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Abstract

Ambiguity remains a fundamental challenge in001
Natural Language Processing (NLP) due to the002
inherent complexity and flexibility of human003
language. With the advent of Large Language004
Models (LLMs), addressing ambiguity has be-005
come even more critical due to their expanded006
capabilities and applications. In the context007
of Conversational Question Answering (CQA),008
this paper explores the definition, forms, and009
implications of ambiguity for language driven010
systems, particularly in the context of LLMs.011
We define key terms and concepts, categorize012
various disambiguation approaches enabled by013
LLMs, and provide a comparative analysis of014
their advantages and disadvantages. We also015
explore publicly available datasets for bench-016
marking ambiguity detection and resolution017
techniques and highlight their relevance for on-018
going research. Finally, we identify open prob-019
lems and future research directions, proposing020
areas for further investigation. By offering a021
comprehensive review of current research on022
ambiguities and disambiguation with LLMs,023
we aim to contribute to the development of024
more robust and reliable language systems.025

1 Introduction026

The inherent ambiguity in natural language com-027

munication presents a fundamental challenge in028

human-AI interactions, especially in conversational029

systems. Modern AI Assistants, such as Adobe’s030

AEP AI Assistant1 and Amazon’s Rufus2, must031

navigate these ambiguities through advanced lan-032

guage understanding mechanisms. The ability to033

accurately determine the intended meaning of a034

term or phrase within a given context is fundamen-035

tal to enhancing the performance of such conver-036

sational systems. This mirrors human cognitive037

behavior, where communicators must anticipate038

1business.adobe.com/products/sensei/ai-assistant.html
2aboutamazon.com/news/retail/how-to-use-amazon-rufus
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Figure 1: Broadly, we categorize the existing literature
to answer three major research questions (RQs), namely,
why ambiguous (RQ1), how to disambiguate (RQ2),
and how to orchestrate (RQ3).

potential misunderstandings, while recipients en- 039

gage in active disambiguation through contextual 040

analysis (Anand et al., 2023), clarifying questions 041

(Zamani et al., 2020; Zhang et al., 2024c), and con- 042

tinuous interpretation refinement (Zukerman and 043

Raskutti, 2002; Jones et al., 2006). 044

The advent of Large Language Models (LLMs) 045

has further underscored the importance of under- 046

standing and resolving ambiguity to enhance the 047

performance and reliability of language understand- 048

ing systems. As LLMs become increasingly inte- 049

gral to applications, such as search engines or In- 050

formation Retrieval (IR) (Anand et al., 2023; Ma 051

et al., 2023), Conversational Question Answering 052

(CQA) (Zhang et al., 2020; Thoppilan et al., 2022; 053

Xu et al., 2023), automated text summarization 054

(Kurisinkel and Chen, 2023; Zakkas et al., 2024) 055

and so on, their ability to manage ambiguous lan- 056

guage is essential for effective communication and 057

user satisfaction. This is because their utility can 058

often be compromised by ambiguous user queries, 059

which can lead to incorrect or irrelevant outputs 060

(Kuhn et al., 2022; Deng et al., 2023a). 061

While disambiguation techniques have wit- 062

nessed significant advancements over recent 063

decades, driven by sophisticated algorithms (Ra- 064

ganato et al., 2017; Zhang et al., 2018; Rao and 065

Daumé III, 2018, 2019; Xu et al., 2019; Alianne- 066
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jadi et al., 2019; Kumar and black, 2020; Min et al.,067

