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ABSTRACT

Point cloud registration methods can effectively handle large-scale, partially over-
lapping point cloud pairs. Despite its practicality, matching the unbalanced pairs
in terms of spatial extent and density has been overlooked and rarely studied. We
present a novel method, dubbed UPPNet, for Unbalanced Point cloud Pair registra-
tion. We propose to incorporate a hierarchical framework that effectively finds inlier
correspondences by gradually reducing search space. The proposed method first
predicts subregions within target point cloud that are likely to be overlapped with
query. Then following super-point matching and fine-grained refinement modules
predict accurate inlier correspondences between the target and query. Additional
geometric constraints are applied to refine the correspondences that satisfy spatial
compatibility. The proposed network can be trained in an end-to-end manner,
predicting the accurate rigid transformation with a single forward pass. To validate
the efficacy of the proposed method, we create a carefully designed benchmark,
named KITTI-UPP dataset, by augmenting the KITTI odometry dataset. Extensive
experiments reveal that the proposed method not only outperforms state-of-the-art
point cloud registration methods by large margins on KITTI-UPP benchmark, but
also achieves competitive results on the standard pairwise registration benchmark
including 3DMatch, 3DLoMatch, ScanNet, and KITTI, thus showing the appli-
cability of our method on various datasets. The source code and dataset will be
publicly released.

1 INTRODUCTION

Point cloud registration is a task that aims to recover 3D rigid transformation between two possibly
overlapping point cloud fragments. The rapid advance of commodity 3D sensors gives rise to the ne-
cessity of efficient point cloud registration algorithms for numerous real-world applications, including
3D reconstruction for virtual-, augmented-, and mixed reality applications, and the navigation systems
of autonomous vehicles or robotic agents. Recent work has made remarkable progress in developing
learning-based point cloud registration algorithms for tackling real-world 3D scans (Geiger et al.,
2012; Zeng et al., 2017) with high-resolution feature extraction (Choy et al., 2019b; Bai et al., 2020)
under presence of low ratio of the inlier correspondences (Choy et al., 2020b; Bai et al., 2021; Lee
et al., 2021) or small overlap region between point pairs (Huang et al., 2021).

However, the imbalance issue in terms of spatial extent and point density between the input point
clouds is often overlooked, despite its practical utility in the problems such as incremental mapping,
or the registration of partial observations and the holistic environment. For instance, there are sensible
solutions for registering a pair of 3D LiDAR scans, but registering a single LiDAR scan and a
large-scale 3D map still remains challenging. A viable solution is to apply a global localization
approach (Uy & Lee, 2018; Komorowski, 2021; Du et al., 2020; Zhang & Xiao, 2019; Liu et al.,
2019), but the existing methods cast the problem as a retrieval task and assume that the 3D map is
given as a set of overlapping 3D scans rather than a holistic map, which is not generally applicable to
the unbalanced point pairs.

Recent feature-based pairwise point cloud registration methods are equipped with matchability
detection (Bai et al., 2020), overlap detection (Huang et al., 2021), or hierarchical correspondence
prediction (Yu et al., 2021), which are possibly advantageous in registering unbalanced point clouds.
However, we empirically found that they collapse in registering unbalanced point clouds. Point cloud
description and matching in the modern feature-based registration methods tend to be distracted by
similar geometric structures that often appear in the larger point cloud.
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To this end, we propose UPPNet, the first neural architecture which is designed to be efficient
for large-scale Unbalanced Point cloud Pair registration. UPPNet is a hierarchical framework that
effectively finds inlier correspondences by gradually reducing search space. In the coarsest level, a
submap proposal module proposes the subregions that are likely to be overlapped with the query
by utilizing a global geometric context. Then, the coarse-to-fine matching module predicts accurate
point-level correspondences by utilizing attention-based context aggregation and solving optimal
transport problems. The subsequent structured matching module filters out outlier correspondences
that violate spatial compatibility.

To evaluate our method, we create a carefully designed benchmark, namely KITTI-UPP dataset, for
matching point cloud pairs under the diverse spatial extent and point density imbalance by augmenting
the KITTI odometry dataset (Geiger et al., 2012). The experiment shows that our method improves
the Registration Recall on the KITTI-UPP dataset by over 19.6% than state-of-the-art registration
pipelines when the target point cloud is 11.1 times spatially larger and 11.7 times denser than the
query point cloud. Furthermore, we evaluate the proposed method under the unbalanced indoor
environments using ScanNet (Dai et al., 2017) dataset and show that the proposed method can be
generalized for indoor RGB-D scans. Finally, to demonstrate the applicability of the proposed
method for partially overlapped point cloud pairs, we evaluate our method on the standard pairwise
registration benchmarks, 3DMatch, 3DLoMatch (Zeng et al., 2017; Huang et al., 2021), and KITTI
odometry (Geiger et al., 2012) datasets. The proposed method achieves competitive registration
accuracy with the modern pairwise registration methods (Bai et al., 2020; Huang et al., 2021; Yu
et al., 2021). An overview of our method can be found in Figure 1.

Our main contributions are summarized as follows:

• We propose a novel hierarchical framework that gradually reduces the search space via
submap proposal module and coarse-to-fine matching modules, which can effectively handle
unbalanced point cloud registration tasks.

• We introduce a new benchmark, namely KITTI-UPP dataset, by carefully augmenting the
large-scale outdoor LiDAR dataset (Geiger et al., 2012).

• Our method can be trained in an end-to-end manner and demonstrates strong generalization
ability on a wide range of spatial and point density. It outperforms the previous state-of-the-
art methods by 19.6% Registration Recall on a challenging benchmark.

• Our method achieves competitive registration accuracy in both unbalanced indoor RGB-D
registration (Dai et al., 2017) and the standard pairwise registration benchmarks (Zeng et al.,
2017; Huang et al., 2021; Geiger et al., 2012), showing the applicability of the method.

2 RELATED WORK

Point cloud registration. Given partially overlapping point cloud pairs, point cloud registration aims
to estimate the rigid transformation parameters that align the input point clouds. Typical pipelines start
with the feature extraction and matching stage to produce a set of putative correspondences, followed
by a robust model fitting algorithm to estimate the pose parameters from given correspondences.

Traditional local descriptors for point clouds (Johnson & Hebert, 1999; Rusu et al., 2008; 2009;
Tombari et al., 2010; Salti et al., 2014) encode local geometry using hand-crafted features such as
surface normal or curvature. Recent learnable feature descriptors train a network to extract geometric
features in a data-driven manner. Qi et al. (2017) incorporate shared MLP and permutation-invariant
aggregation operations to process unordered and irregular point cloud data. Deng et al. (2018a;b)
extended Qi et al. (2017) by combining point pair feature to extract global context-aware feature
descriptors. Choy et al. (2019b) adopted the fully convolutional networks to process point cloud data
by utilizing sparse convolution (Choy et al., 2019a) and achieved state-of-the-art feature matching
accuracy in large-scale real-world datasets. Bai et al. (2020) and Huang et al. (2021) incorporate
keypoint and overlap confidence prediction for robust feature matching between low overlapping
point pairs.

The set of putative correspondences that is built by matching local feature descriptors tends to
contain a high portion of outliers. Hence, the pose estimation algorithm should be robust against
the existence of outliers. RANdom SAmple Consensus (RANSAC) (Fischler & Bolles, 1981) and
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its variants (Fitzgibbon, 2003; Raguram et al., 2012; Hoseinnezhad & Bab-Hadiashar, 2011; Chum
& Matas, 2005) are one of the most popular methods. Recent studies of learning-based outlier
rejection methods apply for the problem of two-view correspondences (Moo Yi et al., 2018; Zhang
et al., 2019; Brachmann et al., 2017) and 3D correspondences (Choy et al., 2020b;a). Lee et al.
(2021) utilizes Hough voting in 6D parameter space and learnable refinement module, resulting in a
robust and efficient registration pipeline for the large-scale point cloud. Bai et al. (2021) incorporate
the spatial compatibility to filter out noisy correspondences. Yu et al. (2021) proposed to avoid
keypoint detection by incorporating hierarchical correspondence extraction modules and Lu et al.
(2021) present specialized pipeline for large-scale LiDAR scans. However, none of those methods are
explicitly designed for the unbalanced point cloud registration and we empirically found that those
methods collapse under the extreme imbalance in terms of spatial extent and point density.

