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Abstract001

Recent studies have shown that deep vision-002
only and language-only models—trained on003
disjoint modalities—nonetheless project their004
inputs into a partially aligned representational005
space. Yet we still lack a clear picture of where006
in each network this convergence emerges,007
what visual or linguistic cues support it, and008
whether it endures the many-to-many nature of009
real image–text relationships. In this work, we010
systematically investigate these questions. We011
show that representational alignment emerges012
most strongly in mid-to-late layers of both vi-013
sion and language models, suggesting a hier-014
archical progression from modality-specific to015
conceptually shared representations. Second,016
this alignment is robust to appearance-only017
changes but collapses when semantic content is018
altered—e.g., object removal in images or word019
order shuffling that disrupts thematic roles in020
sentences—highlighting that the shared code021
is truly semantic rather than form-based. Crit-022
ically, we move beyond the conventional one-023
to-one image-caption paradigm to investigate024
alignment in many-to-many contexts, acknowl-025
edging that neither modality uniquely deter-026
mines the other. Using a forced-choice “Pick-027
a-Pic” task, we find that human preferences028
for image-caption matches are mirrored in the029
learned embedding spaces across all vision-030
language model pairs. This pattern holds bidi-031
rectionally when multiple captions correspond032
to a single image, demonstrating that models033
capture fine-grained semantic distinctions sim-034
ilar to human judgments. Surprisingly, aggre-035
gating embeddings across multiple images or036
phrases referring to the same concept ampli-037
fies alignment. Rather than “blurring” repre-038
sentational detail, aggregation appears to dis-039
till a more universal semantic core. Together,040
these results demonstrate that vision and lan-041
guage networks converge on a shared seman-042
tic code, where the alignment mirrors human043
judgements, and becomes more pronounced044
when multiple exemplars of the same concept045

within a single modality are averaged in rep- 046
resentational space. Our work provides com- 047
pelling evidence for a universal code of mean- 048
ing that transcends modality, offering critical 049
insights into how neural networks represent and 050
align semantic information across the vision- 051
language divide. 052

1 Introduction 053

The idea of a universal, modality-independent sub- 054

strate of meaning has intrigued philosophers, cog- 055

nitive scientists, and neuroscientists. Plato intro- 056

duced the concept of ideal forms, suggesting that 057

individual objects and percepts derive from an over- 058

arching realm of perfect, abstract entities. Simi- 059

larly, Jerry Fodor’s “Language of Thought” hypoth- 060

esis (or mentalese) proposes that minds operate in 061

a universal “code” transcending specific sensory 062

modalities (e.g., vision, audition) and any spoken 063

or written language (Fodor, 1975). Both lines of 064

thought pose a fundamental question: Do putatively 065

distinct cognitive systems—such as vision and lan- 066

guage models—encode meaning in a shared, ab- 067

stract space, or are they rooted in modality-specific 068

representations? 069

Rapid developments in AI—particularly large- 070

scale vision and language models—provide novel 071

tools to explore these ideas computationally. 072

Large-scale vision-only and language-only models, 073

trained on massive but disjoint corpora, nonethe- 074

less exhibit striking representational convergence. 075

Huh et al. coined this phenomenon the “Platonic 076

Representation Hypothesis”, showing that increas- 077

ingly capable LLMs align more tightly with larger 078

vision models. Interestingly, this alignment occurs 079

even without explicit cross-modal training. This 080

“Platonic Representation Hypothesis” is further sup- 081

ported by Maniparambil et al, who demonstrate that 082

this convergence manifests across a range of model 083

architectures and training paradigms (Maniparam- 084

bil et al., 2024). 085
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Figure 1: Example data from (A) the Pick-A-Pic dataset and (B) the MS-COCO dataset. (C) Example captions
generated by Gemini-2.5-Flash by paraphrasing the human-authored captions in MS-COCO. (D) Example MS-
COCO captions and synthesized images by the stable-diffusion model.

