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Abstract

Recent studies have shown that deep vision-
only and language-only models—trained on
disjoint modalities—nonetheless project their
inputs into a partially aligned representational
space. Yet we still lack a clear picture of where
in each network this convergence emerges,
what visual or linguistic cues support it, and
whether it endures the many-to-many nature of
real image—text relationships. In this work, we
systematically investigate these questions. We
show that representational alignment emerges
most strongly in mid-to-late layers of both vi-
sion and language models, suggesting a hier-
archical progression from modality-specific to
conceptually shared representations. Second,
this alignment is robust to appearance-only
changes but collapses when semantic content is
altered—e.g., object removal in images or word
order shuffling that disrupts thematic roles in
sentences—highlighting that the shared code
is truly semantic rather than form-based. Crit-
ically, we move beyond the conventional one-
to-one image-caption paradigm to investigate
alignment in many-to-many contexts, acknowl-
edging that neither modality uniquely deter-
mines the other. Using a forced-choice “Pick-
a-Pic” task, we find that human preferences
for image-caption matches are mirrored in the
learned embedding spaces across all vision-
language model pairs. This pattern holds bidi-
rectionally when multiple captions correspond
to a single image, demonstrating that models
capture fine-grained semantic distinctions sim-
ilar to human judgments. Surprisingly, aggre-
gating embeddings across multiple images or
phrases referring to the same concept ampli-
fies alignment. Rather than “blurring” repre-
sentational detail, aggregation appears to dis-
till a more universal semantic core. Together,
these results demonstrate that vision and lan-
guage networks converge on a shared seman-
tic code, where the alignment mirrors human
judgements, and becomes more pronounced
when multiple exemplars of the same concept

within a single modality are averaged in rep-
resentational space. Our work provides com-
pelling evidence for a universal code of mean-
ing that transcends modality, offering critical
insights into how neural networks represent and
align semantic information across the vision-
language divide.

1 Introduction

The idea of a universal, modality-independent sub-
strate of meaning has intrigued philosophers, cog-
nitive scientists, and neuroscientists. Plato intro-
duced the concept of ideal forms, suggesting that
individual objects and percepts derive from an over-
arching realm of perfect, abstract entities. Simi-
larly, Jerry Fodor’s “Language of Thought” hypoth-
esis (or mentalese) proposes that minds operate in
a universal “code” transcending specific sensory
modalities (e.g., vision, audition) and any spoken
or written language (Fodor, 1975). Both lines of
thought pose a fundamental question: Do putatively
distinct cognitive systems—such as vision and lan-
guage models—encode meaning in a shared, ab-
stract space, or are they rooted in modality-specific
representations?

Rapid developments in Al—particularly large-
scale vision and language models—provide novel
tools to explore these ideas computationally.
Large-scale vision-only and language-only models,
trained on massive but disjoint corpora, nonethe-
less exhibit striking representational convergence.
Huh et al. coined this phenomenon the “Platonic
Representation Hypothesis”, showing that increas-
ingly capable LLMs align more tightly with larger
vision models. Interestingly, this alignment occurs
even without explicit cross-modal training. This
“Platonic Representation Hypothesis™ is further sup-
ported by Maniparambil et al, who demonstrate that
this convergence manifests across a range of model
architectures and training paradigms (Maniparam-
bil et al., 2024).



(A) Pick-a-Pic Dataset (B)

Caption: “Imagine a dense forest
with tall, majestic trees”
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(©) Generated Captions

Human-authored captions:

1| A Corgi dog resting on frizzy beige carpet”

“Floor eye view of a supine dog hoping for some attention.”
*A dog laying down on a fluffy carpet”

*A brown and white dog laying on a carpet under a table.”
“A picture of a dog laying under a table on the rug."

Gemini-2.5-flash generated paraphrases:
*A small dog lies on a soft floor covering near table legs.”

“Low angle view of a dog lying comfortably on a plush rug.

*Dog sprawled out on the floor rug by the table.”
“View of a dog resting on a thick carpet under furniture.”

*A dog rests on the soft carpet floor by the table.”

“Furry pet animal relaxing on a carpet beneath  piece of fumiture.”
“Brown and white canine lounging on textured flooring under a table.” :
“A Corgilike dog lying on the rug under the shadow of a table.”