Global localization. The early global localization algorithms are based on the 2D images (Chen
et al., 2017; Sarlin et al., 2019; Sattler et al., 2017), where input images are matched against the 3D
map reconstructed with Structure from Motion (SfM). They often cast a visual localization task as a
retrieval problem, where the query images are described with global descriptors, and the most similar
point features are retrieved from the database. Vector of Locally Aggregated Descriptors (VLAD)
(Jégou et al., 2010; Arandjelovic & Zisserman, 2013) is one of the most widely used approaches. It
aggregates the local descriptors into a single global descriptor via clustering and is designed to be
very low dimensional. NetVLAD (Arandjelovic et al., 2016) has extended it to learnable method.

Recently, 3D point cloud-based global localization methods are developed. Yin et al. (2017; 2018)
projects a point cloud onto a spherical image and then extracts a global feature descriptor via 2D
CNN. In Yin et al. (2019), it is combined with a localization module, which utilizes particle filter and
ICP for 3D pose estimation. Uy & Lee (2018) apply NetVLAD to point cloud data using PointNet Qi
et al. (2017) as backbone network. Based on this, Zhang & Xiao (2019) employs per-point attention
to enhance the global descriptor. Liu et al. (2019) applies a graph neural network on hand-crafted
point features to encode local context and aggregate it into global descriptors using the NetVLAD
layer. Du et al. (2020) jointly optimizes both local and global feature extractors and solves both
global retrieval and local registration in a single forward pass. Komorowski (2021) utilizes sparse
convolutional networks to overcome the limitation of the local context of PointNet.

One feasible solution to tackle the unbalanced point cloud registration is to device the task into two
separate sub-tasks; 1) the nearest frame retrieval and 2) local registration. After the target frame
is retrieved, the relative pose between the query and the target frame is predicted by applying the
conventional pairwise registration methods. These methods, however, suffer from several drawbacks.
First, there are significant overheads in both the computational cost and the memory footprint to
represent a scene with a set of multiple overlapping local frames. Second, they are likely not to
generalize when point cloud pairs have a domain difference. For instance, considering the registration
between the reconstructed point cloud of a large-scale scene and a local scan, the global localization
methods fail to be directly adopted due to the severe density difference. Finally, the success of
the registration strongly depends on the localization results. They can not recover when the coarse
alignment via localization fails.

3 METHOD

This section describes the proposed UPPNet, designed for registering unbalanced point cloud pairs.
To handle spatial and density imbalance, we introduce a hierarchical framework consisting of three
levels of matching stages, submap matching (Section 3.3), super point matching (Section 3.4), and
point matching (Section 3.5). The overview of the proposed pipeline is illustrated in Figure 1.

3.1 PROBLEM DEFINITION

Given a pair of possibly overlapping point clouds, X ∈ Rn×3,Y ∈ Rm×3, our goal is to estimate
the optimal rigid transformation R∗, t∗ that minimizes the geometric error defined as follows:

R∗, t∗ = argmin
R,t

∑
(i,j)∈C

∥Ryi + t− xj∥2 (1)

where R ∈ SO(3), t ∈ R3 are rotational matrix and translation vector, C is a set of true correspon-
dences between X and Y. In this paper, we are interested in the case where V(X) ≫ V(Y), and
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Figure 1: (Left) Overview of UPPNet. Given an unbalanced point cloud pair, UPPNet hierarchically
reduce the search space by utilizing multi-level features. (Top right) Super point features get
strengthen via Attention-based Context aggregation module, shown at a⃝, and aggregated into
global descriptor using Generalized mean pooling, shown at c⃝. We select the submaps with
top-k similarity. (Middle right) We build a similarity matrix using super point features in each
selected submap. We solve the optimal transport problem on the similarity matrix, and the super
point correspondences are estimated, shown at e⃝. (Botton right) Super point correspondences are
refined to point correspondences by utilizing node grouping, shown at d⃝, and matching module. f⃝
Structured matching filters out the noisy correspondences that do not satisfy spatial compatibility.
Modules in UPPNet, including feature extraction and correspondence estimation, can be trained in an
end-to-end manner with the three losses Ls, Lg , and Lp.

n ≫ m, where V(·) denotes the spatial volume of the bounding box that tightly covers the input
point cloud. In other words, there is spatial and density imbalance between X and Y. From here on,
we will refer to the reference point cloud that spans a larger spatial extent with higher density (X) as
a map, and a query point cloud with a small and sparse point cloud (Y) as a query. Furthermore, we
use the terms spatial imbalance factor , ρs =

V(X)
V(Y) , and point imbalance factor, ρp = n

m , to denote
the relative imbalances between two point clouds in terms of spatial extent and number of points.
Note that we can also calculate the density imbalance factor by ρd =

ρp

ρs
.

3.2 FEATURE EXTRACTION

The proposed UPPNet begins with the feature extraction to encode the geometric context of map
and query point clouds. To achieve this goal, we adopt a shared U-shaped network implemented
with KPConv (Thomas et al., 2019) to extract the multi-level features. Given an input point cloud
X ∈ Rn×3 with initial feature Fin

X ∈ Rn×din , the feature extractor fθ(·) outputs the pointwise feature
FX ∈ Rn×d that encode local geometric context, denoted as (X,FX) = fθ(X,Fin

X). At the most
coarse resolution, i.e., at the end of the encoder, we obtain downsampled points with corresponding
feature vectors, and we call the downsampled points as super points and denotes the point coordinates
and the features with X′ ∈ Rn′×3 and FX′ . For each super point x′

i, the input point cloud X can be
partitioned into groups by assigning each point to its closest super point as in Yu et al. (2021):

Gi = {x ∈ X
∣∣∥x−x′

i∥ ≤ ∥x−x′
j∥,∀j ̸= i]}, (2)
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where we denote the corresponding super point feature map as F′
Gi

.

3.3 SUBMAP MATCHING

Building submaps. The first stage of our hierarchical registration pipeline is the submap proposal
that builds the submap candidates that are likely to be overlapped with the query point cloud. To
do so, we divide the map into L overlapping submaps. A submap Si is a subset of superpoints
of the map, i.e., Si ⊂ X′, that lie in i-th submap region Si: Si = {x′ ∈ X′ : x′ ∈ Si}. Each
(cubic-shaped) submap region Si with its center ci ∈ R3 (which we call center point) and edge length
of v ∈ R+ is formally defined as Si = {s ∈ R3 : max|s− ci| ≤ v/2}. In this work, we evenly place
L overlapping submap regions {Si}Li=1 to cover all the superpoints of the map X′ with carefully
chosen overlapping ratio µ, satisfying |Si ∩ Sj |/|Si| = µ and ||ci − cj || = v · µ for any adjacent,
overlapping submap regions Si and Sj . We set µ = 0.5 in our experiments. The edge length of the
submap regions, v ∈ R+, is defined by the spatial size of the query Y: Specifically, we first compute
the furthest distance between two points in Y along i-th axis as si = |maxaya,i − minbyb,i| ∈ R+,
thus giving {si}3i=1 of which respective elements represent width (s1), height (s2), and length (s3) of
Y. The edge length of submap regions is defined as the largest edge length of Y: v = maxisi. The
overview of the submap proposal and grouping is shown in Figure 1 (b).