Critically, cross-modal alignment is not merely086

correlational. Merullo et al. (2022) show that087

training just one linear projection is enough to088

map a frozen vision-transformer’s embeddings into089

the token-embedding space of a frozen language090

model, letting the stitched system caption images091

and answer visual questions without any additional092

multimodal training (Merullo et al., 2022). Simi-093

larly, Koh et al. (2023) show analogous gains for094

the reverse mapping from text to image, showing095

that a frozen LLM can be visually grounded with096

a single learned linear map, achieving strong zero-097

shot performance on tasks such as contextual im-098

age retrieval and multimodal dialogue (Koh et al.,099

2023).100

Marjieh et al. (2024) show that even mul-101

timodal models like GPT-4 rely predominantly102

on textual associations rather than direct visual103

input when predicting human perceptual judg-104

ments—highlighting language as a sufficient scaf-105

fold for grounding sensory semantics (Marjieh106

et al., 2024). Bavaresco and Fernández (2025)107

demonstrate that text alone - when modeled on108

scale - can implicitly encode rich experiential se-109

mantics, echoing Marjieh et al. (2024)’s results on110

LLMs’ ability to recover perceptual hierarchies like111

the pitch spiral (Bavaresco and Fernández, 2025).112

Convergent evidence also emerges from neuro-113

science. Popham et al. (2021) used within-subject114

fMRI to chart voxel-wise semantic tuning during115

silent-movie viewing (purely visual) and narrative116

listening (purely linguistic) (Popham et al., 2021). 117

They discovered that the two modality-specific 118

maps are topographically contiguous: for every 119

visual category encoded in posterior occipital cor- 120

tex, a mirror linguistic representation appears im- 121

mediately anterior to the same cortical border. In 122

other words, visual and linguistic semantics form 123

a single, smoothly joined map that straddles the 124

edge of human visual cortex, implying a tightly 125

aligned cross-modal code rather than two isolated 126

systems. Doerig et al. (2022) asked whether vision 127

already encodes such linguistic semantics. They 128

showed that a vision model trained to translate im- 129

ages directly into sentence embeddings of a lan- 130

guage model predicts voxel patterns even better 131

than the embeddings themselves, offering a mecha- 132

nistic account of how the visual system may recast 133

images into a language-like semantic code by de- 134

fault (Doerig et al., 2022). Saha et al. (2024) went 135

further, finding that off-the-shelf LLM embeddings 136

sometimes outperform dedicated vision models in 137

explaining activity in high-level visual areas. To- 138

gether, these findings suggest that the cross-modal 139

alignment observed in artificial networks may re- 140

flect, or even recapitulate, the brain’s own amodal 141

semantic code. 142

These findings collectively suggest that mod- 143

ern vision and language models, and pos- 144

sibly even brain systems—like Plato’s ideal 145

forms—incrementally discard modality-specific de- 146

tails in favor of a shared, amodal semantic code. 147
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Yet critical gaps remain. First, where along the148

