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Abstract

Prompt-based methods have been successfully001
applied in sentence-level few-shot learning002
tasks, mostly owing to the sophisticated design003
of templates and label words. However, when004
applied to token-level labeling tasks such as005
NER, it would be time-consuming to enumerate006
the template queries over all potential entity007
spans. In this work, we propose a more elegant008
method to reformulate NER tasks as LM prob-009
lems without any templates. Specifically, we010
discard the template construction process while011
maintaining the word prediction paradigm of012
pre-training models to predict a class-related013
pivot word (or label word) at the entity position.014
Meanwhile, we also explore principled ways015
to automatically search for appropriate label016
words that the pre-trained models can easily017
adapt to. While avoiding the complicated018
template-based process, the proposed LM019
objective also reduces the gap between020
different objectives used in pre-training and021
fine-tuning, thus it can better benefit the022
few-shot performance. Experimental results023
demonstrate the effectiveness of the proposed024
method over bert-tagger and template-based025
method under few-shot settings. Moreover, the026
decoding speed of the proposed method is up027
to 1930.12 times faster than the template-based028
method.029

1 Introduction030

Pre-trained language models (LMs) have led to031

large improvements in NLP tasks (Devlin et al.,032

2019; Liu et al., 2019; Lewis et al., 2020). Popular033

practice to perform downstream classification tasks034

is to replace the pretrained model’s output layer035

with a classifier head and fine-tune it using a036

task-specific objective function. Recently, a new037

paradigm, prompt-based learning, has achieved038

great success on few-shot classification tasks039

by reformulating classification tasks as cloze040

questions. Typically, for each input [X], a template041

is used to convert [X] into an unfilled text (e.g.,042

Obama is a  [MASK]  entity.Input

LM predictions 

  Obama  was born in America .

[CLS]  [SEP]

Obama was is a  [MASK]  entity.Input[CLS]  [SEP]  

America . is a  [MASK]  entity.Input[CLS]  [SEP]  

......

person ➔ label: PER  ✔
organization ➔ label: ORG
location ➔ label: LOC
none  ➔  label: O   

Input: 

Query LM x 1

 

Query LM x 2

Query LM x 21

Figure 1: An example of template-based prompt method
for NER. Predicting all labels in sentence “Obama was
born in America." requires enumeration over all spans.

“[X] It was __."), allowing the model to fill in 043

the blank with its language modeling ability. For 044

instance, when performing sentiment classification 045

task, the input “I love the milk." can be converted 046

into “I love the milk. It was __.". Consequently, the 047

LM may predict a label word “great", indicating 048

that the input belongs to a positive class. 049

Two main factors contribute to the success of 050

prompt-based learning on few-shot classification. 051

First, re-using the masked LM objective helps 052

alleviate the gap between different training 053

objectives used at pre-training and fine-tuning. 054

Therefore, the LMs can faster adapt to downstream 055

tasks even with a few training samples (Schick 056

and Schütze, 2021a,b; Brown et al., 2020). 057

Second, the sophisticated template and label 058

word design helps LMs better fit the task-specific 059

answer distributions, which also benefits few-shot 060

performance. As proved in previous works, proper 061

templates designed by manually selecting (Schick 062

and Schütze, 2021a,b), gradient-based discrete 063

searching (Shin et al., 2020), LM generating (Gao 064

et al., 2021) and continuously optimizing (Liu et al., 065

2021) are able to induce the LMs to predict more 066

appropriate answers needed in corresponding tasks. 067

However, the template-based prompt methods 068

are intrinsically designed for sentence-level tasks, 069

and they are difficult to adapt to token-level clas- 070

sification tasks such as named entity recognition 071
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(NER). First, searching for appropriate templates072

is harder as the search space grows larger when073

encountering span-level querying in NER. What’s074

worse, such searching with only few annotated075

samples as guidance can easily lead to overfitting.076

Second, obtaining the label of each token requires077

enumerating all possible spans, which would be078

time-consuming. As an example in Fig.1, the input079

“Obama was born in America." can be converted080

into “Obama was born in America. [Z] is a __081

entity.", where [Z] is filled by enumerating all the082

spans in [X] (e.g., “Obama", “Obama was") for083

querying. Fig.1 shows that obtaining all entities in084

“Obama was born in America ." requires totally 21085

times to query the LMs with every span. Moreover,086

the decoding time of such an approach would087

grow catastrophically as sentence length increasing,088

making it impractical to document-level corpus.089

In this work, we propose a more elegant way for090

prompting NER without templates. Specifically,091

we reformulate NER as an LM task with an092

Entity-oriented LM (EntLM) objective. Without093

modifying the output head, the pre-trained LMs094

are fine-tuned to predict class-related pivot words095

(or label words) instead of the original words096

at the entity positions, while still predicting the097

original word at none-entity positions. Next,098

similar to template-based methods, we explore099

principled ways to automatically search for the100

most appropriate label words. Different approaches101

are investigated including selecting discrete label102

words based on the word distribution in lexicon-103

annotated corpus or LM predictions, and obtaining104

the prototypes as virtual label words. Our approach105

keeps the merits of prompt-based learning as106

no new parameters are introduced during fine-107

tuning. Also, through the EntLM objective, the108

LM are allowed to perform NER task with only a109

slight adjustment of the output distribution, thus110

benefiting few-shot learning. Moreover, well-111

selected label words accelerate the adaptation of112

LM distribution towards the desired predictions,113

which also promotes few-shot performance. It’s114

also worth noting that the proposed method115

requires only one-pass decoding to obtain all116

entity labels in the sentence, which is significantly117

more efficient compared to the time-consuming118

enumeration process of template-based methods. 1119

To summarize the contribution of this work:120

• We propose a template-free approach to121

1Our codes will be available at github.com/xxxx.

