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Abstract

In this paper, we study the implicit regulariza-
tion of stochastic gradient descent (SGD) through
the lens of dynamical stability (Wu et al., 2018).
We start by revising existing stability analyses of
SGD, showing how the Frobenius norm and trace
of Hessian relate to different notions of stability.
Notably, if a global minimum is linearly stable for
SGD, then the trace of Hessian must be less than
or equal to 2 /7, where 1 denotes the learning rate.
By contrast, for gradient descent (GD), the stabil-
ity imposes a similar constraint but only on the
largest eigenvalue of Hessian. We then turn to an-
alyze the generalization properties of these stable
minima, focusing specifically on two-layer ReLU
networks and diagonal linear networks. Notably,
we establish the equivalence between these met-
rics of sharpness and certain parameter norms for
the two models, which allows us to show that the
stable minima of SGD provably generalize well.
By contrast, the stability-induced regularization
of GD is provably too weak to ensure satisfactory
generalization. This discrepancy provides an ex-
planation of why SGD often generalizes better
than GD. Note that the learning rate (LR) plays
a pivotal role in the strength of stability-induced
regularization. As the LR increases, the regular-
ization effect becomes more pronounced, eluci-
dating why SGD with a larger LR consistently
demonstrates superior generalization capabilities.
Additionally, numerical experiments are provided
to support our theoretical findings.
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1. Introduction

In modern machine learning, models are often over-
parameterized in the sense that they can easily interpolate
all training data. Therefore, one may be concerned that al-
gorithms may pick up solutions that generalize badly on test
data (Wu et al., 2017). Fortunately, it has been found that
simple SGD and its variants always converge to solutions
that generalize well, even without empolying any explicit
regularizations (Zhang et al., 2017). Furthermore, SGD of-
ten generalizes better than GD (Keskar et al., 2017). Hence,
there must exist certain “implicit regularization” mecha-
nisms at work (Neyshabur et al., 2014). As practitioners
increasingly rely on implicit regularization to mitigate over-
fitting, it becomes imperative to understand the underlying
mechanisms.

The most popular explanation is the flat-minima hypothesis:
SGD tends to select flat minima (Keskar et al., 2017) and
flat minima generalize well (Hochreiter & Schmidhuber,
1994; 1997). This hypothesis has been widely adopted in
practice to tune the hyperparameters of SGD (Keskar et al.,
2017; Jastrzebski et al., 2017; Wu et al., 2020b) and to
design new optimizers (Izmailov et al., 2018; Foret et al.,
2020; Wu et al., 2020a) for better generalization. Despite its
widespread use, the theoretical understanding is still largely
lacking: 1) Why does SGD favor flat minima? 2) Why do
flat minima generalize?

In this paper, we aim to address these questions by adopt-
ing the perspective of dynamical stability (Wu et al., 2018;
2022). For over-parameterized models, all global minima
are fixed points of SGD but their stability can be different.
Notably, when confronted with a small perturbation, SGD
steers away from unstable minima, while stable minima tend
to be more resilient, allowing SGD to persist and even re-
converge after initial perturbations. This intriguing behavior
suggests that SGD exhibits a preference for stable minima.
The remaining puzzle lies in understanding the relationship
between the stability of a minimum, its sharpness, and its
generalization properties.

It is well-known that the stability condition for GD is
IH(®)|l2 < 2/n (Wu et al., 2018), where H(-) denotes
the Hessian matrix. This implies that GD tends to select
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minima whose sharpness, as measured by the spectral norm
of Hessian, is bounded independently of the model size and
sample size. Mulayoff et al. (2021); Nacson et al. (2022)
showed that for univariate two-layer ReLLU networks and
diagonal linear networks, this sharpness can control the
model capacity under some data assumption. Therefore, the
stability ensures that GD selects flat minima that generalize
well for these models.

Then a natural question is: Can we establish a similar un-
derstanding of SGD? Ma & Ying (2021) showed that if a
global minimum is linearly stable for SGD, then the trace
of Hessian Tr(H (6)) must be bounded. Meanwhile, it was
also proved that for ReLU networks, Tr(H ()) can control
the Sobolev seminorm of the functions implemented. These
together provide insight into how dynamical stability can act
as a form of regularization in SGD. See Wu et al. (2017) for
a similar argument. However, it is important to note that this
smoothness-based generalization cannot explain the superi-
ority of neural networks in high dimensions (Barron, 1993)
as the resulting generalization error bound suffers from the
curse of dimensionality. The major reason is that the upper
bound of Tr(H (#)) obtained in Ma & Ying (2021) grows
linearly with the number of parameters. In contrast, by in-
troducing a new notion of stability, Wu et al. (2022) showed
that the stability imposes a size-independent control on the
Frobenius norm of Hessian: ||H ()| r but Wu et al. (2022)
did not discuss the corresponding generalization properties.
In a word, understanding the stability-induced regularization
is still incomplete for SGD and in particular, the following
critical questions remain to be answered:

» Can we show that the stable minima of SGD generalize
well in high dimensions?

» Can we explain why SGD generalizes better than GD?

Our contributions. We begin by presenting an improved
stability analysis for SGD, demonstrating that stability im-
poses a size-independent control on either the Frobenius
norm or the trace of the Hessian matrix, depending on the
notion of stability used. Specifically, if a global minimum 6
is linearly stable for SGD, then Tr(H (6)) < 2/n; if it satis-
fies a loss stability, then ||H ()| = O(1/n). In contrast,
the stability of GD only controls the largest eigenvalue of
Hessian: ||H(0)|l2 < 2/n. We then examine the implica-
tions of these stability conditions for generalization, and our
main findings are summarized as follows.

e We first consider two-layer ReLU networks. It is
proved that all three aformentioned measures of sharp-
ness can effectively bound the path norm (Neyshabur
et al., 2015; E et al., 2019), thus controlling the gener-
alization gap. As a result, for both SGD and GD, the
stable minima are guaranteed to generalize well, which

stems from the stability conditions that impose con-
straints ensuring that the path norms remain bounded
by O(1/n), irrespective of the model’s size. Thus, the
size-independent nature of sharpness control strength-
ens the assurance of favorable generalization properties
for the stable minima.

* We next delve into the analysis of diagonal linear net-
works, which are essentially over-parameterized linear
models. We prove that the spectral norm, Frobenius
norm, and trace of Hessian are roughly equivalent to
the /-, ¢5 and ¢; norm of the effective coefficients,
respectively. The stability of GD only guarantees a
size-independent control on the spectral norm of Hes-
sian, thereby the /., norm of effective coefficients.
Consequently, stable minima of GD may not general-
ize well since the ¢, norm cannot yield an effective
capacity control for linear models. In stark contrast,
the stability of SGD imposes size-independent controls
on the trace or Frobenius norm of Hessian, thereby the
f1 or {5 norm of effective coefficients. As a result, the
stable minima of SGD must generalize well.

This comparison between SGD and GD effectively
demonstrates that in the case of diagonal linear net-
works, the stability of SGD imparts a substantially
stronger regularization effect than that of GD. This
provides an explanation for the superior generalization
performance consistently observed in SGD over GD.

It is important to note that the strength of stability-induced
regularization crucially depends on the size of LR. A larger
LR imposes a stricter constraint on the sharpness of stable
minima, thereby enforcing SGD/GD to select flatter minima.
This explains why SGD with a large LR often generalizes
better. To support our theoretical findings, systematic numer-
ical experiments are provided and in particular, we examine
in detail the impact of varying LRs.

1.1. Related works

Implicit regularization of SGD. In SGD, there exist mul-
tiple mechanisms that contribute to the implicit regulariza-
tion (Su, 2021; He & Su, 2020; Vardi, 2022). One is the
specific dynamical process, along with small initialization,
aiding SGD in finding solutions that generalize well (Zhang
et al., 2017; Woodworth et al., 2020; Blanc et al., 2020;
Chizat & Bach, 2020; Pesme et al., 2021; Ma et al., 2020;
Xu et al., 2021). This type of implicit regularization heavily
relies on the initialization size. In contrast, the stability-
induced regularization (Wu et al., 2018) is independent of
the initialization and can explain why using a large LR and
small batch size is more favorable (Wu et al., 2022; Ma &
Ying, 2021). In the experiments of the current work, we
intentionally exclude the small initialization-induced reg-
ularization by using a large initialization, as our focus is
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understanding the stability-induced regularization.

Barrett & Dherin (2020); Smith et al. (2020) explained the
benefit of using a large LR through a modified equation
analysis. However, the analysis is only validated for a finite
time and hence, cannot explain why SGD favors certain
minima, as the latter is a long-time property. In contrast, our
stability analysis does not have this limitation.

Generalization of flat minima. To explain why flat min-
ima generalize well, many works rely on the PAC-Bayesian
argument (McAllester, 1999). This argument established
the connection between certain sharpness and the average
generalization error of perturbed solutions, which, however,
is not for the original one (Neyshabur et al., 2017; Tsuzuku
et al., 2020). Furthermore, Bayesian arguments tend to
ignore the specific parametrization of neural networks. (Mu-
layoff et al., 2021; Ma & Ying, 2021; Nacson et al., 2022)
established sharpness-based generalization bounds for some
neural networks but they are limited to either linear or low-
dimensional cases. In contrast, our sharpness-based gener-
alization bound of two-layer ReLU networks is effective in
high dimensions.

In addition, some works argue that sharpness itself can not
effectively control model capacity since ReLLU neural nets
are invariant to node-wise rescaling, whereas the sharp-
ness is not. Consequently, sharp minima can generalize
well (Dinh et al., 2017). To overcome this issue, various
rescaling-invariant sharpness has been proposed, e.g., the
Fisher-Rao metric (Liang et al., 2019), normalized flatness
(Tsuzuku et al., 2020), relative flatness (Petzka et al., 2021).
However, our analysis suggests that flatness can be sufficient
for good generalization.

Notation. For an integer k, let [k] = {1,2,...,k}. For
a vector v, let [vll, = (3, 0")'/7, || || = | - |l2. and
© = v/||v||2. For a matrix A, denote by ||A||2 and || A|| 7
the spectral norm and the Frobenius norm, respectively and
let {\;(A4)}i>1 be the eigenvalues of A in a decreasing
order. Let %! = {z € R¥||z| = 1} and rS¢! =
{z € R?||[z]| = r}. For a distribution s, let [|f||7, ) =
Ey~pu[f?(x)]. We will use C to denote an absolute constant,
whose value may change from line to line. For notation
simplicity, we write X <Y if X < CY and X 2 Y if
X > CY. Analogously, we write X ~ Y if X <Y and
X 2 'Y hold simultaneously.

