
Reverse engineering recurrent neural networks with 
Jacobian switching linear dynamical systems 

Jimmy T.H. Smith 
Institute for Computational and Mathematical Engineering 

Stanford University 
Stanford, CA 94305 

jsmith14@stanford.edu 

Scott W. Linderman David Sussillo 
Department of Statistics Department of Electrical Engineering 

Stanford University Stanford University 
Stanford, CA 94305 Stanford, CA 94305 

scott.linderman@stanford.edu sussillo@stanford.edu 

Abstract 

Recurrent neural networks (RNNs) are powerful models for processing time-series 
data, but it remains challenging to understand how they function. Improving this 
understanding is of substantial interest to both the machine learning and neuro-
science communities. The framework of reverse engineering a trained RNN by 
linearizing around its fixed points has provided insight, but the approach has signif-
icant challenges. These include difficulty choosing which fixed point to expand 
around when studying RNN dynamics and error accumulation when reconstructing 
the nonlinear dynamics with the linearized dynamics. We present a new model that 
overcomes these limitations by co-training an RNN with a novel switching linear 
dynamical system (SLDS) formulation. A first-order Taylor series expansion of 
the co-trained RNN and an auxiliary function trained to pick out the RNN’s fixed 
points govern the SLDS dynamics. The results are a trained SLDS variant that 
closely approximates the RNN, an auxiliary function that can produce a fixed point 
for each point in state-space, and a trained nonlinear RNN whose dynamics have 
been regularized such that its first-order terms perform the computation, if possible. 
This model removes the post-training fixed point optimization and allows us to 
unambiguously study the learned dynamics of the SLDS at any point in state-space. 
It also generalizes SLDS models to continuous manifolds of switching points while 
sharing parameters across switches. We validate the utility of the model on two 
synthetic tasks relevant to previous work reverse engineering RNNs. We then show 
that our model can be used as a drop-in in more complex architectures, such as 
LFADS, and apply this LFADS hybrid to analyze single-trial spiking activity from 
the motor system of a non-human primate. 

1 Introduction 

Recurrent neural networks (RNNs) are a powerful and popular tool for modeling complex sequence 
data. They learn to transform input sequences into output sequences by using an internal state 
that allows data from the past to influence the current state. RNNs have been utilized in various 
applications such as speech recognition, sentiment analysis, music, and video [1–4]. In neuroscience, 
RNNs have been used for modeling large-scale neural recordings and as a generator of scientific 

35th Conference on Neural Information Processing Systems (NeurIPS 2021). 

mailto:sussillo@stanford.edu
mailto:scott.linderman@stanford.edu
mailto:jsmith14@stanford.edu


hypotheses by studying the network’s learned representations [5–10]. However, RNNs are generally 
viewed as black boxes. While there has been progress in understanding their operation on simple 
tasks, rigorously understanding how they solve complex tasks remains a significant challenge. 

An important line of work to improve our understanding of RNN computations uses dynamical 
systems theory [11–19]. In particular, Sussillo and Barak [15] proposed reverse engineering a trained 
RNN by using numerical optimization to find the RNN’s fixed and slow points. The RNN is linearized 
around these points, and the resulting linear approximation dynamics are studied to draw insights 
into how the RNN solves the task. While there are no guarantees concerning the success of this 
approach, empirically, linearization around fixed and slow points has led to insights in numerous 
applications [10, 20–26]. There are a few drawbacks of this method. First, it requires a separate 
numerical optimization routine after training the network. Second, it can be ambiguous which fixed 
point to linearize around for any given point in state space. The standard fixed point finding numerical 
optimization routine provides a collection of fixed points but no direct link between these points 
and locations in state space. Finally, simulating nonlinear RNNs with linearizations around fixed 
points can slowly accumulate significant error, forcing previous attempts to resort to one-step ahead 
dynamics generation [21]. These problems can lead to uncertainty of how well switching between 
linearizations around fixed and slow points describes the nonlinear dynamics. 

Here, we combine ideas from reverse engineering RNNs and switching linear dynamical systems 
(SLDS) [27–31] to address these challenges. Given an RNN we would like to train and analyze, 
we introduce a separate network consisting of a novel SLDS formulation based on the first-order 
Taylor series expansion of the RNN equation and a learnable auxiliary function that produces the 
RNN’s fixed/slow points. We then define a loss function that includes regularization terms to force 
the SLDS to approximate the RNN and switch about the RNN’s fixed/slow points. After co-training 
these three functions with standard RNN training methods, the result is an accurate switching linear 
approximation of the nonlinear RNN and a trained auxiliary function that provides fixed and slow 
points of the RNN. This architecture and training procedure: 

1. Eliminates the need for post-training fixed point finding. 
2. Generalizes SLDS to be able to switch about continuous manifolds of fixed points. 
3. Enables parameter sharing between the SLDS switches. 
4. Allows the nonlinear RNN dynamics to be approximated by switching between local 

linearizations around fixed points, if possible. 

The combination of these benefits significantly simplifies the process of reverse engineering an RNN 
using fixed points. We illustrate the method on two synthetic tasks and a neural dataset. 

