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Abstract
In adversarial machine learning, neural networks
suffer from a significant issue known as robust
overfitting, where the robust test accuracy de-
creases over epochs (Rice et al., 2020). Recent
research conducted by Xing et al. (2021); Xiao
et al. (2022b) has focused on studying the uni-
form stability of adversarial training. Their in-
vestigations revealed that SGD-based adversar-
ial training fails to exhibit uniform stability, and
the derived stability bounds align with the ob-
served phenomenon of robust overfitting in ex-
periments. This finding motivates us to develop
uniformly stable algorithms specifically tailored
for adversarial training. To this aim, we intro-
duce Moreau envelope-A (ME-A), a variant of
the Moreau Envelope-type algorithm. We employ
a Moreau envelope function to reframe the orig-
inal problem as a min-min problem, separating
the non-strong convexity and non-smoothness of
the adversarial loss. Then, this approach alter-
nates between solving the inner and outer min-
imization problems to achieve uniform stability
without incurring additional computational over-
head. In practical scenarios, we demonstrate the
efficacy of ME-A in mitigating the issue of robust
overfitting. Beyond its application in adversarial
training, this represents a fundamental result in
uniform stability analysis, as ME-A is the first
algorithm to exhibit uniform stability for weakly-
convex, non-smooth problems.

1. Introduction
One of the interesting abilities of deep neural networks
(DNNs) (Krizhevsky et al., 2012) is that they rarely suffer
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from overfitting issues (Zhang et al., 2021). However, in the
setting of adversarial training, this ability disappears, and
overfitting becomes one of the most critical issues. Specif-
ically, in a regular setting of SGD-based adversarial train-
ing shown in Figure 1, the robust test accuracy (orange
line) starts to decrease after a particular epoch, while the
robust training accuracy (blue line) continues to increase.
This phenomenon is referred to as robust overfitting (Rice
et al., 2020). It can be observed in experiments on common
datasets such as SVHN, CIFAR-10/100.

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ro

bu
st

 A
cc

ur
ac

y

Robust accuracy, cifar10
Training_Robust_Acc_SGD
Test_Robust_Acc_SGD
Training_Robust_Acc_ME-SGD
Test_Robust_Acc_ME-SGD

Figure 1. Demonstration of the occurrence of robust overfitting
(orange line) and the mitigation of robust overfitting achieved by
ME-A (red line).

Recent research has utilized uniform stability, a general-
ization measure in learning theory, to investigate this phe-
nomenon (Xing et al., 2021; Xiao et al., 2022b). They have
suggested that the non-smoothness of the adversarial loss
may contribute to the issue of robust overfitting. Informally,
uniform stability is the gap between the output parameters
w of running an algorithm on two datasets S and S′ that
differ in at most one sample, denoted as ∥w(S)− w(S′)∥.
In uniform stability analysis, assuming the standard training
loss is non-convex and smooth, a well-known result given
by (Hardt et al., 2016) is that applying stochastic gradient
descent (SGD) to the standard loss yields uniform stability
in O(T q/n), where T represents the number of iterations,
n is the number of samples, and 0 < q < 1. However,
the adversarial loss is non-smooth, even if we assume the
standard loss is smooth. Consequently, the uniform stability
bounds include an additional term in O(T qϵ) (Xiao et al.,
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Table 1. Comparison of uniform stability bounds of adversarial training. ME-A reduces the additional term in O(T qϵ), which is a possible
reason for robust overfitting. It also mitigates the robust overfitting issue in practice.

Assumption (Std-loss) Training Algorithm Stability Bound No Overfitting

Hardt et al. (2016) Nonconvex Standard Training SGD O(T q/n) !

Xiao et al. (2022b) Nonconvex Adversarial Training SGD O(T qϵ+ T q/n) %

Ours Nonconvex Adversarial Training ME-A O(T q/n) !

2022b), where ϵ is the attack intensity. The bound suggests
that the robust test error increases as T grows, even when
we have an infinite number of training samples (n → ∞).
Therefore, the derived uniform stability bounds align with
the observations made in practical adversarial training.

This observation motivates us to develop uniformly stable
algorithms for adversarial training in order to mitigate the
issue of robust overfitting. Additionally, we define the ad-
versarial loss as h(w; z) = max∥z−z′∥≤ϵ g(w; z), where
z represents the sample, w is the training parameter, and
g denotes the corresponding standard training loss. It has
been proven that the additional term arises from the non-
smoothness caused by the max operation in the adversarial
loss (Xiao et al., 2022b). Consequently, our objective is to
design uniformly stable algorithms specifically tailored for
non-smooth optimization problems and then apply them to
the adversarial training problem.