prompt NER under few-shot setting. 122

• We explore several approaches for label 123

word engineering accompanied with intensive 124

experiments. 125

• Experimental results verify the effectiveness 126

of the proposed method under few-shot 127

setting. Meanwhile, the decoding speed of 128

the proposed method is 1930.12 times faster 129

than template-based baseline. 130

2 Problem Setup 131

In this work, we focus on few-shot NER task. 132

Different from previous works that assume a rich- 133

resource source domain and available support sets 134

during testing, we follow the few-shot setting of 135

(Gao et al., 2021), which supposes that only a small 136

number of examples are used for fine-tuning. Such 137

setting makes minimal assumptions about available 138

resources and is more practical. Specifically, when 139

training on a new dataset D with the label space 140

Y , we assume only K training examples for each 141

class in the training set, such that the total number 142

of examples is Ktot = K × |Y|. Then, the model 143

is tested with an unseen test set (Xtest, Y test) ∼ 144

Dtest. Here, for NER task, a training sample refers 145

to a continual entity span e = {x1, . . . , xm} that is 146

labeled with a positive class (e.g.,“PERSON"). 147

3 Approach 148

In this work, we propose a template-free prompt 149

tuning method, Entity-oriented LM (EntLM) 150

fine-tuning, for few-shot NER. We first give a 151

description of the template-based prompt tuning. 152

Then we introduce the EntLM method along with 153

the label word engineering process. 154

3.1 Template-based Prompt Tuning 155

The standard fine-tuning process for NER is 156

replacing the LM head with a token-level 157

classification head and optimizing the newly- 158

introduced parameters and the pre-trained LM. 159

Different from standard fine-tuning, prompt-based 160

tuning reformulates classification tasks as LM 161

tasks, and fine-tunes LM to predict a label word. 162

Formally, a prompt consists of a template 163

function Tprompt(·) that converts the input x to a 164

prompt input xprompt = Tprompt(x), and a set of 165

label words V which are connected with the label 166

space through a mapping function M : Y → V . 167

The template is a textual string with two unfilled 168
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(b) Entity-oriented LM fine-tuning.(a) Standard fine-tuning.

Jobs

Pre-trained Language Model

was born in America

Label Classifier

PER O O O LOC

Steve

PER

Jobs

Pre-trained Language Model

was born in America

PER O O O LOC

Steve

PER

John was born in AustraliaJohn

entity[MASK]aisSteve[Input]

person

PERLabel words

(c) Template-based prompt tuning.

Pre-trained Language Model

Jobs

Figure 2: Comparison of different fine-tuning methods for NER. (a) is the standard fine-tuning method, which
replace the LM head with a classifier head and perform label classification. (c) is the template-based prompt learning
method, which induces the LM to predict label words by constructing a template. (b) is the proposed Entity-oriented
LM fine-tuning method, which also re-uses the LM head and leads the LM to predict label words through an
Entity-oriented LM objective. (For entities with multiple spans, the model predicts the same label word at each
position, which is similar to the “IO" labeling scheme.)

slot: a input slot [X] to fill the input x and an169

answer slot [Z] that allows LM to fill label words.170

For instance, for a sentiment classification task, the171

template can take the form as “[X] It was [Z].". The172

input is then mapped to “x It was [Z].". Specifically,173

when using a masked language model (MLM) for174

prompt-based tuning, [Z] is filled with a mask token175

[MASK]. By feeding the prompt into the MLM,176

the probability distribution over the label set Y is177

modeled by:178

P (y|x) = P ([MASK] = M(Y)|xprompt)

= Softmax(Wlm · h[MASK])
(1)179

where Wlm are the parameters of the pre-trained180

LM head. Unlike in standard fine-tuning, no181

new parameters are introduced in this approach,182

therefore the model can easier fit the target task183

with few samples. Also, the LM objective reduce184

the gap between pre-training and fine-tuning, thus185

benefiting few-shot training (Gao et al., 2021).186

3.1.1 Problems of Prompt-based NER187

However, when applied to NER, such prompt-188

based approach becomes complicated. given an189

input X = {x1, . . . , xn}, we need to obtain190

the label sequence Y = {y1, . . . , yn}, yi ∈ Y191

corresponding to each token of X . Therefore, an192

additional slot [S] is added in the template to fill193

a token xi or a continual span sij = {xi, . . . , xj}194

that starts from xi and ends with xj . For example,195

the template can take the form as “[X] [S] is196

a [Z] entity.", where the LMs are fine-tuned to197

predict an entity label word at [Z] (e.g., person)198

corresponding to an entity label (e.g., PERSON).199

During decoding, obtaining the labels Y of the200

whole sentence requires enumeration over all the201

spans: 202

Y = {argmax
y∈Y

P ([Z] = M(Y)|Tprompt(X, sij)),

sij = Enumerate({xi, . . . , xj}, i, j ∈ {1..n})},
(2)