2 Review of reverse engineering RNNs and SLDSs 

2.1 Reverse engineering RNNs with fixed points 

The motivation for reverse engineering RNNs with fixed point analysis is the hypothesis that trained 
RNNs use mechanisms to solve tasks that are described well by the linearized dynamics around its 

∗fixed and slow points [15]. These points are state vectors h∗ ∈ RD that, given an input u ∈ RU , 
do not significantly change when applying the RNN update function, F : RD × RU → RD . That is, 
h∗ ≈ F(h∗ ∗ , u ; θ). We can find these points numerically by minimizing a loss function 

∗ L(h) = kh − F(h, u ; θ)k22, (1) 

using auto-differentiation methods [32]. In practice, one typically initializes the candidate fixed 
points with the hidden states produced from running forward passes given trial inputs. Once we have 
found the fixed/slow points, we linearize the system around these points and analyze the dynamics of 
the linearized system to determine how the system computes. This reverse engineering method is 
supported in theory by the Hartman-Grobman theorem [33–35], which says that the dynamics of a 
nonlinear system in a domain near a hyperbolic fixed point is qualitatively the same as the dynamics 
of its linearization near this point. A potential theoretical issue arises with non-hyperbolic fixed points, 
though empirically, this has not seemed to pose a major issue for this approach. Finally, we note a 
recent alternative method to finding fixed points presented in [36] that makes use of mathematical 
objects called directional fibers. 

2 



Nonlinear 
RNN Dynamics

Linearized 
RNN dynamics

Switching Linear
Dynamical System Jacobian SLDSA. B. C. D.

Figure 1: A. Example of a nonlinear dynamical system learned by a recurrent neural network (RNN). 
B. Linearization of the RNN dynamics around the nearest fixed point (dots). C. A switching linear 
dynamical system (SLDS) approximates the nonlinear dynamics by stochastically jumping between 
three linear regimes. D. The Jacobian SLDS co-trains an RNN (gray arrows) with an expansion 
network (E(·)), which maps the current JSLDS state (white dots, at) to an expansion point (purple 
dots, E(at)) near to a true fixed point of the RNN. The JSLDS linearizes the RNN dynamics around 
the expansion point to obtain a linear system (purple arrows) that approximates the local dynamics. 

2.2 Switching linear dynamical systems 

Models based on a linear dynamical system (LDS) are often used to model multi-dimensional 
time series and lend themselves well to dynamical systems analyses. The basic LDS models time 
series data using a latent representation that follows linear dynamics. A switching LDS (SLDS) 
augments the basic model with discrete states that correspond to different linear dynamics. This 
allows a SLDS to break down complex, nonlinear time series into a sequence of simpler local 
linear dynamics. Explicitly, let yt ∈ RN denote the observation data at time t and let ht ∈ RD 

represent the corresponding continuous latent state. A SLDS models the expected observation value as 
E[yt] = g(ht) where g is a mapping from RD to RN . Given the discrete latent state zt ∈ {1, ..., K}
and input ut ∈ RU , the SLDS continuous latent states follow linear dynamics, � � 

ht ∼ N A(zt)ht−1 + V (zt)ut + b(zt), Q(zt ) . (2) 

∈ RDxD The current discrete state determines the current linear dynamics A(zt) , input matrix 
V (zt) ∈ RDxU , bias term b(zt ) ∈ RD and noise covariance Q(zt) ∈ RDxD . In the basic SLDS, a 
Markov transition matrix generally defines the discrete state switching probability. An extension 
to the SLDS model is the recurrent switching linear dynamical system (RSLDS) which allows the 
discrete state transition to depend on the previous continuous latent state [37–40]. This recurrent 
connection allows more expressivity in the model and corresponds to the idea that the current discrete 
state (and therefore the current dynamical regime) should depend on the current state space location. 

SLDS models can often offer a balance between interpretability and expressivity for many problems. 
For example, one can improve the expressivity by increasing the number of discrete states, but this 
can come at the cost of interpretability and an increase in learnable parameters. In addition, SLDS 
generally requires hyperparameter tuning to determine the optimal number of discrete states to use. 

3 Jacobian Switching Linear Dynamical System 

We now present the Jacobian Switching Linear Dynamical System (JSLDS) model and training 
procedure. It combines ideas from reverse engineering RNNs and SLDS to achieve automated fixed 
point finding and accurate SLDS approximations of nonlinear RNNs. 

3.1 Motivation 

Let F denote a nonlinear RNN with previous state ht−1 ∈ RD , input ut ∈ RU , and parameters θ. 
∗Writing the RNN update equation and its first order Taylor series expansion around points h∗ and u 

3 



we have 
∂F ∂F∗ ∗ ∗ ht = F(ht−1, ut; θ) ≈ F(h ∗ , u ; θ) + (h ∗ , u ; θ) (ht−1 − h ∗ ) + (h ∗ , u ; θ) (ut − u ∗ ) . 
∂h ∂u 

(3) 
∗Here, ∂F (h∗ , u ; θ) ∈ RDxD is the recurrent Jacobian that determines the recurrent local dynamics ∂h 

∗and ∂F (h∗ , u ; θ) ∈ RDxU is the input Jacobian that determines the system’s input sensitivity. If∂u ∗h∗ is a fixed point of F for a given u ∗, then F(h∗ , u ; θ) = h∗ and equation (3) yields 
∂F ∂F∗ ∗ ht − h ∗ ≈ (h ∗ , u ; θ) (ht−1 − h ∗ ) + (h ∗ , u ; θ) (ut − u ∗ ) . (4)
∂h ∂u 

Eq. (4) gives a LDS that locally approximates F around h∗ . In principle, if one knew how to select 
the correct fixed point and there was always a fixed point nearby, one could use eq. (4) to run a very 
accurate SLDS approximation of F by switching between fixed points as needed. Notice the fixed 
point h∗ indexes the recurrent Jacobian and input Jacobian in a manner analogous to how the discrete 
state zt indexes the matrices A(zt) and V (zt) in the SLDS of eq. (2). In practice, selecting the correct 
fixed point in real-time is difficult, as described above, which leads to the approach presented in the 
next section. 

