follows, it can correspond to a
branching Schrödinger process.

Ψ∗
ε,q(s) = ε

(
Φq

(
es/ε

)
e−s/ε − Φq(1)

)
= ε

+∞∑
k=0

qk

{
exp

(
(k − 1)

s

ε

)
− 1

}
, (25)

and we define Ψε,q(g) = sups∈R gs − Ψ∗
ε,q(s). So by following their result, we can present some

examples.

The case of only loss mass This example has been included in their work. We consider ε = λ = 1,
p0 = 1 and

∑
k≥2 pk = 0, which means the particle can only die at the branching event. Substituting

it into Eq. (25), we have
Ψ∗

1,q(s) = exp (−s)− 1.

Then by computing its Legendre transform we obtain
Ψ1,q(g) = 1 + g − g log(−g),

where g < 0. This form is consistent with the formula discussed in (Chen et al., 2022b).
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The case of only gain mass Similarly, if we consider ε = λ = 1, p2 = 1, which means the
particle can only divide into two parts at the branching event. Then by the similar calculation, we
obtain

Ψ1,q(g) = 1− g + g log(g),

which g > 0.

The case of both gain mass and loss mass We consider ε = λ = 1, p0 = p2 = 1
2 , which means

the particle can divide into two parts or die at the same probability at the branching event. This is
also presented in their work, which we have

Ψ∗
1,q(s) = cosh(s)− 1.

However in this case the Legendre transform would be more complicated but it has some asymptotic
properties discussed in their work.

General case Although we have illustrated several examples, challenges persist, particularly in the
context of more general scenarios. Specifically, when the growth penalty term cannot be expressed
as Ψε,q , the connection to the corresponding stochastic process remains unclear. For instance, this
ambiguity arises in cases where in the RUOT the Ψ(g) takes the quadratic form i.e., the WFR
metric, or when Ψ(g) is in a linear form, such as |g|. These issues still require specific mathematical
treatment and to our knowledge, remain an open problem.

E.2 CONNECTIONS WITH SCHRÖDINGER BRIDGE ON WEIGHTED PATH

From an alternative perspective on the microscopic interpretation of RUOT, we aim to consider
particles on the weighted path space, namely:

dµG
[0,1] = exp

(∫ 1

0

g(Xs, s)ds

)
dµX

[0,1],

where µX
[0,1] represents the probability measure induced by the SDE (Eq. (2)). Here for example we

consider a simple case when g(x, t) = C. Then following the procedure of Theorem 3.1.

DKL(µ
G
[0,1]||µ

Y
[0,1]) = EµG

[0,1]

(∫ 1

0

γ(Y t, t)dW t −
1

2
∥γ(Y t, t)∥22 dt+ C

)
,

= E (E1 exp(C))

(∫ 1

0

1

2
∥γ(Y t, t)∥22 dt

)
+ C exp(C),

= E exp(C)

∫ 1

0

1

2
∥γ(Xt, t)∥22 dt+ C exp(C).

(26)

Here µY
[0,1] is the distribution of stochastic process induced by dY t = σ(Y t, t)dW t. Our derivation

reveals that, from a path weighting perspective, even when the growth term is a constant, it still does
not correspond to the form of RUOT. This suggests that the microscopic interpretation from this
angle may need further investigation to determine whether a RUOT problem could be recovered
from this starting point.
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