203

Such a decoding way is time-consuming and the 204

decoding time increasing as the sequence length 205

getting longer. Therefore, although efficient in few- 206

shot setting, template-based prompt tuning is not 207

suitable for NER task. 208

3.2 Entity-Oriented LM Fine-tuning 209

In this work, we propose a more elegant way to 210

prompt NER without templates, while maintaining 211

the advantages of prompt-tuning. Specifically, we 212

also reformulate NER as a LM task. However, 213

instead of forming templates to re-use the LM 214

objective, we propose a new objective, Entity- 215

oriented LM (EntLM) objective for fine-tuning 216

NER. As shown in Fig. 2 (b), when fed with 217

“Obama was born in America", the LM is trained 218

to predict a label word “John" at the position of the 219

entity “Obama" as an indication of the label “PER". 220

While for none-entity word “was", the LM remains 221

to predict the original word. 222

Formally, to fine-tune the LM with EntLM 223

objective, we first construct a label word set 224

Vl which is also connected with the task label 225

set through a mapping function M : Y → 226

Vl. Next, given the input sentence X = 227

{x1, . . . , xn} and the corresponding label sequence 228

Y = {y1, . . . , yn}, we construct a target sentence 229

XEnt = {x1, . . . ,M(yi), . . . , xn} by replacing 230

the token at the entity position i (here we assume 231

yi is an entity label) with corresponding label word 232

M(yi), and maintaining the original words at none- 233

entity positions. Then, given the original input 234

X , the LM is trained to maximize the probability 235
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P (XEnt|X) of the target sentence XEnt:236

LEntLM = −
n∑

i=1

logP (xi = xEnt
i |X) (3)237

where P (xi = xEnt
i |X) = Softmax(Wlm · hi).238

Noted that Wlm are also the parameters of the239

pre-trained LM head. By re-using the whole pre-240

trained model, no new parameters are introduced241

during this fine-tuning process. Meanwhile, the242

EntLM objective serves as a LM-based objective243

to reduce the gap between pre-training and fine-244

tuning. In this way, we avoid the complicated245

template constructing for NER task, and keep the246

good few-shot ability of prompt-based method.247

During testing, we directly feed the test input X248

into the model, and the probability of labeling the249

ith token with class y ∈ Y is modeled by:250

p(yi = y|X) = p(xi = M(y)|X) (4)251

Noted that we only need one-pass decoding process252

to obtain all labels for each sentence, which253

is intensively more efficient than template-based254

prompt querying.255

3.3 Label Word Engineering256

Previous template-based studies have verified the257

significant impact of template engineering on few-258

shot performance. Similarly, in this work, we259

explore approaches for automatically selecting260

proper label words. Since the EntLM object lead261

all entities that belong to a class to predict the same262

label word, we believe that the purpose of label263

word searching is to find a pivot word that can264

mostly represent the words in each class.265

3.3.1 Low-resource Label word selection266

When selecting label words with only few267

annotated samples as guidance, the randomness of268

sampling will largely affect the selection. In order269

to obtain more consistent selection, we explore270

the usage of unlabeled data and lexicon-based271

annotation as a resource for label word searching.272

This is a practical setting since unlabeled data of273

a target domain or a general domain is usually274

available, and for NER, the entity lexicon of target275

classes are usually easy to access.276

To obtain annotation via entity lexicon, we adopt277

the KB-matching approach proposed by Liang et al.278

(2020), which leverages an external KBs, wikidata,279

as the source of lexicon annotation. Such lexicon-280

based annotation is inevitably noisy. However, our281

Dataset 
distribution

pretrained LM 

LM output 
distribution

LM embedding 
prototype

...

John
Steve

A
ustralia

D
avid

PER
(label)

...

G
erm

any

...

B
ush
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A
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D
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...

G
erm

any

✔

✔

frequency

frequency

LOC
(label)

PER
(label)

LOC
(label)

combine

Discrete label words

Continuous vectors
as virtual label words

Figure 3: Searching for two types of label words: the
discrete label words and the continuous vectors as
virtual label words. To search for the discrete label
words, we select the high-frequency words in data or
LM output distribution, or combine these two ways. To
search for virtual label words, we calculate the mean
vectors of the high-frequency words of each class as
prototypes.