3.2 The JSLDS model 

Our approach is to co-train the RNN, F, with a novel SLDS formulation based on the Jacobian of F 
in the spirit of equation (4). Specifically, we introduce a separate SLDS with its own hidden state 

∗ at ∈ RD that switches around an expansion point e ∈ RD 
t 

∂F ∂F∗ ∗ ∗ ∗ ∗ ∗ at − e = (et , u ; θ) (at−1 − e ) + (et , u ; θ) (ut − u ∗ ) . (5)t ∂h t ∂u 
∗Note that eq. (5) shares its parameters θ with F (eq. 3), i.e. given e and u ∗, the nonlinear RNN’s t 
∗parameters θ determine the update matrices. We will generally take u to be either zero (the average 

∗value for examples) or the value of a context-dependent static input. The goal is for e to approximate t 
the RNN’s fixed and slow points. To accomplish this, we supplement the SLDS with a nonlinear 
auxiliary function E (the expansion network) with separate learned parameters φ 

∗ e = E(at−1; φ). (6)t 

The expansion network E returns the learned expansion points and is co-trained with the nonlinear 
RNN and the JSLDS. Once trained, the goal is for this function to approximate the RNN’s fixed/slow 
points. For the experiments presented in this paper, we define E as a 2-layer multilayer perceptron 
(MLP) with the same dimension per layer as the state dimension of the RNN. We discuss other 
potential formulations for this network in Section A.2 in the Appendix. 

Eqs. (5-6) define the JSLDS model, which can be run forward in time independent of the original 
nonlinear RNN after training. Figure 1 illustrates the general idea. Given the previous state, at−1, the 

∗expansion network, E, uses this state to select the next expansion point, e (eq. 6). The system then t 
∗updates the state by using e to compute the recurrent Jacobian and input Jacobian of the original t 

nonlinear RNN F (eq. 5). Assuming the expansion network has learned to find fixed/slow points, 
∗switching between the points e corresponds to reverse engineering nonlinear RNNs using fixed t 

∗points. The dependence of the expansion point e on the previous state of the network at−1 links to t 
the recurrent connection in RSLDS. 

Note that eq. (5) is intended to closely follow the dynamics of F, and we will enforce this in the 
training procedure. We will refer to the system comprised of eqs. (5-6) as the JSLDS. We will 
refer to the combination of the JSLDS and the co-trained RNN as the JSLDS-RNN system. While a 
limitation of our method is that it does not currently lend itself easily to a stochastic formulation like 
the standard SLDS, it does allow for a potential continuum of different switches using a constant 
number of parameters. It also automatically determines the number of switches required to solve the 
task instead of the hyperparameter tuning required to determine this in SLDS. 

3.3 JSLDS co-training Procedure 

We co-train together the nonlinear RNN (eq. 3) and the JSLDS (eqs. 5-6). Each network can 
be run forward and solve the task independently. We pass each of their states through the same 

4 



output activation function to compute two loss functions, LRNN and LJSLDS, for the RNN and JSLDS, 
respectively. In addition, the expansion points should approximate fixed points of F in order to 
achieve a good JSLDS approximation of the RNN. We also need to ensure the JSLDS states at 
approximate the RNN states ht. We achieve these goals by adding to the total loss function a fixed 
point regularizer Re and an approximation regularizer Ra defined as X 

∗ ∗ ∗ Re(θ, φ) = ke − F(et , u ; θ)k2 (7)t 2 
tX 

2
Ra(θ, φ) = kat − htk2 . (8) 

t 

Now we define the total training loss as 

L(θ, φ) = λRNNLRNN(θ) + λJSLDSLJSLDS(θ, φ) + λeRe(θ, φ) + λaRa(θ, φ) (9) 

where λRNN, λJSLDS, λe and λa control the strengths of the RNN loss, the JSLDS loss, the fixed 
point regularizer and the approximation regularizer, respectively. In practice, we have found these 
hyperparameters straightforward to select (see Section A.1 in the Appendix for a more detailed 
discussion). For a particular optimization iteration, we compute the loss function in eq. 9 and then 
update all of the parameters θ and φ at once using standard backpropagation through time (BPTT) 
methods for RNNs [41]. Assuming the optimization goes well, the result will be two independent 
trained systems, with the JSLDS approximating the nonlinear RNN to first order. 

In related work, [42] introduced regularization terms that force part of the subspace of piecewise linear 
RNNs [43] towards plane attractors to mitigate the exploding/vanishing gradient problem [44, 45] 
within a simple RNN architecture. In another relevant work, [46] proposed learning interpretable 
nonlinear SDEs by modeling the dynamics function as a Gaussian process conditioned on the learned 
locations of fixed points and associated local Jacobians. We also note that our co-training procedure 
shares some similarities to the adversarial training in GANs [47]. However, we stress that our method 
shares θ between the co-trained networks, and θ and φ are each updated at the same time, i.e., we do 
not alternate between updating θ holding φ constant and vice versa. 

4 Results 

We analyze the JSLDS-RNN system on three examples: a synthetic 3-bit memory task, a syn-
thetic context-dependent integration task, and multineuronal population recordings from a monkey 
performing a reaching task.1 For the synthetic tasks, we use a relative error metric as in [21] to 
compare the quality of linearized approximation provided by JSLDS and the standard method of 
linearizing around the fixed/slow points (found numerically) of a standard trained RNN (without 

− hlink2/khRNNJSLDS co-training). The metric computes the relative error, khRNN k2 , between the t t t 
nonlinear RNN state, hRNN, and the state approximated from the linearization method, hlin . Note that t t 
for the standard linearization method we had to resort to only computing one-step ahead dynamics 
predictions. This approach was necessary because running the linearized dynamics forward for many 
timesteps accumulates substantial error and causes the trajectory to diverge. In contrast, one-step 
ahead predictions were not necessary for the JSLDS. 

