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ABSTRACT

Single domain generalization (SDG) is challenging because models trained on a
single domain often suffer from out-of-distribution (OOD) shifts at inference time.
Existing augmentation techniques often sacrifice semantic consistency for diver-
sity or vice versa, and are largely confined to vision tasks. We propose a Stochastic
Latent Noise Perturbation Module (SLNP) that automatically computes multiple
maximum mean discrepancy thresholds based on the source domain’s intra- and
inter-class statistics, and then maximizes the sum of noise under these adaptive
bounds. This unified objective generates diverse yet semantically faithful samples,
applied independently of the downstream training loop without requiring adversar-
ial training or auxiliary loss terms. In addition, SLNP complements normalization
methods, yielding synergistic improvements when the two are combined. Further-
more, our method is modality-agnostic and applicable to any distribution-based
data. Experiments on image benchmark demonstrate that our approach integrates
easily into existing pipelines and improves state-of-the-art SDG baselines, and
additional results on speech data show its applicability beyond the vision domain.

1 INTRODUCTION

One of the key goals in machine learning is the learning algorithms’ ability to generalize to unseen
samples. The target of generalization is usually test instances, but in this work, we aim for domain
generalization. Domain generalization is a task that seeks to transfer knowledge gained in the source
domain to other related, but different, target domains (Muandet et al., 2013). Here, the concept of
‘domain’ describes the nature of data representation, such as image styles (photo vs. sketch vs.
comic) or voice background (noiseless vs. noisy) (Li et al., 2017; Narayanan et al., 2018). In
particular, we tackle the single-domain generalization problem in this work, where the prediction
model is trained on a single source domain. The main objective in single-domain generalization
is to enlarge diversity to cover unseen target shifts, while preserving semantic consistency. Recent
works have begun to balance this diversity vs. semantic consistency trade-off, but the majority of
them are restricted to the vision tasks, leaving the multi-modal approach largely unexplored (Wang
et al., 2021; Choi et al., 2023; Zheng et al., 2024).

In real-world applications, the single-domain constraint naturally arises due to data scarcity, privacy
concerns, and high costs, and this challenge is not confined to vision tasks but is equally relevant
in speech and other modalities. Models trained in such settings are often required to face unseen
domains during test time. For example, in autonomous driving, the training data may only cover a
limited range of weather conditions or a single geographic region (Sanchez et al., 2023). But when
the system is deployed, it suddenly needs to deal with rain, snow, or roads that look different from
the training set (Qi et al., 2024). The same kind of issue shows up in speech recognition. A model
might be built using recordings from one device or one quiet environment, and later it is expected
to work under very different acoustic settings (Kim et al., 2022b). These situations suggest that
single-domain generalization cannot be seen only as a benchmark exercise. In practice, it shows up
as a recurring difficulty.

To deal with single domain generalization, existing approaches demonstrated effectiveness on vi-
sion only or speech only benchmarks. But since they are inherently tied to modality-specific struc-
ture and statistics, it is difficult to transfer them to other modalities. To address these limitations,
we propose a new augmentation framework that is classifier-independent, semantic-preserving, and
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modality-agnostic. Yüksel et al. (2021) explored latent-space perturbations with normalizing flows,
showing that invertible mappings can provide on-manifold variations. They consider randomized
and adversarial variants, but the closeness is enforced only in latent space. In contrast, our method
perturbs latent representation through a flow-based model under a multi-level Maximum Mean Dis-
crepancy(MMD) constraint derived from domain-specific statistics in the image space, controlling
semantic fidelity at the perceptual level. This maximizes diversity while preserving class semantics,
and functions as a modular component transferable across modalities, from images to waveforms,
providing a unified solution for single domain generalization.

The main contributions of this work can be summarized as follows:

• We introduce a modular augmentation method that operates without end-to-end adversar-
ial training, expanding diversity while preserving semantics through an MMD-based con-
straint.

• Our framework directly transfers to different data modalities (e.g., images and speech),
enabling a modality-agnostic perspective on single-domain generalization.

• We demonstrate strong performance on both vision (PACS, CIFAR-10-C) and speech (TAU
Urban Acoustic Scenes) datasets, showing that our approach complements normalization-
based methods and achieves competitive or superior accuracy compared to recent SDG
baselines.

2 RELATED WORK

Multi Source Domain Generalization Domain generalization aims to build models that perform
well on unseen target domains. Early studies such as Volpi et al. (2018) approached this challenge by
learning domain-invariant representations through adversarial data augmentation to generate worst-
case perturbations around source distributions, and Zhao et al. (2020) later introduced meta-learning
frameworks that episodically split source domains into meta-train and meta-test subsets, combined
with entropy regularization, to better simulate domain shifts. Normalization-based methods by Seo
et al. (2020) adapt feature statistics, optimizing domain-specific normalization layers. Zhou et al.
(2021) and Li et al. (2021) suggest data augmentation as an effective approach, including instance-
level style mixing and simple feature perturbations. These methods have demonstrated strong results
in multi-domain settings; however, most approaches generally rely on the existence of multiple
source domains and therefore cannot be directly applied or exhibit poor performance when applied
to single-source domain generalization.

Single Domain Generalization Single-domain generalization was introduced by Qiao et al. (2020),
a meta-learning framework that generates pseudo-domains via style perturbations within the source
data to simulate domain shifts without requiring multiple sources. In vision tasks, Wang et al.
(2021) learns augmentation patterns directly from the source domain using a stylization module.
More recent vision-specific single-domain generalization methods focus on balancing diversity with
semantic preservation. Zheng et al. (2024) leverages learnable semantic transformations with stan-
dard image augmentation operations such as contrast and rotation. In another line of work, Zhou
et al. (2021) generated diverse features by mixing instance-level styles, while Xu et al. (2021) and
Choi et al. (2023) applied random convolutional filters to diversify feature statistics. Furthermore,
Liu et al. (2024) combined stylization and destylization modules within an adversarial framework
to improve semantic preservation in an end-to-end manner, and Efthymiadis et al. (2025) introduced
an artificial validation set generated from transformed source data to guide augmentation design.

