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Abstract

Recent studies have shown that deep vision-
only and language-only models—trained on
disjoint modalities—nonetheless project their
inputs into a partially aligned representational
space. Yet we still lack a clear picture of where
in each network this convergence emerges,
what visual or linguistic cues support it, and
whether it endures the many-to-many nature of
real image—text relationships. In this work, we
systematically investigate these questions. We
show that representational alignment emerges
most strongly in mid-to-late layers of both vi-
sion and language models, suggesting a hier-
archical progression from modality-specific to
conceptually shared representations. Second,
this alignment is robust to appearance-only
changes but collapses when semantic content is
altered—e.g., object removal in images or word
order shuffling that disrupts thematic roles in
sentences—highlighting that the shared code
is truly semantic rather than form-based. Crit-
ically, we move beyond the conventional one-
to-one image-caption paradigm to investigate
alignment in many-to-many contexts, acknowl-
edging that neither modality uniquely deter-
mines the other. Using a forced-choice “Pick-
a-Pic” task, we find that human preferences
for image-caption matches are mirrored in the
learned embedding spaces across all vision-
language model pairs. This pattern holds bidi-
rectionally when multiple captions correspond
to a single image, demonstrating that models
capture fine-grained semantic distinctions sim-
ilar to human judgments. Surprisingly, aggre-
gating embeddings across multiple images or
phrases referring to the same concept ampli-
fies alignment. Rather than “blurring” repre-
sentational detail, aggregation appears to dis-
till a more universal semantic core. Together,
these results demonstrate that vision and lan-
guage networks converge on a shared seman-
tic code, where the alignment mirrors human
judgements, and becomes more pronounced
when multiple exemplars of the same concept

within a single modality are averaged in rep-
resentational space. Our work provides com-
pelling evidence for a universal code of mean-
ing that transcends modality, offering critical
insights into how neural networks represent and
align semantic information across the vision-
language divide.

1 Introduction

The idea of a universal, modality-independent sub-
strate of meaning has intrigued philosophers, cog-
nitive scientists, and neuroscientists. Plato intro-
duced the concept of ideal forms, suggesting that
individual objects and percepts derive from an over-
arching realm of perfect, abstract entities. Simi-
larly, Jerry Fodor’s “Language of Thought” hypoth-
esis (or mentalese) proposes that minds operate in
a universal “code” transcending specific sensory
modalities (e.g., vision, audition) and any spoken
or written language (Fodor, 1975). Both lines of
thought pose a fundamental question: Do putatively
distinct cognitive systems—such as vision and lan-
guage models—encode meaning in a shared, ab-
stract space, or are they rooted in modality-specific
representations?

Rapid developments in Al—particularly large-
scale vision and language models—provide novel
tools to explore these ideas computationally.
Large-scale vision-only and language-only models,
trained on massive but disjoint corpora, nonethe-
less exhibit striking representational convergence.
Huh et al. coined this phenomenon the “Platonic
Representation Hypothesis”, showing that increas-
ingly capable LLMs align more tightly with larger
vision models. Interestingly, this alignment occurs
even without explicit cross-modal training. This
“Platonic Representation Hypothesis™ is further sup-
ported by Maniparambil et al, who demonstrate that
this convergence manifests across a range of model
architectures and training paradigms (Maniparam-
bil et al., 2024).



(A) Pick-a-Pic Dataset (B)

Caption: “Imagine a dense forest
with tall, majestic trees”
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(©) Generated Captions

Human-authored captions:

1| A Corgi dog resting on frizzy beige carpet”

“Floor eye view of a supine dog hoping for some attention.”
*A dog laying down on a fluffy carpet”

*A brown and white dog laying on a carpet under a table.”
“A picture of a dog laying under a table on the rug."

Gemini-2.5-flash generated paraphrases:
*A small dog lies on a soft floor covering near table legs.”

“Low angle view of a dog lying comfortably on a plush rug.

*Dog sprawled out on the floor rug by the table.”
“View of a dog resting on a thick carpet under furniture.”

*A dog rests on the soft carpet floor by the table.”

“Furry pet animal relaxing on a carpet beneath  piece of fumiture.”
“Brown and white canine lounging on textured flooring under a table.” :
“A Corgilike dog lying on the rug under the shadow of a table.”

“Canine pet lying flat on the textured carpet from floor level.”
“Small furry dog relaxing on the ground covering under a table.”

MS-COCO Dataset

k Caption 1: “Several women gathered together posing with 6
e 4 pizzas in take out boxes.”