Concretely, for the standard linearization method: we trained an RNN, numerically found its 
fixed/slow points, and then computed hlin for all of the timesteps of the held-out trials using eq. (4). t 
To use eq. (4), we set ht−1 in that equation to hRNN tot−1 , i.e., the true previous state and we set h∗ 

be the nearest fixed/slow point (in Euclidean distance). We have to find the nearest fixed/slow point 
because, unlike JSLDS, the standard method does not directly link a location in state space to the 
fixed point one should linearize around. For the JSLDS method: we first co-trained the JSLDS and 
RNN together. We then simulated the JSLDS forward for the entire trajectory of each held-out trial 
using eqs. (5-6) to compute all of the JSLDS states at. We then set hlin equal to at to compute the t 
relative error for each timestep. For each method, we computed the mean relative error of all the 
timesteps of a held-out batch of trials. We repeated this experiment 10 times for each method by 
starting the training from different random weight initializations. We report the mean and standard 
deviation of the mean relative error across the 10 trials. 

1Our implementation for the synthetic tasks is available at https://github.com/jimmysmith1919/JSLDS_public. 

5 

https://github.com/jimmysmith1919/JSLDS_public


4.1 3-bit discrete memory 

This task highlights how JSLDS can automatically learn to switch about a discrete number of fixed 
points and significantly reduces the linearized approximation error. We trained the JSLDS-RNN 
system to store and output three discrete binary inputs (Figure 2A) similar to the experiment described 
in [15]. For our purposes, the models receive three 2-dimensional input vectors where each input 
vector corresponds to a different channel.2 Each input vector can take a value of {[1, 0], [0, 0], [0, 1]}
corresponding to a state of -1, 0, or +1, respectively. The models have three outputs, each of which 
needs to remember the last nonzero state of its corresponding input channel. The RNNs used in this 
experiment were GRUs [48] with a state dimension of 100 and a linear readout function. See Section 
A.3 of the Appendix for additional experiment details. 

Projecting the co-trained RNN and JSLDS dynamics into the readout space illustrates the close 
agreement between the networks for predictions on held-out trials (Fig. 2B). A benefit of JSLDS 
is that we can use its expansion points produced along a trajectory (given the trajectory inputs) 
to approximate the fixed/slow points the co-trained RNN uses along the same trajectory. As a 
verification, we numerically found the fixed/slow points of the co-trained RNN and projected both the 
expansion points and the numerical fixed/slow points into the readout space (Fig. 2E). We observed 
that the co-trained networks learned a fixed point solution consisting of 8 marginally stable fixed 
points (typically 2-3 eigenvalues within .025 of (1,0) in the complex plane). This solution was robust 
across different random weight initializations. See Section A.3.2 of the Appendix for a detailed 
analysis and discussion of this solution compared to the fixed point solution found by a standard GRU 
without co-training (Fig. 2C). Figures 2D and F compare the mean relative error for the standard 
method and the JSLDS and show an example PCA trajectory of the reconstructed dynamics for each. 
This shows that JSLDS can simulate forward entire dynamics trajectories with much less error than 
the standard method (which relies on one-step ahead dynamics generation). Finally, as an additional 
experiment, we initialized the JSLDS co-training procedure with the trained weights of the standard 
GRU. We observed the fixed point solution change from the one presented in Fig. 2C to one like that 
presented in Fig. 2E and the same improved linearized approximations of the dynamics as presented 
in Fig. 2F. 

4.2 Context-dependent Integration 

This task illustrates that JSLDS can learn to switch about multiple continuous manifolds of fixed 
points, improve the linearized approximation of the dynamics, and be used to perform a complex 
analysis similar to that performed in [20]. The experiment consists of training the model to contextu-
ally decide which of two white noise input streams to integrate (Fig. 3A). The model receives two 
static context inputs corresponding to motion and color contexts and two time-varying white noise 
input streams. It is trained to output the cumulative sum of the white noise stream specified by the 
active context input. We used a vanilla RNN with a state dimension of 128 for the co-trained RNN 
and a linear readout function. See Section A.4.1 of the Appendix for more experiment details. 

After co-training the JSLDS-RNN system, we observed close agreement between the JSLDS and 
RNN on task performance for held-out trials (Fig. 3B). Next, we analyzed the dynamics of the JSLDS 
for held-out trials under both contexts, set to different bias levels for both the color and motion input 
streams. We observed that for either context, the system integrates the relevant input using a single 
linear mode with an eigenvalue of 1, while the other eigenvalues decay rapidly (Fig. 3C). Next, we 
report the mean relative error on held-out trials for both JSLDS and linearizing a standard trained 
RNN in Fig. 3K. Again, JSLDS substantially improves the linearized approximation of the dynamics. 

From the analysis in [20], we expect a vanilla RNN to solve this type of task by representing the 
integration of relevant evidence as movement along an approximate line attractor (the choice axis) 
determined by the top right eigenvector. The solution consists of two line attractors that never exist 
together: one exists in the motion context and the other in the color context. For a given context 
(and therefore a specific line attractor), the top left eigenvector (the selection vector) determines the 
amount of evidence integrated. We expect the selection vector to project strongly onto the relevant 
input and be approximately orthogonal to the irrelevant input. See the Mathematical Supplement 
Section 10 in [20] for more details. 

2We reparameterized the inputs compared to [15]. This ensures the models do not have to act nonlinearly in 
the inputs and does not change the basic logic of the experiment since we are interested in nonlinear dynamics. 