2. Preliminaries

Let S = {(x;,y; = f*(x;))}? be the training set, where
T1,...,Z, are i.i.d. samples drawn from the input distribu-
tion p and f* : R? — R be the target function. Our task is
to recover f* from S. Let f(-;6) : R + R be our model
parameterized by 6 € RP, where d and p denote the input
dimension and the model size (i.e., the number of param-

eters), respectively. The empirical and population risk are
given by

n

R(0) = 5 3 (F(@is0) — )?
i=1 (D
R(O) = ~ By [(F(250) — 9)?),

2
where the square loss is used. Throughout this paper, we
make the following over-parameterization assumption.

Assumption 2.1 (Over-parameterization). ming R(6) = 0

Let g;(0) = Vf(xz;;0) and e;(0) = f(z4;6) — y;. Then the
Hessian matrix is given by

n

> a0V f(xi;0). )

=1

SRS

HO) ==Y g:0)(0) +

Let G(0) = £ 37" | 9;(0)g;(A)T be the associate empirical
Fisher matrix. Then, (2) implies that when fitting errors are
small, we have H(6) ~ G(0) and in particular, H(f) =
G(0) if 0 is a global minimum. Note that G(6) is always
positive semi-definite but H (6) is not. In our analysis of the
dynamical stability, we shall focus on the region with small
empirical risk and hence, we do not distinguish the Fisher
matrix and Hessian matrix too much since they are close to

each other.

Gradient clipping. In our experiments, we will use large
initialization to exclude the implicit regularization induced
by small initialization. This choice will make it very of-
ten that SGD and GD with a large LR diverge initially
although there exist stable minima on landscape. To resolve
this issue, we shall apply gradient clipping (Pascanu et al.,
2013; Mikolov et al., 2012) to stabilize the training. Specifi-
cally, we use the following clipped (stochastic) gradient for
SGD/GD update:
VRaip(0) = min{ [VR(O)], 8} o
VRO
where § denotes the clipping threshold. In all our experi-
ments, we find that gradient clipping is activated only during
the early and intermediate training stages, and will be au-
tomatically switched off when SGD/GD nearly converges
since the gradient norm there is lower than the clipping
threshold. Therefore, gradient clipping does not change the
dynamical stability of SGD/GD at global minima.

3. The dynamical stability of SGD

In this section, we consider three measures of sharpness:
IG(8)|l2, |G(8)||F» and Tr(G(6)) and study how they are
related to the stability of SGD and GD

It is well-known that if 6 is a linearly stable for GD, then
I1H ()2 < 2/n (Wu et al., 2018; Mulayoff et al., 2021),
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which implies ||G(0)]|2 < 2/nif  is a global minima. Next,
we will show that similar size-independent controls hold for
SGD but on different norms of Fisher matrix.

3.1. Linear stability
Consider the mini-batch SGD:
Ori1 =00 —n(f(wi;00) — vi, )V f(2i,501), ()

where 7, %4 Unif ([n]). Throughout this paper, we assume
the batch size to be 1 for simplicity.

Suppose that 0; converges to a global minimum 6*. Let §; =
0; — 6* be the deviation. When ||d;|| is small, f(z;6;) =
f(z;0%) + V f(2;0%)T8; + o(||6¢]]). Substituting it into (3)
and noticing y; = f(x;; 6*), we obtain the linearized SGD:
Sp41 =00 =V f(25;0°)V (20776, (@)

where the high-order term is neglected. This linearized SGD
characterizes how d; evolves when 6, is close to 6*.

Definition 3.1 (Linear stability). Let (J;);cn be the solution
of the linearized SGD (4). A global minimum 6* is said
to be linearly stable if || E[0:67 ]|z < || E[606¢ ||  for any
t € N and initial distribution over dy.

The linear stability defined above measures the instability
by using the second-order moment of deviations. If 8% is
not linearly stable, it is unlikely that 6, converges to 8*. The
following provides a necessary condition of linear stability,
whose proof can be found in Appendix B.1.

Proposition 3.2. If a global minimum 0* is linearly stable,
then Tr(G(0%)) < 2/7.

This proposition implies that SGD tends to select minima,
where the sharpness—as measured by the trace of Hessian—
is bounded by 2/7, independently of the model size and
sample size. This size-independence means that stability
imposes an effective sharpness control no matter how over-
paramterized the model is and this in turn will yield an
effective control on the model capacity as demonstrated in
our subsequent generalization analysis. In contrast, for GD,
the linear stability imposes a much weaker control: Only
the largest eigenvalue of Hessian is bounded by 2/7.

Comparison with existing works. Défossez & Bach
(2015) derived the same upper bound of learning rate for
least square problems and studied its impact on the con-
vergence of SGD. In contrast, our focus is understanding
the implication for regularization. Moreover, it should be
stressed that our stability condition is derived by examing
the linearized SGD but relevant for nonlinear SGD. Ma &
Ying (2021) also derived an upper bound of Tr(G(6)) by
examing the linear stability but their bound grows explic-
itly with the model size. Specifically, Ma & Ying (2021,
Theorem 2) gives the bound Tr(G) < 2p/n, where p is the
number of parameters.

3.2. Loss stability

In this section, we revise the loss stability defined in Wu
et al. (2022), which is applicable to a general SGD:

Ori1 = 0, = n(VR(0:) + &), (5)
where &; denotes a general gradient noise that satisfies
El&] =0, X(0;) :=E[&el] = 2R(0:)S(0;).  (6)

Here S(6) represents the loss-scaled noise covariance ma-
trix. This assumption of gradient noise implies that the
noise magnitude is proportional to the loss value, which is
naturally satisfied by the mini-batch SGD (3) as pointed out
in Mori et al. (2022); Wu et al. (2022); Wojtowytsch (2021);
Feng & Tu (2021); Liu et al. (2021).

Lemma 3.3 (One-step update). Suppose R € C3(RP). We
have E[R(0:11)] = n*Tr[H(6;)S(0:)|R(0;) + O(n?)

Proof. By definition, we have
R(Oe41) = R(0, — nVR(6:) — néy)
= R(6: = VR(8:)) + (VR(O: = 7VR(6:)). —n:)

2 A~
+ L H (B =~ nVR(B)6 + O().

Taking expectation w.r. & and using H (0, — nVR(6;)) =
H(6;) 4+ O(n) and R(0; — nVR(6;)) > 0 gives

2
E[R(6:+1)] > T T[H(8)2(6,)] + O(n)

= *R(0:)Tr[H (0,)S(0,)] + O(®), (7

where the last step follows from (6). ]

This lemma implies that Tr[H (6;)S5(6;)] determines the
local stability if ignoring the higher-order term. Specifically,
if the loss R(6,) is sufficiently small such that H(6;) ~
G(8,), then for E[R(6,1)] < R(6;) to hold, a necessary
condition is Tr[G(6;)S(0;)] < 1/n?. This condition can be
converted to a sharpness control by assuming

J(6) - TCEOS(0)
IG(O)1%
By treating G(0) ~ H(#), u(0) can be interpreted as a
factor that quantifies the (loss-scaled) strength of alignment
between the noise covariance and local Hessian. For mini-
batch SGD (3), Wu et al. (2022) has shown that there exist
a size-independent constant pg > 0 such that pu(0) > pg
for neural networks. We refer to Wu et al. (2022) for more
discussions on this alignment factor.

Proposition 3.4. Assume R € C3(RP), u(0) > po.
Let Q., = {0 : R(0) < ¢, UG(Q)HF > \/1A/,u0/n}.
P A0y € Qe then BR(Gr)] > +'R(00) +
1—:110(773 + 1%e%/2) with v > 1.

()

= HO-
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The proof can be found in Appendix B.2. This proposition
shows that SGD will escape from a low-loss region exponen-
tially fast (measured by the loss value) if the the landscape
there is too sharp in terms of the Frobenius norm of Hessian.
Specifically, SGD can only stay/travel in the region where

IGO)lr < v/1/10/n-

The above analysis extends Wu et al. (2022) in two aspects.
First, our analysis does not need 6; to be close to a global
minimum #*, implying that the loss stability is relevant
even if SGD has not converge. This is consistent with the
numerical experiments in Wu et al. (2022), which shows
that the upper bound of Frobenius norm of Hessian matrix
holds for the entire training process. Second, our analysis
is applicable to general SGD where the gradient noise does
not necessarily come from the mini-match sampling. For
instance, one can consider the Langevin dynamics with
S(0) = G(0), which has been tested in Zhu et al. (2019) to
have similar generalization properties as mini-batch SGD.
In contrast, Wu et al. (2022) only considered the mini-batch
SGD and required 6* is close to 6; in the sense that ||6; —
0*]] = o(1).

Remark 3.5. Note that different from the linear stability
(Definition 3.1), the loss stability measures the stability by
using the changes of loss. In Wu et al. (2022), this stability
is referred to as “linear stability”. However, based on our
preceding explanations, we propose the term “loss stability”
as a more fitting term. Furthermore, we will specifically
refer to Definition (3.1) as “linear stability”, acknowledging
that it exclusively holds for the linearized SGD.

3.3. The comparison between two types of stability

The linear stability is defined by examining the linearized
SGD (4), which is validated only if 6; is sufficiently close
to a global minimum 6*. In contrast, the loss stability
measures the stability by inspecting if the loss grows ex-
ponentially, which is applicable even if 6, does not con-
verge. In terms of sharpness control, linear stability and
loss stability impose size-independent controls on Tr(G(6))
and ||G(0)||r, respectively. The former is stronger since
IGO)|lr < Tr(G(9)). To summarize, linear stability
yields a stronger sharpness control but requires the dynamics
to be sufficiently close to a global minimum; loss stability is
generally relevant but imposes a weaker sharpness control.
When the loss-stability is satisfied, SGD may travel in a
low-loss region without convergence and the convergence to
a global minimum requires the stronger condition of linear
stability to be satisfied.