approach do not suffers a lot from the noise since 282

we only regarded it as an indication of the data 283

distribution and do not train the model directly 284

with the noisy annotation. 285

3.3.2 Label word searching 286

With the help of lexicon-annotated data Dlexicon = 287

{(Xi, Y
∗
i )}Ni=1, we explore three methods for label 288

word searching. 289

Searching with data distribution (Data search) 290

The most intuitive method is to select the most 291

frequent word of the given class in the corpus. 292

Specifically, when searching for label words for 293

class C, we calculate the frequency ϕ(x = w, y∗ = 294

C) of each word w ∈ V labeled as C and select the 295

most frequent words by ranking: 296

M(C) = argmax
w

ϕ(x = w, y∗ = C) (5) 297

Searching with LM output distribution (LM 298

search) In this approach, we leverage the pre- 299

trained language model for label word searching. 300

Specifically, we feed each sample (X,Y ∗) into LM 301

and get the probability distribution p(x̂i = w|X) 302

of predicting each word w ∈ V at each position 303

j. Suppose Itopk(x̂i = w|X,Y ∗) → {0, 1} is the 304

indicator function indicating whether w belongs to 305

the topk predictions of xi in sample (X,Y ∗). The 306
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Datasets Domain # Class # Train # Test

CoNLL’03 News 4 14.0k 3.5k
OntoNotes* General 11 60.0k 8.3k
MIT Movie Review 12 7.8k 2.0k

Table 1: Dataset details. OntoNotes* denotes
the Ontonotes5.0 dataset after removing
value/numerical/time/date entity types.

label word of class C can be obtained by:307

M(C) = argmax
w∑

(X,Y ∗)∈D

|X|∑
i

ϕtopk(x̂i = w, y∗i = C)

(6)

308

where ϕtopk(x̂i = w, y∗ = C) = Itopk(x̂i =309

w|X,Y ∗) · I(y∗i = C) denotes the frequency of w310

occurring in the top k predictions of the positions311

labeled as class C.312

Searching with both data & LM output distri-313

bution (Data&LM seach) In this approach, we314

select label words by simultaneously considering315

the data distribution and LM output distribution.316

Specifically, the label word of class C can be317

obtained by:318

M(C) = argmax
w

{
∑

(X,Y ∗)∈D

|X|∑
i

ϕ(xi = w, y∗i = C)

·
∑

(X,Y ∗)∈D

|X|∑
i

ϕtopk(x̂i = w, y∗i = C)}

(7)

319

3.3.3 Removing conflict label words320

The selected high-frequency label words are321

potentially high-frequency words among all the322

classes. Using such label words will result323

in conflicts when training for different classes.324

Therefore, after label word selection, we remove325

the conflict label words of a class C by:326

w = M(C), if
ϕ(x = w, y∗ = C)∑
k ϕ(x = w, y∗ = k)

> Th

(8)327

where Th is a manually set threshold.328

4 Experiments329

In this section, we conduct few-shot experiments330

to verify the effectiveness of the proposed method.331

We also conducts intensive analytical experiments332

for label words selection.333

4.1 Experimental settings 334

As mentioned in Section 2, in this work, we focus 335

on few-shot setting that no source domain data 336

yet only K samples of each class are available for 337

training on a new NER task. To better evaluate the 338

models’ few-shot ability, we conduct experiments 339

with K ∈ {5, 10, 20, 50}. For each K-shot 340

experiment, we sample 3 different training set and 341

repeat experiments on each training set for 4 times. 342

Few-shot data sampling. Different from sentence- 343

level few-shot tasks, in NER, a sample refers 344

to one entity span in a sentence. One sampled 345

sentence might include multiple entity instances. 346

In our experiments, we conduct an exact sampling 347

strategy to ensure that we sample exactly K 348

samples for each class. The details of the algorithm 349

can be found at Appendix A.2. 350

4.2 Datasets and Implementation Details 351

We evaluate the proposed method with three bench- 352

mark NER datasets from different domains: the 353

CoNLL2003 dataset (Sang and De Meulder, 2003) 354

from the newswire domain, Ontonotes 5.0 dataset 355

(Weischedel et al., 2013) from general domain and 356

the MIT-Movie dataset (Liu et al., 2013)2 from the 357

review domain. As we focus on named entities, 358

we omit the value/numerical/time/date entity types 359

(e.g.,“Cardinal", “Money", etc) in OntoNotes 5.0. 360

Details of the datasets are shown in Table 1. 361

Labeling multi-span entities. For entities with 362

multiple spans (including multiple words or sub- 363

tokens after tokenization), we let the model predict 364

the same label word at each position. This labeling 365

method is the same with the “IO" labeling schema, 366

which is consistent to our baseline implementation. 367

To ensure a few-shot scenario, we didn’t use 368

a development set for model choosing. Instead, 369

we use the model of the last epoch for predicting. 370

For lexicon-based annotation, we use the KB- 371

matching method of Liang et al. (2020)3. For more 372

implementation details (e.g., the learning rate, etc.), 373

please refer to Appendix A.1 or our codes. 374

4.3 Baselines and Proposed Models 375

In our experiments, we compare our method 376

with competitive baselines, involving both metric- 377

learning based and prompt-based approaches. 378

BERT-tagger (Devlin et al., 2019) The BERT- 379

based baseline which fine-tunes the BERT model 380

2https://groups.csail.mit.edu/sls/downloads/
3https://github.com/cliang1453/BOND
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Datasets Methods K=5 K=10 K=20 K=50