6 



Readout Dim. #1

Readout Dim. #1

Readout Dim. #1 Readout D
im

. #
2

Readout D
im

. #
2

Readout D
im

. #
2

Re
ad

ou
t D

im
. #

3

Re
ad

ou
t D

im
. #

3

Re
ad

ou
t D

im
. #

3

Mean Relative Error 
on held-out trials: 

0.290 ± 0.021

Mean Relative Error 
on held-out trials: 

0.036 ± 0.004

Figure 2: 3-bit memory. A. Two-dimensional inputs (dark blue and light blue) corresponding to input 
states of -1, 0, or 1 enter at random while the corresponding output (dashed red) has to remember 
the last non-zero input state. B. JSLDS closely approximates the co-trained RNN in readout space 
for held-out trial data. C. Standard GRU (no JSLDS co-training) outputs and numerical fixed points 
projected into readout space. D. Example PCA trajectory of standard GRU and linearized dynamics 
(one-step ahead dynamics generation) using numerically optimized fixed points. We also note 
the mean relative error for held-out trials. E. Comparison of co-trained RNN fixed points (found 
numerically) and JSLDS expansion points projected into readout space. The solution consists of 8 
marginally stable fixed points. JSLDS has changed the fixed point solution compared to the standard 
GRU’s solution (panel C). F. Example PCA trajectory of co-trained RNN and JSLDS dynamics (fully 
simulating dynamics forward) and the held-out mean relative error. 

To verify this holds for the JSLDS, we produce a figure similar to Figures 5 and 6c from [20] by 
projecting the JSLDS states and expansion points into the 3-dimensional subspace meant to match 
the axes of choice, motion input and color input (Fig. 3D-I). Section 7.6 of the Supplementary 
Information of [20] describes the construction of this subspace in detail and we provide a brief 
description in Section A.4.2 in the Appendix. It is analogous to a regression subspace estimated 
from neural data in that work. It was constructed by orthogonalizing the direction of the first right 
eigenvectors (averaged over expansion points) and the input weight vectors corresponding to the 
color and motion input streams. Panels D-F and G-I correspond to the motion and color contexts, 
respectively. In panels D and I, we see that for the relevant context input stream, the states move along 
the axis of choice and the relevant input axis in proportion to the strength of the input. Panels F and G 
show that the strength of the nonrelevant input stream does not affect the direction of choice. Next, we 
analyze the global arrangement (Fig. 3J) of the motion and color context line attractors and selection 
vectors. As expected, we see that the selection vectors project strongly onto the relevant input axis but 
are approximately orthogonal to the irrelevant axis. Figure A.3 in the Appendix presents the results 
of performing this experiment for a standard trained vanilla RNN without the JSLDS co-training. It 
appears the JSLDS co-training did not dramatically change the standard trained RNN’s fixed point 
solution for this task. 

7 



Context
(motion or color)

x

x

JSLDS

x

K
Mean relative error
on held-out trials

Standard
 Method

JSLDS

0.3854±0.0378 0.0091±0.0004

Figure 3: Context-dependent integration A. One of two white-noise input streams (motion or color) 
is selected to be integrated based on a static context input. The other stream is ignored. B. Sample 
held-out trial outputs show close agreement between JSLDS and RNN. C. Typical eigenvalues at a 
sample expansion point for motion (red x’s) and color (blue dots) contexts. D-J. JSLDS has learned 
to switch between two continuous manifolds of fixed points. JSLDS states (averaged) and expansion 
points are projected into the subspace spanned by the axes of choice, motion and color. Movement 
along the choice axis represents integration of evidence and the relevant input stream deflects along 
the relevant input axis. The input axes of E,F,G,H have been intensified. The trials used in F and G 
are the same trials as D-E and H-I, respectively, but re-sorted and averaged according to the direction 
and strength of the irrelevant input. The expansion points were computed separately for motion (red 
x’s) and color contexts (orange x’s). J. Global arrangement of the selection vectors (green lines) and 
line attractor expansion points for both contexts projected onto the input axes. Inputs are selected 
by the selection vector (which is approximately orthogonal to the contextually irrelevant input) and 
integrated along the line attractor. K. JSLDS improves the dynamics approximation compared to 
linearizing a standard trained RNN. 

4.3 Monkey reach task with LFADS-JSLDS 

Finally, we illustrate how JSLDS can be dropped in as a module to improve our understanding of 
more complex architectures that use RNNs such as LFADS [5]. LFADS is a sequential variational 
auto-encoder [49, 50] used to infer latent dynamics from single-trial neural spiking data. A criticism 
of LFADS has been that it is hard to interpret the RNN generator that produces the dynamics. Here, 
we use JSLDS to improve this understanding by substituting the combined JSLDS-RNN system for 

8 



the standard GRU used in the LFADS generator (Fig. A.4 in the Appendix). We refer to this system 
as the LFADS-JSLDS. Once trained, we can use either the JSLDS or the co-trained RNN as the 
generator to produce the firing rates. 

We used the monkey J single-trial maze data from Churchland et al. [51] using the same setup 
as Pandarinath et al. [5] to train the LFADS-JSLDS model. The data consists of 2296 trials of spiking 
activity recorded from 202 neurons simultaneously while a monkey made reaching movements during 
a maze task [52, 51] across 108 reaching conditions. We used a GRU for the RNN generator. See 
Section A.5.1 of the Appendix for more details. The jPCA method [51] has been applied to this data 
before [24, 5], so we make use of it to validate our method. It finds linear combinations of principal 
components that capture rotational structure in data. See [51] for the full details on jPCA. 

We present the LFADS-JSLDS firing rates generated from the inferred initial condition (using the 
co-trained RNN generator) for several sample neurons in Fig. 4A. It was observed in [5] that the 
standard LFADS population dynamics on single trials exhibit rotational dynamics when projected 
onto the first two jPC planes. To confirm LFADS-JSLDS also exhibits this behavior, we applied jPCA 
to the co-trained RNN generator states (Fig. 4B). Next, the sample trials in Figure 4C show how the 
JSLDS generator closely approximates the RNN generator. Finally, focusing on the JSLDS generator 
dynamics, we learned that despite minor variations in the expansion points, the JSLDS generator 
eigenvalues and eigenvectors were the same at every timestep of every trial. So the JSLDS generator 
learned to represent the dynamics using a single, condition-independent linear system. Figure 4D 
displays the eigenvalues for this system. 