Attention-based context aggregation. The super point feature maps of query and submaps are
then strengthened via attention-based context aggregation module (Yu et al., 2021; Huang et al.,
2021; Sarlin et al., 2020) to incorporate the global geometric context. As in Huang et al. (2021), we
construct a bipartite graph between query and map point cloud regarding the super points as nodes,
and we apply a sequence of self-, cross-, and self-attention layers to fuse the global context between
two point clouds and augment each super point feature. Given super point feature maps (F′

X,F′
Y),

we linearly project the source feature F′
X to query, Q = WQF′

X and target feature F′
Y to key and

value as K = WKF′
Y,V = WVF′

Y, respectively, where WQ, WK, and WV are the learnable
parameters. To calculate the message M that flows in the graph, we use attention-based aggregation
as follows: M = QKT

√
b

· V, where b is the channel dimension of super point features. When
calculating self-attention messages, we take (F′

X,F′
X) and (F′

Y,F′
Y) as input and flow messages to

corresponding subgraphs.

Global feature aggregation. After we augment super point features, we aggregate super point
features into a global descriptor for each submap. The super point features are lifted into a higher
dimension by a linear layer and then aggregated into a global descriptor via Generalized Mean
Pooling (GeM) (Radenović et al., 2018). GeM has shown its strength in localization tasks for various
modality (Tolias et al., 2015; Komorowski, 2021). Concisely, GeM aggregates the super point features
F′

Si
for submap Si and builds the global descriptor FGD

Si
as FGD

Si
(k) =

(
1

|Si|
∑

x′
j∈Si

(F′
x′
j
(k))α

)1/α
,

where FGD
Si

(k) is k -th element of the global descriptor, and α is a learnable parameter.

Global feature matching. With the aggregated global descriptors for each submap {FGD
Si

} and query
FGD

Y , we calculate the similarity matrix using L2 distance between two global descriptors:

dGD
i = ∥FGD

Si
− FGD

Y ∥2, dGD =
[
dGD
1 . . . dGD

m

]
∈ Rm×1, (3)

where dGD is a one dimensional vector because the query point cloud Y is described with a single
global descriptor FGD

Y , whereas the map X is described with m global descriptors FGD
Si

for each
submap Si. On train time, we apply a loss function on dGD with groundtruth supervision. On
inference time, we pick k submaps with the top-k similarity values, where k is a hyperparameter.

3.4 SUPER POINT MATCHING

After the candidate submaps are proposed with the consideration of the global geometric context,
we perform the super point matching. For each proposed submap, the super points belonging to the
submap Si are retrieved with corresponding super point features, F′

Si
∈ R|Si|×d′

. Then we leverage
super point features F′

Si
,F′

Y of submap and query to calculate the similarity matrix SSi using inner
product:

SSi = F′
Si
F

′T
Y , SSi ∈ R|Si|×n′

(4)
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Neighborhood constraint. The similarity matrix SSi
effectively convey the geometric information

with moderate receptive field size. Following Lu et al. (2021), we incorporate additional geometric
context, called neighborhood constraint, to handle challenging cases. As described in Eq. 2, each
point x ∈ X are assigned to the closest super point. For each super point x′

i ∈ X′, we aggregate
the neighbor features of points within the partition Gi using max pooling and denote the aggregated
features as neighbor feature ,F̄Gi

. Now we calculate another similarity matrix NSi
= F̄T

Si
F̄Y, called

neighbor similarity matrix. The final similarity matrix is defined as addition of two similarity matrices
augmented with additional row and column for slack entries to handle unmatched super points as
suggested in Yu et al. (2021); Sarlin et al. (2020):

ZSi
=

[
SSi +NSi z

z z

]
, ZSi

∈ R(|Si|+1)×(n′+1) (5)

We then utilize Sinkhorn algorithm (Sinkhorn & Knopp, 1967) to solve optimal transport problem
on ZSi

and obtain Z̄Si
. Each entry (i, j) in Z̄Si

indicates normalized probability whether (i, j)
correspondence is a true correspondence. By thresholding Z̄Si

by predefined value τZ , we obtain the
set of predicted super point correspondences, C′, and they passed to the final point matching module
to point correspondences, C.

Structured matching. We use spatial compatibility (Bai et al., 2021; Lee et al., 2021) to further
reject the outlier correspondences. It considers two correspondences (pi, qi) and (pj , qj) are likely
to be inliers if their spatial distance |d (pi, pj)− d (qi, qj)| is smaller than predefined threshold.
Extending this concept, for each correspondence, we compute the compatibility score with respect
to the number of their compatible correspondences in the whole correspondence set. For example,
whole correspondences set is {c1, c2, c3} and compatibility score of c1 will be 2 when c2 and c3
satisfy spatial compatibility with c1. With the compatibility score, we consider correspondences with
a low score as outliers and filter out them. In our hierarchical framework, we apply this strategy to
our super point matching module and point matching module to extract only reliable correspondence
pairs. Furthermore, KNN search is used to guarantee as many inliers as possible for the initial
correspondence set. For more details about the structured matching, please refer to Appendix.

3.5 POINT MATCHING

Given predicted super point correspondence, we refine it to point-level correspondences for the final
rigid transformation parameter estimation. We expand a single super point correspondence to a
pair of point patches with neighboring points around the super points in each point cloud. We use
the point-to-super point grouping as described in Eq. 2 and pass the selected point groups to the
matching module as in Section 3.4. After applying the threshold to the similarity matrix and structured
matching, we get the final set of point-level correspondences between two input point clouds. We then
run RANSAC on the correspondence set to estimate the rigid transformation parameter. Note that
there are multiple sets of correspondences since we perform the matching module for each proposed
submap in parallel. We select the one with the highest inlier ratio among the multiple transformation
candidates as our final prediction.

3.6 LOSS

We train our network using the loss function defined as L = Ls + λgLg + λpLp, where the total loss
is the weighted sum of submap matching loss Ls, super point matching loss Lg, and point matching
loss Lp. Specifically, we define point matching loss Lp as:

Lp =
−
∑

i,j Ẑ(i, j) log Z̄(i, j)∑
i,j Ẑ(i, j)

(6)

where Z̄ is the predicted similarity matrix after solving optimal transport using Sinkhorn algorithm,
Ẑ is the binary matrix that indicates groundtruth. If (i, j) correspondence is a true correspondence
then Ẑ(i, j) = 1, and Ẑ(i, j) = 0 otherwise. For Lg and Ls, we apply the same formulation, but we
calculate the overlap ratio between two patches around the super points as ground-truth soft label
values. This fact indicates that we only provide a point-wise binary matrix for the supervision, and the
similarity matrix for super point matching and submap matching are calculated with Ẑ . Additional
supervision rather than the rigid transformation matrix between query and map point clouds is not
required. More details on calculating ground-truth similarity matrices are provided in Appendix.
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Query Registration results Query Registration results

(a) KITTI-UPP (b) ScanNet

Figure 2: Qualitative results on the KITTI-UPP dataset (a) and ScanNet dataset (b). Left figure for
each dataset shows query point cloud and right one shows our registration result on unbalanced point
cloud pairs. The green lines indicate inlier correspondences and the red lines indicate the outlier
correspondences.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

KITTI-UPP dataset. To the best of our knowledge, there are no available benchmarks and public
datasets targeting the large-scale unbalanced point cloud registration task. To validate the effectiveness
of our approach, we introduce KITTI-UPP, a carefully designed dataset for large-scale unbalanced
point cloud registration tasks. We build KITTI-UPP by aggregating sequential LiDAR frames for
each scene provided by the KITTI Odometry benchmark (Geiger et al., 2012). To control spatial
and density imbalance factor between map and the query as defined in Section 3.1, we tune two
parameters when selecting KITTI frames for aggregation: range and hop. The range determines how
many frames we use to construct a map, indicating the map size. If the range value is set to 500, we
aggregate 500 consecutive LiDAR frames to build a single map. The hop indicates the frame jump
for the LiDAR frame aggregation. If we set the hop value as 10, every 10th frame is used for the
aggregation. In this manner, the hop controls the density of the aggregated point cloud.