However, attaining uniform stability with non-smooth loss
functions presents significant challenges. Common strate-
gies in non-smooth optimization involve smoothing the loss
function (e.g., Moreau Yosida Smoothing (MYS) (Nesterov,
2005)). This approach is notably computationally inefficient
when aiming for uniform stability, as proved by Bassily et al.
(2019). In deep learning, this drawback is further magnified,
and such methods are computationally intractable. Addi-
tionally, a notable study by Bassily et al. (2020) pointed out
that SGD, a widely used optimization technique, does not
ensure uniform stability for convex non-smooth problems.

Our approach involves utilizing the Moreau envelope func-
tion (Moreau, 1965), which is a classical tool employed
in methods such as the proximal point method (PPM) and
MYS, in a different way. Our approach is to separate the
non-strong convexity and non-smoothness of the original
convex non-smooth problem. Given training set S, the orig-
inal problem (1.1):

min
w

ESh(w; z) (1.1)

is then reformulated into the min-min problem (1.2):

min
u

min
w

ES

[
h(w; z) +

p

2
∥w − u∥2

]
. (1.2)

Firstly, it is important to note that (1.2) is equivalent to (1.1)
in terms of global solutions. Secondly, the inner problem ex-

hibits strong convexity and non-smoothness, while the outer
problem is convex and smooth. Both of the two problems
have at least one advantage for algorithm design.

Moreover, this analysis extends beyond convex problems
to include non-convex ones as well. Building on the as-
sumptions in Hardt et al. (2016); Xiao et al. (2022b) that the
standard loss function g(w; z) is non-convex and smooth,
although the adversarial loss is both non-convex and non-
smooth, it can still be demonstrated to be weakly convex.
Therefore, ME-A can be applied in this setting.

The main results of this work are in three aspects.

1. Algorithms for Adversarial Training. Let A be a first-
order algorithm used to solve the original problem (1.1),
such as SGD or batch gradient descent (BGD). We intro-
duce Moreau envelope-A (ME-A), which alternates the
application of A to the inner problem and GD to the outer
problem of (1.2). We prove that ME-A achieves uniform
stability for both the inner and outer problems, thereby
achieving uniform stability for the entire problem with-
out incurring additional computational overhead. The
comparison of SGD and ME-A is provided in Table 1.
ME-A improves over SGD in terms of uniform stability
by reducing the term O(T qϵ). In Figure 1 (red line),
we demonstrate that ME-A effectively mitigates robust
overfitting in practical scenarios.

2. Understanding Adversarial Training. In the previ-
ous studies of adversarial training, robust overfitting and
sample complexity are usually considered to be related:
DNNs tend to overfit adversarial examples, necessitating
more samples to circumvent this issue (Schmidt et al.,
2018; Rice et al., 2020). This paper provides us with
further insights that robust generalization can be decom-
posed additively by robust overfitting and sample com-
plexity, i.e.,

Robust Generalization
≤ Robust Overfitting︸ ︷︷ ︸

red line - orange line ≈ O(T qϵ)

+ Sample Complexity︸ ︷︷ ︸
blue line - red line ≈ O(T q/n)

.

Robust Overfitting. By employing ME-A, the robust
overfitting issue (in O(T qϵ)) is mitigated. DNNs fit the
adversarial examples well, yet achieving the performance
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ceiling (red line in Figure 1), within the constraints of the
existing dataset size n. A widely used algorithm, SWA,
plays a similar role as ME-A in adversarial training.

Sample Complexity. Considering the performance ceiling
established at O(T q/n), an increase in data volume is
essential for enhancing this upper limit. Recent studies,
such as those by Carmon et al. (2019) on pseudo-labeled
data and Rebuffi et al. (2021) on generated data, have
demonstrated their effectiveness in improving robust gen-
eralization. These findings lend support to our theoretical
framework.

3. Beyond Adversarial Training. While our primary em-
phasis lies in adversarial training, we present a funda-
mental result in uniform stability analysis. ME-A is the
first uniformly stable algorithm for weakly-convex, non-
smooth problems, which is not accomplished by existing
algorithms such as PPM and MYS. A comprehensive
comparison is given in Section 5.

2. Related Work
Uniform Stability. The concept of stability can be traced
back to the work of (Rogers & Wagner, 1978). In the con-
text of statistical learning problems, it has been well devel-
oped through the analysis of algorithm-based generalization
bounds (Bousquet & Elisseeff, 2002).