CoNLL03

BERT-tagger (IO) 41.87 (12.12) 59.91 (10.65) 68.66 (5.13) 73.20 (3.09)
NNShot 42.31 (8.92) 59.24 (11.71) 66.89 (6.09) 72.63 (3.42)
StructShot 45.82 (10.30) 62.37 (10.96) 69.51 (6.46) 74.73 (3.06)
Template NER 43.04 (6.15) 57.86 (5.68) 66.38 (6.09) 72.71 (2.13)
EntLM (Ours) 49.59 (8.30) 64.79 (3.86) 69.52 (4.48) 73.66 (2.06)
EntLM + Struct (Ours) 51.32 (7.67) 66.86 (3.01) 71.23 (3.91) 74.80 (1.87)

OntoNotes 5.0

BERT-tagger (IO) 34.77 (7.16) 54.47 (8.31) 60.21 (3.89) 68.37 (1.72)
NNShot 34.52 (7.85) 55.57 (9.20) 59.59 (4.20) 68.27 (1.54)
StructShot 36.46 (8.54) 57.15 (5.84) 62.22 (5.10) 68.31 (5.72)
Template NER 40.52 (8.62) 49.89 (3.66) 59.53 (2.25) 65.15 (2.95)
EntLM (Ours) 45.21 (9.17) 57.64 (4.18) 65.64 (4.24) 71.77 (1.31)
EntLM + Struct (Ours) 46.60 (10.35) 59.35 (3.24) 67.91 (4.55) 73.52 (0.97)

MIT-Movie

BERT-tagger (IO) 39.57 (6.38) 50.60 (7.29) 59.34 (3.66) 71.33 (3.04)
NNShot 38.97 (5.54) 50.47 (6.09) 58.94 (3.47) 71.17 (2.85)
StructShot 41.60 (8.97) 53.19 (5.52) 61.42 (2.98) 72.07 (6.41)
Template NER 45.97 (3.86) 49.30 (3.35) 59.09 (0.35) 65.13 (0.17)
EntLM (Ours) 46.62 (9.46) 57.31 (3.72) 62.36 (4.14) 71.93 (1.68)
EntLM + Struct (Ours) 49.15 (8.91) 59.21 (3.96) 63.85 (3.7) 72.99 (1.80)

Table 2: Main results of EntLM on three datasets under different few-shot settings (K=5,10,20,50). We report mean
(and deviation in brackets) performance over 3 different splits (4 repeated experiments for each split).

with a label classifier.381

NNShot and StructShot (Yang and Katiyar,382

2020) Two metric-based few-shot learning ap-383

proaches for NER. Different from Prototypical384

Network, they leverage a a nearest neighbor385

classifier for few-shot prediction. StructShot is386

an extension of NNShot which proposes a viterbi387

algorithm during decoding. We extend these388

two approaches to our few-shot setting. Noted389

that the viterbi algorithm in the original paper390

calculates the data distribution of a source domain,391

yet in our setting, the source domain is unavailable.392

Therefore, we also use the lexicon-annotated data393

for performing this method.394

TemplateNER (Cui et al., 2021) A template-395

based prompt method. By constructing a template396

for each class, it queries each span with each class397

separately. The score of each query is obtained398

by calculating the generalization probability of the399

query sentence through a generative pre-trained400

LM, BART(Lewis et al., 2020).401

EntLM The proposed method.402

EntLM+Struct Based on the proposed method,403

we further leverages the viterbi algorithm proposed404

in (Yang and Katiyar, 2020) to boost the405

performance. For more details please refer to (Yang406

and Katiyar, 2020) or our codes.407

In Appendix A.3, we also compare with the408

roberta-base baselines from (Huang et al., 2020).409

4.4 Few-shot Results410

Table 2 show the results of the proposed method411

and baselines under few-shot setting. From412

the table, we can observe that: (1) On all 413

the three datasets, for all few-shot settings, the 414

proposed method performs consistently better than 415

all the baseline methods, especially for 5-shot 416

learning. Also, the performance of the proposed 417

method is more stable (according to the deviation) 418

than the compared baselines. (2) BERT-tagger 419

method shows poor ability of few-shot learning, 420

and the proposed method achieves up to 9.45%, 421

11.83%, 9.58% improvement over BERT-tagger 422

on CoNLL03, OntoNotes 5.0 and MIT-Movie, 423

respectively. These results show the advantages 424

of the proposed method over standard fine-tuning, 425

which introduces no new parameters and uses 426

an LM-like objective to reduce the gap between 427

pre-training and fine-tuning. (3) The proposed 428

method consistently outperforms the template- 429

based prompt method, Template NER, which 430

shows the advantage of the proposed method over 431

standard template-based method. (4) When no rich- 432

resource source domain is available, the metric- 433

based methods (NNShot) do not show advantages 434

over BERT-tagger, which shows the limitation 435

of these method under more practical few-shot 436

scenarios. (5) Among all baselines, the StructShot 437

is a competitive baseline that also leverages lexicon 438

and unlabeled data for structure-based decoder, 439

yet our method can also benefit from the viterbi 440

decoder and outperform StructShot. 441

4.5 Efficiency Study 442

In this section, we perform an efficiency study on 443

all the three datasets. We calculate the decoding 444
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Methods CoNLL03 OntoNotes MIT-Movie
K=5 K=10 K=5 K=10 K=5 K=10