network hierarchy does this alignment emerge, and149

is it symmetric across modalities? Second, what150

visual attributes or linguistic properties drive the151

effect? Third, all previous demonstrations of cross-152

modal alignment rely on one-to-one image–text153

pairs. These analyses inadvertently mask the com-154

plexity of real-world semantics where no single155

description exhausts an image’s meaning, and the156

same sentence can fit many images.157

In the present study, we fill these gaps through158

extensive analyses of cross-modal alignment on a159

broad suite of vision and language encoders. We160

map alignment layer-by-layer and probe its depen-161

dence on targeted manipulations—semantic (ob-162

ject removal, role shuffling) versus appearance-163

only. Alignment peaks in mid-to-late layers of164

both modalities, collapses under semantic changes,165

and is largely unaffected by superficial appearance166

edits.167

To address the third gap about the many-to-many168

mapping between images and text, our study em-169

ploys two complementary analyses that explicitly170

investigate semantic alignment at a finer granu-171

larity using many-to-many mappings. First, us-172

ing a forced-choice “Pick-a-Pic” task, we show173

that visual embeddings of human-preferred images174

align more closely with the language model em-175

beddings of the caption than non-preferred images.176

Second, for the same image, we analyze pairs of177

captions selected based on high and low CLIP-178

scores—previously validated as proxies for human179

preferences—and observe analogous alignment pat-180

terns. These results indicate that vision and lan-181

guage models converge on a common semantic182

ground that reflects subtle distinctions aligned with183

human judgments.184

In our second analysis, we investigate the impact185

of aggregating embeddings across multiple images186

associated with a single caption and vice versa.187

Contrary to the intuitive expectation that averag-188

ing embeddings would diminish representational189

specificity, we discover that such aggregation con-190

sistently enhances alignment. This suggests that191

rather than blurring distinctions, averaging distills192

a more stable, modality-independent semantic core193

shared across representations. Together, our find-194

ings reveal that examining many-to-many corre-195

spondences offers richer insights into cross-modal196

alignment, highlighting a robust convergence to-197

ward a shared conceptual space that captures subtle198

and complex semantic relationships.199

2 Methods 200

We compare image representations from large vi- 201

sion models with textual representations of the 202

same images from large language models. For 203

vision models, we employed Vision Transformers 204

(ViTs) trained via DINOv2 (Oquab et al., 2023) on 205

the LVD-142M dataset. DINOv2 learns rich visual 206

representations by solving a self-distillation task 207

where a student network is trained to match the out- 208

put distribution of a teacher network (an exponen- 209

tial moving average of the student) while viewing 210

different augmented versions of the same image. 211

For language models, we employed BLOOM (Big- 212

Science et al., 2022), a decoder-only transformer- 213

based architecture trained on a massive multilin- 214

gual corpus, and OpenLLaMA, an open-source re- 215

production of the LLaMA model trained on pub- 216

licly available datasets(Geng and Liu, 2023). Mul- 217

tiple model sizes were selected from repositories 218

including Huggingface (Wolf et al., 2019) and Py- 219

Torch Image Models (TIMM) (Wightman, 2021). 220

For images, the class token from the penultimate 221

transformer block is used; for language, token acti- 222

vations are averaged from the same layer. 223

Two datasets are employed: 224

• Pick-A-Pic: An open dataset of over 500,000 225

human preference judgments on text-to- 226

image outputs, collected from 37 K real- 227

user prompts; each prompt is paired with 228

two generated images and a binary (or tie) 229

preference label (Kirstain et al., 2023). In 230

our experiments, we randomly sample 1,000 231

prompt–image-pair judgments for analysis 232

(Figure 1A). 233

• MS-COCO: A large-scale image captioning 234

dataset of 123,000 natural photographs depict- 235

ing complex everyday scenes—people inter- 236

acting with objects, urban and rural environ- 237

ments, animals, vehicles, indoor and outdoor 238

contexts—each annotated with five human- 239

authored captions (Lin et al., 2014). For our 240

experiments, we randomly sample 1,000 im- 241

ages (and their associated captions) from the 242

official validation split (Figure 1B). 243

Computing Alignment 244

To quantify alignment between representations 245

from language and vision models, we use lin- 246

ear predictivity. For each pair of representations, 247

X ∈ Rn×dX (e.g., from a vision model) and 248
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Figure 2: Layer-wise alignment, measured suing linear predictivity score, between one example vision model
(ViT-Large-Dinov2) and all language models. Top row: Alignment computed in language-to-vision direction.
Bottom row: Alignment computed in vision-to-language direction.