In our experiment, we set 300 and 10 as the default values for range and hop, respectively, to train
UPPNet and baseline approaches. We then utilize KITTI-UPP scenes made with other hops and
ranges that are unseen during the training to analyze the registration performance on the various
spatial and density imbalance factors. Note that we ensure that any query is not included in the map.
When we aggregate every 10th frames to construct a map, i.e., {10 · i|0 ≤ i ≤ ⌈ range

10 ⌉}, then we
select the query frames from a index set {10 · i+ 5 |0 ≤ i ≤ ⌈ range

10 ⌉} to ensure that the same frame
is not used in both a query and a map.

ScanNet benchmark. To validate the robustness of our proposed method in large-scale indoor
environments, we use ScanNet (Dai et al., 2017) benchmark which contains 2M RGB-D scans
of over 707 unique indoor scenes. To evaluate the methods under an unbalanced environment,
we use the provided reconstructed mesh of ScanNet as a map and register a single RGB-D frame
with the map, thus being able to omit the labor-heavy process for generating maps as in KITTI-
UPP dataset construction. For the unbalanced point cloud registration task. An example pair is
illustrated in Figure 2. Specifically, we use a subset of ScanNet which consists of 12/2/5 scenes for
training/validation/testing splits respectively where each scene contains a varying number of scans
ranging from 8 to 113.

Evaluation metric. We use the standard metric to assess the pairwise registration accuracy using
Rotational Error (RE): arccos Tr (RT R̂)−1

2 and relative Translational Error (TE): ∥t− t̂∥2, where
R, t are the predicted rotation matrix and a translation vector, R̂, t̂ are the ground-truth. We also
use relative Inlier Ratio (IR) and Registration Recall (RR) for the evaluation. IR is defined as the
ratio of correspondences whose geometric distances are below the predefined threshold (τI ) when
transformed with the ground-truth transformation. For a registered pair having RE and TE less than
the predefined thresholds (τR, τt), we regard it as a successful registration and calculate the RR of
successful registration over the entire dataset. For indoor datasets, we report three standard metrics,
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Figure 3: Evaluation results on KITTI and KITTI-UPP benchmark with various spatial (ρs) and point
(ρp) imbalance factors. The regions on the left side of the gray lines indicate the balanced pairwise
registration environment of the standard KITTI dataset on which the previous pairwise registration
methods mainly handle. For the experiments with various point imbalance factors (left), we fix the
range value to 100 (ρs = 2.7) and change the hop value. For the experiments with various spatial
imbalances (right), we fix the hop value to 25 (ρp = 6.9) and change the range value.

Table 1: Quantitative registration results on 3DMatch (Zeng et al., 2017), 3DLoMatch (Huang et al.,
2021), and ScanNet (Dai et al., 2017).

3DMatch (Zeng et al., 2017) 3DLoMatch (Huang et al., 2021) ScanNet Dai et al. (2017)
RR (%) FMR (%) IR (%) RR (%) FMR (%) IR (%) RR (%) FMR (%) IR (%)

FCGF (Choy et al., 2019b) 85.1 97.4 56.8 40.1 76.6 21.4 - - -
D3Feat (Bai et al., 2020) 81.6 95.6 39.0 37.2 67.3 13.2 - - -
Predator (Huang et al., 2021) 89.0 96.6 58.0 59.8 78.6 26.7 - - -
CoFiNet (Yu et al., 2021) 89.3 98.1 49.8 67.5 83.1 26.7 50.0 84.2 51.0
Ours 93.0 96.8 72.4 69.0 82.3 39.7 71.0 80.1 64.1

namely Registration Recall (RR), Inlier ratio (IR) and Feature Matching Recall (FMR) following the
literature. The precise definition of evaluation metrics can be found in the Appendix.

4.2 COMPARISON

Outdoor Experiment. We compare our UPPNet with the state-of-the-art pairwise registration
methods (Bai et al., 2020; Huang et al., 2021; Yu et al., 2021) in Figure 3. We select those
methods as baselines since they are equipped with keypoint detector (Bai et al., 2020), overlap
prediction module (Huang et al., 2021), or coarse-to-fine registration module (Yu et al., 2021), which
are likely to be favorable for the unbalanced point cloud registration. For a fair comparison, we
finetune all baseline methods on our KITTI-UPP dataset, where the baselines were pretrained with
KITTI odometry dataset (Geiger et al., 2012). All details of the training and evaluation setup for
the baseline models can be found in Appendix. As shown in Figure 3, our method achieves the
best results in all metrics. Moreover, our method achieves the best generalization ability w.r.t the
various spatial extent and density imbalances as shown in Figure 3, indicating the advantages of our
method. To verify the effectiveness of UPPNet, we conduct additional experiments; incorporating
retrieval method with baseline models. In this experiment, we combine pairwise registration methods
with MinkLoc3Dv2 (Komorowski, 2022) that shows best performance on 3D retrieval task. For
fair comparison, We train the MinkLoc3Dv2 (Komorowski, 2022) on our KITTI-UPP dataset for
200 epochs. Even though pairwise registration methods benefit from MinkLoc3Dv2 (Komorowski,
2022), UPPNet still outperforms baseline models by large margins. We conclude that the method of
generating global descriptor in MinkLoc3Dv2 (Komorowski, 2022) is not suitable for our challenging
scenario which is under extreme imbalance in terms of spatial extent and point density; aggregating
the features of all points rather than reliable points in contrast to UPPNet.

Indoor Experiment. We report unbalanced point cloud registration results on large-scale indoor
environments, e.g., ScanNet (Dai et al., 2017). In this experiment, we compare our UPPNet with
CoFiNet (Yu et al., 2021). We take two methods of ours and CoFiNet pretrained on 3DMatch (Zeng
et al., 2017) and finetune on ScanNet. Registration results are summarized in Table 1; our method
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Table 2: Ablation study on (Left) k-nearest-neighbors, (Right) submap proposal and structured
matching modules. The range value and hop value are set to 500 (ρs = 11.1) and 25 (ρp = 11.7).

#k Recall (%) TE (m) RE (◦) IR (%)

1 65.5 0.691 1.613 25.1
2 75.3 0.675 1.599 24.1
4 78.5 0.668 1.477 22.0
8 81.5 0.602 1.379 19.7
16 82.5 0.612 1.314 16.9
32 81.5 0.602 1.327 14.0

Submap Structured Recall (%)super point point

✗ ✗ ✗ 70.2
✗ ✓ ✓ 80.0
✓ ✗ ✗ 74.5
✓ ✗ ✓ 73.8
✓ ✓ ✗ 76.4
✓ ✓ ✓ 82.5

achieves 21.1% Registration Recall improvements over CoFiNet, which reveals the robustness of our
method for indoor unbalanced point cloud registration as well.

4.3 ANALYSIS

To study the effectiveness of the proposed UPPNet, we conduct extensive ablation experiments and
report the results in Table 2. In Table 2, we conduct an ablation study on the core design choices
of our method: k-nearest-neighbor values and usage of submap proposal and structured matching
modules. As shown in Table 2, k = 16 is the optimal configuration for considering all metrics. In
addition, we found that both submap proposal and structured matching modules bring significant
improvement in registration recall, where the best performance is achieved when all modules are
enabled.

Table 3: Model runtime comparisons on KITTI-
UPP dataset. Range and hop values are the same
with Table 2.