Smooth Cases. In smooth settings, Hardt et al. (2016)
established strong bounds of stability. They demonstrated
that several variants of SGD can simultaneously achieve
uniform stability bounds in O(L2Tα/n) in convex settings
and O(L2T q/n) in non-convex settings, where α is the step
size. This approach has been used in several studies to derive
new generalization properties of SGD (Feldman & Vondrak,
2018; 2019). The work of (Chen et al., 2018) investigated
the optimal trade-off between stability and convergence.

Proximal Methods. ME-A looks similar to PPM since
they both use the Moreau envelope function. In smooth case,
Yuan & Li (2023) have provided a thorough analysis of
uniform stability for PPM. Additionally, Hardt et al. (2016)
demonstrated that incorporating a proximal step following
SGD steps does not degrade the uniform stability bound.
In Section 5, we provide a more detailed discuss about the
difference between ME-A and PPM.

Non-Smooth Cases. In adversarial training, Liu et al.
(2020) proved that non-smoothness is an important issue,
leading to bad robust accuracy. Bassily et al. (2020) investi-
gated the stability of several variants of SGD on non-smooth
loss functions. They demonstrated that the generalization
bound contains an additional terms. Subsequent studies
showed that some variants of SGD, such as pairwise-SGD
(Yang et al., 2021) and Markov chain-SGD (Wang et al.,

2022), also possess this term. We list these work in Ap-
pendix C. Kanai et al. (2023) introduces the use of Entropy-
SGD, a technique that applies SGLD to a smooth surrogate
loss to enhance uniform stability. The study of (Lei, 2023)
also investigated the topic of stability in non-convex non-
smooth problems. They introduced a novel stability measure
known as stability in gradient, which assesses the stability of
non-convex problems. Remarkably, they also employed the
Moreau envelope function, but for the definition of stability
in gradient for non-differentiable function.

Uniform Convergence Analysis. Besides algorithmic
generalization analysis, uniform convergence represents a
different approach to generalization analysis in traditional
learning theory. It offers generalization bounds for the
function class with high probability, which is algorithm-
independent. Uniform convergence analysis includes VC-
dimension, Rademacher complexity, and Pac-Bayes analy-
sis. Research by Cullina et al. (2018); Attias et al. (2022b;a)
has established adversarial generalization bounds utilizing
VC-dimension. For example, in finite adversarial examples
cases, Attias et al. (2022b) provided the sample complexity
of the generalization gap with respect to VC(H). Following
that, Montasser et al. (2019) have proved that VC classes
are robustly PAC-learnable only improperly, with respect to
any arbitrary perturbation set, possibly of infinite size. Their
approach relies on sample compression arguments, whereas
uniform convergence does not hold. Regarding Rademacher
complexity, robust generalization can be bounded by ad-
versarial Rademacher complexity (Khim & Loh, 2018; Yin
et al., 2019) for linear classifiers. It is extended to two-
layer neural networks (Awasthi et al., 2020), FGSM attacks
(Gao & Wang, 2021), and deep neural networks (Xiao et al.,
2022a; Mustafa et al., 2022). Pac-Bayes analysis is another
approach to provide norm-based control for generalization.
Farnia et al. (2018) and Xiao et al. (2023) provided Pac-
Bayesian bounds for adversarial generalization. Since these
bounds are algorithm-independent, they cannot distinguish
the generalization performance of different algorithms.

3. Preliminaries of Stability Analysis
Let D be an unknown distribution in the sample space Z .
Our goal is to find a model w with small population risk,
defined as:

RD(w) = Ez∼Dh(w, z),

where h(·, ·) is the loss function which is possibly nons-
mooth. Since we cannot get access to the objective RD(w)
directly due to the unknown distribution D, we instead min-
imize the empirical risk built on a training dataset. Let
S = {z1, . . . , zn} ∼ Dn be a sample dataset drawn i.i.d.
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from D. The empirical risk function is defined as:

RS(w) =
1

n

n∑
i=1

h(w, zi).

Let w̄ be the optimal solution of RS(w). Then, for the
algorithm output ŵ = A(S), we define the expected gener-
alization gap as

Egen = ES∼Dn,A[RD(A(S))−RS(A(S))].

We define the the expected optimization gap as

Eopt = ES∼Dn,A[RS(A(S))−RS(w̄)].