“Canine pet lying flat on the textured carpet from floor level.”
“Small furry dog relaxing on the ground covering under a table.”

MS-COCO Dataset

k Caption 1: “Several women gathered together posing with 6
e 4 pizzas in take out boxes.”

Caption 2: “Four women stand behind boxes of large pizzas.”

Caption 3: “A group of women standing behind a table filled
with pizza.”

Caption 4: “A group of four women stand together in front of
pizzas.”

Caption 5: “people standing near a table with open pizza
boxes”

@ Generated Images

Caption: “A laptop sitting on a bed near a window”

Figure 1: Example data from (A) the Pick-A-Pic dataset and (B) the MS-COCO dataset. (C) Example captions
generated by Gemini-2.5-Flash by paraphrasing the human-authored captions in MS-COCO. (D) Example MS-
COCO captions and synthesized images by the stable-diffusion model.

Critically, cross-modal alignment is not merely
correlational. Merullo et al. (2022) show that
training just one linear projection is enough to
map a frozen vision-transformer’s embeddings into
the token-embedding space of a frozen language
model, letting the stitched system caption images
and answer visual questions without any additional
multimodal training (Merullo et al., 2022). Simi-
larly, Koh et al. (2023) show analogous gains for
the reverse mapping from text to image, showing
that a frozen LLM can be visually grounded with
a single learned linear map, achieving strong zero-
shot performance on tasks such as contextual im-
age retrieval and multimodal dialogue (Koh et al.,
2023).

Marjieh et al. (2024) show that even mul-
timodal models like GPT-4 rely predominantly
on textual associations rather than direct visual
input when predicting human perceptual judg-
ments—highlighting language as a sufficient scaf-
fold for grounding sensory semantics (Marjieh
et al., 2024). Bavaresco and Ferndndez (2025)
demonstrate that text alone - when modeled on
scale - can implicitly encode rich experiential se-
mantics, echoing Marjieh et al. (2024)’s results on
LLMs’ ability to recover perceptual hierarchies like
the pitch spiral (Bavaresco and Fernidndez, 2025).

Convergent evidence also emerges from neuro-
science. Popham et al. (2021) used within-subject
fMRI to chart voxel-wise semantic tuning during
silent-movie viewing (purely visual) and narrative

listening (purely linguistic) (Popham et al., 2021).
They discovered that the two modality-specific
maps are topographically contiguous: for every
visual category encoded in posterior occipital cor-
tex, a mirror linguistic representation appears im-
mediately anterior to the same cortical border. In
other words, visual and linguistic semantics form
a single, smoothly joined map that straddles the
edge of human visual cortex, implying a tightly
aligned cross-modal code rather than two isolated
systems. Doerig et al. (2022) asked whether vision
already encodes such linguistic semantics. They
showed that a vision model trained to translate im-
ages directly into sentence embeddings of a lan-
guage model predicts voxel patterns even better
than the embeddings themselves, offering a mecha-
nistic account of how the visual system may recast
images into a language-like semantic code by de-
fault (Doerig et al., 2022). Saha et al. (2024) went
further, finding that off-the-shelf LLM embeddings
sometimes outperform dedicated vision models in
explaining activity in high-level visual areas. To-
gether, these findings suggest that the cross-modal
alignment observed in artificial networks may re-
flect, or even recapitulate, the brain’s own amodal
semantic code.

These findings collectively suggest that mod-
ern vision and language models, and pos-
sibly even brain systems—Ilike Plato’s ideal
forms—incrementally discard modality-specific de-
tails in favor of a shared, amodal semantic code.



Yet critical gaps remain. First, where along the
network hierarchy does this alignment emerge, and
is it symmetric across modalities? Second, what
visual attributes or linguistic properties drive the
effect? Third, all previous demonstrations of cross-
modal alignment rely on one-to-one image—text
pairs. These analyses inadvertently mask the com-
plexity of real-world semantics where no single
description exhausts an image’s meaning, and the
same sentence can fit many images.

In the present study, we fill these gaps through
extensive analyses of cross-modal alignment on a
broad suite of vision and language encoders. We
map alignment layer-by-layer and probe its depen-
dence on targeted manipulations—semantic (ob-
ject removal, role shuffling) versus appearance-
only. Alignment peaks in mid-to-late layers of
both modalities, collapses under semantic changes,
and is largely unaffected by superficial appearance
edits.