Caption 2: “Four women stand behind boxes of large pizzas.”

Caption 3: “A group of women standing behind a table filled
with pizza.”

Caption 4: “A group of four women stand together in front of
pizzas.”

Caption 5: “people standing near a table with open pizza
boxes”

@ Generated Images

Caption: “A laptop sitting on a bed near a window”

Figure 1: Example data from (A) the Pick-A-Pic dataset and (B) the MS-COCO dataset. (C) Example captions
generated by Gemini-2.5-Flash by paraphrasing the human-authored captions in MS-COCO. (D) Example MS-
COCO captions and synthesized images by the stable-diffusion model.

Critically, cross-modal alignment is not merely
correlational. Merullo et al. (2022) show that
training just one linear projection is enough to
map a frozen vision-transformer’s embeddings into
the token-embedding space of a frozen language
model, letting the stitched system caption images
and answer visual questions without any additional
multimodal training (Merullo et al., 2022). Simi-
larly, Koh et al. (2023) show analogous gains for
the reverse mapping from text to image, showing
that a frozen LLM can be visually grounded with
a single learned linear map, achieving strong zero-
shot performance on tasks such as contextual im-
age retrieval and multimodal dialogue (Koh et al.,
2023).

Marjieh et al. (2024) show that even mul-
timodal models like GPT-4 rely predominantly
on textual associations rather than direct visual
input when predicting human perceptual judg-
ments—highlighting language as a sufficient scaf-
fold for grounding sensory semantics (Marjieh
et al., 2024). Bavaresco and Ferndndez (2025)
demonstrate that text alone - when modeled on
scale - can implicitly encode rich experiential se-
mantics, echoing Marjieh et al. (2024)’s results on
LLMs’ ability to recover perceptual hierarchies like
the pitch spiral (Bavaresco and Fernidndez, 2025).

Convergent evidence also emerges from neuro-
science. Popham et al. (2021) used within-subject
fMRI to chart voxel-wise semantic tuning during
silent-movie viewing (purely visual) and narrative

listening (purely linguistic) (Popham et al., 2021).
They discovered that the two modality-specific
maps are topographically contiguous: for every
visual category encoded in posterior occipital cor-
tex, a mirror linguistic representation appears im-
mediately anterior to the same cortical border. In
other words, visual and linguistic semantics form
a single, smoothly joined map that straddles the
edge of human visual cortex, implying a tightly
aligned cross-modal code rather than two isolated
systems. Doerig et al. (2022) asked whether vision
already encodes such linguistic semantics. They
showed that a vision model trained to translate im-
ages directly into sentence embeddings of a lan-
guage model predicts voxel patterns even better
than the embeddings themselves, offering a mecha-
nistic account of how the visual system may recast
images into a language-like semantic code by de-
fault (Doerig et al., 2022). Saha et al. (2024) went
further, finding that off-the-shelf LLM embeddings
sometimes outperform dedicated vision models in
explaining activity in high-level visual areas. To-
gether, these findings suggest that the cross-modal
alignment observed in artificial networks may re-
flect, or even recapitulate, the brain’s own amodal
semantic code.

These findings collectively suggest that mod-
ern vision and language models, and pos-
sibly even brain systems—Ilike Plato’s ideal
forms—incrementally discard modality-specific de-
tails in favor of a shared, amodal semantic code.



Yet critical gaps remain. First, where along the
network hierarchy does this alignment emerge, and
is it symmetric across modalities? Second, what
visual attributes or linguistic properties drive the
effect? Third, all previous demonstrations of cross-
modal alignment rely on one-to-one image—text
pairs. These analyses inadvertently mask the com-
plexity of real-world semantics where no single
description exhausts an image’s meaning, and the
same sentence can fit many images.

In the present study, we fill these gaps through
extensive analyses of cross-modal alignment on a
broad suite of vision and language encoders. We
map alignment layer-by-layer and probe its depen-
dence on targeted manipulations—semantic (ob-
ject removal, role shuffling) versus appearance-
only. Alignment peaks in mid-to-late layers of
both modalities, collapses under semantic changes,
and is largely unaffected by superficial appearance
edits.