Then a natural question is: Which type of stability charac-
terizes the actual dynamical behavior of SGD better? The
answer will depends on the problem and training stages.

¢ In training practical models, large-LR SGD often takes

many iterations to stay in a low-loss region without
reaching a global minimum. During these stages, the
loss keeps nearly unchanged; and thus, the condition
of loss stability must be met but the condition of linear
stability is not necessarily to be satisfied. Indeed, the
empirical studies by Wu et al. (2022) has demonstrated
the relevance of loss stability in this situation.

In this paper, we focus on detailed analysis of sim-
ple models: two-layer ReLU networks and diagonal
linear networks, for which we empirically find that
linear stability is more relevant. Specifically, the up-
per bound 2/7 is close to the actual trace of Hessian.
While the condition of loss stability is also satisfied, the
resulting bound is much looser. These observations are
not unexpected as for these simple models, large-LR
SGD always converges to zero loss stably, implying
the condition of linear stability must be satisfied.

4. Two-layer ReLU networks

We first consider the two-layer ReLU network: f(x;6) =
Yoty ajo(w] x), where a; € R,w; € RY, m denotes the
network width, and o(t) = max(¢,0). In this section, we

assume the input distribution to be p = Unif(v/dS?~1).

Define the weighted £ norm [|]|z,4 := >, ([|w; [|* + ga3),
where ¢ > 0 is the weight factor. The following theorem
shows that all three sharpness are equivalent to £ ; norms
of parameters and the only difference is the weight factor.
The proof can be found in Appendix C.2

Theorem 4.1. For any 6 € (0,1), let N(d,§) = inf{n €
N: dlog(n/d)/n < 1}.

o Ifn 2 N(d,9), thenw.p. 1 — § we have
IGO)F ~ 11015,y Te(GO)) ~ [10]2.a-

e Ifn 2 dN(d,J), thenw.p. 1 — 9,

G(O)ll2 ~ [10l]2,1-

Remark 4.2. Sharpness is a data-dependent quantity since
it measures the local curvature of empirical landscape. In
contrast, a weighted {5 norm of parameters is data indepen-
dent. The equivalence shown in Theorem 4.1 is possible
because we assume p to be isotropic. A question of more
interest would be to exploit the effect of data dependence
by making an anisotropic assumption on p, which we leave
to the future work.

For ReLU networks, it is well-known that the generalization
gap can be controlled by the path norm (Neyshabur et al.,
2015; E et al., 2021) ||8]|p := Zj laj|||w;]|. By the AM-
GM inequality, we have

161124 = > (llw;* + ga3)

J



The Implicit Regularization of Dynamical Stability in Stochastic Gradient Descent

>2va ) lajllwill = 2valfle. O
i

This implies that weight /5 norms can bound the generaliza-
tion gap although it is not rescaling invariant.

Theorem 4.3. For SGD and GD with the same LR 1), denote
by ésgd and égd the linearly stable minimum of SGD and
GD, respectively. Suppose sup,c |f*(x)| < 1. For any
5 €(0,1), ifn 2 dN(d,6), then the following holds w.p. at
least1 — 0

B A Bd

R(ngd) S 2’ R(di) IS 7727”,

where B = log® n + log(1/9).

Proofidea. The complete proof can be found in Appendix
C.3. Here we provide a sketch of proof idea. For 0,4, the
generalization gap can be informally bounded as follows

(i) dHésgd”% (<b) ||€sgdH§,d

gen-gap(fga) S — -0 S —
() Ty2 ) d 2

O TGla) O 17 )
n n

where (a) follows from the path norm-based generalization
bound (Proposition C.16); (b) follows from (9); (c) follows
from Theorem 4.1; (d) is due to the stability condition
(Proposition 3.2).

This theorem shows that stable minima provably general-
ize, no matter how over-parameterized the model is. This
suggests that the stability-induced regularization is strong
enough to eliminate the potential overfitting caused by over-
parameterization. In addition, with the same LR, stable
minima of SGD generalize better than that of GD. However,
it is more fair to compare SGD with LR 7 and GD with LR
V/dn. Thus, we will use this LR choice in our experimental
analysis for a fair comparison between SGD and GD.

Comparison with existing works. Mulayoff et al. (2021)
conducted a similar analysis for two-layer ReLU networks,
which, however, is limited to GD and the univariate case.
Another closely related work is Ma & Ying (2021), which
established a generalization bound of linearly stable minima
of SGD for ReLU networks but the bound suffers from
the curse of dimensionality. One of the reasons is that the
upper bound of the trace of Hessian derived in Ma & Ying
(2021) depends on the model size explicitly. In contrast, our
generalization bounds are effective in high dimensions and
hold for both SGD and GD.

4.1. Numerical validations
Consider f*(z) = Y°F | o(vTz) with v; % Unif(S%1)

and f(z;0) = 7', ajo(w]z). Wesetk = 10,d =
100,m = 100, and the sample size n = 300. With

this choice, the total number of parameters is p = (d +

1)m = 10100 and thus, we are examining a highly over-
parameterized case where p > n. We consider a large
initialization: a; ~ N(0,1) and w; ~ N(0, I;/+/d), with
which the path norm at initialization: ||0|p ~ m, growing
linearly with the network width. This large initialization ex-
cludes the small initialization effect and one must rely on the
stability-induced regularization to select minima with small
path norms. In addition, gradient clipping will be applied to
stabilize the training if SGD/GD blows up initially.

The effect of gradient clipping. Figure 1 shows the dy-
namical process of SGD with gradient clipping, where
n=1/ V/d and the clipping threshold § = 1. One can
see that the gradient clipping is automatically switched off
since around 4000 iterations. After that, SGD can stably
converge to a global minimum without clipping operations.
This implies that around the convergent minimum, linear
stability should be satisfied and consequently, it is not sur-
prising to observe that Tr(G(6;)) < 2/n when 6, nearly
converge. Another interesting observation is that during the
whole training process, Tr(G(6;)) keeps decreasing, which
in turn causes the continued decreasing of path norm. This
phenomenon cannot be explained by the stability condition
and one should delve into the dynamical process of SGD.
We refer to Blanc et al. (2020) for a potential explanation.

= Fisher trace

N = train

path norm

1\ test clipping threshold 1%

gradient norm

0 50000 0 50000
Number of iters.

020000 40000 60000 80000
Number of iters.

Number of iters.

Figure 1. The training process of SGD with gradient clipping. The
gradient clipping is automatically switched off in the late phase
of training. The trace of Fisher matrix keeps decreasing until it
becomes lower than 2/7 and meanwhile, the path norm also keeps
decreasing, which is consistent with Theorem 4.1.

The sharpness. Figure 2(a) shows how the sharpness and
path norm of minima selected by SGD and GD changes
with the LR. For SGD, Tr(G(6)) keeps decreasing but close
to the upper bound 2/7. Consequently, the path norm also
keeps decreasing. This is consistent with the predictions of
linear stability analysis and Theorem 4.1. For GD, ||G(6)]|2
keeps close to the upper bound 2/n when the LR is suffi-
ciently large. When the LR is small, the actual sharpness is
away from the upper bound. These observations suggest that
the impact of stability-induced regularization is particularly
significant in the large LR regime.

The test performance. Figure 2(b) shows that the test
performance is continually improved for both SGD and GD
as increasing the LR, which again confirms the prediction
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Figure 2. (a) The sharpness and path norm vs. LR. (b) The test
performance vs. LR. For a fair comparison, we compare SGD with
LR 7/+/d and GD with LR 7.

of Theorem 4.3. One observation of more interest is that
Figure 2(b) shows that with the fair choice of LR, SGD still
generalizes better than GD. This beyond what Theorem 4.3
can explain since the generalization bounds are the same
for SGD and GD in such a case. In addition, when the
LR is overly large, SGD still generalizes better although
its path norm becomes larger than that of GD. A potential
explanation is that the noise drives SGD towards better
minima with certain mechanism beyond dynamical stability.
We leave this to future work.

5. Diagonal linear networks

Consider the two-layer diagonal linear network

f(z:0) = (a ©b,z), (1D
where a,b € RY, 0 = (a,b) € R??, and ©® denotes the
element-wise multiplication. Despite its simplicity, this
model has been widely used in theoretical analysis to demon-
strate particular properties of SGD in training neural net-
works (Woodworth et al., 2020; Gissin et al., 2019; Pesme
et al., 2021; Nacson et al., 2022). Note that this model can
only represent linear predictors and we willuse 5 =a © b
to denote the effective coefficients. In this section, we make
the following assumption on p.

Assumption 5.1. Let X ~ p. Assume E[X X7T] = I; and
X is sub-Gaussian, i.e., [[u? X ||y, < 1 forany u € S1.

~

Here || - ||, denotes the sub-Gaussian norm (we refer to Ap-
pendix A.3 for details) and one typical example that satisfies
the above assumption is N'(0, I;) and Unif([—1, 1]¢).

Theorem 5.2. Suppose Assumption 5.1 holds. Let o =
a®a+beb. Leté € (0,1) be the failure probabiliry.

o Ifrn, = /(d+10g(1/0))/n < 1, thenw.p. 1 — § that

(1 =ra)llefleo < NGO)]l2 < (1 + 7)o

o Ife, = +/log(d/d)/n < 1. Then, w.p. 1 — 6 that
(1 —en)llalls <[GO)F < enllal + (14 2e4)[|all
(1 —en)llally < Te(G(0) < (1+&n)llall-

This theorem establishes the equivalence between the sharp-
ness and parameter norms, whose proof is deferred to Ap-
pendix D.1. It is worth noting that the cases of Frobe-
nius norm and trace hold in the highly over-parameterized
regime: n ~ log(d/J).

Theorem 5.2 shows that with a high probability, |G(9)]|2 is
equivalent to max; (a3 + b3), which unfortunately cannot
provide an effective capacity control for the linear predictor:
(a ® b)T x. Furthermore, the stability of GD only imposes
a size-independent control on ||G(6)]|2. Thus, we can con-
clude that the stability-induced regularization of GD is not
strong enough to help find generalizable minima. In con-
trast, the stable minima of SGD provably generalize well,
which is explained as follows. Noting

lafly =) (a3 +63) > 2 la;b;| = 2118]lx

j j

i3 = (aF + )% > 4 (a;0;)* = 4/I8]13
J

J

and applying Theorem 5.2, we can conclude that the linear
stability and loss stability can control the ¢; and /5 norm
of effective coefficients, respectively, which yield effective
capacity controls for the linear predictor. Specifically, the
following theorem formalizes this observation for the case
of linear stability and the proof is deferred to Appendix D.2.