To address the third gap about the many-to-many
mapping between images and text, our study em-
ploys two complementary analyses that explicitly
investigate semantic alignment at a finer granu-
larity using many-to-many mappings. First, us-
ing a forced-choice “Pick-a-Pic” task, we show
that visual embeddings of human-preferred images
align more closely with the language model em-
beddings of the caption than non-preferred images.
Second, for the same image, we analyze pairs of
captions selected based on high and low CLIP-
scores—previously validated as proxies for human
preferences—and observe analogous alignment pat-
terns. These results indicate that vision and lan-
guage models converge on a common semantic
ground that reflects subtle distinctions aligned with
human judgments.

In our second analysis, we investigate the impact
of aggregating embeddings across multiple images
associated with a single caption and vice versa.
Contrary to the intuitive expectation that averag-
ing embeddings would diminish representational
specificity, we discover that such aggregation con-
sistently enhances alignment. This suggests that
rather than blurring distinctions, averaging distills
a more stable, modality-independent semantic core
shared across representations. Together, our find-
ings reveal that examining many-to-many corre-
spondences offers richer insights into cross-modal
alignment, highlighting a robust convergence to-
ward a shared conceptual space that captures subtle
and complex semantic relationships.

2 Methods

We compare image representations from large vi-
sion models with textual representations of the
same images from large language models. For
vision models, we employed Vision Transformers
(ViTs) trained via DINOv2 (Oquab et al., 2023) on
the LVD-142M dataset. DINOv2 learns rich visual
representations by solving a self-distillation task
where a student network is trained to match the out-
put distribution of a teacher network (an exponen-
tial moving average of the student) while viewing
different augmented versions of the same image.
For language models, we employed BLOOM (Big-
Science et al., 2022), a decoder-only transformer-
based architecture trained on a massive multilin-
gual corpus, and OpenLLLaMA, an open-source re-
production of the LLaMA model trained on pub-
licly available datasets(Geng and Liu, 2023). Mul-
tiple model sizes were selected from repositories
including Huggingface (Wolf et al., 2019) and Py-
Torch Image Models (TIMM) (Wightman, 2021).
For images, the class token from the penultimate
transformer block is used; for language, token acti-
vations are averaged from the same layer.
Two datasets are employed:

* Pick-A-Pic: An open dataset of over 500,000
human preference judgments on text-to-
image outputs, collected from 37 K real-
user prompts; each prompt is paired with
two generated images and a binary (or tie)
preference label (Kirstain et al., 2023). In
our experiments, we randomly sample 1,000
prompt—image-pair judgments for analysis
(Figure 1A).

* MS-COCO: A large-scale image captioning
dataset of 123,000 natural photographs depict-
ing complex everyday scenes—people inter-
acting with objects, urban and rural environ-
ments, animals, vehicles, indoor and outdoor
contexts—each annotated with five human-
authored captions (Lin et al., 2014). For our
experiments, we randomly sample 1,000 im-
ages (and their associated captions) from the
official validation split (Figure 1B).

Computing Alignment

To quantify alignment between representations
from language and vision models, we use lin-
ear predictivity. For each pair of representations,
X € R"4x (e.g., from a vision model) and
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Figure 2: Layer-wise alignment, measured suing linear predictivity score, between one example vision model
(ViT-Large-Dinov2) and all language models. Top row: Alignment computed in language-to-vision direction.
Bottom row: Alignment computed in vision-to-language direction.

Y € R™% (e.g., from a language model), we
fit a ridge regression from X to Y

W = argl%%’n IXW - Y5+ AW[E, (1)

where A is the regularization parameter, selected
via cross-validation over a logarithmically spaced
range from 1078 to 10%. We computed the final
alignment score by averaging the Pearson correla-
tion between predicted and actual responses across
all units and five cross-validation folds.

We treat this as an asymmetric similarity mea-
sure and report results for both directions: predict-
ing language representations from vision (X — Y)
and vice versa (Y — X). This allows us to disen-
tangle directional differences in information con-
tent across modalities.