While research on single-domain generalization (SDG) in vision tasks has been more active, work
on speech data has been relatively limited. Nevertheless, single-domain generalization in speech
datasets has been investigated in several tasks where domain shifts arise from recording conditions
or signal processing variability. In the acoustic scene classification task, the DCASE 2021 Chal-
lenge Task 1A highlighted the difficulty of generalizing across devices, and the winning system
employed Residual Normalization to reduce device-specific biases (Kim et al., 2022a). This setting
of DCASE 2021 aligns well with the domain generalization problem, as it can be reformulated into
a single-source setting by training on one device and evaluating on unseen devices. By contrast,
later DCASE challenges shifted their focus toward efficiency, imbalance, and data-limited learning,
which are important but do not directly correspond to our single domain generalization scenario.
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A subsequent method, Relaxed Instance Frequency-wise Normalization (RFN), extended Residual
Normalization with instance-level frequency normalization and a relaxation mechanism, achieving
improved robustness on the TAU Urban Acoustic Scenes 2020 Mobile dataset (Kim et al., 2022b).
Beyond scene classification, single-domain generalization has also been explored in audio deepfake
detection, where methods are designed to generalize across unseen spoofing algorithms and vocoder
artifacts through an audio-specific module (Xie et al., 2023).

Although extensive research has been conducted on single-domain generalization within individual
modalities such as vision and speech, these methods are tied to modality-specific assumptions, which
limit their applicability across different data modalities.

Modality Agnostic Single Domain Generalization Uncertainty-Guided Generalization method
was the first to explicitly developed for modality agnostic single-domain generalization, lever-
aging uncertainty estimation within a Bayesian meta-learning framework to guide augmentation
in both the input and label spaces (Qiao & Peng, 2021). Modality-Agnostic Debiasing (MAD)
separates domain-specific from domain-invariant information through a dual-branch architecture,
achieving generalization gains across modalities (Qu et al., 2023). However, follow-up research has
largely diverged into vision-only or speech-only directions, leaving the multi-modal objective un-
fulfilled. Moreover, augmentation-based modality-agnostic approaches for SDG remain unexplored,
as domain shifts differ significantly across modalities. Our method addresses this gap by applying
distribution-based augmentations in a modality-agnostic manner across vision and speech datasets.
By combining a Stochastic Latent Noise Perturbation (SLNP) module with existing modality-
specific normalization strategies, we achieve semantically consistent yet diverse augmentations that
adapt naturally to distributional biases across different modalities.

Complementarity of Augmentation and Normalization In single-domain generalization, augmen-
tation and normalization have emerged as two major strategies. Augmentation mitigates the limita-
tion of training on a single source by generating pseudo-domains that enhance diversity and improve
robustness against unseen domains (Volpi et al., 2018; Zhou et al., 2021; Zheng et al., 2024). How-
ever, augmentation alone often sacrifices semantic consistency, as perturbed samples may deviate
in ways that enlarge distribution gaps. Normalization suppresses or aligns these domain-specific bi-
ases in the feature space, yielding more reliable domain-invariant representations (Ioffe & Szegedy,
2015; Seo et al., 2020; Lee et al., 2023). Yet normalization doesn’t provide the diversity needed
to cover the target shifts. These complementary strengths suggest that combining augmentation
and normalization is a promising direction. Augmentation introduces diversity, while normalization
projects these diverse features into a shared space that stabilizes semantics.

Building on this intuition, Fan et al. (2021) complements adversarial domain augmentation with
a learned normalization module that adapts standardization and rescaling to incoming domains.
While adversarial domain augmentation adversarially perturbs the source distribution to synthesize
challenging pseudo-domains, it doesn’t include an explicit semantic-preserving constraint, which
may alter class relevant feature. Liu et al. (2024) adopts a different strategy by combining styliza-
tion and an adversarially trained destylization module in a min–max framework, further reinforced
with a semantic consistency loss. This design explicitly encourages semantic preservation at the
representation level. While both methods demonstrate the benefit of coupling augmentation with
normalization, their portability remains limited because each relies on augmentation mechanisms
that are tied to the training pipeline. ASR-Norm (Fan et al., 2021) depends on adversarially gener-
ated pseudo-domains produced by ADA (Volpi et al., 2018), which is designed to create worst-case
distributions rather than preserve semantics. Likewise, StyDeSty (Liu et al., 2024) requires an end-
to-end min–max framework with a joint stylization–destylization objective, making its augmenta-
tion tightly coupled with the classifier. Consequently, neither approach provides a plug-and-play
semantic-preserving transformation that can be easily reused in other pipelines.

In contrast, our method is designed to be semantic-preserving from the outset. We perturb primar-
ily domain-specific factors under a Maximum Mean Discrepancy (MMD) constraint, encouraging
semantic structure to remain intact while expanding diversity. Unlike ADA or stylization-based
approaches, our method does not rely on adversarial recovery or specialized modules, making it a
lightweight and modular solution. This allows normalization to focus solely on eliminating resid-
ual domain biases without risking semantic degradation. The resulting synergy enhances seman-
tic stability against style fluctuations, yielding domain-invariant representations that can serve as a
plug-and-play augmentation beyond end-to-end frameworks.
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Figure 1: Stochastic Latent Perturbation Module (SLNP) Framework

3 PROPOSED METHOD

Single domain generalization aims to learn a robust model from a single source domain χs =
{(xi, yi)}Ni=1, xi ∼ Ps, yi ∈ {1, .., C} where xi ∼ Ps are drawn from the source distribution
Ps, yi ∈ {1, ..., C} are class labels from C categories, and N is the number of training examples.
The goal is to generalize to previously unseen target domain examples x ∼ Pt, where Pt denotes
the target domain distribution and satisfies Ps ̸= Pt. While the source examples and target examples
are drawn from different distributions, the label space y ∈ {1, ..., C} remains the same. To bridge
the distribution shift between Ps and Pt, augmented data x+ can simulate potential variations in Pt

while preserving the semantics of Ps.