Recall (%) Time (s)

D3Feat (Bai et al., 2020) 22.9 0.44
Predator (Huang et al., 2021) 36.7 0.19
CoFiNet Yu et al. (2021) 62.9 0.62
Ours(k=4) 78.5 1.03
Ours(k=16) 82.5 2.28

Moreover, we evaluate our method on three
popular benchmarks, namely 3DMatch (Zeng
et al., 2017), 3DLoMatch (Huang et al., 2021),
and KITTI (Geiger et al., 2012), to demon-
strate the applicability of the proposed method
in the balanced but partially overlapping setup.
We compare our method with the state-of-the-
art feature-matching based registration meth-
ods (Bai et al., 2020; Choy et al., 2019b; Yu
et al., 2021; Huang et al., 2021) on 3DMatch
and 3DLoMatch benchmarks. For the KITTI
odometry benchmark, we select HRegNet (Lu et al., 2021) and CoFiNet (Yu et al., 2021) as base-
lines since they exhibit strong performance on KITTI benchmark (Geiger et al., 2012). For these
experiments, we follow the training and evaluation settings of Yu et al. (2021). As reported in Table 1
and Figure 3, our method exhibits competitive results from the previous state-of-the-art registration
methods on both indoor and outdoor datasets, even with the extremely low overlap scenario. This
result suggests that our method is not specialized for the KITTI-UPP benchmark but also applies to
the indoor and low overlap environment. For more details on training and evaluation for the 3DMatch
dataset, please refer to the Appendix.

Finally, we measure the latency of our method and report the breakdown of elapsed times for each
module on the KITTI-UPP benchmark in comparison with CoFiNet (Yu et al., 2021). As reported in
Table 3, our method takes 0.4 seconds more than CoFiNet but improves registration recall by 15.6%.

5 CONCLUSION

In this paper, we presented a neural architecture for unbalanced point cloud registration with extreme
spatial scale and point density discrepancy. We proposed a hierarchical framework that finds inlier
correspondences effectively by gradually reducing search space to tackle this problem. Our proposed
method can handle scale differences by finding subregions that are likely to be overlapped with the
query point cloud and estimating the correspondences via a coarse-to-fine matching module to the
selected subregions. Finally, structured matching is applied to prune the noisy correspondences further.
Our method outperforms the state-of-the-art methods by a large margin in extensive experiments on
the challenging dataset.

Limitations. We use RANSAC to get the final rigid transformation parameter with the estimated cor-
respondences. Leveraging a differentiable model estimator, e.g., weighted Procrustes method (Choy
et al., 2020a), would be an interesting future research direction.
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A APPENDIX

In this supplementary material, we provide the detailed algorithm of the structured matching procedure
in Section A.1, the description of how we form the data splits of our KITTI-UPP dataset for training
and evaluation in Section A.2, additional details on the experiments in Section A.3, the additional
quantitative results in Section A.4 with the implementation details of baseline methods, equations
for the loss terms in Section A.5, details of architectural configuration in Section A.6, and finally
qualitative results in Section A.7.

A.1 STRUCTURED MATCHING

We provide additional information on our structured matching. As in Section3.4, the initial corre-
spondence set is extracted from similarity matrix Z̄ . Simple strategy is to consider an entry (i, j)
with high confidence score in Z̄ as a valid correspondence as in (Yu et al., 2021):

C = {(i, j)|Z̄(i, j) > τZ} (7)

However, this strategy is prone to missing inlier correspondences in our unbalanced setting; that
is difficult to extract consistent features from the same region of the map and query as the inlier
correspondences often have low confidence scores. An alternative solution is to select confident
correspondences relatively for each point rather than using an absolute threshold value. We utilize
K-nearest-neighbor (KNN) search in feature space and retrieve the top-k candidate correspondences
for each point having the highest inlier confidence values:

C = {(i, j)|Z̄(i, j) > Topk(Z̄(i, :)} (8)

This approach can guarantee to select k candidates for each point even if their confidence scores
are low. Although more inlier correspondences can be obtained by KNN search, selecting extra
correspondences leads to a high number of outliers. To cope with these challenges, we combine spatial
compatibility with KNN search for outlier rejection. We first check whether each correspondence
satisfies spatial compatibility with others, as illustrated in Figure 4(b). Assume that we have N
correspondences {(xn, yn)}Nn=1 where xn, yn ∈ R3 is a pair of 3D points, i.e., n-th correspondence.
The spatial compatibility matrix S ∈ RN×N encodes relative distances of the correspondences such
that Si,j = 1[|d(xi, xj)− d(yi, yj)| < θ] where θ is distance threshold; score of 1 is assigned to Si,j

if a pair of correspondences i, j are spatially consistent and scores of 0 is given otherwise. In this toy
example, {c1, c3, c5, c7} are inlier correspondences and {c2, c4, c6, c8} are outlier correspondences.
Although we can reject c6 by sampling the correspondences with at least one compatible correspon-
dence, we still suffer from the outliers {c2, c4, c8}. Notably, a large-scale map would have numerous
repetitive structures, making it challenging to distinguish hard negative correspondences {c2, c4, c8}
using only their associated features, i.e., through first order matching. Instead, we can select corre-
spondences with high compatibility scores, as described in Section 3.4, by counting the number of
compatible correspondences for each correspondence. Furthermore, we can calculate compatibility
coherence between two correspondences by calculating how many correspondences are compatible
with both of them. The calculation of compatibility coherence scores of some correspondence i is
formulated as similarities (dot-product) between spatial consistency of correspondence i and those of
other correspondences: Ci = SST

i,: ∈ RN which counts the number of spatially-consistent matches
that correspondence i has in common with others. In other words, compatibility coherence score of
correspondences i and j amounts to the number of spatially-consistent correspondences they have
in common. As an specific example, correspondences c1 and c3 in Figure 4(a) have two common
spatially-consistent correspondences of c5 and c7 which makes C1,3 = C3,1 = 2 while correspon-
dences c6 and c8 do not have any common spatially-consistent correspondences so C6,8 = C8,6 = 0.
In our experiments, we use the compatibility coherence because it shows better performance in Table
4. We can get compatibility coherence by simply multiplying the compatibility matrix in Figure
4(b). Then, we compute the average coherence value per correspondence. Finally, thresholding these
values with t indicates which correspondences to keep for the final correspondence set {c1, c3, c5, c7}.
In our case, we set this threshold as the mean value of the average coherence values, as shown in
Figure 4(c). As a result, by combining this strategy with KNN search, we firstly can obtain as many
inliers as possible and efficiently filter out the outliers through structured matching. Experimentally,
combining these two approaches is the key to solving the noisy correspondence problem caused by
feature ambiguity common in unbalanced point pairs.
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Figure 4: (a) Example of initial correspondences where green and red lines indicate inliers and
outliers. (b) Spatial compatibility matrix. (c) Compatibility coherence matrix.

Table 4: Ablation study on compatibility matrix of score and similarity. The range value and hop
value are set to 500 (ρs = 11.1) and 25 (ρp = 11.7).

Scale Imbalance Factor (ρs) : 11.1
Recall (%) ↑ TE (m) ↓ RE (◦) ↓ IR(%) ↑ ρp

Ours + compatibility score 81.1 0.553 1.377 16.3 11.7Ours + compatibility coherence 82.5 0.612 1.314 16.9

A.2 DATASET

We follow the same data split strategy that FCGF (Choy et al., 2019b) uses for KITTI odometry
dataset (Geiger et al., 2012) for our KITTI-UPP dataset. We use sequences 0-5 for training, 6-7 for
validation, and 8-10 for testing. For building the input point cloud pair, the query point clouds are
sampled from the original frames of the KITTI odometry dataset, and the map point clouds are created
by aggregating the LiDAR frames while managing two parameters: range and hop as described in
Section 4.1. During training, we set the range and hop value to 300 and 10 to build maps. The query
frames are at least 10m apart from each other, and we pick the map which is the closest one to each
query among the generated map point clouds. For evaluation, we use varying range and hop values to
evaluate the generalization ability of the methods. Especially for the test split, we carefully designed
the input point cloud pairs so that the query would not be included in the frames that are used to
generate the map. Through this procedure, we yield 1,358 pairs for training, 180 for validation, and
275 for testing.
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A.3 ADDITIONAL DETAILS ON THE EXPERIMENTS

Evaluation metric. We use the standard metric to assess the pairwise registration accuracy using
Rotational Error (RE): arccos Tr (RT R̂)−1

2 and relative Translational Error (TE): ∥t− t̂∥2, where
R, t are the predicted rotation matrix and a translation vector, R̂, t̂ are the ground-truth. We also
use relative Inlier Ratio (IR) and Registration Recall (RR) for the evaluation. IR is defined as the
ratio of correspondences whose geometric distances are below the predefined threshold (τI ) when
transformed with the ground-truth transformation. For a registered pair having RE and TE less than
the predefined thresholds (τR, τt), we regard it as a successful registration and calculate the RR of
successful registration over the entire dataset.