To bound the generalization gap of a model ŵ = A(S)
trained by a randomized algorithm A, we employ the fol-
lowing notion of uniform stability.
Definition 3.1. A randomized algorithm A is ε-uniformly
stable if for all data sets S, S′ ∈ Zn such that S and S′

differ in at most one example, we have

sup
z

EA [h(A(S); z)− h(A(S′); z)] ≤ ε .

The following theorem shows that expected generalization
gap can be attained from uniform stability.
Theorem 3.2 (Generalization in expectation (Hardt et al.,
2016)). Let A be ε-uniformly stable. Then, the expected
generalization gap satisfies

|Egen| = |ES,A[RD[A(S)]−RS [A(S)]]| ≤ ε .

Hypothesis Class. As proved in (Xing et al., 2021; Xiao
et al., 2022b), h(w; z) is non-smooth even even though we
assume that its standard counterpart is smooth. Therefore,
we focus on non-smooth loss minimization. This class is
denoted by H and is defined as follows:

H = {h : W ×Z → R | L-Lipschitz in w, |W | = DW }.

In this paper, we explore both convex and non-convex set-
tings. When the standard loss is convex, the adversarial
loss is also convex. In cases where the standard loss is non-
convex, the adversarial loss can still be demonstrated to be
weakly convex, owing to the smoothness of the standard
loss.

In experiments, we consider the following two losses for
adversarial training.

Adversarial Loss. Let the loss function h(w; z) =
max∥x−x′∥≤ϵ ℓ(fw(x

′), y), where ϵ is the perturbation in-
tensity. Here fw(·) is a neural network parameterized by w,
and z = (x, y) is the input-label pair. If the neural networks
are defined in a compact domain, i.e., ∥x∥ ≤ B, ∀x ∈ X ,
the loss function h(w; z) is L-Lipschitz. It is shown that
adversarial loss is L-Lipschitz given the standard loss is
L-Lipschitz, and it is non-smooth even if the standard loss
is smooth (Xiao et al., 2022b).

TRADES Loss. Let the loss function be

h(w; z) = ℓ(fw(x
′), y) + β max

∥x−x′∥≤ϵ
ℓ(fw(x

′), fw(x)),

where β is a hyperparameter (Zhang et al., 2019). Similar to
the adversarial loss, the inner maximization problem induces
the non-smoothness of the TRADES loss.

4. Moreau Envelope-A
In this section, we introduce the algorithms, ME-A1, to
achieve O(T q/n)-uniform stability for non-smooth loss
minimization. Although our primary findings are framed
within non-convex settings, we begin our discussion in con-
vex settings to streamline the theoretical exposition.

4.1. Equivalent Problem

We use the Moreau envelope function to define the surrogate
loss. Let

K(w, u; z) = h(w; z) +
p

2
∥w − u∥2.

We can choose p > 0 to insure that K(w, u; z) is strongly
convex with respect to w. We define the Moreau envelope
function of the empirical loss:

M(u;S) = min
w∈W

K(w, u;S) = min
w∈W

1

n

∑
z∈S

K(w, u; z),

w(u;S) = arg min
w∈W

K(w, u;S).

Employing the Moreau envelope function to the empirical
loss (rather than the loss h(w; z) as in MYS) is an important
steps in our approach. We defer the comparison of ME-A
and MYS to Section 5 to show why it is important. The
following Lemma holds for the Moreau envelope function
M(u;S).
Lemma 4.1 (Equivalent Problem). Assume that h ∈ H. Let
p > 0. Then, minu M(u;S) has the same global solution
set as minw RS(w).

As minu M(u;S) has the same global solutions as
minw RS(w), the original problem is equivalent to the prob-
lem of minimizing M(u;S), i.e.,

minw RS(w)

⇔ minu minw
1
n

∑
z∈S K(w, u; z).

Therefore, we can alternatively minimize the inner and outer
problems to find the solutions of the original problem. Such
decomposition allows us to disentangle the non-strong con-
vexity and non-smoothness of the original problem. Specifi-
cally, the inner problem is strongly-convex and non-smooth,

1The initial version of the algorithm is refer to as Smoothed-
SGDmax (Xiao et al., 2022e).
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and the outer problem is convex and smooth. We can achieve
uniform stability for both of the two problems. Below we
provide the details.

Uniform Stability of Inner Minimization. Based on the
definition, K(w, u; z) is strongly-convex. The inner mini-
mization problem is a strongly-convex, non-smooth prob-
lem. The following Lemma shows that the minimizer of a
strongly-convex problem is O(1/pn)-uniformly stable.