3 Results

3.1 Layer-Wise Vision-Language Alignment

To pinpoint where vision—language alignment first
appears and how it evolves across the network
hierarchy, we performed a layer-by-layer map-
ping between each pair of vision-transformer and
language-model embeddings. As shown in Figure
2, both modalities exhibit low cross-modal predic-
tivity in their earliest layers and increase through
the mid and later layers. These patterns hold con-
sistently across different vision-language model
pairs (see Appendices). These findings demon-
strate that both vision and language models tran-
sition from modality-bound encoding toward an
abstract, shared semantic space as depth increases.

We also observe a clear directional asymmetry
in these mappings. When mapping from language
to vision, we find that even early language layers
can successfully predict later vision layers. In con-
trast, mapping from vision to language reveals a
more graded effect: deeper vision layers progres-
sively yield higher predictivity for deeper language
layers. Early vision features poorly predict any lan-
guage layer, while later vision representations align
best with higher language layers. This asymmetry
suggests that textual representations abstract away
from surface form more rapidly than visual ones,
while vision networks require deeper processing to
reach a comparable semantic level.

3.2 Semantic content, not surface form, drives
cross-modal alignment

We next explore whether the cross-modal corre-
spondence we observe is mainly driven by surface
form or by deeper semantic content.

3.2.1 Image manipulations

To dissociate appearance-level similarity from se-
mantic correspondence, we performed four con-
trolled perturbations on each MS-COCO image.
Two manipulations altered only the appearance
while preserving the full meaning: (i) conversion
to grayscale and (ii) 15 degree image rotation.
The other two manipulations altered the seman-
tic content with different degrees by exploiting
the segmentation masks (Figure 3A) provided with
COCO-Stuff (Caesar et al., 2018):

* Thing-only views that preserve pixel-perfect
instances of the foreground object classes (e.g.
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Image Manipulations

©) Caption Manipulations

“A machine that holds a lot of donuts and cooks them.”

“of fried belt donuts
"conveyor with
getting up a lot a”

“a conveyor belt with a lot of donuts getting fried up”
“A row of doughnuts being passed through a fryer.”
“a doughnut factory making doughnuts in oil”

“A fryer has rows and rows of doughnuts on an assembly line.”
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Figure 3: (A) Example thing-only and stuff-only images by manipulating the original image using masks from
COCO-Stuff. (B) Alignment by image manipulations. (C) Demonstration of image manipulations: nouns and verbs
extraction, and captions scrambling. (D) Alignment by caption manipulations. Paired t-tests (n=8 vision-language
model pairs per comparison) were conducted separately for each image manipulation, and p-values were adjusted
for four comparisons per mapping direction using the Benjamini—-Hochberg procedure (FDR).

person, car) but remove the surrounding con-
text to eliminate spatial and contextual rela-
tions;

* Stuff-only views that retain only the back-
ground layout and the scene categories (e.g.
grass, wall) while removing the foreground
objects.

We find that appearance-only manipulations of im-
age inputs have no notable negative effects on
alignment (Figure 3B, grayscale: L—V: ¢(7) =
—0.8405, p = 0.4284, ¢ = 0.4284; V—L: t(7) =
—1.3386, p = 0.2226, ¢ = 0.2543; rotation:
L—V: t(7) = —1.7569, p = 0.1224, ¢ = 0.1631;
V—L: t(7) = —3.1161, p = 0.0169, ¢ = 0.0271).
In contrast, deleting semantic content from images
results in substantial alignment degradation (Figure
3B). Isolating only the foreground “thing” pixels
and removing contextual relations significantly low-
ered the alignment scores (L—V: £(7) = 3.4304,
p = 0.0110, ¢ = 0.0220; V—L: t(7) = 7.2528,
p = 0.0002, ¢ = 0.0005). Retaining only the
“stuff” background further reduced the alignment
(L—V: ¢(7) = 10.1267, p < 0.0001, ¢ = 0.0001;
V—L: t(7) = 11.7109, p < 0.0001, ¢ = 0.0001).

Notably, the decline was systematically steeper
in the language-to-vision direction, indicating that

mapping from textual embeddings to visual layers
depends more heavily on intact visual semantics.

3.2.2 Caption manipulations

To explore the linguistic properties driving the
alignment, we separately manipulated the captions
in the MS-COCO dataset with different levels of
semantic disruption by retaining: (i) nouns only,
(i1) nouns and verbs, and (iv) all the words but in
scrambled order (Figure 3C).