Implementation details. We implement our method with PyTorch (Paszke et al., 2019) and KP-
Conv (Thomas et al., 2019) for efficient 3D kernel-point convolution. We use a U-shaped network
equipped with an encoder and decoder, with three layers of KPConv and KPConv transposed layers.
The feature dimensions of the point feature and super point feature are 32 and 256, respectively. Input
point clouds are downsampled with a 1m voxel size on KITTI-UPP, 30cm on KITTI (Geiger et al.,
2012), and 2.5cm on 3DMatch (Zeng et al., 2017) and 3DLoMatch (Huang et al., 2021). We set
λg = λp = 1, and train the network for 200 epochs with Adam optimizer and initial learning rate of
1e-4. On inference time, k is set to 16 for KNN search. The detailed architectural configuration can
be found in Figure 7. All experiments are performed on a single Nvidia Tesla V100 GPU and Intel
Xeon Gold 6230R CPU @ 2.10GHz.

Pairwise registration on 3DMatch and 3DLoMatch. To evaluate our method on 3DMatch and
3DLoMatch dataset, we use the checkpoint of CoFiNet (Yu et al., 2021) pretrained on the 3DMatch
dataset since the network architecture of our approach for the super point and point description is
compatible with CoFiNet.

Following the recent literature (Choy et al., 2019b; Bai et al., 2020; Huang et al., 2021; Yu et al.,
2021), we use three metrics to assess the registration performance of the methods:

• Registration Recall (RR): The ratio of successful registration over the entire dataset. We
consider the registration with RMSE ¡ 0.2 (m) as successful for 3DMatch and 3DLoMatch
datasets.

• Inlier Ratio (IR): The fraction of correct correspondences among the estimated correspon-
dence set. We consider correspondences matched with smaller than 10cm residual as correct
ones.

• Feature Matching Recall (FMR): The fraction of point pairs with an inlier ratio higher
than the predefined value over the entire dataset. We use 5% as the threshold for 3DMatch
and 3DLoMatch datasets.

A.4 ADDITIONAL QUANTITATIVE RESULTS

More baselines. We provide the additional comparison of our UPPNet with the state-of-the-
art pairwise registration methods (Bai et al., 2020; Huang et al., 2021; Yu et al., 2021; Lu et al.,
2021) and classical methods (Zhou et al., 2016; Fischler & Bolles, 1981) in Table 5 and Table 6
with varying spatial and point imbalance factors. To compare with classical methods, we evaluate
RANSAC (Fischler & Bolles, 1981) and FGR (Zhou et al., 2016) equipped with classical descriptor
FPFH (Rusu et al., 2009) on our KITTI-UPP dataset. For RANSAC, we report the results with 4M
iterations. They mostly fail on our challenging dataset. We further refine the registration results of
both methods by applying post-processing with ICP (Besl & McKay, 1992). For state-of-the-art
methods, we select Predator (Huang et al., 2021), CoFiNet (Yu et al., 2021), D3Feat (Bai et al.,
2020), HRegNet (Lu et al., 2021) for the baseline methods as they are likely to be favorable for the
unbalanced point cloud registration. For a fair comparison, we train the Predator, CoFiNet and ours
for 200 epochs on our KITTI-UPP dataset. For D3Feat and HRegNet, the pretrained model trained on
the KITTI Odometry dataset with 200 epochs is finetuned on our KITTI-UPP dataset with additional
50 epochs.

16



Under review as a conference paper at ICLR 2023

Table 5: Evaluation results on KITTI-UPP benchmark under various point imbalance factors (ρp) and
scale imbalance factors (ρs). We evaluate the methods by changing hop value while we fix range
value to (a) 100 (ρs = 2.7), (b) 200 (ρs = 4.7).

Avg. Scale Imbalance Factor (ρs) : 2.7
ρp RR (%) ↑ TE (m) ↓ RE (◦) ↓ IR(%) ↑

FGR Zhou et al. (2016)

2.3

4.4 1.009 1.642 0.0
FGR+ICP Park et al. (2017) 11.6 0.592 1.661 0.0
RANSAC Fischler & Bolles (1981) 17.5 0.646 1.480 0.0
RANSAC+ICP Park et al. (2017) 28.4 0.600 1.347 0.0
HRegNet† Lu et al. (2021) 5.1 0.900 1.456 1.5
HRegNet Lu et al. (2021) 1.8 1.109 1.593 0.6
D3Feat Bai et al. (2020) 80.0 0.609 1.252 8.9
Predator Huang et al. (2021) 76.0 0.463 1.042 11.7
CoFiNet Yu et al. (2021) 92.4 0.440 0.981 13.5
Ours 99.3 0.359 0.762 20.9

FGR Zhou et al. (2016)

3.7

1.8 0.741 1.607 0.0
FGR+ICP Park et al. (2017) 3.6 0.545 2.212 0.0
RANSAC Fischler & Bolles (1981) 4.7 1.047 1.659 0.0
RANSAC+ICP Park et al. (2017) 17.8 0.804 1.537 0.0
HRegNet† Lu et al. (2021) 1.5 0.197 0.454 0.8
HRegNet Lu et al. (2021) 1.5 1.073 2.341 0.4
D3Feat Bai et al. (2020) 74.6 0.689 1.697 7.5
Predator Huang et al. (2021) 69.5 0.545 1.221 8.8
CoFiNet Yu et al. (2021) 88.4 0.551 1.289 13.1
Ours 97.8 0.407 0.890 21.4

FGR Zhou et al. (2016)

4.8

1.8 0.839 1.655 0.0
FGR+ICP Park et al. (2017) 3.6 0.525 2.272 0.0
RANSAC Fischler & Bolles (1981) 3.6 0.868 1.813 0.0
RANSAC+ICP Park et al. (2017) 13.1 0.763 1.767 0.0
HRegNet† Lu et al. (2021) 1.8 0.569 0.690 0.7
HRegNet Lu et al. (2021) 1.5 1.495 1.731 0.2
D3Feat Bai et al. (2020) 58.9 0.747 1.802 6.3
Predator Huang et al. (2021) 63.6 0.552 1.398 7.5
CoFiNet Yu et al. (2021) 86.5 0.623 1.339 12.8
Ours 95.6 0.412 0.902 21.7

FGR Zhou et al. (2016)

16.9

1.1 1.287 1.598 0.0
FGR+ICP Park et al. (2017) 2.9 0.596 2.349 0.0
RANSAC Fischler & Bolles (1981) 1.5 1.307 1.688 0.0
RANSAC+ICP Park et al. (2017) 12.7 0.714 1.918 0.0
HRegNet† Lu et al. (2021) 1.5 0.529 0.673 0.5
HRegNet Lu et al. (2021) 0.0 - - -
D3Feat Bai et al. (2020) 35.6 0.870 1.891 4.3
Predator Huang et al. (2021) 46.9 0.694 1.600 5.2
CoFiNet Yu et al. (2021) 76.0 0.706 1.486 11.3
Ours 94.5 0.494 1.004 20.4

(a)

Avg. Scale Imbalance Factor (ρs) : 4.7
ρp RR (%) ↑ TE (m) ↓ RE (◦) ↓ IR(%) ↑

FGR Zhou et al. (2016)