Lemma 4.2 (Uniform Stability of Inner Minimization). As-
sume that h ∈ H. Let p > 0. For neighbouring S and S′,
we have

∥w(u;S)− w(u;S′)∥ ≤ 2L/(np).

Uniform Stability of Outer Minimization. The outer
problem is a p-smooth convex problem. It is due to
the following properties of the Moreau envelope function
M(u, S).

Lemma 4.3 (Smoothness and Convexity of Moreau En-
velops Functions). Assume that h ∈ H. Let p > 0. Then,
M(u;S) satisfies

1. The gradient of M(u;S) is ∇uM(u;S) = p(u −
w(u;S)).

2. M(u;S) is convex in u.

3. M(u;S) is p-gradient Lipschitz continuous.

The proof of Lemma 4.3 is due to (Rockafellar, 1976) and
also provided in Appendix. Based on the p-smooth prop-
erty, the O(T q/n)-uniform stability of the outer problem is
achieved by running gradient descent on M(u;S).

Lemma 4.4 (Uniform Stability of Outer Minimization).
Assume h is a convex, L-Lipschitz function. Let uT (S)
and uT (S′) be the outputs of running GD on M(u;S) and
M(u;S′), respectively, with fixed stepsize α ≤ 1/p for T
steps. Then, the generalization gap satisfies

∥uT (S)− uT (S′)∥ ≤
(
2LTα

n

)
.

Remark. This upper bound is as tight as the result of
running SGD on smooth convex finite-sum problems (Hardt
et al., 2016). It is worth noticing that Lemma 4.4 is not
a corollary of the result of (Hardt et al., 2016), because
M(u, S) is not in the form of finite-sum. The proof of
Lemma 4.4 is based on Lemmas 4.2 and 4.3. It is deferred
to Appendix.

4.2. Uniform Stability of ME-A

Let A be a first-order (stochastic) algorithm for the orig-
inal problem RS(w), i.e., (BGD, SGD. In the equivalent
problem, we directly apply A to the inner problem. Based
on Lemma 4.4, we apply GD to the outer problem. The
algorithm is provided in Algorithm 1).

Algorithm 1 Moreau Envelope-A
1: Initialize w0, u0;
2: Choose stepsize 0 < αt ≤ 1/p (or let τt = 1 − αtp,

0 ≤ τt < 1);
3: for t = 0, 1, 2, . . . , T do
4: Let wt

0 = wt;
5: for s = 0, 1, 2, · · · , N do
6: wt

s+1 = A(K(wt
s, u

t;S));
7: end for
8: wt+1 = wt

N ;
9: ut+1 = ut+αtp(w

t+1−ut) (or ut+1 = τtu
t+(1−

τt)w
t+1);

10: end for

To develop the uniform stability of ME-A, we first assume
the optimization error of the inner problem. Let

∥wt
N − w(ut;S)∥ ≤ ε(A),

i.e., the distance between the output of the inner minimiza-
tion problem wt

N and the optimal minimizer w(ut;S) in
each iterations t is at most ε(A). For example, the conver-
gence rate of running SGD on strongly convex, non-smooth
minimization problem is O(1/N) (Nemirovski & Yudin,
1983).

Theorem 4.5 (Generalization bound of ME-A in Convex
Case). Assume that h is convex and L-Lipschitz. Suppose
we run ME-A with stepsize αt ≤ 1/p for T steps. The
generalization gap satisfies

Egen ≤ L

(
2L

n
+ 2pε(A)

) T∑
t=1

αt.

Furthermore, if algorithm A satisfies ε(A) = O(1/pn), the
generalization gap satisfies

Egen ≤ O
(
2L2

n

) T∑
t=1

αt.

Remark: In strongly-convex, non-smooth problems, an
error bound of ε(A) = O(1/pn) can be achieved by
A=SGD with a diminishing stepsize (Nemirovski & Yudin,
1983). For further discussion, see Appendix. When the
stepsize is fixed to αt = α, it is shown that Algorithm 1
achieves a generalization bound of O(Tα/n).
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4.3. Non-Convex Case

Our principal contribution is focused on non-convex set-
tings, encompassing a function class that extends beyond
the limitations of convex scenarios.

In this setting, it seems that nothing can be done since the
adversarial loss is both non-smooth and non-convex. Fortu-
nately, the smoothness of the standard loss guarantee that
the adversarial loss is weakly convex defined as followed.
Definition 4.6. Let l > 0. A function is said to be −l-
weakly convex if ∀x, f(x) + l∥x∥2/2 is convex in x.