2020; Zamani et al., 2020; Guo et al., 2021; Kuhn068

et al., 2022; Lee et al., 2023), the inherent com-069

plexity of natural language and the need for large070

annotated corpora has been continuing to pose sub-071

stantial challenges. For these reasons, an emerging072

and active area of research is to explore the capac-073

ity of LLMs themselves to identify and resolve am-074

biguous queries (Liu et al., 2023; Mehrparvar and075

Pezzelle, 2024; Zhang and Choi, 2023; Zhang et al.,076

2024c; Anand et al., 2023). While LLM-based dis-077

ambiguation techniques are gaining popularity, the078

field lacks a systematic analysis and categorization079

of existing methods. This paper addresses that gap080

by surveying current LLM-based approaches for081

ambiguity detection and disambiguation, outlining082

their underlying principles, strengths, and limita-083

tions. Among the NLP tasks, we primarily focus on084

CQA as this task seems to be prominent in majority085

of the use-cases.086

Organization of this Survey. We structure this sur-087

vey around three core research questions (see Fig-088

ure 1): RQ1: Why do ambiguities arise in language,089

and how can we detect them? RQ2: How can090

we disambiguate, particularly using LLMs? RQ3:091

How can we automate disambiguation strategies092

in real-world applications? Section 2 addresses093

RQ1 by defining key concepts, presenting a tax-094

onomy, and reviewing ambiguity detection meth-095

ods. Section 3 tackles RQ2 by categorizing LLM-096

based disambiguation approaches and analyzing097

their strengths and weaknesses. To support these,098

Section 4 surveys relevant public datasets used for099

benchmarking. Finally, Section 5 explores open100

challenges and outlines future directions, center-101

ing on RQ3: how to orchestrate disambiguation102

effectively in practice.103

2 Why Ambiguous?104

2.1 Definition of Ambiguity105

Ambiguous queries are typically those that have106

multiple distinct meanings, insufficiently defined107

subtopics (Clarke et al., 2009), syntactic ambigui-108

ties (Schlangen, 2004), for which a system strug-109

gles to interpret accurately, resulting in inappropri-110

ate or unclear answers (Keyvan and Huang, 2022).111

These ambiguities can arise at lexical, syntactic,112

or semantic levels, motivating the development of113

various taxonomies, which we present in the next114

section.115

2.2 Taxonomy of Ambiguity 116

Existing literature approaches the taxonomy of am- 117

biguities in various ways, often influenced by spe- 118

cific use-cases, public datasets, or the scope defined 119

for new data collection. For instance, Tanjim et al. 120

(2025) focuses on industrial conversation question 121

answering, while Zhang et al. (2024c) examine am- 122

biguities through public datasets. Additionally, Liu 123

et al. (2023) define their own criteria for collecting 124

new datasets, further diversifying the landscape of 125

ambiguity taxonomies. This complexity is com- 126

pounded by the various NLP tasks to which these 127

taxonomies are applied. For example, Natural Lan- 128

guage Inference (NLI), Question Answering (QA), 129

and Machine Translation (MT) each have unique 130

requirements and interpretations of ambiguity, as 131

explored by Zhang and Choi (2023). Consequently, 132

different taxonomies have emerged from these di- 133

verse focuses. Moreover, the same example can 134

be treated differently across various studies. For 135

instance, Zhang et al. (2024c) categorized the ex- 136

ample “Real name of gwen stacy in amazing spi- 137

derman?" as an Aleatoric ‘What’ type of ambiguity. 138

In contrast, Zhang and Choi (2023) classified this 139

as a ‘Literal vs. Implied interpretation’ ambiguity. 140

This discrepancy underscores the need for a unified 141

approach to taxonomy. 142

In Table 1, we present a comparative analysis 143

of these taxonomies to highlight common grounds 144

despite their differences. To cater to broader ap- 145

plications and provide clarity, we propose simpli- 146

fying existing taxonomies into three overarching 147

categories. We argue that these categories can en- 148

compass all existing taxonomies, irrespective of the 149

underlying tasks, thereby offering a more cohesive 150

framework for understanding ambiguities. 151

Syntactic Ambiguity: When a sentence can be 152

parsed in different ways (Church and Patil, 1982; 153

Wasow, 2015). For example, ‘I saw the man with 154

a telescope.’ Here the ambiguity arises because it 155

could be interpreted in two ways: did the speaker 156

see the man ‘with the telescope’ or did the speaker 157

see ‘the man’ using the telescope? This taxonomy 158

is listed in both Tanjim et al. (2025) and Liu et al. 159

(2023), but it seems to be missing in the other two. 160

Semantic Ambiguity: When a sentence is gram- 161

matically correct but semantically unclear, due to 162

ambiguity in a word, phrase, or the overall interpre- 163

tation. The more common case involves ambiguity 164

at the word or phrase level, often referred to as 165

lexical ambiguity (Navigli, 2009; Beekhuizen et al., 166
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Literature Taxonomy

Type Definition Provided by the Literature Example Given

Tanjim et al.
(2025)

Pragmatic The meaning of a sentence depends on the context,
reference, or scope.

“How many do I have?”

Syntactic The structure of a sentence is incomplete or allows
for multiple interpretations.

“Business event”

Lexical The meaning of the word/term is not clear or has
multiple interpretations.

“Are we removing abc123 from XYZ?”

Zhang et al.
(2024c)

Unfamiliar Query contains unfamiliar entities or facts. “Find the price of Samsung Chromecast.”

Contradiction Query contains self contradictions. “Output ‘X’ if the sentence contains [category
withhold] and ‘Y’ otherwise. The critic is in the
restaurant.>X. The butterfly is in the river.>Y.
The boar is in the theatre?”

Lexical Query contains terms with multiple meanings. “Tell me about the source of Nile.”
Semantic Query lacks context leading to multiple interpreta-

tions.
“When did he land on the moon?”

Aleatoric Query output contains confusion due to missing
personal/temporal/spatial/task-specific elements.

“How many goals did Argentina score in
the World Cup?”

Liu et al.
(2023)

Pragmatic Literal and pragmatic interpretations are present. “I’m afraid the cat was hit by a car.”

Lexical A lexical item has different senses. “John and Anna are married.”
Syntactic Different syntactic parses lead to different interpre-

tations.
“This seminar is full now, but
interesting seminars are being offered next quar-
ter too.”