We introduce a Stochastic Latent Noise Perturbation (SLNP) module, a sampling method that en-
larges the training set by applying a non-linear latent space transformation to the source data x under
multiple MMD constraint thresholds. Specifically, we encode the input using an invertible flow to
obtain the latent features, perturb them with a stochastic noise tensor and decode the result back into
the valid image space with inverse flow. For each MMD threshold ϵk, where k ∈ {1, ...,K} indexes
the set of K thresholds, we optimize a loss that maximizes the noise magnitude while enforcing
the MMD between original and perturbed samples to match ϵk. These thresholds are automatically
derived from the source domain. Once trained, the module operates independently of the network
and can be used as a plug-in data augmentation method for both image and speech data.

3.1 STOCHASTIC LATENT PERTURBATION MODULE

We adopt a RealNVP-style encoder, decoder consists of affine coupling layers and a learnable global
scale (Dinh et al., 2017). RealNVP introduces invertible transformations using coupling layers that
split the input into two parts, where one part remains unchanged while the other is updated through
a scale-and-shift transformation predicted from the unchanged part. This design enables exact inver-
sion and efficient Jacobian computation, making the model suitable for stable feature manipulation.
The flow isn’t trained to maximize the likelihood, but the structure simply serves as an invertible
encoder, so that the perturbed data can remain in a semantically consistent manifold. Our variant
keeps only the components required for inversion and integrates them with the noise perturbation
objective.

For RGB images, we use a RealNVP-style flow with an asymmetric channel split per coupling layer.
The last channel is used as the conditioner and the first two channels are transformed. Each layer
predicts a 2 channel shift and a 1 channel log-scale from the conditioner, and the log-scale is clamped
and broadcast to the 2 transformed channels. Since the outputs are concatenated as [y1, y2] and the
next layer again splits the channels in the same manner, the conditioning role rotates across layers
and no channel remains permanently fixed. A learnable per-channel global scale is applied at the
end of the flow, and semantic noise is injected in the latent space. The per-channel global scale
compensates for the clamped coupling log-scales by restoring proper latent magnitude, ensuring
balanced noise injection across channels.

For speech, we operate directly on the waveform with a 1D RealNVP-style coupling flow that splits
along the temporal axis into even and odd samples. The even part conditions the affine transform
applied to the odd part with a clamped scale. We suggest temporal splitting since frequency rep-
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resentations entangle both domain-specific factors and semantic content, and perturbing frequency
risks corrupting task-relevant cues. Instead, we insist that temporal perturbations yield localized
changes that preserve global spectral structure. We include invertible 1 × 1 convolution between
coupling blocks for a scalar gain. The perturbed waveforms are converted to log-mel spectrograms
and passed to the acoustic backbone.

We treat the number of coupling layers and the scaling clamp range as hyperparameters. In practice,
we use 4 layers for images and speech modeling, chosen to balance transformation capacity and
computational stability.

Given an input mini-batch x, which can be of any modality, we first obtain a latent feature map
z = fϕ(x) through the flow encoder. Stochastic perturbation function then produces the noise
tensor.

ε = Sθ(z) + δ, δ ∼ N(0, I) (1)

The noise tensor consists of a deterministic term and a stochastic term. Sθ is a simple 2-layer 3x3
Convolutional Neural Network and δ is independently drawn from N(0, I). The random term is
resampled at every forward pass, and this stochasticity enlarges the training distribution effectively
and prevents the classifier from overfitting to the deterministic noise pattern.

By decoding it through an invertible mapping, our method generates diverse augmentations. α is a
hyperparameter for scaling the noise tensor.

x′ = f−1
ϕ (fϕ(x) + α · ε) = f−1

ϕ (z + α · ε) (2)

Specific details of the hyperparameters and the architectures of the flow-based models for both image
and waveform datasets are provided in Appendix.

3.2 OBJECTIVE

We train the flow fϕ and the perturbation module Sθ with the objective below, doing so separately for
each MMD threshold ϵk. For each ϵk, we jointly optimize the flow parameters ϕ and the perturbation
module parameters θ by minimizing the loss, where k ∈ {1, ...,K} indexes the distinct MMD
thresholds.

Lk(ϕ, θ) = −λ1E[∥ε∥2] + λ2|M̂MD(x, x′)− ϵk| (3)

Here, M̂MD(x, x′) is a shorthand notation for the empirical MMD between the two mini-batches
x and x′. The first term in Eqn 3 forces the module to push augmented samples away from the
source by injecting a large noise into the latent space. The second term counterbalances this ex-
pansion by penalizing the distributional gap relative to the target threshold, projecting the samples
back so that the empirical MMD nearly matches ϵk. Together, these two terms jointly balance the
trade-off between maximizing the variability and preserving semantics. This yields K distinct pairs
{fϕk

, Sθk}Kk=1. The number of MMD thresholds K is a tunable hyper-parameter that controls the
range of allowable distribution shifts. The sequence {ϵk} is designed to decrease over k in our
experiments, allowing for larger MMD gaps in the beginning and closing the difference over time.
The rationale is to progressively increase the difficulty level of optimization, similarly to score-based
diffusion models (Song et al., 2021) and curriculum learning (Soviany et al., 2022).