Sussillo et al. [24] noted that the dynamics found by linearizing around the fixed point of their 
regularized RNN model should roughly agree with the dynamics found by applying jPCA directly to 
the model. Along these lines, we validate the use of JSLDS by confirming that the JSLDS generator 
dynamics agree with the dynamics found by fitting jPCA to the co-trained RNN generator states 
(Fig. 4E-F). A subspace angle analysis shows that four of the top five planes in the JSLDS state 
space (defined by the eigenvectors) were similar to the first four jPCA planes (Fig. 4F). Using this 
correspondence, we see that the eigenvalues reported by jPCA (constrained to be purely imaginary) 
revealed four frequencies that closely agreed with the top four frequencies found by analyzing the 
JSLDS generator dynamics (Fig 4E). See Section A.5.2 for more details on this subspace analysis. 
The correspondence between the jPCA and the JSLDS dynamics validates the use of JSLDS for the 
LFADS generator. Given this, we conclude that LFADS-JSLDS learns to represent the dynamics for 
this task using a single, condition-independent linear system, a fact that was not obvious a priori. See 
Section A.5.3 of the appendix for a discussion of numerically finding the fixed points of a trained 
LFADS model without the JSLDS co-training. We observed that the JSLDS co-training did not 
dramatically change the standard LFADS model’s fixed point solution for this task. 

5 Discussion 

Inspired by ideas from reverse engineering RNNs [15, 20–22, 24, 25, 10] and SLDS models [37–40], 
this work addresses the challenging problem of improving our understanding of how RNNs perform 
computations. We introduced a new model, the JSLDS, to improve our ability to reverse engineer 
RNNs. We applied it in various settings and to different architectures: GRUs, Vanilla RNNs, and 
LFADS models. The JSLDS does not require post-training fixed point optimizations, significantly 
reduces the approximation error associated with reconstructing the nonlinear dynamics using the 
locally linearized solutions, and maps each point in state space to a fixed point. These benefits 
significantly improve our ability to reverse engineer RNNs, assuming a state-dependent SLDS can 
provide a good approximation of the original nonlinear RNN trained on a particular task. 

Furthermore, the JSLDS could be a valuable tool to investigate the limits of the general framework of 
reverse engineering RNNS with fixed points. This is because we only expect the JSLDS approximation 
to break down if there is a system with nonlinear dynamics that are not well-described by switching 
between linearizations around fixed points. In addition to the above, JSLDS generalizes SLDS models 
to a potential continuum of switches with a constant number of parameters and automatically learns 
the required number of switches. 

An area for refinement is the expansion network. We observed in some experiments that the expansion 
network might produce clusters of slightly varying expansion points that all define a single linear 

9 



Neuron 
100

Neuron 
56

Neuron 
31

Figure 4: Monkey maze task. A. LFADS-JSLDS firing rates generated from inferred initial conditions 
for sample neurons. B. Projection of the co-trained RNN generator hidden states onto the first 2 jPC 
planes. We see the generator exhibits the expected rotational dynamics. C. Sample trial dynamics 
show low approximation error between RNN and JSLDS. Note also the JSLDS expansion points and 
RNN numerical fixed point. D. Eigenvalues of the JSLDS at a single timestep of a single trial. Our 
observation is that these eigenvalues are the same for every timestep of every trial, i.e. LFADS-JSLDS 
has learned to organize the movement dynamics with a single condition-independent linear system. 
E. Top 70 eigenvalues from the same linear system shown in D along with the purely imaginary 
eigenvalues associated with the jPCA analysis (green squares). The jPCA eigenvalues are connected 
(blue line) to their corresponding JSLDS eigenvalues given by the subspace analysis in F. F. Subspace 
analysis comparing the jPC planes and planes corresponding to the top five complex eigenvalue pairs 
of the JSLDS generator. Color indicates the minimum subspace angle between the corresponding 
planes. Angles of 30-40 degrees indicate highly overlapping subspaces. 

system instead of just producing a single expansion point. Perhaps an additional loss function penalty 
or more specific architectures for particular tasks could help reduce this variation. 

Finally, in the 3-bit memory task, the JSLDS co-training changed the fixed point structure the co-
trained RNN used to solve the task compared to the standard GRU solution. We additionally observed 
improved linearized dynamics approximations with this new solution. These observations provide 
evidence that JSLDS can regularize a nonlinear RNN towards solutions better described by switching 
between linearized dynamics around fixed points. This regularization towards a switching linear 
structure could potentially have beneficial performance effects for robustness and generalization on 
held-out data. However, more in-depth and larger-scale studies are required to quantify these potential 
effects. We also note that our method could potentially suffer from the same theoretical limitation 
discussed for the previous reverse engineering method in Section 2.1 when near non-hyperbolic fixed 
points due to the Hartman-Grobman theorem. However, the potential for our method to bias the 
nonlinear RNN solutions towards solutions well approximated by switching between linearizations 
around fixed points could alleviate this concern in practice. 

Broader Impact While understanding how RNNs perform complex computations could eventually 
help bound expected model behavior, identify biases, improve robustness to adversarial inputs and 
suggest ways to improve performance, we foresee no immediate societal consequences of this work. 
Overall, this work makes it easier to reverse engineer RNNs and continue to gain insight into how 
these models work to benefit both neuroscience and machine learning. 

10 



Acknowledgements We would like to thank Mark Churchland, Matt Kaufman and Krishna V. Shenoy 
for access to the monkey maze data. 