This can be attributed to the following reasons: If the stan-
dard loss is smooth, meaning it has a gradient that is Lips-
chitz continuous, then the standard loss exhibits both upper
and lower curvature. The presence of lower curvature im-
plies that the standard loss is weakly convex, as lower cur-
vature is equivalent to weak convexity. Furthermore, when
the maximum operation is applied to the standard loss to
obtain the adversarial loss, the resulting function retains this
property of weak convexity. For a more detailed discussion,
see Davis & Drusvyatskiy (2019).

In this case, we require p > l such that M(u;S) is strongly
convex. Firstly, we extend Lemma 4.1 to 4.3 to weakly
convex cases, which are Lemma A.1 to A.2 presented in
Appendix. Based on the Lemma, we can derive the stability-
based generalization bounds for ME-A in weakly-convex
case.
Theorem 4.7 (Generalization bound of ME-A in Weak-
ly-Convex Case). Assume that h is a weakly-convex, L-
Lipschitz function. Suppose we run ME-A with diminishing
stepsize α ≤ 1/βt for T steps, where β = max{p, pl/(p−
l)}. Then, the generalization gap satisfies

Egen ≤ O
(

2L2T q

min{l, p− l}n
+ ε(A)2LpT q/β

)
, (4.1)

where q = βc < 1. Furthermore, if algorithm A satisfies
ε(A) = O(1/(p− l)n), the generalization gap satisfies

Egen ≤ O
(

2L2T q

min{l, p− l}n

)
. (4.2)

Notice that existing uniform stability algorithms on non-
smooth loss requires convexity assumption. A main ben-
efit of ME-A is that the algorithm can achieve O(T q/n)-
uniform stability in weakly-convex cases. For comparison,
by applying SGD to adversarial training, the robust general-
ization gap satisfies Egen ≤ O(2LT qϵ+ 2L2T q

n ).

4.4. Convex Risk Minimization

Now, we turn to the excess risk minimization analysis of
ME-A in convex case. The excess risk can be decomposed
to the sum of optimization and generalization error, i.e.,

Excess risk = RD(w)−minw∈W RD(w) ≤ Eopt + Egen.
Theorem 4.8 (Optimization error of ME-A in Convex Case).
Assume that h is a convex, L-Lipschitz function. Suppose
we run ME-A with stepsize α ≤ 1/p for T steps. Then, the
optimization error satisfies

Eopt ≤ O
(
∥u0 − u∗∥2

2αT
+ ε(A)p

∑T
t=1 ∥ut − u∗∥2

T

)
= O

(
D0

2αT
+ ε(A)pD1

)
.

Furthermore, if algorithm A satisfies ε(A) = O(1/pαT ),
the optimization gap satisfies Eopt ≤ O

(
1

Tα

)
.

A minimax lower bound of the excess risk is given in
(Nemirovski & Yudin, 1983): minw maxD ES [RD(w) −
minw∈W RD(w)] ≥ Ω(LDW /

√
n). By setting Tα =

O(
√
n), ME-A achieves the optimal excess risk with re-

spect to T and α, resulting in Excess risk ≤ Eopt + Egen ≤
O(
√
1/n). This means that ME-A, with an optimal

stopping criterion, achieves the minimax lower bound in
Ω(1/

√
n) for excess risk. On the other hand, by combining

the lower bound of excess risk and the upper bound of op-
timization error, we can obtain a lower bound in Ω(Tα/n)
for the generalization gap.

Iteration Complexity. To avoid introducing additional
computational cost, we hope the number of outer iterations
T = O(1). Then, α = O(

√
n). Based on the condition

α ≤ 1/p, we should have p ≤ O(1/
√
n). In this setting,

the iteration complexity of ME-A is the same as that of A.
For example, Let A= SGD, based on Theorem 4.5 and 4.8,
it is required ε(A) = O(1/pn) for achieving uniform sta-
bility and ε(A) = O(1/pαT ) = O(1/p

√
n) for achieving

O(1/Tα) optimization error. In Theorem B.1, if we assume
DW ≤ O(

√
n), N = n2, we have ε(A) = O(1/pn). In

this case, it is required O(n2) inner iterations and O(1)
outer iterations. The total iteration complexity is O(n2).

It is important to note that this rate cannot be further reduced
for non-smooth problems (Bousquet & Elisseeff, 2002). In
the strongly convex non-smooth case, achieving uniform
stability also requires O(n2) iterations. Consequently, the
iteration complexity of both ME-A (for convex problems)
and A (for strongly convex problems) is O(n2).