ϵ - list Construction: Leaving the range of ϵk (k = 1, ...,K) as a hyperparameter is risky, because
it can produce distribution shifts that are either too weak or too aggressive, and it is difficult to ma-
nipulate. To eliminate this uncertainty, we determine the range automatically from two distribution-
specific statistics. We computed (1) Minimum inter-class MMD distance ξinter and the (2) average
intra-class dispersion ξintra, both measured with the same RBF-kernel function k(·, ·). Here k is the
kernel function, not the MMD-level index used in Eq. (3). Here, x and x′ denote individual samples
drawn from the same class when computing intra-class dispersion Ex[k(x, x)] − Ex,x′ [k(x, x′)],
where the expectation is with respect to the samples belonging to the same class1. This definition is
distinct from Eq. (3), where x and x′ denote mini-batches. We then define the maximum admissible
MMD threshold ϵmax = ξinter

2ξintra
. This ensures that augmented examples remain, on average, closer

1Details in appendix.
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Algorithm 1 Stochastic Latent Noise Perturbation Module (SLNP) Pretraining

Require: Source dataset χs, number of MMD levels K, MMD thresholds {ϵ1, ..., ϵK}, number of
training epochs T

1: for k = 1 to K do
2: Randomly initialize flow fϕk

and perturbation generator Sθk
3: for t = 1 to T do
4: Sample mini-batch x ∼ χs

5: z ← fϕk
(x)

6: ε← Sθk(z) + δ, δ ∼ N(0, I)
7: x′ ← f−1

ϕk
(z + α · ε) ▷ Compute loss

8: Lnoise ← −Ex∼Xs,δ∼N(0,I)[∥Sθk(z) + δ∥2]
9: Lmmd ←

∣∣∣M̂MD(x, x′)− ϵk

∣∣∣
10: Lk(ϕk, θ)← λ1 · Lnoise + λ2 · Lmmd
11: Update fϕk

and Sθk to minimize L
12: end for
13: end for

to their own class than to the nearest other class. Setting ϵmax as the upper bound, we construct ϵ -
list as a sequence of K progressively smaller thresholds by uniform linear spacing.

ϵk = ϵmax
K − k + 1

K
, k = 1, ...,K (4)

Since both ξinter and ξintra are estimated directly from the input data, {ϵk} = {ϵ1, ..., ϵK} is
determined automatically.

3.3 TRAINING PIPELINE

SLNP is first pre-trained on the entire source domain, independent from the subsequent training and
testing loops. The overall pre-training pipeline is summarized in Algorithm 1. Once this pre-training
is done, every mini-batch is passed through the frozen perturbation module to generate additional
noise-enhanced views for the backbone classifier during training. The augmented data was blended
with the raw data to avoid excessive deviation from the original. By shifting the perturbation learn-
ing process outside the main training loop, we keep the classifier training lightweight while still
supplying diverse, semantically faithful variants. It can also be plugged in as a data augmentation
method to many other methodologies.

4 EXPERIMENT

Our augmentation module is trained independently from the downstream model and can be easily
integrated into various learning pipelines. Our design has advantages in terms of reusability and
broad applicability to any distribution-based modalities. To demonstrate the generality and effec-
tiveness of our method, we conduct experiments by (1) integrating our augmentation module into
current SDG state-of-the-art method, StyDeSty, and (2) applying our method to Speech single do-
main generalization task.

4.1 DATASETS

PACS and CIFAR-10-C are widely used vision datasets to demonstrate the effectiveness of classifi-
cation models in SDG. We utilized the TAU Urban Acoustic Scenes 2020 Mobile dataset to evaluate
the performance in speech SDG. We demonstrate compatibility in both vision and speech data, en-
suring that our method applies to any distribution-based modality.

PACS. PACS (Yu et al., 2022) consists of 9,991 images. There are 4 domains (photo, cartoon, art
painting, sketch) with 7 classes and a resolution of 224 x 224. One domain is chosen as the source
domain, and others are used as the target domains.
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CIFAR-10-C. CIFAR-10-C (Hendrycks & Dietterich, 2019) contains diverse corruptions to the
CIFAR-10 dataset with 10 classes. CIFAR-10 (Krizhevsky, 2009) consists of 32 x 32 RGB im-
ages with 50,000 training data and 10,000 test data. The corruptions include weather, blur, digital,
and noise, and the corruption level is from 1 to 5. The original CIFAR-10 dataset is used as a source
domain, and the CIFAR-10-C dataset is used as target domain.

TAU Urban Acoustic Scenes 2020 Mobile dataset. TAU dataset (Mesaros et al., 2018) contains 10
second audio clips from 10 classes recorded in 12 European cities across multiple devices. All audio
is resampled to 16kHz and transformed into 256 bin log-Mel spectrograms. Single device (Device
A) is regarded as the source domain, and evaluated on this single device and other unseen domains
(Device B,C and simulated channels S1-S6).

4.2 IMPLEMENTATION DETAILS

For image data, our method was integrated into the existing learning pipeline of StyDeSty (Liu et al.,
2024) to demonstrate its compatibility. Excluding Stylization, auxiliary loss terms, and adversarial
training components, we only incorporated the DeStylization module, implemented as an instance
normalization layer that removes domain-specific channel statistics in the downstream network, to-
gether with our augmentation method.

For PACS dataset, we use ResNet-18 (He et al., 2016) as the backbone network, following common
practice in domain generalization. The model is trained with a batch size of 32 using optimizer SGD
with momentum 0.9. The initial learning rate is set to 0.001 and decayed by a factor of 10 at the
60th and 80th epochs. The hyperparameters are set to K = 15, λ1 = 1, λ2 = 1, and α = 5× 10−2.