Interestingly, only in the vision-to-language map-
ping direction do caption manipulations negatively
affect the alignment (Figure 3D, right). Specif-
ically, nouns-only (¢(7) = 3.5956, p = 0.0088,
g = 0.0176) and nouns+verbs (¢(7) = 5.3561,
p = 0.0011, ¢ = 0.0032) show similar moder-
ate decreases, while scrambled captions produce
the largest drop (¢(7) = 22.8176, p < 0.0001,
g < 0.0001). This suggests that nouns and verbs
carry the primary semantic weight in grounding lan-
guage to visual content, while word order and the
full lexical distribution become even more crucial
when projecting from vision to language.

The directional asymmetries we ob-
serve—greater sensitivity of language—vision
mapping to intact visual semantics and of
vision—language mapping to linguistic compo-
sition—suggest complementary organizational



principles in how each modality abstracts and trans-
mits meaning across the shared representational
space.

3.3 Vision—Language Alignment Mirrors
Human Preferences
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Figure 4: (A) Pick-a-Pic dataset Linear predictivity
scores grouped by image variation (preferred vs. non-
preferred) based on human judgments. (B) MS-COCO
dataset Linear predictivity scores grouped by caption
variation based on CLIP Scores. Error bars indicating
the standard error across model pairs.

We next evaluated whether cross-modal align-
ment tracks fine-grained human preferences. Im-
ages from the “Pick-a-Pic” dataset, which provides
two generated images for the same prompt with hu-
man preference judgments, were grouped into high-
and low-preference categories. For each group, vi-
sion model representations were extracted and lin-
ear predictivity scores were computed using the
corresponding caption embeddings. This design
probes alignment at a finer-grained resolution: can
the vision—language mapping replicate the subtle
distinctions that lead people to prefer one image
over another, even when the linguistic description
is identical?

Our results indicate that images preferred by hu-
man raters exhibit significantly stronger alignment
with their associated captions than non-preferred
images across all vision-language model pairs
(paired t-test, L—V: ¢(7) = 19.8225, p < 0.001;
V—L: ¢(7) = 10.2338, p < 0.001; Figure 4A).
In other words, even when two pictures illustrate
the same text, the uni-modal vision and language
models collectively “agree” with human raters
about which picture is the better semantic fit. This
fine-grained sensitivity shows that the cross-modal
alignment we measure is not a coarse correlation
but captures subtle, human-relevant distinctions
within a shared semantic space.

A complementary analysis from the text side re-

inforces this conclusion. We computed the CLIP
Score (Hessel et al., 2021)—a reference-free met-
ric based on the cosine similarity of image—caption
embeddings—for all MS-COCO captions, as a rea-
sonable proxy for human preferences (Hessel et al.,
2021). Our analysis reveals that captions with
higher CLIP scores are significantly more aligned
with their images than those with lower scores
(paired t-test, language-to-vision: ¢(7) = 3.9231,
p = 0.0057; vision-to-language: ¢(7) = 17.8350,
p < 0.001; Figure 4B).

Together, these findings suggest that the model
embeddings capture fine-grained semantic distinc-
tions that mirror human evaluative patterns.

3.4 Averaging Embeddings Across Multiple
Captions and Images Enhances Alignment

(A) Averaging Caption (B) Averaging Image
Embeddings Embeddings
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Figure 5: Effect of aggregation on alignment. Cross-
modal aggregation: Averaging (A) multiple caption em-
beddings for the same image or (B) multiple image
embeddings for the same caption steadily increases lan-
guage—vision and vision—language predictivity. Error
bars denote standard error across all model pairs.

To quantify the impact of aggregating caption
representations, we progressively averaged embed-
dings from an increasing number of MS-COCO
captions per image and computed cross-modal
alignment scores. As shown in Figure 5A, align-
ment improved monotonically with each additional
caption. To locate the point of diminishing re-
turns, we expanded the caption pool by paraphras-
ing each of the five human-authored captions with
Gemini-2.5-Flash (Figure 1C, see Appendix C for
prompt), creating up to 15 captions per image. In
the vision-to-language mapping, alignment contin-
ued to rise until roughly ten captions were included,
after which the curve plateaued.

We performed the complementary analysis in
the opposite direction by synthesizing up to 15



naturalistic images per caption with Stable Diffu-
sion (Figure 1D). Similar to caption aggregation,
increasing the number of aggregated image embed-
dings further improved the alignment (Figure 5B).
The alignment gain is larger when predicting vi-
sion from language, and plateaued around seven
images.