J.T.H.S. received funding support from a Stanford Graduate Fellowhip in Science and Engineering 
(Mayfield fellowship). S.W.L. was supported by grants from the Simons Collaboration on the Global 
Brain (SCGB 697092) and the NIH BRAIN Initiative (U19NS113201 and R01NS113119). D.S. was 
supported by a grant from the Simons Foundation (SCGB 543049, DCS). 

References 
[1] Rohit Prabhavalkar, Kanishka Rao, Tara N Sainath, Bo Li, Leif Johnson, and Navdeep Jaitly. 

A comparison of sequence-to-sequence models for speech recognition. In Interspeech, pages 
939–943, 2017. 

[2] Debidatta Dwibedi, Jonathan Tompson, and Pierre Sermanet. Temporal reasoning in videos 
using convolutional gated recurrent units. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition Workshops, 2018. 

[3] Keunwoo Choi, György Fazekas, Mark Sandler, and Kyunghyun Cho. Convolutional recurrent 
neural networks for music classification. In 2017 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), pages 2392–2396, 2017. 

[4] Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent neural network 
for sentiment classification. In Proceedings of the 2015 Conference on Empirical Methods in 
Natural Language Processing, pages 1422–1432, Lisbon, Portugal, September 2015. Associa-
tion for Computational Linguistics. 

[5] Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky, 
Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg, 
et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nature 
methods, 15(10):805–815, 2018. 

[6] Christopher J. Cueva and Xue-Xin Wei. Emergence of grid-like representations by training 
recurrent neural networks to perform spatial localization. In International Conference on 
Learning Representations, 2018. 

[7] Ben Sorscher, Gabriel Mel, Surya Ganguli, and Samuel Ocko. A unified theory for the origin of 
grid cells through the lens of pattern formation. In H. Wallach, H. Larochelle, A. Beygelzimer, 
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing 
Systems, volume 32. Curran Associates, Inc., 2019. 

[8] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr 
Mirowski, Alexander Pritzel, Martin J Chadwick, Thomas Degris, Joseph Modayil, et al. Vector-
based navigation using grid-like representations in artificial agents. Nature, 557(7705):429–433, 
2018. 

[9] Ingmar Kanitscheider and Ila Fiete. Emergence of dynamically reconfigurable hippocampal 
responses by learning to perform probabilistic spatial reasoning. bioRxiv, 2017. doi: 10.1101/ 
231159. 

[10] Rylan Schaeffer, Mikail Khona, Leenoy Meshulam, Brain Laboratory International, and Ila 
Fiete. Reverse-engineering recurrent neural network solutions to a hierarchical inference task 
for mice. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances 
in Neural Information Processing Systems, volume 33, pages 4584–4596. Curran Associates, 
Inc., 2020. 

[11] Fu-Sheng Tsung and Garrison Cottrell. Phase-space learning. pages 481–488, 01 1994. 

[12] David Zipser. Recurrent network model of the neural mechanism of short-term active memory. 
Neural Computation, 3(2):179–193, 1991. doi: 10.1162/neco.1991.3.2.179. 

[13] Michael Casey. The dynamics of discrete-time computation, with application to recurrent neural 
networks and finite state machine extraction. Neural Computation, 8:1135–1178, 1996. 

11 



[14] Paul Rodriguez, Janet Wiles, and Jeffrey L Elman. A recurrent neural network that learns to 
count. Connection Science, 11(1):5–40, 1999. 

[15] David Sussillo and Omri Barak. Opening the black box: Low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural Comput., 25(3):626–649, March 2013. ISSN 
0899-7667. doi: 10.1162/NECO_a_00409. 

[16] I. Jordan, Piotr A. Sokól, and Il Memming Park. Gated recurrent units viewed through the lens 
of continuous time dynamical systems. ArXiv, abs/1906.01005, 2019. 

[17] Yiwei Fu, Samer Saab Jr, Asok Ray, and Michael Hauser. A dynamically controlled recurrent 
neural network for modeling dynamical systems. arXiv preprint arXiv:1911.00089, 2019. 

[18] Duong Nguyen, Said Ouala, Lucas Drumetz, and Ronan Fablet. Variational deep learning for 
the identification and reconstruction of chaotic and stochastic dynamical systems from noisy 
and partial observations. arXiv preprint arXiv:2009.02296, 2020. 

[19] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik 
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric 
partial differential equations. In International Conference on Learning Representations, 2021. 
URL https://openreview.net/forum?id=c8P9NQVtmnO. 

[20] Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent 
computation by recurrent dynamics in prefrontal cortex. nature, 503(7474):78–84, 2013. 

[21] Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo. 
Reverse engineering recurrent networks for sentiment classification reveals line attractor dy-
namics. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, 
editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, 
Inc., 2019. 

[22] Niru Maheswaranathan and David Sussillo. How recurrent networks implement contextual 
processing in sentiment analysis. ArXiv, abs/2004.08013, 2020. 

[23] Federico Carnevale, Victor de Lafuente, Ranulfo Romo, Omri Barak, and Néstor Parga. Dynamic 
control of response criterion in premotor cortex during perceptual detection under temporal 
uncertainty. Neuron, 86(4):1067–1077, 2015. ISSN 0896-6273. doi: https://doi.org/10.1016/j. 
neuron.2015.04.014. 

[24] David Sussillo, Mark M Churchland, Matthew T Kaufman, and Krishna V Shenoy. A neural net-
work that finds a naturalistic solution for the production of muscle activity. Nature neuroscience, 
18(7):1025–1033, 2015. 

[25] Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo. 
Universality and individuality in neural dynamics across large populations of recurrent networks. 
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, 
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. 

[26] Arseny Finkelstein, Lorenzo Fontolan, Michael N. Economo, Nuo Li, Sandro Romani, and 
Karel Svoboda. Attractor dynamics gate cortical information flow during decision-making. 
bioRxiv, 2019. doi: 10.1101/2019.12.14.876425. 