DataSearch 50.00 (9.75) 61.31 (4.73) 36.94 (5.04) 49.54 (5.02) 39.25 (4.83) 51.65 (5.52)
LMSearch 48.40 (6.81) 59.39 (5.50) 36.98 (6.71) 48.20 (5.46) 39.12 (4.18) 48.30 (3.76)
Data&LMSeach 49.55 (7.76) 61.00 (6.98) 36.60 (7.90) 50.64 (6.12) 38.86 (11.43) 50.42 (6.45)
Data + Virtual 49.25 (4.96) 63.40 (5.13) 45.61 (10.51) 55.13 (4.95) 45.59 (8.25) 55.10 (4.42)
LM + Virtual 42.65 (12.58) 59.39 (5.50) 45.29 (7.77) 54.50 (3.66) 46.23 (5.60) 54.92 (6.15)
Data&LM + Virtual 49.59 (8.30) 64.79 (3.86) 45.21 (9.17) 57.64 (4.18) 46.62 (9.46) 57.31 (3.72)

Table 3: Comparison of our label word selection methods. We report mean (and standard deviation) performance.

Methods CoNLL OntoNotes MIT-Movie

BERT-tagger 8.57 23.89 6.46
TemplateNER 6,491.00 50,241.00 5254.00
NNShot 16.03 82.62 15.98
StructShot 19.84 98.67 17.66
EntLM 9.26 26.03 6.64
EntLM + Struct 13.40 34.92 7.38

Table 4: The decoding time (s) of different methods.

time of each method on a TiTan XP GPU with batch445

size=8. (The source codes of Template NER do not446

allow us to change the batch size, so we keep the447

original batch size=45, which is the enumeration448

number of a 9-gram span. ) From Tab.4, we can449

observe that: 1) EntLM can achieve comparable450

speed with BERT-tagger, as only one pass of451

token classification is required for decoding each452

batch. 2) The decoding speed of TemplateNER is453

severely slow, while EntLM is up to 1930.12 times454

faster than TemplateNER. These results show the455

advantages of EntLM over template-based prompt456

tuning methods in NER task.457

4.6 Label Word Selection458

In Sec.3.3, we have presented different ways for459

label word selection. In this section, we conduct460

experiments on these methods and the results are461

reported in table 3. We can observe that: 1)462

The virtual word selection approach is always463

better than the discrete word selection. While464

among all virtual selection methods, choosing high-465

frequency words with the combination of data466

and LM distribution shows advantages over other467

methods. The reason of these results might be that468

simultaneously considering both data distribution469

gives not only the data prior in the target dataset,470

but also the contextualized information from471

the PLM, thus benefiting the performance. 2)472

Searching only with LM distribution leads to poor473

results especially under 5-shot setting, showing474

that the general knowledge learned from pre-475

trained might be less helpful than the data-specific476

knowledge under few-shot settings.477
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Figure 4: Impact of different lexicon sizes.

4.6.1 Impact of Lexicon Quality on Label 478

Word Selection 479

Note that we leverage unlabeled data and lexicon 480

annotation for label word selection. In this 481

experiment, we study how the quality of lexicon 482

impacts the performance on the OntoNotes* 483

dataset. Specifically, we obtain different sizes of 484

lexicon (5% to 80% of the original lexicon size) 485

by sampling entity words in the original lexicon 486

with the weights of entity frequency. This sampling 487

method follows the real-world situation since high- 488

frequency entities are easier to obtain. Fig.4 shows 489

the results of EntLM and baseline methods against 490

lexicon size. We can observe that: (1) EntLM with 491

the Data&LM+Virtual selection method illustrates 492

consistent high performance even with 5% lexicon. 493

This means our method is not limited to the 494

lexicon quality, and we only require a small lexicon 495

to reach acceptable few-shot performance. (2) 496

Compared with Data&LM+Virtual method, the 497

Data&LM is much more fragile regarding the 498

lexicon quality. However, it still performs better 499

than the compared baselines. 500

We further conduct experiments on different 501

sizes of the unlabeled dataset by uniformly 502

sampling 5%-80% of the original data. As shown 503

in Fig.5, the proposed method also shows high 504

robustness to the amount of unlabeled data. 505

4.7 Effect of Further Pre-training 506

When predicting label words on task-specific data 507

during fine-tuning, there is an intrinsic gap between 508
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Figure 5: Impact of the amount of unlabeled data.