4.5

0.7 0.660 1.783 0.0
FGR+ICP Park et al. (2017) 2.2 0.713 2.541 0.0
RANSAC Fischler & Bolles (1981) 1.8 1.203 2.095 0.0
RANSAC+ICP Park et al. (2017) 8.0 0.637 2.039 0.0
HRegNet† Lu et al. (2021) 0.7 0.223 1.335 0.2
HRegNet Lu et al. (2021) 0.0 - - -
D3Feat Bai et al. (2020) 57.5 0.753 1.717 5.4
Predator Huang et al. (2021) 54.9 0.530 1.409 6.9
CoFiNet Yu et al. (2021) 81.1 0.576 1.334 12.0
Ours 94.2 0.445 1.042 20.6

FGR Zhou et al. (2016)

6.9

0.4 0.829 1.759 0.0
FGR+ICP Park et al. (2017) 0.7 0.552 2.350 0.0
RANSAC Fischler & Bolles (1981) 1.1 1.100 2.035 0.0
RANSAC+ICP Park et al. (2017) 4.0 0.872 2.006 0.0
HRegNet† Lu et al. (2021) 0.4 0.991 1.150 0.1
HRegNet Lu et al. (2021) 0.4 1.971 3.969 0.1
D3Feat Bai et al. (2020) 46.6 0.915 2.044 4.3
Predator Huang et al. (2021) 56.4 0.631 1.518 5.4
CoFiNet Yu et al. (2021) 77.5 0.671 1.673 12.0
Ours 93.1 0.515 1.132 20.2

FGR Zhou et al. (2016)

9.2

0.0 - - -
FGR+ICP Park et al. (2017) 0.4 0.409 2.626 0.0
RANSAC Fischler & Bolles (1981) 1.5 1.457 2.187 0.0
RANSAC+ICP Park et al. (2017) 3.3 0.942 2.258 0.0
HRegNet† Lu et al. (2021) 0.4 1.186 1.618 0.1
HRegNet Lu et al. (2021) 0.0 - - -
D3Feat Bai et al. (2020) 31.3 0.926 2.152 3.5
Predator Huang et al. (2021) 52.7 0.758 1.787 4.5
CoFiNet Yu et al. (2021) 70.9 0.698 1.635 11.4
Ours 90.5 0.515 1.105 19.2

FGR Zhou et al. (2016)

13.0

0.0 - - -
FGR+ICP Park et al. (2017) 0.7 0.728 2.659 0.0
RANSAC Fischler & Bolles (1981) 0.4 1.572 1.996 0.0
RANSAC+ICP Park et al. (2017) 3.3 1.002 2.167 0.0
HRegNet† Lu et al. (2021) 0.0 - - -
HRegNet Lu et al. (2021) 0.0 - - -
D3Feat Bai et al. (2020) 15.6 1.086 2.165 2.2
Predator Huang et al. (2021) 33.8 0.727 1.919 3.0
CoFiNet Yu et al. (2021) 56.0 0.806 1.721 9.6
Ours 84.4 0.595 1.183 16.8

(b)

More results with varying imbalance factors. To evaluate the generalizability, we compare our
UPPNet with the baseline methods under various scales and densities in Table 5 and Table 6. In Table
5a, we report the results with the fixed range value 100 under different hop value 25 (ρp = 2.3),
10 (ρp = 3.7), 5 (ρp = 4.8), and 1 (ρp = 6.9). Note that the range value 100 with hop value
25 is the least challenging data which is most similar to a balanced dataset e.g., KITTI odometry
dataset. Likewise, the results in Table 5b, 6a, 6b are reported under various hop value 25, 10, 5, and 1
with fixed range value 200, 300, and 400, respectively. As shown in Table 5a-6b, performance of
D3Feat (Bai et al., 2020) and CoFiNet (Yu et al., 2021) drops dramatically as the spatial extent and
density of map become larger. On the other hand, our UPPNet can maintain the high performance at
all evaluation metrics and outperform the baseline methods by a large margin, with robust structured
matching and our hierarchical framework.

Registration results with different overlap ratios. To verify the robustness of our method with
respect to the overlap ratio between query and map, we conduct experiments under varying overlap
ratios as well as in presence of spatial and density imbalance. In this experiment, we set the range and
hop values to 100 and 25 respectively. Following FCGF (Choy et al., 2019b), each pair is at least 10m
apart. We compute overlap ratio for each pair and assign each pairs to three different groups; pairs
with < 70%, 70-85%, and > 85% overlap, and denote each group as low, mid, and high overlaps
respectively. The results are shown in Figure 5 as well as the results of two baselines methods,
CoFiNet (Yu et al., 2021) and Predator (Huang et al., 2021) As shown in the figure, our method
consistently outperforms other baselines by large margin for all overlap ratios of low, mid, and high,
gaining notable registration recall improvement of 26% over CoFiNet. We note that our method is
not only effective in presence of spatial density imbalance but it is also robust under different overlap
ratios.

17



Under review as a conference paper at ICLR 2023

Table 6: Evaluation results on KITTI-UPP benchmark under various point imbalance factors (ρp) and
scale imbalance factors (ρs). We evaluate the methods by changing hop value while we fix range
value to (a) 300 (ρs = 6.8), and (b) 400 (ρs = 9.0).

Avg. Scale Imbalance Factor (ρs) : 6.8
ρp RR (%) ↑ TE (m) ↓ RE (◦) ↓ IR(%) ↑

FGR Zhou et al. (2016)

7.0

0.0 - - -
FGR+ICP Park et al. (2017) 0.0 - - -
RANSAC Fischler & Bolles (1981) 0.7 1.425 1.714 0.0
RANSAC+ICP Park et al. (2017) 5.1 0.920 2.255 0.0
HRegNet† Lu et al. (2021) 0.0 - - -
HRegNet Lu et al. (2021) 0.0 - - -
D3Feat Bai et al. (2020) 43.3 0.870 1.806 4.3
Predator Huang et al. (2021) 49.1 0.624 1.467 5.1
CoFiNet Yu et al. (2021) 76.4 0.716 1.555 11.6
Ours 90.2 0.542 1.196 19.2

FGR Zhou et al. (2016)

10.6

0.0 - - -
FGR+ICP Park et al. (2017) 0.0 - - -
RANSAC Fischler & Bolles (1981) 0.7 1.470 1.921 0.0
RANSAC+ICP Park et al. (2017) 2.5 0.640 2.262 0.0
HRegNet† Lu et al. (2021) 0.0 - - -
HRegNet Lu et al. (2021) 0.0 - - -
D3Feat Bai et al. (2020) 31.3 0.902 2.162 3.1
Predator Huang et al. (2021) 45.5 0.721 1.859 4.1
CoFiNet Yu et al. (2021) 64.7 0.834 1.818 11.1
Ours 85.1 0.592 1.375 18.0

FGR Zhou et al. (2016)

13.4

0.0 - - -
FGR+ICP Park et al. (2017) 0.0 - - -
RANSAC Fischler & Bolles (1981) 0.4 1.424 2.007 0.0
RANSAC+ICP Park et al. (2017) 2.9 0.660 2.213 0.0
HRegNet† Lu et al. (2021) 0.0 - - -
HRegNet Lu et al. (2021) 0.0 - - -
D3Feat Bai et al. (2020) 21.8 0.875 2.119 2.4
Predator Huang et al. (2021) 35.6 0.687 1.787 3.2
CoFiNet Yu et al. (2021) 61.1 0.795 1.895 10.4
Ours 81.8 0.631 1.266 16.7

FGR Zhou et al. (2016)

18.8

0.0 - - -
FGR+ICP Park et al. (2017) 0.0 - - -
RANSAC Fischler & Bolles (1981) 0.0 - - -
RANSAC+ICP Park et al. (2017) 1.5 1.072 2.433 0.0
HRegNet† Lu et al. (2021) 0.0 - - -
HRegNet Lu et al. (2021) 0.0 - - -
D3Feat Bai et al. (2020) 10.9 1.050 1.749 1.5
Predator Huang et al. (2021) 18.5 0.792 1.939 2.0
CoFiNet Yu et al. (2021) 48.0 0.869 2.121 8.2
Ours 70.9 0.651 1.256 13.8