Scopal Ambiguity from the relative scopal order of quanti-
fiers or the scope of particular modifiers.

“The novel has been banned in many schools
because of its explicit language.”

Coreference Ambiguous coreference. “It is currently March, and they plan to sched-
ule their wedding for next December.”

Zhang and
Choi (2023)

Word-Sense Disam-
biguation

Word-sense disambiguation for named entities, also
commonly surfaces as entity linking ambiguities.

“Who wins at the end of friday night lights?”

Literal vs. Implied
Interpretation

A question literally means something different
from what the user probably meant to ask.

“The cake was so dry, it was like eating sand.”

Multiple Valid Out-
puts

Ambiguity due to multiple valid outputs. “When did west germany win the world cup?”

Table 1: Here, we present several taxonomies exactly as they appear in the existing literature, along with their
definitions and examples (ambiguous parts of the text are underlined). As can be seen there are redundancies in
these definitions, highlighting the need for a unified taxonomy.

2021), where a term has multiple possible mean-167

ings. As shown in Table 1, this type is listed across168

most prior work, with the exception of Zhang and169

Choi (2023), where they mention it as ‘word sense170

disambiguation.’ Similarly, the ‘Unfamiliar’ cate-171

gory in Zhang et al. (2024c) aligns with this type,172

as unknown words are inherently open to interpreta-173

tion until contextual or domain-specific knowledge174

is applied. Beyond word-level issues, semantic am-175

biguity can also stem from interpretive variation176

at the sentence level. This includes the usage of177

literal vs. pragmatic words as mentioned by Liu178

et al. (2023), who refer to it as pragmatic ambi-179

guity, and ‘Literal vs. Implied Interpretations’ by180

Zhang and Choi (2023). The ‘Figurative’ type in181

Liu et al. (2023) also falls into this category, as182

does the ‘Contradiction’ category in Zhang et al.183

(2024c) because of conflicts with the semantics of184

previous statements.185

Contextual Ambiguity: When the context of the186

conversation is missing or the answers could be187

multiple unless no specific context is given (e.g., 188

what/when/where/who type of questions without 189

context) (Sperber and Wilson, 1986; Huang, 2017). 190

Tanjim et al. (2025) name this as pragmatic ambi- 191

guity, whereas it is listed as ‘Semantics’ in Zhang 192

et al. (2024c) and as ‘Aleatoric’, ‘Coreference’ and 193

‘Scopal’ in Liu et al. (2023), and as ‘Multiple Valid 194

Outputs’ in Zhang and Choi (2023). Meanwhile, 195

‘Knowledge Conflict‘, as described by Neeman 196

et al. (2022); Shaier et al. (2024), also aligns with 197

this type, occurring when a question lacks specific 198

context, such as temporal or locational cues, caus- 199

ing retrieval-augmented models to face conflicts 200

between retrieved and parametric knowledge. 201

2.3 Ambiguity Detection 202

The body of work for detecting ambiguity can be 203

broadly categorized into three major groups: tra- 204

ditional methods (not language model-based), lan- 205

guage model-based methods, and large language 206

model (LLM)-based methods. In Table 2, we sum- 207
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Literature Approach Inputs Ambiguity Type

Trienes and
Balog (2019)

Logistic regres-
sion + features

Q, tags, similar
Qs

Syntactical

Dhole
(2020)

BiLSTM classifier Dialogue, in-
tents

Contextual

Guo et al.
(2021)

BERT classifier Conv., passage Semantic, Contextual

Lee et al.
(2023)

BERT classifier Q, passages Contextual

Tanjim et al.
(2025)

ST + rules + fea-
tures

Q only Syntactical, Semantic,
Contextual

Kuhn et al.
(2022)

Prompted LLM Q Only Contextual

Zhang et al.
(2024c)

Prompted LLM Q, context (op-
tional)

Semantic, Contextual

Zhang and
Choi (2023)

LLM + CoT by
ambiguity type

Q, prompt
schema

Semantic, Contextual

Kim et al.
(2024)

LLM + uncer-
tainty signals

Q only Semantic, Contextual

Table 2: Summary of ambiguity detection meth-
ods. Shaded by method type: traditional (gray), LM
(cyan), LLM (pink). Here, ST= Sentence Transformer,
Q=Question, Conv.= Conversation.