Theorem 5.3. Suppose p = Unif([—1,1]%) and f*(z) =
Brx. Let 6 = (a, 3) be a global minimum that is linearly
stable for SGD (3) with LR 1. Then, for any § € (0, 1), if
n > log(d/8), then w.p. 1 — 8 we have ||a ® by < 1/nand

R(O) < (1/m)*log®(n) log(d) N (1B«llx + %)21og(1/6).

This theorem shows that SGD selects minima with the ¢,
norm bounded by 1/7. As long as the LR 7 is sufficiently
large and || 3.||1 = O(1), the minima found by SGD gener-
alizes well. Woodworth et al. (2020) showed that for this
model, gradient flow converges to the minimum ¢; norm
solutions when a (near-)zero initialization is used. Neverthe-
less, we reveal that the linear stability of large-LR SGD has
a similar effect, which is independent of the initialization
scale.
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Figure 3. (a) How the sharpness of minima found by SGD and GD changes with the learning rate. We see that for SGD, the upper bound
2/m provides a quite sharp estimate of the actual trace of Fisher matrix up to a multiplicative constant. In contrast, for GD, the sharpness
barely changes as increasing the learning rate. (b) The comparison of test performance between SGD and GD for varying learning rates.
(c) Demonstrate the balancing effect of SGD, where the unbalancedness is measured by 7(8) = 0.5||«||2/||3]|:. The horizontal and
vertical axises correspond to the unbalance at initialization and convergence, respectively.

Comparison with Nacson et al. (2022). Nacson et al.
(2022) obtained a similar result for GD but it crucially relies
on the non-centered data assumption: All coordinates of
E[X] are nonzero. In contrast, our analysis does not need
this assumption and moreover, can explain why SGD gen-
eralizes better than GD. We also point out that under the
non-centered data assumption, the stability-induced regu-
larization might not be able to distinguish SGD and GD as
both control the ¢; norm of effective coefficients.

The balancing effect. Another interesting consequence is
that SGD tends to select balanced solutions where a? ~ b?
for any j € [n]. This is because minimizing the trace
and Frobenius norm of Fisher matrix naturally leads to this
balance according to Theorem 5.2 and (12). In contrast,
the stability of GD only controls max e |q] (a? + b?), which
does not have the balancing effect except for the coordinate:
k € argmax; (a3 + b3).

Deep diagonal linear networks. Similar to Nacson et al.
(2022), we can analyze the interaction between depth and
stability by examining the deep model f(x;60) = (a” ®
bP, x), where aP = (aP,...,a?) and bP is defined sim-
ilarly. Analogous to Theorem 5.2 and (12), one can show
that Tr(G(0)) 2 [la” © bP||E with p = @. Thus, the
stability-induced regularization changes from the ¢; norm
for D = 2 to the ¢ norm for D — oo. Here we do not
discuss this in detail since it does not reveal any new insights
beyond Nacson et al. (2022, Section 6).

5.1. Numerical validations

Consider f*(x) = BTz with 8, = (1,1,1,0,---,0), for
which || 5|1 = 3. We set d = 1000, » = 300 and initialize
the model by a;, b; wd N(0,1) forj =1,...,d. This large
initialization is adopted to eliminate the implicit regulariza-
tion of small initialization. The model is trained by SGD
and GD with varying LRs. Gradient clipping is applied to
stabilize the training for the case of large LR. The results
are reported in Figure 3.

The sharpness. The left panel of Figure 3(a) shows how
the actual sharpness of minima selected by SGD changes
as increasing the LR. One can see that the Tr(G(6)) keeps
close to 2/n-the upper bound ensured by the linear stability;
IG(0)]| also decreases with LR though the decreasing is
not significant. These are in contrast to ||G(6)]||2, which
keeps almost unchanged. These observations suggest that
for diagonal linear networks, the linear stability is critical
in characterizing the sharpness of minima found by SGD,
which is consistent with the fact that in this case, SGD
converges to global minima stably. As a comparison, the
right panel of Figure 3(b) shows that for GD, all the three
sharpness keep almost unchanged when increasing the LR.

The test performance. Figure 3(b) shows the test errors
of minima found by SGD and GD for varying LRs. One
can see that as increasing the LR, the test error of SGD de-
creases significantly. This can be explained by the fact that
Tr(G(6)) and the resulting ¢; norm of 3 decrease signifi-
cantly as demonstrated in Figure 3(a). In contrast, the test
error of GD barely changes, which is also consistent with
our theoretical prediction that the stability of GD can not
yield effective capacity control for diagonal linear networks.
These are consistent with our theoretical prediction: The
stability-induced regularization of SGD is much stronger
than that of GD.

The balancing effect. To measure the balancedness be-
tween the inner and outer layers, we define r(0) =
lall /218l = X2, (a2 +82)/(2 %3, |a;b;]). By the AM-
GM inequality, r(f) > 1 and the equality is reached when
a? = b? for all j € [n], i.e., the solutions are totally
balanced. The larger r(6) is, the less balanced the solu-
tion is. In the experiment, we consider the initialization
a; ~N(0,0.1),b; ~ N(0,0.1rg) with o controlling the
balancedness at initialization. We are interested in the bal-
ancedness of minima selected by SGD and GD. Figure 3(c)
shows that SGD finds solutions with 7(#) &~ 1 no matter
how unbalanced the initialization is. In contrast, GD is ex-
pectedly unable to reduce the unbalancedness introduced at
initialization. These confirm again our theoretical predic-
tions by analyzing the dynamical stability.
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6. Conclusion

In this paper, we study the stability-induced regularization
of SGD and GD by relating the dynamical stability to the
sharpness of local landscape. We establish generalization
bounds of stable minima for two-layer ReLU networks and
diagonal linear networks via linking sharpness to parameter
norms. Specifically, these bounds imply that stable minima
of SGD provably generalize well and can explain the benefit
of using a large LR. Most importantly, our stability analysis
can explain why SGD generalizes better than GD at least
for diagonal linear networks. We also corroborate our theo-
retical findings with fine-grained numerical experiments.

Note that the stability-induced regularization is independent
of initialization but crucially depends on the size of LR.
This can potentially explain the practical observation that
large LR often leads to better generalization in training
large-scale models. In contrast, other mechanisms such as
small initialization (Chizat & Bach, 2020; Woodworth et al.,
2020) and noise-driven diffusion (Blanc et al., 2020; Li
et al., 2021; Damian et al., 2021) cannot explain the benefit
of large LR. In addition, our analysis also suggests that
gradient clipping has an implicit regularization effect in the
way of allowing convergence with a larger LR. We leave the
systematic investigation of these issues to future work.
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Appendix

A. Technical background

In this section, we will first introduce some notations and technical background which will be used in the proofs of next
sections.

A.1l. The Hermite expansion.

Let v = N(0,1) and {h;}$°, be the probabilist’s Hermite polynomials, which form a set of orthonormal basis of L?(7y)
with
22 -1 2% — 3z

2 hs(2) = e
\/5 3( ) \/6
Givena f € L*(v), denote by f(z) = >, frhi(2) be the Hermite expansion of f where

ho(z) =1, hi(z) = z, ha(2) = (13)

fi = B [f (2)hi(2)] = J% / F(2)hi(z) dz

is the “Fourier coefficient” of f. We will frequently use the following lemma (O’Donnell, 2014, Proposition 11.31):
Lemma A.1. Given f,g € L*(v), we have for any u,v € S*! that

Epno,10[f (" 2)g(0"2)] = Y frdi(u ).
k=0

A.2. Rademacher complexity and generalization bounds

Here we only state properties of Rademacher complexity that will be used in this paper. For the missing proofs and more
details, we refer to Shalev-Shwartz & Ben-David (2014, Section 26).

Definition A.2. Given a function class F, the Rademacher complexity of F with respect to x1, . . ., z,, is defined as

n

— 1
Rad, (F) = Eg, .., . |sup — )&,
(F) =E¢,,. ¢ [fegn;f( )il

where &1, . .., &, are i.i.d. samples drawn from the Rademacher distribution: P(§ = 1) =P(§ = —1) = %

Lemma A.3 (Contraction property). Let ¢ : R — R be 3-Lispchitz continuous and p o F = {@p o f : f € F}. Then,
Rad,, (¢ o F) < fRad,(F).

Lemma A4, Let F = {ulz : u € S4=1} be the linear class. Then @n(}') < M

n

Theorem A.5. Consider a function class F withsup,cx rer |f(2)| < B. Forany é € (0,1), w.p. at least 1 — § over the
choice of S = (21, 22, ..., zn), we have,

L3 )~ ELlf0)] £ R () + 1y 22

Lemma A.6. Let F and G be two function classes. Suppose that sup jc || flloo < A and sup,eg ||gllcc < B. Define
FxG={f(x)g(z) : X =R : f€F,geG} Then, Rad,(F *G) < (A + B)(Rad,(F) + Rad,(G)).

12
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Proof. By the definition of Rademacher complexity,

nRad, (F * G) = E¢[ sup Zfa:z ()&i]

feF.ge6 ;4
- _ ) ot ; ),
(2 A;B < fesfuseg; (w5) + g(4))&] +E£[f63f111;€g; - g(%))fz])

< (A + B)n(Rad, (F) + Rad,(g)),
where (i) follows from the Lemma A.3 and the fact that 2 /4 is (A+ B) /2 Lipschitz continuous since |f| < 4, |g| < B. O

Generalization bounds of learning with a smooth loss. Let ¢ : ) x Y — [0, c0) be a loss function. Define the empirical
and population risk as follows

R(h) = E[p(h(2),y)], R(h) = E[g(h(z),y)],
where E denotes the expectation with respect to the empirical measure. Let H be the hypothesis space and h =
argming, 4, L(h). We would like to bound the population risk of the / by using the following decomposition:
R(h) = R(h) + R(h) — R(h).
gen—gap
Theorem A.5 shows that the second term (gen-gap) can be controlled by the Rademacher complexity of 7{. By assuming ¢

is Lipschitz continuous and applying Lemma A.3, an (informal) bound goes like

R(h) = R(h) < sup [R(h) — R(h)| < Lip(¢)Rad,,(H).
heH
This usually provides us a O(1/+/n) bound, which is tight for Llpschltz loss such as hinge loss However, for square loss,
this bound is often loose as explained as follows. For the minimizer h, it is expected that R( ) < r for small r. Therefore,
one only needs to consider a constraint hypothesis class:

H, = {h € H|R(h) < r}.