(a)

Avg. Scale Imbalance Factor (ρs) : 9.0
ρp RR (%) ↑ TE (m) ↓ RE (◦) ↓ IR(%) ↑

FGR Zhou et al. (2016)

8.9

0.0 - - -
FGR+ICP Park et al. (2017) 0.0 - - -
RANSAC Fischler & Bolles (1981) 0.4 1.102 1.835 0.0
RANSAC+ICP Park et al. (2017) 2.5 0.830 2.296 0.0
HRegNet† Lu et al. (2021) 0.0 - - -
HRegNet Lu et al. (2021) 0.0 - - -
D3Feat Bai et al. (2020) 32.7 0.990 2.023 3.3
Predator Huang et al. (2021) 38.9 0.686 1.732 3.8
CoFiNet Yu et al. (2021) 67.6 0.737 1.747 11.3
Ours 86.2 0.579 1.327 18.5

FGR Zhou et al. (2016)

13.5

0.0 - - -
FGR+ICP Park et al. (2017) 0.0 - - -
RANSAC Fischler & Bolles (1981) 0.7 1.298 1.689 0.0
RANSAC+ICP Park et al. (2017) 2.5 0.931 2.336 0.0
HRegNet† Lu et al. (2021) 0.0 - - -
HRegNet Lu et al. (2021) 0.0 - - -
D3Feat Bai et al. (2020) 19.6 1.001 2.148 2.6
Predator Huang et al. (2021) 34.5 0.764 1.841 3.1
CoFiNet Yu et al. (2021) 58.9 0.782 1.990 10.3
Ours 79.6 0.608 1.291 16.8

FGR Zhou et al. (2016)

18.8

0.0 - - -
FGR+ICP Park et al. (2017) 0.0 - - -
RANSAC Fischler & Bolles (1981) 0.4 1.692 1.925 0.0
RANSAC+ICP Park et al. (2017) 1.5 0.738 2.212 0.0
HRegNet† Lu et al. (2021) 0.0 - - -
HRegNet Lu et al. (2021) 0.0 - - -
D3Feat Bai et al. (2020) 13.5 1.127 2.056 1.8
Predator Huang et al. (2021) 25.1 0.786 1.938 2.2
CoFiNet Yu et al. (2021) 52.4 0.837 1.929 9.0
Ours 78.5 0.617 1.333 15.2

FGR Zhou et al. (2016)

26.3

0.0 - - -
FGR+ICP Park et al. (2017) 0.0 - - -
RANSAC Fischler & Bolles (1981) 0.0 - - -
RANSAC+ICP Park et al. (2017) 0.7 1.092 2.400 0.0
HRegNet† Lu et al. (2021) 0.0 - - -
HRegNet Lu et al. (2021) 0.0 - - -
D3Feat Bai et al. (2020) 7.3 1.137 1.854 1.1
Predator Huang et al. (2021) 13.5 0.929 2.128 1.3
CoFiNet Yu et al. (2021) 42.5 0.813 2.029 6.8
Ours 71.6 0.674 1.460 12.9

(b)
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Figure 5: Evaluation results on KITTI-UPP benchmark with different overlap ratios. For the
experiments with different overlap ratios, we fix the range value to 100 (ρs = 2.3) and the hop value
to 25 (ρp = 2.3).

Registration results with ground-truth submap. To validate the effectiveness of our proposed
submap matching and structured matching modules, we analyze the registration performance of all
methods when the ground-truth submap is provided. Note that this setting is advantageous for the
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baseline methods since they are optimized for balanced point pairs, and we refer to these results
as the theoretical upperbounds of the baselines methods since we can assume the combination of a
highly accurate localization algorithm with the baseline methods. As shown in Figure 6, thanks to
the robustness of the submap matching module in establishing reliable submap correspondences, our
model without gt submaps achieves relatively small performance drops compared to others (Yu et al.,
2021; Huang et al., 2021). Moreover, we highlight that the proposed structured matching effectively
helps our method achieve the best results, outperforming the upper bounds of other baselines by large
margins even without ground truth submaps.

A.5 LOSS

In this section, we provide concise equations to calculate the loss terms, Ls, Lg, and Lp. As we
described in Section 3.6 in our main manuscript, the point matching loss Lp is defined as:

Lp =
−
∑

i,j Ẑ(i, j) log Z̄(i, j)∑
i,j Ẑ(i, j)

, (9)

where Z̄ is the predicted similarity matrix after solving optimal transport using the Sinkhorn algorithm,
Ẑ is the binary matrix that indicates ground-truth. For coarse scale super point and submap level
matching, we follow (Yu et al., 2021) and calculate the overlap ratio between two super points, or
submaps, to calculate soft-labeled supervision. For super point matching, we calculate the overlap
ratio between two super points as:

r(i′, j′) =
|{x ∈ GX

i′ |∃y ∈ GY
j′ , s.t.∥R̂y + t̂− x∥ < τg|
|Gi′ |

(10)

where R̂, t̂ is the groundtruth rotation and translation and τg is the predefined distance threshold. If
the superpoint (i′, j′) is not an inlier correspondence, we assign it to the slack entry in the similarity
matrix. For this, we calculate the ratio of points in Gi′ which are overlapped with point cloud Y:

r(i′) =
|{x ∈ GX

i′ |∃y ∈ Y, s.t.∥R̂y + t̂− x∥ < τg|
|Gi′ |

(11)

and finally build the groundtruth similarity matrix Ẑg ∈ Rn′+1×m′+1 as:

Ẑg(i
′, j′) =


min(r(i′, j′), r(j′, i′)) if i′ < n′ + 1 ∧ j′ < m′ + 1

1− r(i′) if i′ < n′ + 1 ∧ j′ = m′ + 1

1− r(j′) if i′ = n′ + 1 ∧ j′ < m′ + 1

0 otherwise

(12)

Then we calculate the loss similar with point matching loss.

Lg =
−
∑

i′,j′ Ẑg(i
′, j′) log Z̄g(i

′, j′)∑
i′,j′ Ẑg(i′, j′)

(13)

Note that unlike the point matching loss Lp, super point matching loss is supervised with the
continuous soft labeled supervision Ẑg . Similarly, we can calculate the submap matching loss Ls:

Ls =
−
∑

i′,j′ Ẑs(i
′, j′) log Z̄s(i

′, j′)∑
i′,j′ Ẑs(i′, j′)

, (14)

where Ẑs is the ground-truth similarity matrix at submap level, and it can be calculated in a similar
way.

A.6 NETWORK ARCHITECTURE

UPPNet adopt a shared U-shaped network based on KPConv (Thomas et al., 2019) to extract multi-
level features. Detailed architecture is demonstrated in Figure 7. Compared to CoFiNet (Yu et al.,
2021), additional layers for the submap matching module are added to our network. We generate a
global descriptor through Generalized Mean Pooling (GeM). As the global descriptor of the query is
a single vector, the self-attention module is applied only for global descriptors of the map, such as in
Figure 7.
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Figure 6: Registration Recall in relation to (Left) point imbalance factor (ρp) and (Right) scale
imbalance factor (ρs). The dotted lines indicate the theoretical upper bounds of each method measured
by providing a ground truth submap. Our method shows the best registration recall in all settings, and
the margin to the upper bound is smaller than the baselines.
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Figure 7: Network architecture of UPPNet.

A.7 ADDITIONAL QUALITATIVE RESULTS

In Figure 8, we provide additional qualitative results of our method along with the baseline methods
on the KITTI-UPP test dataset.
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(a) Input (b) D3Feat (c) CoFiNet (d) Ours (e) Ground truth

Figure 8: Registration results on KITTI-UPP dataset. (Green) A query. (Blue) A map.
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