For the CIFAR-10-C benchmark, we adopt WideResNet (16-4) (Zagoruyko & Komodakis, 2017) as
the backbone, which is widely used for robustness evaluation. Training is performed with a batch
size of 128 using optimizer SGD with Nesterov momentum of 0.9. The initial learning rate is set to
0.1 and scheduled using cosine annealing. The hyperparameters are K = 15, λ1 = 0.1, λ2 = 1 and
α = 10−1.

Kim et al. (2022b) discovered that while in images, domain-specific biases are mainly reflected
in channel statistics, in speech, they are captured in frequency statistics. To mitigate such biases
in speech, we integrated our module with Relaxed Instance Frequency-wise Normalization (RFN),
which effectively reduces device- and domain-dependent variations.

For TAU Urban Acoustic Scenes 2020 Mobile dataset, we adopt BC-ResNet-1 (Kim et al., 2021),
a lightweight convolutional architecture tailored for acoustic scene classification. The model is
trained with a batch size of 100 using optimizer SGD, with momentum 0.9. The initial learning rate
is set to 0.001 and reduced by a factor of 100 every 30 epochs. The hyperparameters are K = 3,
λ1 = 0.01,λ2 = 1, and α = 1. In contrast to vision datasets, we adopt a smaller K for speech,
since speech features are more vulnerable to semantic distortion and overly strong augmentation
may interfere with task-relevant cues.

4.3 EXPERIMENT RESULTS

4.3.1 RESULTS ON IMAGE SDG

Table 1 presents the classification results on the PACS dataset. While most existing methods were
originally trained with a batch size of 64, our method was trained with a batch size of 32 due
to memory limitations. To ensure a fair comparison, we reimplemented StyDeSty, the current
state-of-the-art method on PACS, under the same setting using a batch size of 32. Our approach
achieves competitive performance both as a standalone augmentation strategy and when combined
with Destylization. Notably, ours alone already surpasses strong baselines (Zhou et al., 2021; Wang
et al., 2021). When integrated with destylization, our method further improves the overall accu-
racy to 70.22%, closely matching the reimplemented StyDeSty under identical conditions. This
demonstrates that semantic-preserving augmentation under an MMD constraint provides a strong
complementary signal to normalization-based methods. Table 2 reports results on CIFAR-10-C un-
der various corruption types. Here we used a batch size of 128, following standard practice in
corruption robustness benchmarks. Our approach alone achieves an average accuracy of 78.47%.
When combined with destylization, the accuracy further improves to 83.47%, on par with StyDeSty.
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Methods Photo Art Cartoon Sketch Avg.
Vanila 39.73 68.85 72.13 29.49 52.55
JiGen (Carlucci et al., 2019) 46.03 68.78 72.60 35.51 55.73
MixStyle (Zhou et al., 2021) 47.35 72.07 74.36 35.12 57.23
ADA (Volpi et al., 2018) 45.12 77.34 75.61 37.30 58.84
ME-ADA (Zhao et al., 2020) 45.89 76.09 74.71 36.01 58.18
L2D (Wang et al., 2021) 49.06 77.26 78.27 53.40 64.50
ProRandConv (Choi et al., 2023) 62.89 78.54 76.98 57.11 68.88
LEAwareSGD (Zhang et al., 2025) 65.05 79.17 77.16 57.78 69.46

StyDeSty (Liu et al., 2024) 62.46 78.81 79.77 59.60 69.37 ± 0.23
Destylization Only 47.86 69.49 77.43 38.68 58.39 ± 0.08
Ours Only 52.13 69.47 75.93 56.49 64.72 ± 1.21
Ours + Destylization 63.02 77.40 77.15 63.31 69.82 ± 0.36

Table 1: Comparison of SDG performance on the PACS dataset. Results are reported across 4 target
domains (Photo, Art, Cartoon, Sketch). Best and second-best are highlighted.

Methods Noise Blur Weather Digits Avg.
Vanila 55.02 73.28 84.40 61.09 72.83

StyDeSty (Liu et al., 2024) 76.45 83.43 87.39 86.75 83.33 ± 0.17
Destylization Only 61.79 81.49 88.30 84.18 80.13 ± 1.68
Ours Only 75.87 75.07 83.33 79.60 80.01 ± 1.53
Ours + Destylization 79.31 80.86 87.51 86.18 83.23 ± 0.24

Table 2: Comparison of SDG performance on the CIFAR-10-C dataset. Classification accuracy is
shown under different corruption types (Noise, Blur, Weather, Digits).

These results confirm that semantic-preserving perturbations not only strengthen model robustness
against distributional shifts but also integrate effectively with normalization-based methods. Im-
portantly, our method can serve as a plug-and-play augmentation module, improving generalization
even without adversarial recovery or specialized auxiliary networks.

Comparing our augmentation method combined with destylization against StyDeSty, we observe
that both achieve similar performance on PACS and CIFAR-10-C. This suggests that the two frame-
works effectively couple augmentation with normalization to balance diversity and invariance. How-
ever, we offer distinct advantages. In contrast to original StyDeSty, which requires an adversarial
stylization–destylization pipeline trained end-to-end, ours provides a modular augmentation that is
semantic-preserving by design. This makes it readily usable as a plug-and-play augmentation in
diverse pipelines, without requiring adversarial training. At the same time, when integrated with
destylization, our method consistently closes the gap with the normalization-based approaches,
demonstrating that it complements such frameworks without structural overhead. A further point
of distinction arises in the vision benchmarks. On PACS and CIFAR-10-C, our augmentation alone
already improves accuracy beyond several state-of-the-art augmentation strategies, showing that ex-
plicitly semantic-preserving perturbations are effective even without normalization. This suggests
that in visual domains, where semantic content and domain-specific style factors are relatively sep-
arable, augmentation itself can substantially enhance generalization.