To conclude this section, we consider the performance of
ME-A in smooth setting. In this case, applying first order
algorithms to the inner problem have a linear convergence
rate. The iteration complexity is O(n). It matches the rate
of running SGD on smooth problem (Hardt et al., 2016).
Theoretically, the iteration complexity of ME-A and A is
the same. In practice, let A be the update rule of a first-order
multi-epochs algorithm. Then, we can choose T to be the
number of epochs and N to be the number of iterations in
each epochs. ME-A has the same computational cost as A.
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5. Comparison of ME-A with Existing
Algorithms

ME-A looks similar to but essentially different from some
existing algorithms. It is necessary to compare ME-A with
these similar algorithms in detail and the summary of the
comparison is provided in Table 2.

Stochastic Weight Averaging (SWA). SWA (Izmailov
et al., 2018) (or moving averaging in different literatures)
suggests using the weighted average of the iterates rather
than the final one for inference. The update rules of SWA
is ut+1 = τ tut + (1 − τ t)wt+1. By Simply applying the
analytical tools in the work of (Bassily et al., 2020), we
can see that SWA is not guarantee to be uniformly stable.
On the other hands, SWA can be regarded as ME-A when
p → 0. In Algorithm 1, if we denote τ t = 1 − αtp, Step
9 can be view as a weight averaging step. In Thmeorem
4.5, it is required that 0 < αt ≤ 1/p. Then, 0 ≤ τ t =
(1 − αtp) < 1. Therefore, by fixing αtp to be constant
and letting p → 0, ME-A is reduced to SWA. Our analysis
provides an understanding of the generalization ability of
SWA.

Empirical Risk Minimization (ERM). ERM (or weight
decay in different literatures) is a technique used to regu-
larize the empirical loss by adding a ℓ2 regularization term,
i.e., the loss function is h(w; z) + p∥w∥2/2. If we replace
Step 9 with u = 0 in Algorithm 1, it is reduced to ERM. In
convex case, the regularized loss becomes strongly convex
and ensures uniform stability (Bousquet & Elisseeff, 2002).
Feldman et al. (2020) introduced a variant of ERM called
Phase-ERM and showed that it achieves uniform stability in
O(n2) steps.

However, such theoretical guarantee cannot be extended to
weakly-convex problems. This limitation arises because the
regularization term changes the global solutions of the prob-
lems, necessitating that the parameter p cannot be too large.
In weakly-convex case, we may not have p > l, implying
that h(w; z) + p∥w∥2/2 may not exhibit strong convexity.
As a result, ERM is not guaranteed to be uniformly stable
in weakly-convex scenario.

5.1. Comparison of Moreau Envelope-Type Algorithms

Moreau Yosida Smoothing. MYS is originally proposed
to solve non-smooth convex optimization problems (Nes-
terov, 2005). It uses the Moreau envelope function to
smooth the non-smooth loss h(w; z). Then, algorithms
can be applied to the smooth surrogate. The loss of MYS is

min
u

ES min
w

[
h(w; z) +

p

2
∥w − u∥2

]
.

The uniform stability analysis of MYS is provided in (Bass-
ily et al. (2019), cf. Theorem 4.4). It is shown that O(n4.5)

steps are required to achieve uniform stability, which is inef-
ficient. In deep learning, memorization cost is another issue.
It is required to store n different networks (or (n/batch size)
in BGD settings) in memory, which is intractable. Addition-
ally, it is worth notice that the theoretical analysis of MYS
and ME-A are different. The analysis of MYS use standard
tools of applying SGD to finite sum smooth problems.

Proximal Point Methods. PPM uses the proximal oper-
ator w(u) to be the update rule, i.e., ut+1 = w(ut). No-
tice that it is equivalent to apply GD to the Moreau enve-
lope function M(u;S) with constant stepsize αt = 1/p (or
τ = 0). Therefore, PPM can be regarded as a special case
of ME-A (α = 1/p, A=global minimizer). In convex case,
a by-product of our results is that PPM achieves uniform
stability for non-smooth loss minimization. However, PPM
is not guaranteed to be uniformly stable in weakly-convex
case. In Theorem 4.7, diminishing stepsize is required for
achieving O(T q/n)-uniform stability, but PPM is equiva-
lent to GD with fixed stepsize.

6. Experiments
We focus on A=SGD in experiments to verify the theoret-
ical results. We start from a toy experiment that perfectly
matches the theory. Let the L1 loss be h(w, z) = ∥w−z∥1.
It is 1-Lipschitz, since |h(w1, z) − h(w2, z)| = |∥w1 −
z∥1−∥w2−z∥1| ≤ ∥w1−w2∥1, for all z. It is non-smooth
due to the ℓ1-norm. Therefore, L1-loss ∈ H.