marize each method’s approach, model inputs, and208

the types of ambiguity it addresses based on our209

taxonomy. We give more details below.210

Traditional Methods: Early research into ambi-211

guity detection primarily concentrated on binary212

classification methodologies. A significant contri-213

bution in this domain was made by Trienes and214

Balog (2019), who used logistic regression on fea-215

tures from similar questions in community QA fo-216

rums. Their model and features targeted queries217

that have a defect in their structure, thereby fo-218

cusing on syntactical ambiguity. While offering219

interpretability, their scope was limited to single-220

turn QA and did not account for other ambiguity221

types such as semantic or contextual ambiguities in222

dialogue-based settings. To address some of these223

limitations, Dhole (2020) proposed a two-stage224

approach for resolving ambiguous user intents in225

task-oriented dialogue. Their work falls under con-226

textual ambiguity, as their classifier disambiguates227

underspecified user intents.228

Language Model-Based Methods: In the realm of229

language model-based methods, Guo et al. (2021)230

introduced Abg-CoQA, a benchmark dataset and231

framework for ambiguity detection and clarifying232

question generation in conversational QA. Their233

model addressed both semantic and contextual am-234

biguities owing to their framing ambiguity detec-235

tion as a QA classification task (thus capable of236

understanding the semantic ambiguity). However,237

even with BERT-based models, performance re-238

mained low (23.6% F1). Similarly, Lee et al. (2023)239

proposed a BERT-based classifier to detect ambi-240

guity given a passage, but their model also ex-241

hibited low performance. Their work primarily 242

focused on contextual ambiguity, where a ques- 243

tion can lead to multiple valid answers without 244

further specification. A more recent study by Tan- 245

jim et al. (2025) employed Sentence Transformers 246

with handcrafted rules and features to detect all 247

three ambiguity types—syntactic, semantic, and 248

contextual—demonstrating that explicit modeling 249

of ambiguity categories can improve detection. 250

LLM-Based Methods: With the advent of large 251

language models (LLMs), ambiguity detection has 252

increasingly shifted toward prompt-based methods. 253

Kuhn et al. (2022) demonstrated that LLMs could 254

be prompted to decide whether to answer a query 255

or ask for clarification. Their method targeted pri- 256

marily contextual ambiguity, especially in cases of 257

underspecified user queries. Zhang et al. (2024c) 258

introduced CLAMBER, a benchmark with a tax- 259

onomy of eight ambiguity types. They showed 260

that LLMs can identify certain semantic (e.g., lexi- 261

cal or referential ambiguity) and contextual ambi- 262

guities, but struggle with systematic disambigua- 263

tion. Zhang and Choi (2023) proposed a prompting 264

method that asks the model to reason about ambi- 265

guity types before generating a clarifying question. 266

Their framework covers both semantic and contex- 267

tual ambiguity, aligning clarification strategies with 268

the predicted ambiguity type. Finally, Kim et al. 269

(2024) presented a method where LLMs use their 270

internal uncertainty to decide whether a query is 271

ambiguous. Their alignment framework quantifies 272

information gain through clarification, capturing 273

semantic ambiguities (e.g., polysemous terms) and 274

contextual ones (e.g., missing scope or domain). 275

Despite the flexibility of LLMs, these 276

works collectively show that ambiguity detec- 277

tion—particularly fine-grained distinctions among 278

types—remains a complex problem. We will 279

revisit these challenges in Section 5. 280

3 How To Disambiguate? 281

In the era of LLMs, disambiguation is gaining 282

increasing attention due to their extensive world 283

knowledge and advanced capabilities, surpassing 284

traditional and smaller language models. However, 285

current research in this area often lacks systematic 286

categorization and tends to address various aspects 287

in isolation. To that end, in this paper, we argue 288

existing disambiguation works fall in three major 289

policies, which we present in Figure 2. We describe 290

each of them below. 291
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Disambiguation Policy: 
Query Rewriting

Disambiguation Policy: 
Long Form Answer Generation

Disambiguation Policy: 
Asking Clarifying Question

LLMChat History + 
Other Context

Retrieve 
relevant 

document for 
each valid 

interpretation

Q

A

B

C

Pre-processing Intra-processing

Ambiguous Query

Multiple Valid 
Interpretations

Q

Ambiguous Query

Knowledge 
Base

Long Form AnswerLLM LLM
Rewritten Query

How many 
do I have?

How many 
segments I 

have?

What is a 
segment?

Name the president 
of United States.

For 2025-2028, the 
president is Donald 
Trump...For 2021-
2024 …..For years 

prior to that….

Q

A

B

CAmbiguous Query

Multiple Valid 
Interpretations

LLM

Knowledge 
Base

Who played Weasley 
brother in Harry Potter? 

Asking Clarifying 
Question

LLM

Could you kindly clarify 
which Weasley brother 

you are referring to?

Immersive (user not aware)

High risk if wrong

Low risk if wrong

Some user awareness

No risk if wrong

Total user awareness

Post-processing

Figure 2: We find existing disambiguation efforts using LLMs broadly fall into these three major categories: Left.
Query Rewriting, Middle. Long Form Answer Generation, Right. Asking Clarifying Questions. These policies have
different requirements and also work in different processing steps in CQA pipeline, resulting in unique advantages
and disadvantages for each approach. We highlight a couple here and provide a more comprehensive list in Table 5.