4.3.2 RESULTS ON SPEECH SDG

Table 3 presents results on the TAU Urban Acoustic Scenes 2020 Mobile dataset, which evaluates
domain generalization under both device variation (A–C) and simulated device shifts (S1–S6). For
this dataset, we adopted a batch size of 100. Our augmentation method alone achieves an average
accuracy of 31.82%, which is lower than the vanilla baseline, suggesting that in the speech domain,
semantic and domain-specific factors are more tightly entangled and standalone augmentation may
distort task-relevant cues. When combined with Kim et al. (2022b), however, our method reaches
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45.19%, the strongest result among all compared methods. This demonstrates that the synergy
between semantic-preserving augmentation and robust normalization is particularly important for
speech single-domain generalization.

Methods A B C S1 S2 S3 S4 S5 S6 Avg.
Vanila 63.03 41.64 50.15 18.18 28.79 26.97 28.48 32.42 27.58 35.25

RFN (Kim et al., 2022b) 71.21 50.15 60.79 29.09 25.45 34.24 31.21 35.45 23.03 41.06 ± 3.02
Ours Only 58.79 43.77 47.42 18.79 20.00 26.97 25.15 27.88 17.58 32.80 ± 0.98
Ours + RFN 59.09 52.58 57.75 38.79 35.76 43.94 41.82 42.12 34.85 45.19 ± 1.12

Table 3: Comparison of SDG performance on the TAU Urban Acoustic Scenes 2020 Mobile dataset.
Results are reported across devices (A–C) and simulated channels (S1–S6).

In contrast to the image SDG, the results on TAU Urban Acoustic Scenes 2020 shows a differ-
ent trend. Using augmentation alone results in lower accuracy than the vanilla baseline; however,
adding a normalization technique leads to a clear improvement. A plausible reason is that, unlike in
vision, where semantics (such as shapes or edges) and style (such as color or illumination) tend to
occupy different dimensions of the data, speech signals represent both in the frequency domain. As
a result, device responses and channel effects are entangled with semantic cues in the spectrogram.
As demonstrated by Kim et al. (2022b), frequency statistics encode strong domain-specific factors
in acoustic scene recordings, which often interact with task-relevant information. Consequently,
standalone augmentation may distort semantic cues along with style, leading to performance degra-
dation, whereas normalization-based modules are necessary to suppress frequency-domain biases
and restore domain-invariant structure. Nevertheless, augmentation remains crucial in SDG, even
though it may underperform on its own in speech datasets; it provides the diversity that normaliza-
tion alone cannot, and its combination with normalization yields complementary gains.

Overall, these results validate the claim of this work: explicitly semantic-preserving augmenta-
tion under distributional constraints can substantially improve generalization in combination with
normalization. Our augmentation method operates as an independent semantic-preserving augmen-
tation while integrating with normalization when available. Examples of augmented results in both
image and speech datasets are attached in the Appendix. Despite simplified integration, our ap-
proach achieves comparable performance to state-of-the-art methods within the margin of error.
This versatility makes our method broadly applicable across modalities and architectures, providing
a practical and effective direction for single-domain generalization.

To better understand this effect, we analyze the roles of augmentation and normalization in single-
domain generalization. In both the vision and speech domains, we observed that augmentation
alone is insufficient to achieve strong generalization, as latent perturbations by themselves can-
not fully bridge the domain gap introduced by domain-specific biases. Conversely, normalization
methods effectively mitigate such biases, yet they fail to expose the model to sufficiently diverse un-
seen domains. These complementary limitations suggest that augmentation-based approaches and
domain-specific normalization strategies should be applied jointly, leading to consistent and robust
performance improvements in SDG.

4.4 ABLATION STUDY

Hyperparameter Sensitivity Analysis of λ1, λ2, α We conduct a parameter sensitivity analysis on
CIFAR-10-C by varying both λ1(noise magnitude maximization) and λ2(mmd constraint). Specif-
ically, we vary both parameters ∈ {0.05, 0.1, 1.0} while keeping all other components fixed. The
resulting accuracy yields a small variance of 82.78 ± 0.50, indicating that the proposed SLNP mod-
ule is highly robust to the choice of loss balancing coefficients. Additionally α, the scalar multiplied
by the random noise is fixed throughout all experiments. It serves only as a stability factor to prevent
excessive noise injection during the early stages of flow inversion.

Sensitivity Analysis of K We further investigated the effect of the number of perturbation levels K
on generalization performance using CIFAR-10-C. In this experiment, K was varied from 5 to 20
in increments of 5, with all other hyperparameters fixed. We insist that the parameter K balances
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the semantic preservation level and diversity. While smaller values produce fewer pseudo-domains,
limiting diversity, larger values provide more diverse perturbations but also increase the risk of
semantic drift and training instability.

Figure 2: Sensitivity analysis on the number of
augmentation samples (K).

Figure 2 illustrates the model’s sensitivity to the choice
of K. We observe that performance improves as K in-
creases from 5 to 15, indicating that additional per-
turbation levels expose the model to a richer spec-
trum of domain shifts and thus strengthen robustness
against corruption. However, when K is further in-
creased to 20, accuracy slightly decreases, suggesting
that excessive perturbation levels may introduce re-
dundancy or lead to the accumulation of perturbations
that partially distort semantics. While the differences
in accuracy don’t deviate much, the best performance
was achieved at K = 15. We find that increasing K
generally enhances robustness by enriching pseudo-
domains, but performance saturates beyond a certain
point, with K = 15 gives the most stable improve-
ment.

5 CONCLUSIONS

In this work, we introduced a Stochastic Latent Noise Perturbation (SLNP) Module for single-
domain generalization. By injecting stochastic noise in the latent space under multi-level MMD
constraints that are automatically derived from the data, our method balances two key objectives:
increasing diversity while preserving semantic consistency. The module is trained independently
of the downstream classifier, making it easy to reuse, integrate into existing pipelines, and apply
across modalities, from images to speech. Unlike prior approaches that are tied to modality-specific
assumptions, our framework is modality-agnostic. This allows us to generate diverse samples di-
rectly from a single source domain and, when combined with modality-specific normalization strate-
gies, achieve stronger and more reliable performance under domain shift. Across vision and speech
benchmarks, we show that the proposed augmentation complements state-of-the-art SDG methods
and consistently improves their generalization ability. Taken together, our work suggests a sim-
ple but effective distribution-based perturbation method that can serve as a general augmentation
strategy for robust single-domain generalization.