Y ∈ Rn×dY (e.g., from a language model), we249

fit a ridge regression from X to Y:250

Ŵ = argmin
W

∥XW −Y∥22 + λ∥W∥2F , (1)251

where λ is the regularization parameter, selected252

via cross-validation over a logarithmically spaced253

range from 10−8 to 108. We computed the final254

alignment score by averaging the Pearson correla-255

tion between predicted and actual responses across256

all units and five cross-validation folds.257

We treat this as an asymmetric similarity mea-258

sure and report results for both directions: predict-259

ing language representations from vision (X → Y)260

and vice versa (Y → X). This allows us to disen-261

tangle directional differences in information con-262

tent across modalities.263

3 Results264

3.1 Layer-Wise Vision-Language Alignment265

To pinpoint where vision–language alignment first266

appears and how it evolves across the network267

hierarchy, we performed a layer-by-layer map-268

ping between each pair of vision-transformer and269

language-model embeddings. As shown in Figure270

2, both modalities exhibit low cross-modal predic-271

tivity in their earliest layers and increase through272

the mid and later layers. These patterns hold con-273

sistently across different vision-language model274

pairs (see Appendices). These findings demon-275

strate that both vision and language models tran-276

sition from modality-bound encoding toward an277

abstract, shared semantic space as depth increases.278

We also observe a clear directional asymmetry 279

in these mappings. When mapping from language 280

to vision, we find that even early language layers 281

can successfully predict later vision layers. In con- 282

trast, mapping from vision to language reveals a 283

more graded effect: deeper vision layers progres- 284

sively yield higher predictivity for deeper language 285

layers. Early vision features poorly predict any lan- 286

guage layer, while later vision representations align 287

best with higher language layers. This asymmetry 288

suggests that textual representations abstract away 289

from surface form more rapidly than visual ones, 290

while vision networks require deeper processing to 291

reach a comparable semantic level. 292

3.2 Semantic content, not surface form, drives 293

cross-modal alignment 294

We next explore whether the cross-modal corre- 295

spondence we observe is mainly driven by surface 296

form or by deeper semantic content. 297

3.2.1 Image manipulations 298

To dissociate appearance-level similarity from se- 299

mantic correspondence, we performed four con- 300

trolled perturbations on each MS-COCO image. 301

Two manipulations altered only the appearance 302

while preserving the full meaning: (i) conversion 303

to grayscale and (ii) 15 degree image rotation. 304

The other two manipulations altered the seman- 305

tic content with different degrees by exploiting 306

the segmentation masks (Figure 3A) provided with 307

COCO-Stuff (Caesar et al., 2018): 308

• Thing-only views that preserve pixel-perfect 309

instances of the foreground object classes (e.g. 310
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Figure 3: (A) Example thing-only and stuff-only images by manipulating the original image using masks from
COCO-Stuff. (B) Alignment by image manipulations. (C) Demonstration of image manipulations: nouns and verbs
extraction, and captions scrambling. (D) Alignment by caption manipulations. Paired t-tests (n=8 vision-language
model pairs per comparison) were conducted separately for each image manipulation, and p-values were adjusted
for four comparisons per mapping direction using the Benjamini–Hochberg procedure (FDR).

person, car) but remove the surrounding con-311

text to eliminate spatial and contextual rela-312

tions;313

• Stuff-only views that retain only the back-314

ground layout and the scene categories (e.g.315

grass, wall) while removing the foreground316

objects.317

We find that appearance-only manipulations of im-318

age inputs have no notable negative effects on319

alignment (Figure 3B, grayscale: L→V: t(7) =320

−0.8405, p = 0.4284, q = 0.4284; V→L: t(7) =321

−1.3386, p = 0.2226, q = 0.2543; rotation:322

L→V: t(7) = −1.7569, p = 0.1224, q = 0.1631;323

V→L: t(7) = −3.1161, p = 0.0169, q = 0.0271).324

In contrast, deleting semantic content from images325

results in substantial alignment degradation (Figure326

3B). Isolating only the foreground “thing” pixels327

and removing contextual relations significantly low-328

ered the alignment scores (L→V: t(7) = 3.4304,329

p = 0.0110, q = 0.0220; V→L: t(7) = 7.2528,330

p = 0.0002, q = 0.0005). Retaining only the331

“stuff” background further reduced the alignment332

(L→V: t(7) = 10.1267, p < 0.0001, q = 0.0001;333

V→L: t(7) = 11.7109, p < 0.0001, q = 0.0001).334

Notably, the decline was systematically steeper335

in the language-to-vision direction, indicating that336

mapping from textual embeddings to visual layers 337

depends more heavily on intact visual semantics. 338

3.2.2 Caption manipulations 339

To explore the linguistic properties driving the 340

alignment, we separately manipulated the captions 341

in the MS-COCO dataset with different levels of 342

semantic disruption by retaining: (i) nouns only, 343

(ii) nouns and verbs, and (iv) all the words but in 344

scrambled order (Figure 3C). 345

Interestingly, only in the vision-to-language map- 346

ping direction do caption manipulations negatively 347

affect the alignment (Figure 3D, right). Specif- 348

ically, nouns-only (t(7) = 3.5956, p = 0.0088, 349

q = 0.0176) and nouns+verbs (t(7) = 5.3561, 350

p = 0.0011, q = 0.0032) show similar moder- 351

ate decreases, while scrambled captions produce 352

the largest drop (t(7) = 22.8176, p < 0.0001, 353

q < 0.0001). This suggests that nouns and verbs 354

carry the primary semantic weight in grounding lan- 355

guage to visual content, while word order and the 356

full lexical distribution become even more crucial 357

when projecting from vision to language. 358

The directional asymmetries we ob- 359

serve—greater sensitivity of language→vision 360

mapping to intact visual semantics and of 361

vision→language mapping to linguistic compo- 362

sition—suggest complementary organizational 363
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principles in how each modality abstracts and trans-364

mits meaning across the shared representational365

space.366

3.3 Vision–Language Alignment Mirrors367

Human Preferences368

Figure 4: (A) Pick-a-Pic dataset Linear predictivity
scores grouped by image variation (preferred vs. non-
preferred) based on human judgments. (B) MS-COCO
dataset Linear predictivity scores grouped by caption
variation based on CLIP Scores. Error bars indicating
the standard error across model pairs.