3.1 Query Rewriting (QR)292

Query rewriting (QR) represents a wide span of293

techniques that transforms ambiguous or unclear294

user queries into well-defined, comprehensive ex-295

pressions (Carpineto and Romano, 2012). Early296

work focused on query expansion (Carpineto and297

Romano, 2012; Lavrenko and Croft, 2017), contex-298

tual rephrasing (Zukerman and Raskutti, 2002), and299

synonym-based augmentation (Jones et al., 2006).300

Prior to LLM, research demonstrates significant301

advances in neural query rewriting through super-302

vised learning approaches (Elgohary et al., 2019;303

Anantha et al., 2021) and reinforcement learning304

frameworks (Vakulenko et al., 2021). Other inno-305

vations have explored explicit reasoning patterns306

(Qian and Dou, 2022) achieving good performance307

in transforming ambiguous queries into precise,308

answerable questions.309

The emergence of LLMs has enabled more ad-310

vanced query reformulation, moving beyond term-311

based edits to deeper semantic understanding and312

contextual refinement across downstream tasks313

(Wang et al., 2023). Recent research works, such314

as Ma et al. (2023); Jagerman et al. (2023), have315

demonstrated the efficacy of LLM-based query re-316

formulation in zero-shot and few-shot settings, par-317

ticularly valuable when domain-specific training318

data is scarce. The principled way of QR is shown319

in Figure 2 (Left), where an LLM is prompted with320

previous chat history and other relevant informa-321

tion as context. Some advanced prompting, such322

as Ye et al. (2023) also includes “rewrite-then-edit”323

framework. Apart from prompting, LLMs also324

have been fined-tuned (Peng et al., 2024) or used to325

generate Supervised Fine Tuning (SFT) dataset to326

improve QR model either through a re-ranker (Mao 327

et al., 2024) or preference optimization (Zhang 328

et al., 2024b). 329

3.2 Long Form Answer Generation (LFAG) 330

Generating long-form answers to ambiguous ques- 331

tions involves presenting all valid interpretations 332

alongside their corresponding answers. For in- 333

stance, the question “Who has the highest goals 334

in world football?” can refer to either men’s 335

or women’s football. A well-structured response 336

would be: “Ali Daei holds the record in men’s foot- 337

ball, while Christine Sinclair does in women’s foot- 338

ball.” As shown in Figure 2 (Middle), this task typi- 339

cally comprises three steps: 1) Disambiguating the 340

question, 2) Answering each interpretation, and 3) 341

Consolidating the results into a single, coherent re- 342

sponse. Early methods streamlined these steps into 343

a single model inference. Stelmakh et al. (2022) 344

finetuned T5 to directly produce long-form answers. 345

More recent LLM-based approaches, such as Gao 346

et al. (2023), show that few-shot prompting can 347

be similarly effective without fine-tuning. To re- 348

duce reasoning load, Amplayo et al. (2022) pro- 349

posed a two-step method: first inferring multiple 350

interpretations, then generating a long-form answer 351

from them. RAC (Kim et al., 2023) introduced 352

retrieval-augmented disambiguation to generate an- 353

swers with supporting evidence (Steps 1–2), while 354

ToC (Kim et al., 2023) extended this via iterative 355

retrieval to capture overlooked interpretations, trad- 356

ing off efficiency. DIVA (In et al., 2024) improved 357

efficiency by modeling a reasoning chain that com- 358

presses this process into a single step, maintaining 359

performance while reducing complexity. 360
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Technique Syntactic Semantic Contextual

QR ✓ ✓ ✓

LFAG ✗ ✓ ✓

ACQ ✗ ✓ ✓

Table 3: Disambiguation techniques and the types of
ambiguity they are equipped to handle.