Methods CoNLL03
K=5 K=10

BERT-tagger 41.87 (12.12) 59.91 (10.65)
EntLM 49.59 (8.30) 64.79 (3.86)
EntLM + Struct 51.32 (7.67) 66.86 (3.01)
BERT-tagger (further) 41.16 (10.41) 61.70 (5.15)
EntLM (further) 56.82 (12.27) 66.82 (4.65)
EntLM + Struct (further) 58.77 (12.16) 68.96 (4.41)

Table 5: Impact of further pre-training.

the LM output distribution and the target data509

distribution. Therefore, it is natural to conduct a510

further pre-training approach on the target-domain511

unlabeled data to boost the LM predictions towards512

target distribution. In Table 5, we show the513

results of our method and BERT-tagger trained514

after further pre-training with MLM objective on515

domain-specific unlabeled data. As seen, the516

further pre-training practice can largely boost the517

few-shot learning ability of EntLM, while showing518

less helpful for classifier-based fine-tuning method.519

This might because the LM objective used in520

EntLM can benefit more from a task-specific LM521

output distribution, showing the superiority of522

EntLM in better leveraging the pre-trained models.523

5 Related Works524

5.1 Template-based prompt learning525

Stem from the GPT models (Radford et al., 2019;526

Brown et al., 2020), prompt-based learning have527

been widely discussed. These methods reformulate528

downstream tasks as cloze tasks with textual529

templates and a set of label words, and the design530

of templates is proved to be significant for prompt-531

based learning. Schick and Schütze (2021a,b)532

uses manually defined templates for prompting text533

classification tasks. Jiang et al. (2020) proposes534

a mining approach for automatically search for535

templates. Shin et al. (2020) searches for optimal536

discrete templates by a gradient-based approach.537

(Gao et al., 2021) generates templates with the T5538

pre-trained model. Meanwhile, several approaches539

have explore continuous prompts for both text 540

classification and generation tasks Li and Liang 541

(2021); Liu et al. (2021); Han et al. (2021). Also, 542

several approaches are proposed to enhance the 543

templates with illustrative cases (Madotto et al., 544

2020; Gao et al., 2021; Brown et al., 2020) or 545

context (Petroni et al., 2020). Although template- 546

based methods are proved to be useful in sentence- 547

level tasks, for NER task (Cui et al., 2021), 548

such template-based method can be expensive for 549

decoding. Therefore, in this work, we propose a 550

new paradigm of prompt-tuning for NER without 551

templates. 552

5.2 Few-shot NER 553

Recently, many studies focuses on few-shot NER 554

(Hofer et al., 2018; Fritzler et al., 2019; Li et al., 555

2020; Ding et al., 2021). Among these, Fritzler 556

et al. (2019) leverages prototypical networks 557

for few-shot NER. Yang and Katiyar (2020) 558

propose to calculate the nearest neighbor of each 559

queried sample instead of the nearest prototype. 560

Huang et al. (2021) experimented comprehensive 561

baselines on different datasets. Tong et al. (2021) 562

proposes to mine the undefined classes for few- 563

shot learning. Cui et al. (2021) leverages prompts 564

for few-shot NER. However, most of these studies 565

follow the manner of episode training or assume 566

a rich-resource source domain. In this work, we 567

follow the more practical few-shot setting of Gao 568

et al. (2021), which assumes only few samples each 569

class for training. We also adapt previous methods 570

to this setting as competitive baselines. 571

6 Conclution 572

In this work, we propose a template-free prompt 573

tuning method, EntLM, for few-shot NER. 574

Specifically, we reformulate the NER task as a 575

Entity-oriented LM task, which induce the LM 576

to predict label words at entity positions during 577

fine-tuning. In this way, not only the complicated 578

template-based methods can be discarded, but also 579

the few-shot performance can be boosted since 580

the EntLM objective reduces the gap between pre- 581

training and fine-tuning. Experimental results show 582

that the proposed method can achieve significant 583

improvement on few-shot NER over BERT-tagger 584

and template-based method. Also, the decoding 585

speed of EntLM is up to 1930.12 times faster than 586

the template-based method. 587
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A Appendix 759

A.1 Implementation Details 760

We implement our method based on the hug- 761

gingface transformers4. For all our experiments 762

except TemplateNER, we use “bert-base-cased" 763

pre-trained model as the base model for fine- 764

tuning, and no new parameters are introduced in the 765

proposed method. For both bert-base baselines and 766

our method, we set learning rate=1e-4 and batch 767

size=4 for few-shot training. For all experiments, 768

we train the model for 20 epochs, and AdamW 769

optimizer is used with the same linear decaying 770

schedule as the pre-training stage. These hyper- 771

parameter settings are as the same with (Huang 772

et al., 2021). For other hyper-parameter settings of 773

the baseline methods, we simply follow the default 774

settings. When implementing all methods, we 775

adopt the “IO" labeling schema since we found 776

that the “IO" schema is better than “BIO" schema 777

under few-shot setting. 778

As for label word selection, we use the 779

Data&LM seaching along with the virtual method 780

(Data&LM+Virtual) for all dataset and set the 781

conflict ratio to Th = 0.6. When selecting the 782

top k high-frequency words for virtual method, we 783

set k to 6. 784

A.2 Sampling Algorithm 785

We conduct an exact sampling algorithm to ensure 786

sampling exactly K samples for each class, which 787

is different from the greedy sampling method used 788

in previous methods (Yang and Katiyar, 2020). The 789

algorithm is detailed in Algorithm 1. For all of 790

the three datasets we used, we exactly obtained K 791

samples for each class under all the K-shot setting. 792

A.3 Comparison with Comprehensive 793

few-shot NER benchmark 794

We also conduct experiments on the few-shot 795

benchmark provided by (Huang et al., 2021), in 796

order to compare with the competitive baselines in 797

the paper. These methods are implemented with 798

the “Roberta-base" pretrained model. Therefore, 799

we also implement our method based on “Roberta- 800

base" for fair comparison. Since the sampled 801

data of OntoNotes is not available, we only 802

experimented on the CoNLL’03 and MIT-Movie 803

datasets. The results are shown in Table 7. 804

The results show that, our method outperforms 805

over all baselines. Notice that the NSP method 806

4https://github.com/huggingface/transformers
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Datasets Label words (Data&LM+Virtual Search)