ETHICS STATEMENT

We use only public datasets used in several benchmarks in SDG; no private or identifiable data are
used. We will release code/configurations for third-party audits to support environmentally respon-
sible research.

REPRODUCIBILITY STATEMENT

All results are reproducible with our code; all datasets (PACS, CIFAR-10-C, TAU Urban Acoustic
Scenes 2020 Mobile) are public with download instructions. For fair baseline comparisons, we
follow the official L2D and StyDeSty implementations and hyperparameters, and provide configs,
seeds, and one-command scripts in the repository.

LARGE LANGUAGE MODELS USE

Large Language Models (LLMs) were used solely to aid in writing and polishing the manuscript.
Specifically, we used LLMs to improve grammar, phrasing, and clarity of exposition, without gen-
erating original ideas, experiments, or results. All technical content and experiments were designed
and verified entirely by the authors.
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A SAMPLE AUGMENTATIONS

We show a few sample augmentations generated by Sθ on both the image and the sound domains.

Figure 3: Examples of augmentations on the PACS dataset (Cartoon domain). (a) An original source-
domain image. (b) 15 augmented samples generated by SLNP, showing diverse style variations
while preserving semantic content.

Figure 4: Examples of augmentations on the TAU Urban Acoustic Scenes 2020 dataset. The leftmost
panel shows a log-mel spectrogram from the training source domain, while the remaining three
panels are augmented versions generated by SLNP.

B THEORETICAL ANALYSIS

We justify the design of the {ϵk} by relating the augmentation bound to class separation and class
spread, yielding a simple half-gap rule that keeps augmented samples within their class and is easy
to enforce.

Proposition - Definition and role of ϵmax We first justify the construction of Eq 4: The minimum
inter-class MMD distance is halved and normalized by the average intra-class dispersion, so that the
largest allowed perturbation remains within every class boundary. Derivation of this main design is
explained below.

For any class c, let ξinter be the MMD distance to the nearest class c′. Pc and Pc′ are the
distributions those respective classes, and P aug

c is the distribution resulting from augmenting Pc.

We set the augmentation boundary as MMD(Pc, P
aug
c ) ≤ ξinter

2 . Then by the triangle inequality
we obtain MMD(Pc′ , P

aug
c ) ≥ ξinter − MMD(Pc, P

aug
c ) ≥ ξinter

2 . This guarantees that the
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augmented distribution doesn’t not cross the nearest class boundary, since it remains at least ξinter

2
away from the closest foreign class.

Building on this baseline result, we incorporate the intra-class dispersion ξintra as a normalization
factor. Combining the safety margin with intra-class normalization yields the final construction,

ϵmax =
ξinter
2ξintra

To ensure that the intra-normalized perturbation still prevents boundary crossing, we must check
that the triangle inequality continues to hold under this construction.

If MMD(Pc, P
aug
c ) ≤ ϵmax = ξinter

2ξintra
, the triangle inequality guarantees

ξinter = MMD(Pc, Pc′) ≤MMD(Pc, P
aug
c ) +MMD(Pc′ , P

aug
c )

≤ ξinter
2ξintra

+MMD(Pc′ , P
aug
c )

⇒ ξinter

(
1− 1

2ξintra

)
≤MMD(Pc′ , P

aug
c )

Notice that even when ξinter is small and ξintra is large (i.e., the class boundary is uncertain),
augmentation will help maintain the distance between the augmented samples and the nearest foreign
samples. On the other hand, if ξintra is small (i.e., samples in each class are tightly clustered), the
above bound becomes very loose, and almost trivial. However, such a case also implies that the
samples in that class have low level of diversity. A low value of ξintra will prompt ϵmax to be large,
leading to more aggressive augmentation. Thus we can see that ξintra automatically controls the
degree of augmentation by only looking at the current dataset.

Computing ξintra: Averaging the MMD between two random halves of a class provides a way to
measure the class’s intrinsic dispersion in the chosen Reproducing Kernel Hilbert Space (RKHS).
This measurement scales the ϵ - list so that the augmentation strength is automatically matched to
the data’s variability. We assume that the classes with small variability allow larger perturbations,
whereas samples already scattered near a decision boundary should receive tighter noise bounds to
preserve semantic consistency.

We estimate each class’s intrinsic dispersion by repeatedly splitting the data into two independent
subsets X1c = {xi}mi=1 and X2c = {xj}mj=1, drawn i.i.d from Pc. For each split, we compute the
squared MMD between them, and average the result over multiple splits; the derivation is given
below.

E
[
M̂MD

2
(X1c, X2c)

]
= E[∥µX1c − µX2c∥2H]

= E[∥µX1c
∥2 + ∥µX2c

∥2 − 2⟨µX1c
, µX2c

⟩]
= 2E[∥µX1c∥2]− 2E[⟨µX1c , µX2c⟩]
= 2E[∥µX1c

∥2 − ⟨µX1c
, µX2c

⟩]

= 2

(
1

m
Ex[k(x, x)] +

(
1− 1

m

)
Ex,x′ [k(x, x′)]

)
− 2Ex,x′ [k(x, x′)]

=
2

m
(Ex[k(x, x)]− Ex,x′ [k(x, x′)])

=
2

m
VarH(Pc)

X1c and X2c are independent random halves of samples from class c, µX1c
, µX2c

∈ H are empir-
ical mean embeddings in the RKHS, and V arH(Pc) denotes the variance of class c in the RKHS.
Because the two subsets are drawn i.i.d. from Pc, the expectations over them are symmetric. The
resulting expected squared MMD between the two halves is proportional to the RKHS variance of
the class. This process yields an unbiased estimator of the class’s intrinsic dispersion in the RKHS.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C COMPOSITIONS OF SLNP MODULE

C.1 FLOW-BASED MODEL FOR IMAGE AUGMENTATION

We implement a normalizing flow based on RealNVP, tailored for RGB images (C = 3), to perform
semantic-preserving stochastic latent perturbation. The overall augmentation module consists of an
encoder-decoder flow fϕ,f−1

ϕ , and a learnable noise generator Sθ.