We next evaluated whether cross-modal align-369

ment tracks fine-grained human preferences. Im-370

ages from the “Pick-a-Pic” dataset, which provides371

two generated images for the same prompt with hu-372

man preference judgments, were grouped into high-373

and low-preference categories. For each group, vi-374

sion model representations were extracted and lin-375

ear predictivity scores were computed using the376

corresponding caption embeddings. This design377

probes alignment at a finer-grained resolution: can378

the vision–language mapping replicate the subtle379

distinctions that lead people to prefer one image380

over another, even when the linguistic description381

is identical?382

Our results indicate that images preferred by hu-383

man raters exhibit significantly stronger alignment384

with their associated captions than non-preferred385

images across all vision-language model pairs386

(paired t-test, L→V: t(7) = 19.8225, p < 0.001;387

V→L: t(7) = 10.2338, p < 0.001; Figure 4A).388

In other words, even when two pictures illustrate389

the same text, the uni-modal vision and language390

models collectively “agree” with human raters391

about which picture is the better semantic fit. This392

fine-grained sensitivity shows that the cross-modal393

alignment we measure is not a coarse correlation394

but captures subtle, human-relevant distinctions395

within a shared semantic space.396

A complementary analysis from the text side re-397

inforces this conclusion. We computed the CLIP 398

Score (Hessel et al., 2021)—a reference-free met- 399

ric based on the cosine similarity of image–caption 400

embeddings—for all MS-COCO captions, as a rea- 401

sonable proxy for human preferences (Hessel et al., 402

2021). Our analysis reveals that captions with 403

higher CLIP scores are significantly more aligned 404

with their images than those with lower scores 405

(paired t-test, language-to-vision: t(7) = 3.9231, 406

p = 0.0057; vision-to-language: t(7) = 17.8350, 407

p < 0.001; Figure 4B). 408

Together, these findings suggest that the model 409

embeddings capture fine-grained semantic distinc- 410

tions that mirror human evaluative patterns. 411

3.4 Averaging Embeddings Across Multiple 412

Captions and Images Enhances Alignment 413

Figure 5: Effect of aggregation on alignment. Cross-
modal aggregation: Averaging (A) multiple caption em-
beddings for the same image or (B) multiple image
embeddings for the same caption steadily increases lan-
guage–vision and vision–language predictivity. Error
bars denote standard error across all model pairs.

To quantify the impact of aggregating caption 414

representations, we progressively averaged embed- 415

dings from an increasing number of MS-COCO 416

captions per image and computed cross-modal 417

alignment scores. As shown in Figure 5A, align- 418

ment improved monotonically with each additional 419

caption. To locate the point of diminishing re- 420

turns, we expanded the caption pool by paraphras- 421

ing each of the five human-authored captions with 422

Gemini-2.5-Flash (Figure 1C, see Appendix C for 423

prompt), creating up to 15 captions per image. In 424

the vision-to-language mapping, alignment contin- 425

ued to rise until roughly ten captions were included, 426

after which the curve plateaued. 427

We performed the complementary analysis in 428

the opposite direction by synthesizing up to 15 429
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naturalistic images per caption with Stable Diffu-430