To address the third gap about the many-to-many
mapping between images and text, our study em-
ploys two complementary analyses that explicitly
investigate semantic alignment at a finer granu-
larity using many-to-many mappings. First, us-
ing a forced-choice “Pick-a-Pic” task, we show
that visual embeddings of human-preferred images
align more closely with the language model em-
beddings of the caption than non-preferred images.
Second, for the same image, we analyze pairs of
captions selected based on high and low CLIP-
scores—previously validated as proxies for human
preferences—and observe analogous alignment pat-
terns. These results indicate that vision and lan-
guage models converge on a common semantic
ground that reflects subtle distinctions aligned with
human judgments.

In our second analysis, we investigate the impact
of aggregating embeddings across multiple images
associated with a single caption and vice versa.
Contrary to the intuitive expectation that averag-
ing embeddings would diminish representational
specificity, we discover that such aggregation con-
sistently enhances alignment. This suggests that
rather than blurring distinctions, averaging distills
a more stable, modality-independent semantic core
shared across representations. Together, our find-
ings reveal that examining many-to-many corre-
spondences offers richer insights into cross-modal
alignment, highlighting a robust convergence to-
ward a shared conceptual space that captures subtle
and complex semantic relationships.

2 Methods

We compare image representations from large vi-
sion models with textual representations of the
same images from large language models. For
vision models, we employed Vision Transformers
(ViTs) trained via DINOv2 (Oquab et al., 2023) on
the LVD-142M dataset. DINOv2 learns rich visual
representations by solving a self-distillation task
where a student network is trained to match the out-
put distribution of a teacher network (an exponen-
tial moving average of the student) while viewing
different augmented versions of the same image.
For language models, we employed BLOOM (Big-
Science et al., 2022), a decoder-only transformer-
based architecture trained on a massive multilin-
gual corpus, and OpenLLLaMA, an open-source re-
production of the LLaMA model trained on pub-
licly available datasets(Geng and Liu, 2023). Mul-
tiple model sizes were selected from repositories
including Huggingface (Wolf et al., 2019) and Py-
Torch Image Models (TIMM) (Wightman, 2021).
For images, the class token from the penultimate
transformer block is used; for language, token acti-
vations are averaged from the same layer.
Two datasets are employed:

* Pick-A-Pic: An open dataset of over 500,000
human preference judgments on text-to-
image outputs, collected from 37 K real-
user prompts; each prompt is paired with
two generated images and a binary (or tie)
preference label (Kirstain et al., 2023). In
our experiments, we randomly sample 1,000
prompt—image-pair judgments for analysis
(Figure 1A).

* MS-COCO: A large-scale image captioning
dataset of 123,000 natural photographs depict-
ing complex everyday scenes—people inter-
acting with objects, urban and rural environ-
ments, animals, vehicles, indoor and outdoor
contexts—each annotated with five human-
authored captions (Lin et al., 2014). For our
experiments, we randomly sample 1,000 im-
ages (and their associated captions) from the
official validation split (Figure 1B).

Computing Alignment

To quantify alignment between representations
from language and vision models, we use lin-
ear predictivity. For each pair of representations,
X 2 R" 9 (e.g., from a vision model) and
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Figure 2: Layer-wise alignment, measured suing linear predictivity score, between one example vision model
(ViT-Large-Dinov2) and all language models. Top row: Alignment computed in language-to-vision direction.
Bottom row: Alignment computed in vision-to-language direction.

Y 2 R" % (e.g., from a language model), we
fit a ridge regression from X to Y':

W = arg r%nkXW YKE+ kWkZ; (1)

where is the regularization parameter, selected
via cross-validation over a logarithmically spaced
range from 10 ® to 108. We computed the final
alignment score by averaging the Pearson correla-
tion between predicted and actual responses across
all units and five cross-validation folds.

We treat this as an asymmetric similarity mea-
sure and report results for both directions: predict-
ing language representations from vision (X ¥ Y)
and vice versa (Y ¥ X). This allows us to disen-
tangle directional differences in information con-
tent across modalities.

3 Results

3.1 Layer-Wise Vision-Language Alignment

To pinpoint where vision—language alignment first
appears and how it evolves across the network
hierarchy, we performed a layer-by-layer map-
ping between each pair of vision-transformer and
language-model embeddings. As shown in Figure
2, both modalities exhibit low cross-modal predic-
tivity in their earliest layers and increase through
the mid and later layers. These patterns hold con-
sistently across different vision-language model
pairs (see Appendices). These findings demon-
strate that both vision and language models tran-
sition from modality-bound encoding toward an
abstract, shared semantic space as depth increases.