To confirm that these improvements reflect en-
hanced semantic information rather than a generic
averaging artifact, we repeated both analyses after
randomly shuffling the image—caption correspon-
dences (see Figure 8 in Appendix). Under this mis-
match baseline, embedding aggregation showed no
benefit, demonstrating that the effect depends on
semantically matched pairs.

We also observe a clear directional asymme-
try both analyses: averaging captions benefitted
vision-to-language predictions, whereas averaging
images benefitted language-to-vision predictions.
This pattern suggests that aggregation may sup-
press modality-specific noise within the averaged
domain, exposing a cleaner semantic signal that is
more easily mapped by the other modality.

3.5 Effect of Vision Models on
Vision-Language Alignment

To assess the generalizability of our findings, we
repeated the analyses on seven ViT backbones that
differ in objective (strong AugReg, DINO, large-
scale DINOV2, supervised distillation DeiT), data
scale (ImageNet-1k vs. ImageNet-21k vs. LVD-
142 M), and model size (ViT-B/14, ViT-B/16, ViT-
L/14, ViT-L/16).

We observe that the improvement of averaging
caption embeddings is generalized across differ-
ent vision model backbones (Figure 6). Notably,
when mapping language features into visual space,
the alignment differences scores across ViTs were
noticeably larger than in the reverse direction. Fur-
thermore, both training methods and data size ap-
pear to affect the alignment. When the model size
and data were held constant (ViT-B/16, ImageNet-
1k), AugReg produced higher alignment than ei-
ther DINO or DeiT. Keeping the objective similar
but increasing the dataset (DINO-ImageNetlk to
DINOvV2-LVD142m) improved alignment further.
However, a larger dataset did not help the AugReg
model: its ImageNet-21k checkpoint aligned worse
than its ImageNet-1k counterpart. Our current ex-
periment cannot cleanly disentangle the interaction
between objective and data distribution. A system-
atic experiment would be needed to clarify such

interactive effects.

4 Discussion

Our results provide new evidence that purely uni-
modal vision and language models gravitate to-
ward a common semantic manifold. Alignment
(i) peaks in their mid-to-late layers where abstract
semantic processing occurs, (ii) reduces when we
remove or scramble semantic content but survives
appearance-only changes, and (iii) exhibits striking
correspondence in fine-grained evaluation scenar-
ios with human judgements (e.g., when comparing
alignment scores for multiple candidate images cor-
responding to the same linguistic expression, the
model aligns most strongly with the image humans
rate as most semantically congruent with the text,
and reciprocally for multiple linguistic descriptions
of the same image), and (iv) is markedly enhanced
when averaging representations corresponding to
the same concept in each modality. Together, these
findings refine the emerging “Platonic” view of
cross-modal representation: the two modalities do
not merely share coarse alignment but capture fine
semantic gradients that track human judgments.
Our work bridges cognitive science and machine
learning by suggesting that a shared code for mean-
ing can emerge implicitly in unimodal systems,
even without cross-modal training.

Our work opens several promising avenues for
future research. Future studies should investi-
gate how alignment strength varies across different
types of visual and linguistic content. Are con-
crete concepts (e.g., “dog”, “chair’”) more strongly
aligned than abstract concepts (e.g., “freedom”,
“justice”)? Understanding these variations could
reveal fundamental constraints on cross-modal con-
vergence. Different image types—photographs, il-
lustrations, diagrams, artistic renderings—may ex-
hibit varying degrees of alignment with language.
Examining these differences could illuminate how
visual style and abstraction influence semantic en-
coding and cross-modal correspondence.

Our discovery that alignment strengthens when
averaging concept-specific representations raises
intriguing questions about the geometric properties
of these embeddings. Future work should explore
whether averaging acts as a denoising mechanism
that preserves core semantic content while reduc-
ing modality-specific variations. Additionally, it
would be interesting to investigate whether averag-
ing techniques applied to paraphrases of the same
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Figure 6: Comparing the alignment of different vision models with language models after averaging (A) caption

embeddings and (B) image embeddings.

linguistic expression could enhance performance
on downstream tasks involving natural language
inference.