For hypothesis in this restricted class, the Lipschitz constant of ¢ is much smaller for smooth loss. For instance, t?/2 is only
r-Lipschitz for t € [—r,r]. This argument can be formalized by using the concept of local Rademacher complexity (Bartlett
et al., 2005). Specifically, we shall use the following theorem in our proof, which is a restatement of Srebro et al. (2010,
Theorem 1)

Theorem A.7. Let
R,.(H) = sup Rad,(H) (14)

be the worst-case Rademacher complexity. Assume that |¢"'| < Aand 0 < ¢ < B.. Then, w.p. at least 1 — § over the
sampling of training set, we have for any h € H that

R(h) < R(h) +C (M <\/Z log®/2(n) R, (H) + Blog;”‘”) + Alog®(n) R, (H)? + W) ,

n

In particular, for h € argmin, R(h),

Blog(1/96)

R(h) < Alog®(n)Rn(H)? + (15)

In this paper, we will mainly use (15) to bound generalization error since our focus is the minimizer h.

13
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A.3. Concentration inequalities

Definition A.8. Let ¢/ be a non-decreasing, convex function with )(0) = 0. The Orlicz norm of a random variable X is
defined by || X || := inf{t > 0: E[¢(|X|/t)] < 1}. If X € R%is a vector, then || X ||y := sup,cga—1 [|u? X ||y

For our purpose, Orlicz norms of interest are the ones given by ¢, (z) = e®” — 1 for p > 1. In particular, the cases of p = 1

and p = 2 correspond to the sub-exponential and sub-Gaussian norms, respectively. A random variable X is said to be
sub-Gaussian (resp. sub-exponential) if || X ||, < oo (resp. || X ||y, < 1).

A random variable with finite v/,,-norm has the following control of the tail behavior

—Ca s
P{|X| >t} < Cre "lun,

where C', Cy are constant that only depend on p.

Lemma A.9. < If|X| < 1almost surely, then | X ||y, S 1fori=1,2.
o If X ~ N(0,0?), X is sub-Gaussian with | X|| 4, < Co.
o Let X, Y be sub-Gaussian random variables. Then, XY is sub-exponential and || XY ||y < || X ||y 1Y | 05 -
o If|X| < |Y]as., then || X ||y < ||Y ||y for any o that satisfies the condition in Definition A.8.
e Center inequality. For a random variable X, we have
1X = EX]lly, < CllX]ly, (16)

for a constant C' > 0 that may depend on p.

Theorem A.10 (Bernstein’s inequality). Let X1,..., X, be independent sub-exponential random variables. Suppose
K =max; || X;|ly, < oo. Then, foranyt > 0,

n 2
]P’{%ZXZ —E[XH > t} < 2exp (—C’nmin <;{2, ;{)) .
i=1

Proposition A.11 (Sums of independent sub-Gaussians). Let X1, ..., X, be independent, mean zero, sub-Gaussian random
variables. Then, Z?:l X, is also a sub-Gaussian random variable, and

n n
IS X2, < oS Ix,
=1 =1

Covering number. We shall also use the covering number in our analysis. Let (7', ¢) be a metric space. Consider a subset
K C T and lete > 0. A subset N, is called an e-net of K if every point in K is within a distance & of some point of Az,
ie.,

Ve € K, Jzg € N: : q(z,20) < &

The smallest possible cardinality of an e-net of K is called the covering number of K and is denoted by N (K, g, ¢).

A commonly-used fact is
NETL - e) < (L+2/e) (17)

(see, e.g., Vershynin (2018, Corollary 4.2.13)).

Remark: We refer the reader to Vershynin (2018) for the proofs of the above properties and more related information.
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A 4. Auxiliary Lemmas

Lemma A.12. Let uy, ua, . .., Uy, € R% Then for any k € N and oo € R™, we have

> aiag(uluy)k > 0. (18)

i,j=1

Proof. LetU = (uq,...,uy) € R™™and Q, = ((ulu;)*);; € R™ ™. First, Qo = Iz, Q1 = UTU are both positive
semi-definite and hence (18) holds. For k& > 2, we have Q; = Q1 0 Q1 o - - - 0 Q1 where o denotes the hadamard product.
By the Schur product theorem!, Q) is also positive semi-definite and hence (18) holds. O

Lemma A.13. Suppose k(-,-) to be positive semi-definite kernel and let ¢ : X — H be a feature map satisfying
k(,y) = (6(), 6(5))y. Then,

M (K) = Hhﬁﬁ‘ile“h’ $(x))3,]- (19)

Proof. By the variational principle of the largest eigenvalue, we have

M(K) = sup B ylk(z, y)u(@)u(y)] =  sup  Equy[(0(2), 6(y))y ulz)u(y)]
lull Ly (o) =1 lull Ly (o) =1
= sup  [|Efu(@)g@)]lf= suwp  sup (b E.fu(z)g(@)])
lullLg =1 lully oy =1 [IRll#=1
= sup  sup  Efu(@)(h,¢(@))u]® = sup E[(h,é(2))3]-
lAll#=1lullLy =1 lRll=1
O
Lemma A.14. Assume X ~ N(0,1;). Forany ¢ € (0,1), let n 2 d + log(1/4), then w.p. 1 — &, we have
A d+log(1/0 d+log(1/6 A -
£ - Bl 5 B RIS e, <1 e S VA
Proof. First by Vershynin (2018, Exercise 4.7.4), for any 6 € (0, 1), w.p. 1 — ¢ it holds that
- d+log(1/8) d+log(1/d)
1Xn =22 S < + [1Z]]2-
n n
Therefore, if n 2 d + log(1/9), we have
1Znll2 < 120 = Zllz + [1Bll2 S 1S]l2 = 1.
Moreover,
d A
ISnll7 =Y AF(E0) <d|[Zallz S d.
j=1
Taking the square root completes the proof.
O

Tsee https://en.wikipedia.org/wiki/Schur_product_theorem
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B. Missing Proofs of Section 3
B.1. Proof of Proposition 3.2.

Let S, be the set of p x p positive semi-definite matrices, H; = g;(6*)g;(6*)T fori € [n] and 6, = 6; — 0*. The linearized
SGD (4) can be rewritten as d;4+1 = (I — nH;,)d; with i; € Unif([n]). Then,

1410141 = (6 — nH;,6) (8¢ — nH;,00)"
= 6t5tT — ﬁ(étézHlf + H“ététT) —+ T}QHZf(St(S;TH“
Let Q; = E[§;61] be the deviation covariance matrix. Then taking expectation gives

Qi1 = Qr — n(Q:H + HQy) + n* E[H;,Q: H,,]
= (I = nT,)Qs, (20)

where T;, : S — Sy is given by T,A = (HA + AH) — nE[H:AH¢|, where the expectation is taken with respect to
& ~ Unif([n)).

By (20), to ensure || E[Q:]||» < C||E[Qo]]|r for some constant C' > 0, we need T;, > 0. This is equivalent to it holds that
(A,T,A) = 2Tr(AHA) — nE[Tr(AH)AH: ] >0 VA€ES,. Q1)
Noticing that E[Tr(AHe AHe)] = E[(gf Age)?] > (ElgeAg?])? = Tr?(HA), (21) implies

2Tr(HA?) —nTr?(AH) >0, VAeS,.

Taking A = diag(ws, . .., w,), we obtain
N(Hw;)? 9
(S, 2?2 .
Zj Aj (H)wj n
Specifically, taking w; = 1 for j = 1,...,n completes the proof. O

Remark B.1. It should be stressed that the stability condition (22) is stronger than Tr(H) < 2/7. We only state the latter in
the main text since it is more intuitive and has clean relationship to sharpness.

B.2. Proof of Proposition 3.4

By (2), we have H(0) = G(6) + O(¢'/?) for any 6 € Q. ,,. Then, we have

Tx[H(0:)S(0:)] = Tr[G(0:)S(6:)] + O('/?) = pol| G(6,)|[3: + O(e"?), (23)

where the second step follows from the definition of 1(6) and the assumption that p(6) > po.

Let v := n?infoeq. , po||G(0)]/%. Then combining Lemma 3.3 and (23) gives

E[R(0:)] = 1*uol|G(0,) |13 E[R(0,)] + O(1® + 1e/?)
> yE[R(0,)] + O(n® + n°*/?)

t

O(n® + n?e%/?).

v
>~ E[R(0
A R0+ 1=
O
C. Missing Proofs in Section 4
In this section, we will frequently use the following definition and results.
¢ Kernel functions. Define two associated kernel functions:
01(u,v) = By fo(ul2)o(vl2)],  @2(u,v) := Eu[o’ (ulz)o’ (vl 2)], (24)
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where ©1, @5 : Q +— R with Q := S9! @ S?~1. The corresponding empirical ones are given by

n

ZO’ (whz)o(wlz;), @a(u,v) = ;ZU’(uTxi)a/(vai). (25)
i=1

=1

S\H

o1(u,v)

* Hermite expansions of kernels. Let o(t) = >~ ahi(t) and o/ (t) = 3, Brhi(t) be the Hermite expansions of o
and o’, respectively.

Lemma C.1. Define ||(u,v) — (v/,v")||q = ||u — u'|| + ||v = V|| for any (u, v), (v, v") € Q. Then,
N, - lla,€) KNS -1 €/2)% < (6/6)*. (26)
Proof. Follow trivially from the fact (17). O
Lemma C.2 (Property of kernel functions). = 1 (u,v) = ||ul|||v]| 32, @2 (6T9)*, pa(u,v) = 3, BE(aTD)".
e aqp=p1~1land By ~ 1.

o 0i(u,v) ~ 1 foranyu,v € S 'andi=1,2

* Forany s € R™ and uy,ua, ..., uy € ST, we have
m m
2.2 T 212 .
Z SjSk@i(Uj ug) 2 (Z sj) , Vi=1,2.
Ji.k=1 j=1

Proof.  * Using the positive homogeneity of o and Lemma A.1, we have

p1(u,v) = [lull[v]| Eolo (@ 2)o (0" )] = [Jullv]| Eq Zakhk i) Zazhz 0" )]
= [lullloll ) axaudy(@"0)* = IIUHIIWHZ% : 27
k.l
Similarly, we have the expansion of 5.