CoNLL’03
{"I-PER": ["Michael", "John", "David", "Thomas", "Martin", "Paul"], "I-ORG": ["Corp", "Inc", "Commission",
"Union", "Bank", "Party"], "I-LOC": ["England", "Germany", "Australia", "France", "Russia", "Italy"],
"I-MISC": ["Palestinians", "Russian", "Chinese", "Russians", "English", "Olympic"]}

OntoNotes*

{"I-EVENT": ["War", "Games", "Katrina", "Year", "Hurricane", "II"], "I-FAC": ["Airport", "Bridge", "Base",
"Memorial", "Canal", "Guantanamo"], "I-GPE": [ "US", "China", "United", "Beijing", "Israel", "Taiwan"],
"I-LANGUAGE": ["Mandarin", "Streetspeak", "Romance", "Ogilvyspeak", "Pentagonese", "Pilipino"],
"I-LAW": ["Chapter", "Constitution", "Code", "Amendment", "Protocol", "RICO"], "I-LOC": ["Middle",
"River", "Sea", "Ocean", "Mars", "Mountains"], "I-NORP ": ["Chinese", "Israeli", "Palestinians", "American",
"Japanese", "Palestinian"], "I-ORG": ["National", "Corp", "News", "Inc", "Senate", "Court"], "I-PERSON":
["John", "David", "Peter", "Michael", "Robert", "James"], "I-PRODUCT": ["USS", "Discovery", "Cole",
"Atlantis", "Coke", "Galileo"], "I-WORK_OF_ART" : ["Prize", "Nobel", "Late", "Morning", "PhD", "Edition"]}

MIT-Movie

{"I-ACTOR": ["al", "jack", "bill", "pat", "der", "mac"], "I-CHARACTER": ["solo"], "I-DIRECTOR": ["de",
"del", "stone", "marks", "bell", "dick"], "I-GENRE ": ["fantasy", "adventure", "romance", "comedy", "action",
"thriller"], "I-PLOT": ["murder", "death", "vampires", "aliens", "zombies", "suicide"], "I-RATING": ["13"],
"I-RATINGS_AVERAGE": ["very", "nine", "well", "highly", "really", "popular"],
"I-REVIEW": ["comments", "regarded", "opinions", "positive"], "I-SONG": ["heart", "favourite", "loves"],
"I-TITLE": ["man", "woman", "night", "story", "men", "dark"], "I-TRAILER": ["trailers", "trailer", "preview",
"glimpse", "clips"], "I-YEAR": ["last", "past", "years", "decades", "ten", "three"]}

Table 6: Label words obtained by Data&LM+Virtual Search method. The number of label words for each class
might be less than k = 6 if the words cannot meet the conflict threshold Th = 0.6.

Methods CoNLL MIT-Movie
5-shot 5-shot

LC 53.5 51.3
LC+NSP 61.4 53.1
Proto 58.4 38.0
Proto+NSP 60.9 43.8
LC+ST 56.7 54.1
LC+NSP+ST 65.4 55.9
EntLM 68.6 55.2
EntLM (Struct) 69.9 57.1

Table 7: Comparison with the methods presented in
(Huang et al., 2021). LC is linear classifier fine-tuning
method. P is prototype-based training using a nearest
neighbor objective. NSP is noising supervised pre-
training and ST is self-training. Notice that our method
shows better results even without NSP and ST, and can
also be further boosted by these two methods.

leverages the 6.8GB WiFiNE dataset for pre-807

training, and that the ST method performs self-808

training on the unlabeled data. However, our809

method still shows better results, which illustrates810

the effectiveness of the proposed objective over811

standard fine-tuning. Also, the proposed method812

can be further boosted with NSP and ST. We leave813

this for future works.814

A.4 Case Study815

In Table 6, we show the label words selected with816

the Data&LM+Virtual method as examples.817

Algorithm 1 Few-shot Sampling
Require: # of shot K, labeled training set D with a label set
Y .

1: S ← ϕ // Initialize the support set
2: for each class i ∈ Y do
3: Count[i] ← 0 // Initialize the counts of each entity

class
4: end for
5: Shuffle D
6: for (X,Y ) ∈ D do
7: Add← True
8: for i ∈ Y do
9: Calculate Temp_count[i] // Calculate the mention

number of class i in (X,Y )
10: if Count[i] + Temp_count[i] > K then
11: Add ← False // Skip current sample that

violates the K-shot rule
12: end if
13: end for
14: if Add is True then
15: S ← S ∪ {(X,Y )}
16: Update {Count[i] ← Count[i] + Temp_count[i]}

∀i ∈ Y
17: end if
18: if Count[i] == K, ∀i ∈ Y then
19: break // Finish sampling
20: end if
21: end for
22: return S
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