3.3 Asking Clarifying Question (ACQ)361

This is one of the most extensively studied disam-362

biguation policies, with approaches ranging from363

rule-based prompts (e.g., “Did you mean A or364

B?” (Coden et al., 2015), “What do you want to365

know about QUERY?” (Zamani et al., 2020), or366

category-based options (Lee et al., 2023)) to tradi-367

tional machine learning (Zhang et al., 2018; Rao368

and Daumé III, 2018, 2019) and language model-369

based methods (Xu et al., 2019; Aliannejadi et al.,370

2019). Several works also introduce new datasets371

(Xu et al., 2019; Kumar and black, 2020; Min et al.,372

2020; Guo et al., 2021), discussed further in Sec-373

tion 4. However, these methods often struggle with374

complex queries and rely on annotated corpora,375

which could be difficult to obtain.376

With the advent of LLMs, recent studies have377

leveraged prompt-based approaches (Kuhn et al.,378

2022; Deng et al., 2023b; Zhang et al., 2024c),379

typically employing zero-shot or few-shot Chain-380

of-Thought (CoT) prompting strategies. These381

methods mirror the Long-form Answer Generation382

pipeline but focus on analyzing multiple valid in-383

terpretations to generate clarifying questions, as384

shown in Figure 2 (Right). Like QR, they re-385

duce the need for domain-specific data and can386

be training-free while supporting complex ques-387

tion structures. Some works adopt a two-stage388

pipeline: first detecting ambiguity, then generat-389

ing suitable clarification questions. For instance,390

Zhang and Choi (2023) proposed an innovative391

uncertainty estimation technique for ambiguity de-392

tection that quantifies intent entropy through sim-393

ulated user-assistant interactions. Finally, similar394

to QR, LLMs can be also be fine-tuned to gen-395

erate clarifying questions. For example, Zhang396

et al. (2024a); Kim et al. (2024) fine-tuned various397

LLMs, such as Llama-2-7B (Touvron et al., 2023),398

Gemma-7B (Team et al., 2024), and Llama-3-8B399

(Dubey et al., 2024).400

Table 3 summarizes how disambiguation tech-401

niques address different ambiguity types. QR han-402

dles all three by reformulating queries to fix syn-403

tactic issues, resolve semantic confusion through404

inferred interpretations, and incorporate missing 405

contextual details from prior conversation. LFAG 406

handles semantic and contextual ambiguity by pre- 407

senting multiple plausible interpretations, includ- 408

ing those that differ semantically as well as those 409

that are plausible when considering different con- 410

texts. ACQ resolves semantic and contextual am- 411

biguity by explicitly asking the user to confirm 412

among similar options or supply missing informa- 413

tion. While QR might look most appealing for its 414

broad coverage, it still faces key challenges such 415

as semantic drift (Anand et al., 2023) and practical 416

concerns like latency, cost, and error propagation 417

in production (Tanjim et al., 2025). We will dis- 418

cuss the strengths and limitations of each approach 419

further in Section 5. 420

4 Benchmarks 421

To evaluate disambiguation strategies, prior work 422

has introduced task-specific benchmark datasets 423

and metrics, which we describe below. 424

Ambiguity Detection and ACQ. Most existing 425

datasets related to ambiguity fall into the category 426

of detecting the need for clarification and necessary 427

disambiguation by asking clarification questions. 428

Notable datasets in this area include CLAQUA (Xu 429

et al., 2019), ClarQ (Kumar and black, 2020), Am- 430

bigNQ (Min et al., 2020), ClariQ (Aliannejadi et al., 431

2020), Abg-CoQA (Guo et al., 2021), PACIFIC 432

(Deng et al., 2022), CAmbigNQ (Lee et al., 2023), 433

and CLAMBER (Zhang et al., 2024c). These cor- 434

pora exhibit significant variation across several di- 435

mensions, each contributing uniquely to the un- 436

derstanding of ambiguities in dialogue systems, as 437

listed in Table 4. Among them, the CLAMBER 438

benchmark (Zhang et al., 2024c) has emerged as 439

the first comprehensive evaluation benchmark for 440

LLM-based ambiguity detection and ACQ, provid- 441

ing valuable insights into the current limitations of 442

LLM-based approaches and establishing baseline 443

metrics for future research. Statistics for all these 444

datasets, along with their corresponding URLs, ap- 445

pear in Table 4. Metrics typically used for ambi- 446

guity detection include classification metrics such 447

as Precision, Recall, F1, Accuracy, and AUROC 448

score (Zhang et al., 2024c; Tanjim et al., 2025). For 449

ACQ, the metrics are usually automatic text evalua- 450

tion metrics, such as BLEU (Papineni et al., 2002) 451

or ROUGE (Lin, 2004). However, some studies 452

criticize the limitations of these metrics and favor 453

human judgment instead (Zamani et al., 2020). 454

6



Paper Name Domain Core Unit Scale # Ambigu-
ous

Link

Ambiguity Detection and Asking Clarifying Question
Xu et al.
(2019)

CLAQUA Open-
domain

Q w/ Ans. (ST +
MT)

17K + 22K 7K + 9K github.com/msra-
nlc/MSParS_V2.0

Kumar and
black (2020)

ClarQ Stack Ex-
change

Q w/ Context 6M 2M github.com/vaibhav4595/ClarQ

Min et al.
(2020)

AmbigNQ Wikipedia Q w/ Ans.
(Tr/Vl/Te)

10K / 2K / 2K 4K / 1K / 1K nlp.cs.washington.edu/ambigqa

Guo et al.
(2021)

Abg-CoQA Stack Ex-
change

P + Q 4K + 8K 800+ / 900+ github.com/MeiqiGuo/AKBC2021-
Abg-CoQA

Aliannejadi
et al. (2021)

ClariQ TREC,
Qulac

Conv. + Clar.Q 11K + 1M Rated github.com/aliannejadi/ClariQ

Deng et al.
(2022)

PACIFIC TAT-QA Conv. + Q w/ Con-
text & Ans.