* Noticing ho(z) = 1 and h;(z) = z, we have

— )e /2 dt ~ /Oo te=t/2dt ~ 1
\/ 0

S e 2 at ~

\ﬁ
e 2dt = — [ o(t)e /2 dt = ag ~ 1.
f/ /

* We now prove the third conclusion. By (27), we have

1

e 24t ~ 1

m oo m o0 m

T 2 2.2 2 2.2¢, T, \l

E s skcpl(u] Ug) E s 2y af = o5 E 855, + E o g 85 sy () uk)
k=1 jk=1 1=0 k=1 I=1 k=1

>af Y s7sp+0  (use Lemma A.12)
jk=1

2 Qs
J

where the last step is due to oy ~ 1. The case of ¢+ = 2 can be proved analogously.

WV
=
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C.1. The kernel concentrations.

Before proving the equivalence between sharpness and parameter norms, we first need to bound the difference between the
poluation kernels and empirical kernels.

Lemma C.3. Let H = {h(;0) : 0 € ©}. Denote by w : [0,00) +— [0,00) a modulus of continuity of h in the sense
sup,cy [h(x;01) — h(z;02)] < w(||01 — 02|]). Suppose that V0 € ©, h(X;0) is mean zero and sub-exponential with

1R(X;0)ly, < -||. Then for any § € (0,1), w.p. at least 1 — § it
holds that
Ly log(N./6) [log(N./s
sup 7Zh(xi59) gw(€)+KInaX< LA )a og(N:/ )> )
gco [N ” -

i=1

Proof. Let O, be an e-cover of ©. For any 6 € ©, let ¢’ be an element in O, such that ||§ — ¢’|| < e. Then,

n

1
sup |— h(z;;0)| = sup |— (2i50) — h(zi;0") + h(z; 0
eeg|nz ’ eeg n; ) ( ))‘
< w( su h(z;; 0 (28)
9e®p n Z

Since h(X;0) is sub-exponential with ||h(X; )|y, < K. By the Bernstein inequality (Theorem A.10), it holds for any
6 € O, that
]:ED {

Taking the union bound over ©. leads to

" in( L t2
P{ osup | =Y h(z;0)| >t < |0:]2e" it iz),
veo. | i
Since |0©,| = N, the above implies w.p. 1 — § that
log(N. /o log(N./d
. \th 24:8)| < K max ( 0g(N:/3)  [log(Ne/ )) |
bco. N n n
Substituting it into (28) completes the proof. O

Lemma C.4. Let Z be a mean-zero and sub-Gaussian random variable. Assume that q is L,-Lipschitz and g(c) = 0 for
some c. Then, ¢(Z) is also sub-Gaussian with ||q(Z)||y, S Lq(||Z ]|, + |c]).

Proof. By the property of sub-Gaussian random variable, we have E[ezz/ Iz ”iz] < 2. Then,

B[ed(9)*/(F1Z=l3,)] = R[e(@(2)—a(e)*/(L317—cl3,)]

B[ D17 e /(31 Z=el,)] = lelZ—e/1Z2-cl3,] < 9.

N

Hence, we have [|¢(Z) ||y, < Lgl|Z — |l S Lg(|| Z]| 5 + |c|), where the last inequality is due to that || - ||, is anorm. [

Lemma C.5. Let p : R +— R be Ly-Lipschitz and p(0) = 0 and ¢ : R +— R be Ly-Lipschitz and q(0) = 0. Let
Zuw = puT X)q(vTX) — E[p(u? X)q(vT X)]. Then, for any u,v € S, Z, ,(X) is a mean-zero and satisfies

1Zu,0 (Xl S LpLollX 13,
| Zuw(X) = Zuror (X)] S Lp Ll | X I ([ = '] + [Jv = o[-

18
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Proof. We first have

1200 (X) gy < Cllp(u” X)q(v" X) |y, < Cllp(w” X) |, a(0" X) 14,
< CLquHUTX”wz ||UTX||¢)2 < CLqu”XH?pza

where the first step follows from the centering inequality (16); the second step is due to Lemma A.9; the third inequality
follows from Lemma C.4.

Let J,» = p(u? X)q(vT X). Then,

|Ju,v - Ju’,’u’| = |Ju,v - Ju,v/| + ‘Ju,v’ - Ju/,'u’|
= [p(u” X)[lg(v" X) = q(v" - X)| + [q(v" - X)||p(u" X) = p(u’ - X)|
< OLp Lyl X [P ([o — o'[| + flu — /).

Analogously, we can prove that Z,, ,(X) satisfies the same Lipschitz condition. O

Now we are ready to bound the difference between population kernels and the corresponding empirical kernels.

Lemma C.6. Suppose n = d. Forany § € (0, 1), wp. at least 1 — 6, it holds for any i = 1,2 that

dlog(n/5) leg(n/é) } =7,

u,veSd—1 n n

sup |<pi(uTv) — @i(u,v)] < min {

Proof. Recall @ = S9! @ S~ and let ||(u,v) — (v/,v")||q = |lu — /|| + ||v — ¥'|| for any (u,v), (u/,v") € Q.
The case of ;. Let h(x;60) = o(uz)o(vTz). By Lemma C.5 and noticing that ¢ is Lipschitz continuous, we have

17X 0) [y S 1

(29)
(X 01) = h(X502)| S IIX[?[161 = O2]l0 < 61 — 2o

By Lemma C.1, N, < (6/€)??. Then applying Lemma C.3 gives w.p. at least 1 — & it holds that

sup  [¢1(u, v) — p1(u,v)| S de + max { log(Ne/d)  [log(Ne/9) }

u,veSd—1 n n
<y e { dlog(n/s) dlog(n/a)} <o
n

)

n n

where we take € = 1/n.

The case of (5. For (9, the major challenge comes the discontinuity of ¢’ (-). Fortunately, the concentration is still possible
since ¢’ is discontinuous only at the origin. Note that ¢'(+) is exactly the Heaviside step function and hence, we will write
H(t) = ¢'(t) for convenience.

¢ Step 1: smoothing the kernels. Define two smoothed Heaviside step functions:

1 ift=p 1 ift >0
Hy(t)=q 5t if0<t<p Hi(t)=q5t+1 if —4<t<0
0 if t <O0. 0 ift < —p,

where 3 € R control the degree of smoothing. Then, we have that H , H 5 ! are both %-Lipschitz and 0 < Hy (t) <
H(t)<H Z{ (t) < 1. An illustration of these three functions are provided in Figure 4.
Correspondingly, define

o3 (W) = Eu[HF (" 2)HF (vT2)], g 5(u"v) = Bu[Hy (u”2) Hy (" 2)).
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1.01 —T
| 1= H(t)
081 [ Hy()
1
0.6 i HO
1
0.4+ Y
h 1
h 1
0.21 I
Cm e e e m = m !
-2 0 2
t

Figure 4. An visual comparison among H, H;, and H

—E.[H(u"2)H (" z)]|
To)] + Eo[(HS (u”z) — H(u"z))H (0" 2)]|

We first have
pa(uv)| = B, [HF (u"2)H (v" )]
—H(UTJ:)|

|902+,5(UTU) -
< |Eg [H;( Tx)(H;(vTx) — H(v
H(T2)] + E, | HE (472)

(i)

S B

¥ E, |Hj (u”z) —

(44) B t

= 2 1-—-— d
/0 ( ﬁ)pd(t) t

where (i) follows from the boundedness of H, H;, (ii) follows from the the fact that the input distribution is
if (VdS*1h).
(30)

p = Unif(v/dS?') and p,(-) denotes the distribution of X; for X ~ Unif (v/dS% 1)
p2(u’v)| < B

Similarly, we can obtain
sup |¢£ﬁ(uTv)
w,veSd—1
* Step 2: concentration through smoothing. Let h; (z;0) = Hy (z"u)H; (z7v). Note that for any z € VdS?~!, we
have
| (301) — hig (2;0)] < |Hg (z"w)Hy (aTv) — Hy (zTu)Hy (a70)| + |Hp (a7 u) Hg (27 0') — Hy (2" o') Hg (z70")]
<|Hg (") = Hy (z"0")| + |Hg (z"u) — H («"u)]
1 d
= ("0 =2V + |2Tu — 2Tu']) < i(llv =0+ [lu =)
5 B
Hence, h(zx;-) is %—Llpschltz in (2, - |l). In addition, since sup, |[H; (t)| < 1, we have [|h(X;0)]|y, S 1 for any
0 € Q. Then, applying Lemma C.3 gives that w.p. at least 1 — ¢ it holds that
“ |7 ZH T Ty~ or (uTv)| < Vde m dlog(1/(ed)) dlog(1/(ed))
u UGSB 'n P25 B n ’ n

(t) and the above inequality, we have

By H(t) > Hy (t
Go(ulv) = % Xn; Huz)H(w x;) > % Xn; Hy (u"ai)Hy (v ;)
%;M e ( ¢§ . m{_ Tog(1/(c5)) dlogl1/(c5) })
> oa(u™o) (5 . @ . { dlog(i/&a)), dlog<;/<e6>> }) |
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where the last step uses (30). Optimizing 3 gives

£2(4T0) > pa(uTe) — C (WE)M - { dlog(1/(cd)) dlog(1/(c3)) }) |

n n

Taking ¢ = 1/n and applying n > d, the above inequality can be simplified as

$2(uT) > a(uTv) — C max { dlogfl"/ 2 dlogfln/ 0) } . (31)

Similarly, by utilizing H; and ¢} 5, we can prove

(32)

E2(uT0) < ™) + O { Lhoen/0), Zlos(n/2) } |

Combining (31) and (32), we complete the proof.