2D Coupling Layer
Given input x ∈ RB×3×H×W , we split it along the channel dimension.

x2, x1 = chunk(x, 2, dim = 1),

where x1 ∈ RB×1×H×W , x2 ∈ RB×2×H×W x2 be a transformed part conditioned by the condi-
tioning part x1.

The affine transformation parameters be computed as

[shift, log scale] = chunk(f(x1), 2, dim = 1)

shift ∈ RB×2×H×W , log scale ∈ RB×1×H×W

Then,

scale← exp(clamp(log scale,−7, 7))

The transformed output becomes

y1 = x1

y2 = x2 ⊙ scale+ shift
y = [y1, y2]

This ensures invertibility

x1 = y1
x2 = (y2 − shift)⊘ scale

x = [x1, x2]

Each affine coupling layer transforms only a subset of channels at a time, while the remaining
channels pass unchanged. However, because the output is always concatenated as [y1, y2] and the
next layer again splits it by chunk(2), the identity and transformed roles rotate across layers.
Consequently, over multiple layers, all channels are eventually transformed.

Flow Composition We stack multiple coupling layers to construct an invertible transformation
where the overall flow is denoted z = fϕ(x) and its inverse x = f−1

ϕ (z) reconstructs the input.
For images we use bounded scaling to stabilize color shifts

z(0) = x

z(i+1) = CouplingLayeri(z
(i)) for i = 0, 1, ..., L− 1

z = k ⊙ z(L) where learnable global scaling factor k = 1 + tanh(θ) ∈ R1×C×1×1

Stochastic Perturbation Function Sθ A learnable noise generator Sθ is applied to the latent repre-
sentation to produce semantic-preserving stochastic perturbations

ε = Sθ(z) + δ, δ ∼ N(0, I)

The perturbed latent representation becomes z+α · ε which is decoded back to the image space via
the inverse flow.

x′ = f−1
ϕ (fϕ(x) + α · ε) = f−1

ϕ (z + α · ε), α = 1

17
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C.2 FLOW-BASED MODEL FOR SPEECH AUGMENTATION

1D Coupling Layer Given input x ∈ RB×1×T , we split it along the temporal dimension into even
and odd time steps.

xeven = x[:, :, 0 :: 2] ∈ RB×1×T
2 , xodd = x[:, :, 1 :: 2]

where xeven ∈ RB×1×T , xodd ∈ RB×1×T

xodd be a transformed part conditioned by the conditioning part xeven.

The affine transformation parameters be computed as

[shift, log scale] = chunk(f(xeven), 2, dim = 1)

shift ∈ RB×1×T
2 , log scale ∈ RB×1×T

2

Then,

scale← exp(clamp(log scale,−2, 2))

The transformed output becomes

yeven = xeven

yodd = xodd ⊙ scale+ shift
y = [yeven, yodd]

This ensures invertibility

xeven = yeven
xodd = (yodd − shift)⊘ scale

x = [xeven, xodd]

We insert and invertible 1× 1 convolution for scale gain.

z = W ∗ x, W ∈ R1×1, W initialized orthogonal

The inverse transformation is

x = W−1 ∗ z

Flow Composition We stack multiple coupling layers and invertible 1×1 convolutions to construct
an overall invertible transformation. The forward mapping is denoted z = fϕ(x) and the inverse
x = f−1

ϕ (z) reconstructs the input.

z(0) = x

z(i+1) = Layeri(z
(i)), i = 0, 1, . . . , L− 1

where each Layeri alternates an invertible 1×1 convolution and a temporal affine coupling block.

z = k ⊙ z(L) where learnable global scaling factor k = exp(θ) ∈ R1×1×1

Stochastic Perturbation Function Sθ A learnable noise generator Sθ is applied to the latent repre-
sentation to produce semantic-preserving stochastic perturbations

ε = Sθ(z) + δ, δ ∼ N(0, I)

The perturbed latent representation becomes z+α · ε which is decoded back to the image space via
the inverse flow.

x′ = f−1
ϕ (fϕ(x) + α · ε) = f−1

ϕ (z + α · ε), α = 0.05
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Figure 5: (a) original image, (b) Semantically distorted augmentation, (c) Semantic preserving aug-
mentation

D SEMANTIC DRIFT ANALYSIS ACROSS PERTURBATION LEVELS

This section provides additional qualitative and quantitative analysis of semantic drift that may occur
when the perturbation strength K becomes excessively large. Semantic drift refers to cases where the
augmented sample no longer preserves the class-defining structure of the original image. Figure 5
shows representative examples of semantic drift at high perturbation levels. To quantify how often
such drift occurs, we manually evaluated samples generated at different perturbation levels. No
semantic drift was observed for small perturbations (K ≤ 3). As K increases, drift begins to
appear gradually. 2 out of 5 samples at K = 5, 3 out of 10 at K = 10, 4 out of 15 at K = 15,
and 6 out of 20 at K = 20. This finding confirm that SLNP maintains semantic consistency for
moderate perturbation strengths, and semantic drift emerges when perturbations exceed the stable
vicinal region.
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