sion (Figure 1D). Similar to caption aggregation,431

increasing the number of aggregated image embed-432

dings further improved the alignment (Figure 5B).433

The alignment gain is larger when predicting vi-434

sion from language, and plateaued around seven435

images.436

To confirm that these improvements reflect en-437

hanced semantic information rather than a generic438

averaging artifact, we repeated both analyses after439

randomly shuffling the image–caption correspon-440

dences (see Figure 8 in Appendix). Under this mis-441

match baseline, embedding aggregation showed no442

benefit, demonstrating that the effect depends on443

semantically matched pairs.444

We also observe a clear directional asymme-445

try both analyses: averaging captions benefitted446

vision-to-language predictions, whereas averaging447

images benefitted language-to-vision predictions.448

This pattern suggests that aggregation may sup-449

press modality-specific noise within the averaged450

domain, exposing a cleaner semantic signal that is451

more easily mapped by the other modality.452

3.5 Effect of Vision Models on453

Vision-Language Alignment454

To assess the generalizability of our findings, we455

repeated the analyses on seven ViT backbones that456

differ in objective (strong AugReg, DINO, large-457

scale DINOv2, supervised distillation DeiT), data458

scale (ImageNet-1k vs. ImageNet-21k vs. LVD-459

142 M), and model size (ViT-B/14, ViT-B/16, ViT-460

L/14, ViT-L/16).461

We observe that the improvement of averaging462

caption embeddings is generalized across differ-463

ent vision model backbones (Figure 6). Notably,464

when mapping language features into visual space,465

the alignment differences scores across ViTs were466

noticeably larger than in the reverse direction. Fur-467

thermore, both training methods and data size ap-468

pear to affect the alignment. When the model size469

and data were held constant (ViT-B/16, ImageNet-470

1k), AugReg produced higher alignment than ei-471

ther DINO or DeiT. Keeping the objective similar472

but increasing the dataset (DINO-ImageNet1k to473

DINOv2-LVD142m) improved alignment further.474

However, a larger dataset did not help the AugReg475

model: its ImageNet-21k checkpoint aligned worse476

than its ImageNet-1k counterpart. Our current ex-477

periment cannot cleanly disentangle the interaction478

between objective and data distribution. A system-479

atic experiment would be needed to clarify such480

interactive effects. 481

4 Discussion 482

Our results provide new evidence that purely uni- 483

modal vision and language models gravitate to- 484

ward a common semantic manifold. Alignment 485

(i) peaks in their mid-to-late layers where abstract 486

semantic processing occurs, (ii) reduces when we 487

remove or scramble semantic content but survives 488

appearance-only changes, and (iii) exhibits striking 489

correspondence in fine-grained evaluation scenar- 490

ios with human judgements (e.g., when comparing 491

alignment scores for multiple candidate images cor- 492

responding to the same linguistic expression, the 493

model aligns most strongly with the image humans 494

rate as most semantically congruent with the text, 495

and reciprocally for multiple linguistic descriptions 496

of the same image), and (iv) is markedly enhanced 497

when averaging representations corresponding to 498

the same concept in each modality. Together, these 499

findings refine the emerging “Platonic” view of 500

cross-modal representation: the two modalities do 501

not merely share coarse alignment but capture fine 502

semantic gradients that track human judgments. 503

Our work bridges cognitive science and machine 504

learning by suggesting that a shared code for mean- 505

ing can emerge implicitly in unimodal systems, 506

even without cross-modal training. 507

Our work opens several promising avenues for 508

future research. Future studies should investi- 509

gate how alignment strength varies across different 510

types of visual and linguistic content. Are con- 511

crete concepts (e.g., “dog”, “chair”) more strongly 512

aligned than abstract concepts (e.g., “freedom”, 513

“justice”)? Understanding these variations could 514

reveal fundamental constraints on cross-modal con- 515

vergence. Different image types—photographs, il- 516

lustrations, diagrams, artistic renderings—may ex- 517

hibit varying degrees of alignment with language. 518

Examining these differences could illuminate how 519

visual style and abstraction influence semantic en- 520

coding and cross-modal correspondence. 521

Our discovery that alignment strengthens when 522

averaging concept-specific representations raises 523

intriguing questions about the geometric properties 524

of these embeddings. Future work should explore 525

whether averaging acts as a denoising mechanism 526

that preserves core semantic content while reduc- 527

ing modality-specific variations. Additionally, it 528

would be interesting to investigate whether averag- 529

ing techniques applied to paraphrases of the same 530
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Figure 6: Comparing the alignment of different vision models with language models after averaging (A) caption
embeddings and (B) image embeddings.