C.2. Proof of Theorem 4.1

The expression of Fisher matrix. Notice that V., f(2;0) = a;0'(w;
matrix is given by

T
1)z, Va, f(2;0) = a(w x). Then the Fisher

Fip Fia ... Py
F: F: . Foo,

G(@) _ ?11 ?,2 . 2.» c Rm(d+1)><m(d+1), (33)
Fm,l Fm,,2 Fm,m

where for any j, k € [m] the submatrix Fj ; € R(4+D*(@+1) j5 ojven by

( Be@lne(ls)]  Elo(uw!r)a’ wln)aT]
Fi (E[U(wka)aja’(ijx)m] ajak]E[cr’(ij )o! (w{x)xa:ﬁ) (34)

Proof of Theorem 4.1. We consider the case of trace, Frobenius norm, and the spectral norm separately. Specifically,
combining Proposition C.7, C.15, and C.11, we complete the proof. The proofs of these propositions are provided in the
subsequent sections.

C.2.1. THE TRACE OF FISHER MATRIX

Proposition C.7 (The trace). Recall that N(d,¢) := inf{n : dlog(1/d)/n < 1}. Forany § € (0,1), let n > N(d, ).
Then, w.p. 1 — 8, we have, Tr(G(9)) ~ 3= (||lw;]? + da3).

Proof. 1Tt is easy to show that

m

Hw7H $1(wy, ;) +da7902(wj7w7)) (35)
j=1

By Lemma C.6, we have ¢;(u,u) ~ ¢;(u,u) —r, ~ 1 — o(1), where the last inequality is due to Lemma C.2 and the
condition n > N(d, ). Plugging this into (35), we complete the proof. O
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C.2.2. THE FROBENIUS NORM OF FISHER MATRIX
To help the estimate of Frobenius norm, we define for u, v € S?-1 that
buw = Elo(u'z)o’ (v x)z] e RY, Ay, = Elo’(uz)o’ (v x)zaT] € R4,

Then by (33), we have

m

IGONE =D (lw P llwnl*@1(@y, @n)® + afaill Avy a7 + a5 1wl Doy, 13 + aillw; 1 [bs,.a.13) - (G6)
7,k=1

Next, we bound each term of the right hand side separately.
Lemma C.8. Forany 6 € (0,1), ifn 2, N(d, ), w.p. 1 — ¢ it holds that sup,, ,cga—1 [|buvll2 S1

Proof. Note that for any u,v € S%1,

1bu.o] = l‘Slll‘p whby, ., = ”SlﬁplE[U(UTI)U/(UTI)MTI]
w][=1 w||=
< ”ST‘&E[U(UTx)wa] < ||Sl\l|p1 \/]E o?(ulx) \/]E [JlwTz|?] ( Cauchy-Schwartz)
— 51815)1\/ uu\/wTZ w—\/goluu)\max
we
where the last steps follows from Lemma C.6 and Lemma A.14. O

Lemma C.9. Forany § € (0,1), ifn > d + log(1/6), then w.p. 1 — & it holds for any u,v € S~ that
\/&@2(%0) [Auollr < V.

Proof. Upper bound. We first prove a more general result. Let a € R"™ with sup,¢(,,; [a;| < 1and Q, = LS amial

Then,
N 1\ - 1 ¢ )2 &2
T
||gzai33i$i H% = 2 Z aiaj(:ci Z 37 x] = ||g Zl’zxz 1% = [1%n]l7-
i=1 i,j5=1 j=1 =1
< 1. Notice that we can rewrite A, ,

By Lemma A.14, w.p. 1 — § that |2, ||» < vd. Thus, ||Qu||r < Vd for any ||a]|s <
as Ay = izizl o' (uTz;)o! (vT:cl)a:7 T with |0’ (u”z;)o’ (vTx;)| < 1. Thus, |AuvllF < < Vd.

Lower bound. Now we consider the lower bound:

d
1 1

A, — Tr(A = — vTx 22

[Auollr = 7 dzl )z;]

J

= \/ﬁ]fﬂ[a’(uTx)a ()] = \/E@(u,v).

Lemma C.10. Forany § € (0,1), ifn 2 N(d,?), then w.p. at least 1 — 0 it holds for i = 1,2 that

m

SN 2
E ajak@i(wj7wk)~2 ;
Jik=1 J

Proof. WLOG, assume ), of = landlet Ay = @1 (i, wy) — P1 (W, wx). By Lemma C.6, w.p. at least 1 — ¢ it holds
that sup; yepm) A,k < 7n, Where , is defined in Lemma C.6. Hence,

m m
2 2.4 (.
E ajozkcpl(wj7wk E a oi (¢ (wj,wr) + A, r)?
k=1 k=1
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m m m

2 2 A A N2 2 2 PO 2 242

= E O‘j%@l(’%‘v“’@ +2 E ajak991(wj7wk)Aj,k+ E ajakAj,k
7,k=1 j,k=1 jk=1

Z(1+002) Y alai +0(ry) > ajaj, (37)

Ji:k=1 Ji.k=1

where the last step follows the third conclusion in Lemma C.2 and the fact that sup, |1 (¢)] < 1.

Taking n to be large enough, we complete the proof. The case of ¢ = 2 follows the same proof procedure. O

Now we are ready to prove the main proposition.
Proposition C.11 (The Frobenius norm). For any § € (0,1), let n > N(d, ). Then, w.p. 1 — §, we have |G(0)||F ~

> (lw;|* + Vda3).

Proof. Lower bound. By (36), w.p. at least 1 — ¢ that

IGONE = 3 (w2 llwnl261 (5, 10)* + a2 A2 s, )

7 1

> 1w 1% Jwg ||*@1 (0, 0 )? + d Z a?ai¢2(wj7d)k)2 (Use Lemma C.9)

1 G k=1

NGERGNE

J

NE

2 (

lw;[1%)? + (\/gZa?)Q (Use Lemma C.10)
J

<

2

1
>3 | 2wl VR a (@ +9%) > (@ +y)*/2), (38)
J J

Upper bound. By Lemma C.8 and C.9, we have w.p. 1 — § that [|bg, 4, || S 1, | As, ., |7 < V/d. Substituting it into (36)
gives

ICOF < D (lwlP w1 (@), 1) + Va3 lwe|* + Vdai|[w; |* + daZai)
ik=1

< Z (JJw; 1wk |* + \/Ea? +Vda? + da3aj,) (Use Lemma C.10)

J

g k=1
= (lw;l* + Vdad) (|wy||* + Vdaz) = O (lw;]|* + Vda3))*.
jk

O
C.2.3. THE SPECTRAL NORM
To control the spectral norm, we need again to handle the discontinuity of ¢’ at the origin. Define
o (') = B [HF (u"2)o(v"w)], o5 (u'v) = Eo[H (u” w)o(v" )] 39

o(uTv) = E[H(uT2)o (v 2)).
Lemma C.12. 6} (u”v) — 6(uT)| < 6 and 6 (uTv) — o(uv)| < 6.
Proof. Note that
165 (") — $(u"v)| = |E[H (u"2)o (v 0)] ~ E[H (u" x)o(v" )]
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= E[(H; (u"x) — H(u")o(v"2)] < /Elo?(vTe)\[E[(H; (uTx) — H(uTx))?)

B
< VEZ[IHE (2) = H(2)]?] = W (- %de(z) dz  (Letz=u")
0
B z
< / (1- 3755, (40)

where py is the density function of u” X for X ~ Unif(v/dS* ') and we use the fact that sup. [ps(2)| < 1. Similarly, we
can prove the case of ¢;. O

Lemma C.13. Foranyd € (0,1), ifn 2 N(d,?), then w.p. at least 1 — § that

sup  |E[o’ (uTz)0Tz] — Elo’ (uTz)vT2]| < rp.
u,peSd—1

Proof. The proof is essentially similar to the proof of Lemma C.6.

* Step 1. Note that [[Hg (X)||y, < 1 and [lo(v” X)||,,

~

< 1. By Lemma A.9, we have

~

1H 3 (X)o (v X)llgy < IHG (X lallo @ X) [y, < 1.

The fact that Hy is 5-Lipschitz continuous and o is 1-Lipschitz implies that for any = € VS, T (u,v) =
H;(uTz)o(sz) is % Lipschitz with respect to the metric || (u,v) — (v/,v)||q := ||lu — @|| + |Jv — v'||. In addition,
by Lemma C.1, the covering number of 2 = S?~! @ S¢~1 with respect to this metric is N, = (6/¢)??. Then, by
Lemma C.3, we have

Swp B[} ()0 (67 0)] — 6} (67 0)] S Dot gy DB AoBED, -y
u,veSI—1
Similarly, we can obtain the following holds w.p. at least 1 — 6,
swp B[y ()0 (07 0)] — 05 (7)) $ Dot maxgy/ TOEUAC) TR, g
u,veSd—1 6 n n
* Step 2. Noting t = o(t) — o(—t) for any ¢t € R, we have
Elo’ (uT2)vTx] = B[H(uT z)o(vT )] — B[H (uT2)o(—0vTz)]
> IAE[Hg (w'z)o(vx)] — IAE[H;(UTJ])U(—UTQT)]
> 65 (uv) = g5 (~u"v) ~ C (ge + maef| TOUAL)) dlog(l/{0) }) SN
where the last inequality follows from (41) and (42).
» Step 3. Applying Lemma C.12 to (43) gives
Elo’ (uT2)vT 2] = ¢(u"v) — p(—uTv) — C (,6’ + %6 + max{ dlog(i/(e&))7 dlog(;/(e(S)) })
=E[o'(u"z)vT2] — C (ﬁ + %6 + max{ dlog(i/(e&))j dlog(il/(eé)) }) .
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Optimizing (3 and taking € = 1/n, we obtain

B0/ (") a] > Elo’ (T a] — C <d1/2€1/2 + max(y| 08(/()) dlog(1/(e)) }>

)
n n

> E[o’ (u z)vT 2] — Crp.
Analogously, we can prove the other side inequality.

O

Let 2 € RY, we use x 1, to denote the k-th coordinate of x, which is distinguished from x;, denoting the k-th sample in the
training set. In addition, we use {ej, }¢_, to denote the standard basis of R?.