2K + 19K 2K github.com/dengyang17/PACIFIC

Lee et al.
(2023)

CAmbigNQ AmbigNQ Clar.Q + Ans. + P 4K + 400+ +
400+

All Ambig. github.com/DongryeolLee96/AskCQ

Zhang et al.
(2024c)

CLAMBER Mixed Q w/ Context 12K 5K github.com/zt991211/CLAMBER

Query Rewriting
Elgohary
et al. (2019)

CANARD QUAC Q + Rewrite 40K + 40K N/A canard.qanta.org

Anantha et al.
(2021)

QReCC QUAC, NQ,
TREC-C

Conv. + Q +
Rewrite

13K + 80K +
80K

N/A github.com/apple/ml-qrecc

Long Form Answer Generation
Stelmakh
et al. (2022)

ASQA Wikipedia,
AmbigNQ

Q w/ LF Ans.
(Tr/Vl/Te)

4K / 900+ /
1K

All Ambig. github.com/google-
research/language

Table 4: Publicly available datasets for benchmarking ambiguity in QA, covering both ambiguous and non-
ambiguous cases (except ASQA, CANARD, QReCC). Rows are task-grouped and color-coded by size: large
(pink), medium (cyan), small (yellow). "Core Unit" abbreviates data structure: Tr=Train, Vl=Val, Te=Test,
P=Passage, Q=Question, Ans.=Answer, Clar.Q=Clarifying Q., Conv.=Conversation, LF=Long Form, Con-
text=Passage/Table/Post (depends on the dataset), Rated=All questions rated from 1 (clear) to 4 (ambiguous).

Query Rewriting. There are two prominent bench-455

mark datasets for evaluating the quality of rewrit-456

ten queries. The pioneering dataset in this area457

is CANARD (Elgohary et al., 2019), which in-458

cludes questions with context and their rewritten459

versions. This was followed by QReCC (Anan-460

tha et al., 2021), where each user question is ac-461

companied by a human-rewritten query, and an-462

swers to questions within the same conversation463

may be distributed across multiple web pages. No-464

tably, QReCC is used in recent LLM-based QR465

approaches such as Ye et al. (2023) and Zhang et al.466

(2024b). Both of these datasets, along with their467

statistics and URLs, are listed in Table 4. It is im-468

portant to note that, unlike datasets related to ACQ,469

these datasets do not contain specific fields or la-470

bels explicitly indicating ‘ambiguity’ in queries. As471

for metrics, similar to ACQ, BLEU and ROUGE472

are popular choices for measuring the quality of473

rewritten queries. Additionally, since QR is often474

employed for IR tasks, standard IR metrics such as475

mean reciprocal rank (MRR), mean average preci-476

sion (MAP), and Recall@k and Precision@k are477

used to evaluate whether the rewritten query re-478

trieves the correct information (Ma et al., 2023; Ye 479

et al., 2023). For these purposes, popular open- 480

domain QA datasets like NQ (Kwiatkowski et al., 481

2019), TriviaQA (Joshi et al., 2017), and HotpotQA 482

(Yang et al., 2018) are often used as benchmarks. 483

However, we do not list them here as they do not fo- 484

cus specifically on ambiguity and lack correspond- 485

ing human-rewritten queries. 486

Long Form Answer Generation. To the best of our 487

knowledge, ASQA (Stelmakh et al., 2022) is the 488

only dataset that falls into this category. ASQA is a 489

long-form QA dataset derived from a subset of am- 490

biguous questions in the AmbigNQ dataset (Min 491

et al., 2020). Its statistics and corresponding URL 492

are provided in Table 4. The dataset is designed to 493

evaluate how well systems can generate compre- 494

hensive answers that cover all valid interpretations. 495

Two main metrics are used to assess the generation 496

quality (In et al., 2024): Disambig-F1 (D-F1) (Stel- 497

makh et al., 2022), which assesses the accuracy of 498

responses by verifying correct answers to disam- 499

biguated questions using an F1 score, and ROUGE, 500

which evaluates the correctness by comparing them 501

to ground-truth long-form answers. 502
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Disambiguation Policy Automatic? Additional LLM Call? Visible to User? High Risk? UX Disrupting?
Query Rewriting Yes Yes No Yes No
Long Form Answer Generation Yes Maybe Yes No Maybe
Asking Clarification Question No Yes Yes No Yes

Table 5: Comparison of disambiguation policies across key dimensions. Trait colors: Green = positive, Red =
negative, Yellow = context-dependent. No single policy suffices, motivating an agentic framework to coordinate.