linguistic expression could enhance performance531

on downstream tasks involving natural language532

inference.533

While our study demonstrates alignment at the534

representation level, identifying which specific fea-535

tures or dimensions drive this alignment remains536

an open question. Future research should develop537

techniques to isolate the most aligned dimensions538

between vision and language models and analyze539

their semantic properties.540

Further, investigating how alignment patterns541

evolve during training could provide insights542

into the developmental trajectory of cross-modal543

correspondence. Do alignment patterns appear544

early in training and strengthen over time, or do545

they emerge suddenly after sufficient exposure to546

domain-specific data? This temporal perspective547

could reveal fundamental insights about how se-548

mantic convergence develops in neural networks549

trained on different modalities.550

Limitations551

Our work primarily focuses on linear predictiv-552

ity as a measure of representational alignment be-553

tween vision and language models. While this554

approach offers valuable insights, it represents555

only one perspective on how these representa-556

tional spaces may relate to each other. Future557

work could benefit from employing a broader spec-558

trum of alignment metrics to provide a more com-559

plete understanding of vision-language relation-560

ships. For instance, more constrained mapping561

approaches—such as orthogonal transformations562

in Procrustes analysis (Williams et al., 2021) or563

permutation-based methods like permutation score564

and soft matching score (Khosla and Williams,565

2024)—might reveal unit-level correspondences566

between visual and language model representa-567

tions that linear regression cannot capture. Kernel- 568

based methods (e.g., Representational Similarity 569

Analysis (Kriegeskorte et al., 2008)) would assess 570

population-level relationships between representa- 571

tions, while neighborhood-based approaches (e.g., 572

mutual k-NN) could illuminate local clustering pat- 573

terns within embedding spaces. These complemen- 574

tary metrics would provide a multi-faceted view 575

of the nature of alignment between vision and lan- 576

guage models. Our analysis does not fully reveal 577

which specific features drive the observed align- 578

ment between vision-only and language-only mod- 579

els, nor does it identify the scenarios where these 580

models systematically diverge in their representa- 581

tions. Investigating these questions would require 582

more extensive probing of representations across 583

diverse stimuli and large-scale datasets. 584

The synthetic nature of our image dataset intro- 585

duces another limitation. While diffusion models 586

generate high-quality images corresponding to text 587

prompts, some generated images may not perfectly 588

capture the semantic content or nuances present in 589

the texts. This potential mismatch between text and 590

generated images could influence our alignment 591

measurements and subsequent interpretations. 592

Furthermore, our work examines models trained 593

at a specific point in time, with particular architec- 594

tures and training objectives. As model architec- 595

tures and training paradigms evolve, the nature of 596

cross-modal alignment may change significantly. 597

Finally, representational similarity is descriptive. 598

It does not prove shared processing mechanisms or 599

functional interchangeability. Causal interventions 600

are needed to determine whether the aligned dimen- 601

sions are necessary for each model’s downstream 602

behavior. 603
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5 Appendix695

A Baseline alignment with shuffled696

image-caption correspondences.697

Under the image-caption mismatch baseline, av-698

eraging multiple embeddings does not improve699

vision-language alignment: the alignment score700

remains around 0 in both mapping directions (Fig-701

ure 8).702

B Additional Results: Embedding703

Aggregation Effect on Manipulated704

Captions.705

Given that averaging caption embeddings en-706

hances vision-language alignment, we also ex-707

plored whether the embeddings of semantically708

manipulated captions would also benefit from em-709

bedding aggregation (Figure 9). Interestingly, the710

alignment was enhanced even though the embed-711

dings come from manipulated captions.712

C MS-COCO caption generation.713

Gemini-2.5-Flash Prompt

Prompt:

f"""You are an expert image captioner. I’ll show you some
existing captions for an image, and your task is to
generate 10 NEW captions that:

1. Are similar in style and detail level to the existing
captions

2. Capture the same meaning but with different wording
3. Are direct, concise descriptions (around 10-15 words each)
4. Are worded differently from each existing caption and from

each other

Here are the existing captions:
{insert all captions text for the image here}

Generate 10 new captions formatted exactly as:
1. [First new caption]
2. [Second new caption]
3. [Third new caption]
4. [Fourth new caption]
5. [Fifth new caption]
6. [Sixth new caption]
7. [Seventh new caption]
8. [Eighth new caption]
9. [Ninth new caption]
10. [Tenth new caption]"""

Table 1: Prompt used for generating new image caption
paraphrases from Gemini-2.5-Flash.
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Figure 7: Layer-wise alignment for additional vision-language model pairs (with ViT-Base-DINO v2).

Figure 8: Effect of aggregation on alignment with a
mismtach baseline.

Figure 9: Effect of aggregation on alignment with ma-
nipulated captions which either only includes nouns or
are scrambled in word order.
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