Lemma C.14. Y0 (E[o’ (u" )z 4])% 2 1

Proof. Note that = , = g(ef z) with g(z) = z. Let g(x) = Y, Gshs(z) be the Hermite expansion of g. By (13), we have
Gy = 1for k = 1 and 0 otherwise. Then Lemma A.1 gives that for any u € S~ 1,

Elo' (u"z)z 1] = Elo’ (u" z)g(ef )] Z,Bé (ul'er)® = Brug.

d d
Hence, 375, (E[o’ (u" @)z k])? = 3251 (Brur)? = BE|lul® = 57 2 1. O
Proposition C.15 (The spectral norm). Forany é € (0,1), ifn 2 dN(d, ), w.p. 1 — & we have [|Goll2 ~ 3T, (wF + a3).

Proof. Let ® = (Vf(21;0),Vf(x2;0),...,Vf(xn;0)) € RP*". Then, G() = ®dT € RP*P. Then
1G()]l2 = Anax (PPT) = Apax (2T ®) = sup v’ ®Tdu= sup ||Dul?

uesSn—1 uesn—1

m d
> ( z)u(z)])? + a? Z(E[a’(wfx)x,ku(x)w) , (44)
k=1

”uHLQ(p) 1 j=1

where p =1 3" | §(z; — ).

Lower bound. Taking u(z) = 1, we obtain

m d
IG(6ll2 > ((E[G(ugl”)])2 +aj Z(E[U'(wfx)x,k})2>

Jj=1 k=1
m d

=> <||wj||2¢1(wj,u>j> +a Z(E[a’(wfx)xwz) : 45)
j=1 k=1

Note that

+ By Lemma C.6, w.p. at least 1 — § that ¢; (u, u) > 1 for any u € S?~1,

¢ In addition,

d d
> (B0’ (w]x)efz])* = > (Blo’(w] z)efz] + O(rn))®  (Lemma C.13)

k=1 k=1
d d
> ) (E[o ( '2)ef 2])® + O(ry, ZE (w; T2)ed a]
k=1 k=1
> 1—0dry,),
where the last step uses Lemma C.14 and | Y¢_, E[o’ (uTz)eLz]| = |E[o’ (uTz)(X, ex)z]| < /0T E[zaT]o <

llo|| = Vd, where 0 = (1,1,...,1) € R%
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Plugging the above two estimates into (45), we obtain ||Gg|| 2 D7, (w? + a3).
Upper bound. In addition, (44) also implies

m d
1Goll < Z( sup  (E[o(w]z)e(x)])® +af  sup Z(E[U'(wfﬂf)x,kU(x)])2>

=1 \llullp2¢z=1 llull g2 5)=1 =1
< (Blo(w] 0)2) + a2 [o’ (" 2) ")) (46)
j=1

where the last step follows from the Cauchy-Schwarz inequality and Lemma A.13. Then, the proof of the upper bound is
completed by plugging the following estimates into (46).

* By Lemma C.6, w.p.1 — 9 thatIAE[cr(ijJc)ﬂ = |lw;[|2¢1 (w5, 05) < |Jw;.

¢ In addition,

|Eofo’(wf2) a2 = sup o7 Eofo’(wfa)*zalo
veSI—1
=E;[o (wj z)?(vT2)?] SB[ 2] < sup T ElzaT|o = 1.
vesd—1
Lastly, combining the lower and upper bound, we complete the proof. O

C.3. Proof of Theorem 4.3

Our proof needs the following path-norm based generalization bound:

Proposition C.16. Suppose sup,cy |f*(z)] < Landy > 1. If 0 is a global minimum of R(-) satisfying ||0||p < 7, then
R(0) < (log® (n) + log(1/8)) 2.

Proof. Let 7o, = {f(-;0) : ||0|l» < v}. Then, it is easy to show that the worst-case Rademacher complexity (see Eq. (14))

R, (F,) < Vdvy/+/n. In addition,
z)| = \Za] o(w] Ziajnw 2| < 0l < yVd.

Hence, the loss function ¢(t) = t2/2 satisfying |¢”| < 1 and |¢| < v2d. Then, by Theorem A.7, we have

log(n)dy*  dn*log(1/9)

R(0) <
(0) 5 <2 £
O
Proof of Theorem 4.3. For ésgd, by Proposition 3.2 and Theorem 4.1 we have w.p. at least 1 — ¢ that
2 -
0> Tr(G(0sga)) ~ 16sgall1a > Vdllfsgall - (47)
Hence, ||ésgdpr < 2/(nV/d). Applying Proposition C.16, we obtain
p log®(n) + log(1/4
R < 1280+ 1o8(1/)
nn
Similarly, we have ||fall» < 2/7. Applying Proposition C.16 completes the proof. O
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D. Missing Proofs in Section 5

We first need the following lemma.

Lemma D.1. Let X be a mean-zero with || X ||y, < 1. Let X = E[X X7 and 33, = LS X X[ be the population and
empirical covariance matrix, respectively. For any 6 € (0,1), if n = log(d/d), we have w.p. 1 — § the following holds for
any j, k € [d].

. log(d/d)
((Cn)jik = B)jnl Sy ———
n
Proof. First, for each j,k € [d], (3,);x = + 31, Xi;Xix. By the sub-Gaussian property, || X; ;X x|y <
1X5 5 1o || X k|| S 1. Thus, by Bernstein’s inequality, we have
P{IEn)in = (D)l > t] S emCrmine,
Then, taking the union bound, we obtain
P {sup ‘(in)Jk _ Ej,k| > t} 5 d2efcnmin(t,t2).
3k
Hence, for any ¢ € (0,1/e), w.p. 1 — ¢ the following holds for any j, k € [d]
8 log(d/d)
(Cn)jik = B)jnl Sy ———
n
O

D.1. Proof of Theorem 5.2

In this section, we prove Theorem 5.2 for the case of the spectral norm, Frobenius norm, and the trace separately.
Lemma D.2 (The spectral norm). Suppose Assumption 5.1 holds. For any § € (0,1), let n 2 d + log(1/6) such that

En =1/ %W < 1. Then, wp. 1 — 6, we have

(1 =en)llflloc <[GO)]2 < (14 €n)|6]]co-

Proof. Let z = (u,v) € R%? with u,v € R? such that ||z|> = |lu||?> + ||v||? = 1. Then, we have

n
IG(®)]2 = HSIHJp 2TG0)z = Hstlllp Z (wuja;a;8; ; + wivja;b;s; j + viuibia;s; j + viv;bib;8; ;)
z||=1 z||=1 .
j,k=1

= s (0o a)TE, (wo0) + 2uo 0 Evon) + (0o B EvoD)

= sup (uoa+vob) 'S, (uoa+wvob)
ll2]1=1

= sup <||uoa—|—vob||2—|—(uoa+vob)T(in—I)(uoa+vob)).
ll2ll=1

By Lemma A.14, we have w.p. at least 1 — § that ||%,, — I|| < &,,. Therefore,

(1—en) sup Jluoa+vob|* <[GO)]2 < (1+en) sup [luoa+wvob|?

llzll=1 Ilz]|=1
Noticing that
d
sup [luoa+wvob|> = sup > (aju; + bjv;)”
[lz]l=1 lzl1=15=
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= ”shlp Z(a? + b?)(u? + 0]2)
zl|l=1 "
j

tesda—1

= sup Z(a? + b]z)t?
J
= max(a? + b?),
J
we complete the proof. O
Lemma D.3. Forany ¢ € (0,1), if n 2 log(d/d), then w.p. at least 1 — 0 that

(L —en)(llall* + 181%) < Te(G(6)) < (1 +en)(llall* + [1B]).

Proof. Notice that Tr(G(0)) = Z;l:l(aféi,i +b23; ;). By Lemma D.1, we have w.p. 1 — §, forany i € [n], |3;; — 1| < &,,.

Combining them completes the proof. O

Lemma D.4. Forany § € (0,1), if n 2 log(d/d), then w.p. at least 1 — § we have
(I —en)llelz <[IGO)r < enllally + V1+den]la]2

Proof. By the definition,

IGOF =D (a7a387; + alb33; ; + bja3s;; + b7b387 ) (48)

d
1754, 1774, 17J 70,7
J,k=1

By Lemma D.1, w.p. at least 1 — § we have |s; ; — §; ;| < &, for any 4, j € [n]. Thus,

[0,€7] ifi 7 j

A2 A 2
Si.j _(Si,j75i7j+3i7j) € {[(1_5 )2 (1+€ )2] le:]

Plugging it into (48) gives:

IGO)F < (afa] + alb] +bia) + b7b3)el + (1+en)* > _(a) + 2a7b7 + b))
i#j i
<Y (afa? +a3b} + bia) + b7b3)es + (1 +en)” +62) Y _(af + 24707 + b))

< sfj(z a? +b3)% + (1 + 2¢,)? Z(af +b2)?, l (49)
and
IGONE =D s7a(ai + 20707 +b7)
> (1Z—€n)22(a?+b?)2 = (1= en)?[loll3. (50)
Combining (49) and (50) completes the proof. L]

D.2. Proof of Theorem 5.3.

For any @) > 0, denote the class of linear predictors with bounded ¢; by H¢g = {hs :  — 8T z|||8]|1 < Q}, for which
Shalev-Shwartz & Ben-David (2014, Lemma 26.11) gives

— 2log(2 2log(2
Ra(Ho) = sup Rada() < Q) 2220 < @ 2B,
L1y..3Tm S
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Let k = ||5.]|1 and ¢(2) = 22 /2 be the loss function. Then, we have |¢”| < 1 and |¢| < (Q + k)?/2 since for ||3]|; < Q:

(Q + k).

[N

1 1
S (87 — 572 < 516 - BB ell <
Then, applying (15) to a minimizer H € Hq gives

R(H) < logg(n)Q2 log7(12d) n (Q+ k)jllog(l/é). 51)

Now we turn to consider the linear predictor implemented by two-layer diagonal networks. Let 6= (a, B) and 3 = a®b.
By Proposition 3.2 and Theorem 5.2, we have w.p. 1 — § that

> Tr(G(6)) > (1 - <) Z(&? +55) > 2(1 =) 8-

AR

Therefore, f(-;0) € He with Q <1/(n(1—ey,)) < 1/n, where the last step is because that we assume n satisfies e, < 1/2.
Plugging it into (51) gives
1/n)%1og?(n)log(d) ~ (k+ 5)*log(1/4)

R(0) < ( -~ + ~ .
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