We also observe a clear directional asymmetry
in these mappings. When mapping from language
to vision, we find that even early language layers
can successfully predict later vision layers. In con-
trast, mapping from vision to language reveals a
more graded effect: deeper vision layers progres-
sively yield higher predictivity for deeper language
layers. Early vision features poorly predict any lan-
guage layer, while later vision representations align
best with higher language layers. This asymmetry
suggests that textual representations abstract away
from surface form more rapidly than visual ones,
while vision networks require deeper processing to
reach a comparable semantic level.

3.2 Semantic content, not surface form, drives
cross-modal alignment

We next explore whether the cross-modal corre-
spondence we observe is mainly driven by surface
form or by deeper semantic content.

3.2.1 Image manipulations

To dissociate appearance-level similarity from se-
mantic correspondence, we performed four con-
trolled perturbations on each MS-COCO image.
Two manipulations altered only the appearance
while preserving the full meaning: (i) conversion
to grayscale and (ii) 15 degree image rotation.
The other two manipulations altered the seman-
tic content with different degrees by exploiting
the segmentation masks (Figure 3A) provided with
COCO-Stuff (Caesar et al., 2018):

* Thing-only views that preserve pixel-perfect
instances of the foreground object classes (e.g.



(A)

Image Manipulations

A

©) Caption Manipulations

“A machine that holds a lot of donuts and cooks them.”

“of fried belt donuts
conveyor with
getting up a lot a”

“a conveyor belt with a lot of donuts getting fried up”
“A row of doughnuts being passed through a fryer.”
“a doughnut factory making doughnuts in oil”

“A fryer has rows and rows of doughnuts on an assembly line.”
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Figure 3: (A) Example thing-only and stuff-only images by manipulating the original image using masks from
COCO-Stuff. (B) Alignment by image manipulations. (C) Demonstration of image manipulations: nouns and verbs
extraction, and captions scrambling. (D) Alignment by caption manipulations. Paired t-tests (n=8 vision-language
model pairs per comparison) were conducted separately for each image manipulation, and p-values were adjusted
for four comparisons per mapping direction using the Benjamini—-Hochberg procedure (FDR).

person, car) but remove the surrounding con-
text to eliminate spatial and contextual rela-
tions;

* Stuff-only views that retain only the back-
ground layout and the scene categories (e.g.
grass, wall) while removing the foreground
objects.

We find that appearance-only manipulations of im-
age inputs have no notable negative effects on
alignment (Figure 3B, grayscale: L V: t(7) =

0:8405, p = 0:4284,q = 0:4284; V- L: t(7) =

1:3386, p = 0:2226, q = 0:2543; rotation:
L-V:t(7) = 1:7569, p = 0:1224, q = 0:1631;
V-L:t(7) = 3:1161, p = 0:0169, g = 0:0271).

In contrast, deleting semantic content from images
results in substantial alignment degradation (Figure
3B). Isolating only the foreground “thing” pixels
and removing contextual relations significantly low-
ered the alignment scores (L — V: t(7) = 3:4304,
p = 0:0110, g = 0:0220; V- L: t(7) = 7:2528,
p = 0:0002, g = 0:0005). Retaining only the
“stuff” background further reduced the alignment
(L-V: t(7) = 10:1267, p < 0:0001, g = 0:0001;
V- L: t(7) = 11:7109, p < 0:0001, g = 0:0001).

Notably, the decline was systematically steeper
in the language-to-vision direction, indicating that

mapping from textual embeddings to visual layers
depends more heavily on intact visual semantics.

3.2.2 Caption manipulations

To explore the linguistic properties driving the
alignment, we separately manipulated the captions
in the MS-COCO dataset with different levels of
semantic disruption by retaining: (i) nouns only,
(i1) nouns and verbs, and (iv) all the words but in
scrambled order (Figure 3C).

Interestingly, only in the vision-to-language map-
ping direction do caption manipulations negatively
affect the alignment (Figure 3D, right). Specif-
ically, nouns-only (t(7) = 3:5956, p = 0:0088,
q = 0:0176) and nouns+verbs (t(7) = 5:3561,
p = 0:0011, g = 0:0032) show similar moder-
ate decreases, while scrambled captions produce
the largest drop (t(7) = 22:8176, p < 0:0001,
g < 0:0001). This suggests that nouns and verbs
carry the primary semantic weight in grounding lan-
guage to visual content, while word order and the
full lexical distribution become even more crucial
when projecting from vision to language.

The directional asymmetries we ob-
serve—greater sensitivity of language — vision
mapping to intact visual semantics and of
vision - language mapping to linguistic compo-
sition—suggest complementary organizational