5 Open Problems and Challenges503

Detecting Ambiguities. While LLMs have excep-504

tional generative capabilities, recent studies consis-505

tently highlight the challenges of using LLMs to506

detect ambiguous queries with high performance.507

For example, Zhang and Choi (2023) achieved an508

AUROC of 0.57 on AmbigNQ (Min et al., 2020) us-509

ing LLaMA-2-13B-Chat, while Zhang et al. (2024c)510

reported a best F1 score of 0.53 on their dataset us-511

ing GPT-3.5-Turbo. Tanjim et al. (2025) shares a512

similar study and highlight a relatively lower perfor-513

mance using GPT-3.5-Turbo and LLaMA-3.1-70B.514

One potential reason, as suggested by Liu et al.515

(2023), is that LLMs are not inherently designed to516

model ambiguities.517

How To Orchestrate? This is one of the research518

questions we posed at the beginning. To first see519

why we need to ochestrate among the disambigua-520

tion policies, in this paper, we systematically ana-521

lyze the pros and cons of each disambiguation pol-522

icy, making us the first to do so to the best of our523

knowledge. We show the list in Table 5, which are:524

1) Automatic: Both QR and LFAG are automatic525

and do not require human validation, unlike clarify-526

ing questions. 2) Additonal LLM Call: For CQA, at527

least one LLM call is needed for answer generation,528

and so LFAG could be integrated into that same529

LLM call. But both QR and ACQ require dedi-530

cated LLMs. 3) Visible to User: Rewritten queries531

are not typically visible to the user, whereas users532

might notice long-form answers and are definitely533

aware of clarifying questions. 4) High Risk: Each534

policy affects different processing steps; for exam-535

ple, QR impacts downstream tasks significantly, as536

incorrect assumptions can lead to wrong answers.537

5) UX Disrupting: Repeated QR does not affect538

user experience as it is not visible, but too many539

clarifying questions can vex users. LFAG falls in540

between, as overly long answers are sometimes541

unwelcome. As can be seen, each approach has542

unique strengths and weaknesses, necessitating the543

need of coordination. The challenge lies in deter-544

mining when to use which policy. For example,545

always asking clarifying questions can disrupt UX546

while always rewriting queries can lead to errors 547

(Tanjim et al., 2025). 548

Opportunities. One promising direction for im- 549

proving disambiguation systems is the develop- 550

ment of an agentic framework (Wu et al., 2023; 551

Zeng et al., 2023) that can intelligently select and 552

coordinate various disambiguation strategies. How- 553

ever, this approach faces two key challenges: reli- 554

ably detecting ambiguities and selecting appropri- 555

ate disambiguation policies. To address ambiguity 556

detection, recent advances in LLM-based data syn- 557

thesis and model training can be leveraged (Zhang 558

et al., 2024a,b). For policy selection, further en- 559

hancement can be achieved through a dedicated 560

reasoning component. Inspired by DeepSeek’s R1 561

framework (Guo et al., 2025), we can simulate 562

various conversation scenarios using different dis- 563

ambiguation policies, calculate rewards based on 564

performance metrics (e.g., answer accuracy, user 565

satisfaction, IR performance), and learn optimal 566

policy selection strategies through iterative refine- 567

ment. This two-pronged approach—combining 568

specialized ambiguity detection with intelligent 569

policy selection—could lead to a more robust and 570

effective “Disambiguation Agent." 571

6 Conclusion 572

In this paper, we have provided a comprehensive 573

analysis of ambiguity and disambiguation in LLM- 574

based CQA systems through three fundamental re- 575

search questions. First, we have explored different 576

types of ambiguity and proposed a unified taxon- 577

omy using three categories. We also highlighted 578

the challenges of accurately detecting ambiguity, 579

even with LLMs. Next, we have categorized var- 580

ious LLM-based disambiguation approaches and 581

reviewed key benchmark datasets and metrics. Fi- 582

nally, we discussed open challenges and opportuni- 583

ties for LLM-based ambiguity detection and disam- 584

biguation strategies. By offering a comprehensive 585

review of current research on ambiguities and dis- 586

ambiguation with LLMs, we hope our survey will 587

contribute to the development of more robust and 588

reliable LLM-based applications. 589
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Limitations590

In this work, we aimed to provide a comprehen-591

sive review and categorization of recent research on592

LLM-based ambiguity detection and disambigua-593

tion. Through our analysis, we identified three594

simplified categories of ambiguity types and three595

primary disambiguation techniques. However, this596

categorization is not exhaustive and may differ597

from other frameworks, which often use more gran-598

ular or task-specific classifications. Despite our599

thorough literature review, it is possible that some600

recent or less-publicized works were overlooked,601

given the rapid advancements in this field. Addi-602

tionally, our survey focused exclusively on ambigu-603

ity in Conversational Question Answering (CQA)604

tasks. In this survey, we did not cover other impor-605

tant NLP tasks, such as Natural Language Inference606

(NLI), Machine Translation (MT), Information Re-607

trieval (IR), and Code Generation (e.g., NL2SQL),608

where ambiguities also arise and pose significant609

challenges. Future work could benefit from extend-610

ing the scope to include these tasks, providing a611

more holistic understanding of ambiguity in NLP612

applications.613
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