While our study demonstrates alignment at the
representation level, identifying which specific fea-
tures or dimensions drive this alignment remains
an open question. Future research should develop
techniques to isolate the most aligned dimensions
between vision and language models and analyze
their semantic properties.

Further, investigating how alignment patterns
evolve during training could provide insights
into the developmental trajectory of cross-modal
correspondence. Do alignment patterns appear
early in training and strengthen over time, or do
they emerge suddenly after sufficient exposure to
domain-specific data? This temporal perspective
could reveal fundamental insights about how se-
mantic convergence develops in neural networks
trained on different modalities.

Limitations

Our work primarily focuses on linear predictiv-
ity as a measure of representational alignment be-
tween vision and language models. While this
approach offers valuable insights, it represents
only one perspective on how these representa-
tional spaces may relate to each other. Future
work could benefit from employing a broader spec-
trum of alignment metrics to provide a more com-
plete understanding of vision-language relation-
ships. For instance, more constrained mapping
approaches—such as orthogonal transformations
in Procrustes analysis (Williams et al., 2021) or
permutation-based methods like permutation score
and soft matching score (Khosla and Williams,
2024)—might reveal unit-level correspondences
between visual and language model representa-

tions that linear regression cannot capture. Kernel-
based methods (e.g., Representational Similarity
Analysis (Kriegeskorte et al., 2008)) would assess
population-level relationships between representa-
tions, while neighborhood-based approaches (e.g.,
mutual k-NN) could illuminate local clustering pat-
terns within embedding spaces. These complemen-
tary metrics would provide a multi-faceted view
of the nature of alignment between vision and lan-
guage models. Our analysis does not fully reveal
which specific features drive the observed align-
ment between vision-only and language-only mod-
els, nor does it identify the scenarios where these
models systematically diverge in their representa-
tions. Investigating these questions would require
more extensive probing of representations across
diverse stimuli and large-scale datasets.

The synthetic nature of our image dataset intro-
duces another limitation. While diffusion models
generate high-quality images corresponding to text
prompts, some generated images may not perfectly
capture the semantic content or nuances present in
the texts. This potential mismatch between text and
generated images could influence our alignment
measurements and subsequent interpretations.

Furthermore, our work examines models trained
at a specific point in time, with particular architec-
tures and training objectives. As model architec-
tures and training paradigms evolve, the nature of
cross-modal alignment may change significantly.

Finally, representational similarity is descriptive.
It does not prove shared processing mechanisms or
functional interchangeability. Causal interventions
are needed to determine whether the aligned dimen-
sions are necessary for each model’s downstream
behavior.
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S Appendix

A Baseline alignment with shuffled
image-caption correspondences.

Under the image-caption mismatch baseline, av-
eraging multiple embeddings does not improve
vision-language alignment: the alignment score
remains around O in both mapping directions (Fig-
ure 8).

B Additional Results: Embedding
Aggregation Effect on Manipulated
Captions.

Given that averaging caption embeddings en-
hances vision-language alignment, we also ex-
plored whether the embeddings of semantically
manipulated captions would also benefit from em-
bedding aggregation (Figure 9). Interestingly, the
alignment was enhanced even though the embed-
dings come from manipulated captions.

C MS-COCO caption generation.

Gemini-2.5-Flash Prompt

Prompt:

f"""You are an expert image captioner. I’11 show you some
existing captions for an image, and your task is to
generate 10 NEW captions that:

1. Are similar in style and detail level to the existing
captions

2. Capture the same meaning but with different wording

. Are direct, concise descriptions (around 10-15 words each)

4. Are worded differently from each existing caption and from
each other

w

Here are the existing captions:
{insert all captions text for the image here}

Generate 10 new captions formatted exactly as:
1. [First new caption]

2. [Second new caption]

3. [Third new caption]

4. [Fourth new caption]

5. [Fifth new caption]

6. [Sixth new caption]

7. [Seventh new caption]
8. [Eighth new caption]

9. [Ninth new caption]

10. [Tenth new caption]""”

Table 1: Prompt used for generating new image caption
paraphrases from Gemini-2.5-Flash.
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Figure 7: Layer-wise alignment for additional vision-language model pairs (with ViT-Base-DINO v2).
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Figure 8: Effect of aggregation on alignment with a
mismtach baseline.
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Figure 9: Effect of aggregation on alignment with ma-
nipulated captions which either only includes nouns or
are scrambled in word order.
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