[27] G. Ackerson and K. Fu. On state estimation in switching environments. IEEE Transactions on 
Automatic Control, 15(1):10–17, 1970. doi: 10.1109/TAC.1970.1099359. 

[28] C. B. Chang and M. Athans. State estimation for discrete systems with switching parameters. 
IEEE Transactions on Aerospace and Electronic Systems, AES-14(3):418–425, 1978. doi: 
10.1109/TAES.1978.308603. 

[29] Kevin P. Murphy. Switching Kalman filters. Technical report, 1998. 

[30] Zoubin Ghahramani and Geoffrey E. Hinton. Variational learning for switching state-space 
models. Neural Computation, 12(4):831–864, 2000. doi: 10.1162/089976600300015619. 

12 

https://openreview.net/forum?id=c8P9NQVtmnO
https://doi.org/10.1016/j


[31] Emily Fox, Erik Sudderth, Michael Jordan, and Alan Willsky. Nonparametric Bayesian learning 
of switching linear dynamical systems. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, 
editors, Advances in Neural Information Processing Systems, volume 21. Curran Associates, 
Inc., 2009. 

[32] Matthew D. Golub and David Sussillo. Fixedpointfinder: A tensorflow toolbox for identifying 
and characterizing fixed points in recurrent neural networks. Journal of Open Source Software, 
3(31):1003, 2018. doi: 10.21105/joss.01003. 

[33] David M Grobman. Homeomorphism of systems of differential equations. Doklady Akademii 
Nauk SSSR, 128(5):880–881, 1959. 

[34] Philip Hartman. A lemma in the theory of structural stability of differential equations. Proceed-
ings of the American Mathematical Society, 11(4):610–620, 1960. 

[35] David Arrowsmith and Colin M Place. Dynamical systems: differential equations, maps, and 
chaotic behaviour, volume 5. CRC Press, 1992. 

[36] Garrett E Katz and James A Reggia. Using directional fibers to locate fixed points of recurrent 
neural networks. IEEE transactions on neural networks and learning systems, 29(8):3636–3646, 
2017. 

[37] Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam 
Paninski. Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Sys-
tems. In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International Confer-
ence on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learn-
ing Research, pages 914–922, Fort Lauderdale, FL, USA, 20–22 Apr 2017. PMLR. URL 
http://proceedings.mlr.press/v54/linderman17a.html. 

[38] Scott Linderman, Annika Nichols, David Blei, Manuel Zimmer, and Liam Paninski. Hierarchical 
recurrent state space models reveal discrete and continuous dynamics of neural activity in C. 
elegans. bioRxiv, 2019. doi: 10.1101/621540. 

[39] Josue Nassar, Scott Linderman, Monica Bugallo, and Il Memming Park. Tree-structured recur-
rent switching linear dynamical systems for multi-scale modeling. In International Conference 
on Learning Representations, 2019. 

[40] Joshua Glaser, Matthew Whiteway, John P Cunningham, Liam Paninski, and Scott Linderman. 
Recurrent switching dynamical systems models for multiple interacting neural populations. In 
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural 
Information Processing Systems, volume 33, pages 14867–14878. Curran Associates, Inc., 
2020. 

[41] P. Werbos. Backpropagation through time: what does it do and how to do it. In Proceedings of 
IEEE, volume 78, pages 1550–1560, 1990. 

[42] Dominik Schmidt, Georgia Koppe, Zahra Monfared, Max Beutelspacher, and Daniel Durstewitz. 
Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies. 
In International Conference on Learning Representations, 2021. URL https://openreview. 
net/forum?id=_XYzwxPIQu6. 

[43] Georgia Koppe, Hazem Toutounji, Peter Kirsch, Stefanie Lis, and Daniel Durstewitz. Identifying 
nonlinear dynamical systems via generative recurrent neural networks with applications to fmri. 
PLoS computational biology, 15(8):e1007263, 2019. 

[44] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8): 
1735–1780, 1997. 

[45] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with 
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994. 

[46] Lea Duncker, Gergo Bohner, Julien Boussard, and Maneesh Sahani. Learning interpretable 
continuous-time models of latent stochastic dynamical systems. In International Conference on 
Machine Learning, pages 1726–1734. PMLR, 2019. 

13 

http://proceedings.mlr.press/v54/linderman17a.html
https://openreview.net/forum?id=_XYzwxPIQu6
https://openreview.net/forum?id=_XYzwxPIQu6


[47] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, 
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, 
C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information 
Processing Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings. 
neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf. 

[48] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, 
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder– 
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical 
Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, October 
2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. 

[49] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint 
arXiv:1312.6114, 2013. 

[50] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation 
and approximate inference in deep generative models. In International conference on machine 
learning, pages 1278–1286. PMLR, 2014. 

[51] Mark M Churchland, John P Cunningham, Matthew T Kaufman, Justin D Foster, Paul Nuyu-
jukian, Stephen I Ryu, and Krishna V Shenoy. Neural population dynamics during reaching. 
Nature, 487(7405):51–56, 2012. 

[52] Mark M Churchland, John P Cunningham, Matthew T Kaufman, Stephen I Ryu, and Krishna V 
Shenoy. Cortical preparatory activity: representation of movement or first cog in a dynamical 
machine? Neuron, 68(3):387–400, 2010. 

14 

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

	Introduction
	Review of reverse engineering RNNs and SLDSs
	Reverse engineering RNNs with fixed points
	Switching linear dynamical systems

	Jacobian Switching Linear Dynamical System
	Motivation
	The JSLDS model
	JSLDS co-training Procedure

	Results
	3-bit discrete memory
	Context-dependent Integration
	Monkey reach task with LFADS-JSLDS

	Discussion