Let the true distribution be a 10-dimensions Gaussian dis-
tribution, D = N (0, I). We sample 10 to 100000 data to
train w with SGD and ME-SGD. The results are shown in
Figure 2 (a). When the number of samples increases, the
generalization gap induced by SGD does not converge to
zero. While using ME-SGD, the gap converges to 0 fastly.

6.1. Mitigating Robust Overfitting in O(T qϵ)

Next, we turn our focus on adversarial training2. We first
study the robust overfitting issue. We mainly adopt the
hyper-parameter settings of adversarial training in the work
of (Gowal et al., 2020). Weight decay is set to be 5× 10−4.
Based on Theorem 4.7, the step size αt of updating u is set
to be 1/pt, then τt = 1 − αtp = (t − 1)/t. Interestingly,
this theoretical-driven stepsize is consistent with the default
setting of SWA stepsize used in practice. Ablation studies
for the choice of p and the choice of τt are provided in
Appendix C.

To have a first glance at how ME-A mitigates robust over-
fitting, we consider the training procedure against ℓ∞-PGD
attacks (Madry et al., 2018a) on SVHN, CIFAR-10, and

2Code is publicly available at https://github.com/
JiancongXiao/Moreau-Envelope-SGD.
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Table 2. Comparison of ME-A with SWA, ERM, MYS and PPM on non-smooth minimization problem. Only ME-A achieves uniform
stability for weakly-convex non-smooth problems.

Algorithms Types Difference to ME-A Convex Weakly-Convex

Stability Complexity Stability

SWA - p = 0, τ > 0 % - %

ERM Regularization u = 0 ! - %

(Phase)-ERM u = 0, p → 0 ! O(n2) %

MYS
Moreau Envelope

ES minw[·] ⇒ minw ES [·] ! O(n4.5) %

PPM (Our proof) τ = 0 ! O(n2) %

ME-A (Ours) N/A ! O(n2) !
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Figure 2. (a): Comparison of generalization gap induced by SGD and ME-SGD for the toy example. (b) and (c): Robust test accuracy of
adversarial training using SGD and ME-A on SVHN, and CFAR-100, respectively.

CIFAR-100. For the attack algorithms, we use ϵ = 8/255.
The attack step size is set to be ϵ/4. We use piece-wise learn-
ing rates, which are equal to 0.1, 0.01, 0.001 for epochs 1
to 100, 101 to 150, and 151 to 200, respectively.

The experiments on CIFAR-10 is provided in Introduction.
The experiments on SVHN and CIFAR-100 are provided in
Figure 2 (b) and (c). It is shown that adversarially-trained
models suffer from severe overfitting issues (Rice et al.,
2020). From the perspective of uniform stability, it might
be due to the additional term O(T qϵ) induced by SGD. For
SGD, the robust test accuracy starts to decrease at around
the 100th epoch, which is a typical phenomenon of robust
overfitting.

By employing ME-A, we significantly mitigate the issue of
robust overfitting. Our experiments on SVHN and CIFAR-
10/100 demonstrate that the robust test accuracy no longer
diminishes. With this approach, DNNs fit the training adver-
sarial examples well, reaching a performance ceiling that is
constrained by the size of the existing dataset, denoted as n.

6.2. Sample Complexity in O(T q/n)

Secondly, we examine the sample complexity characterized
by O(T q/n) as detailed in Theorem 4.7. Considering that

CIFAR-10 encompasses only 50,000 training samples, we
utilize an additional pseudo-label dataset as introduced by
Carmon et al. (2019) to analyze the sample complexity. Em-
ploying a greater proportion of pseudo-label data serves as
a proxy for increasing the training dataset size. In Figure 3,
we illustrate both the adversarial generalization gap (a) and
the robust test accuracy (b). It is observed that by increasing
the number of training data, denoted as n, the robust gener-
alization gap decreases, subsequently enhancing the robust
test accuracy.

Additivity of O(T qϵ) and O(T q/n). In Table 3, we study
the interaction between applying ME-A and adding addi-
tional data. The baseline performance of WideResNet-
28×10 on CIFAR-10 is reported in (Gowal et al., 2020).
We adopt the AutoAttack (Croce & Hein, 2020), which is
a collection of four attacks in default settings, to evaluate
the performance of robust test errors. When applying the
TRADES loss, the effect of ME-A is approximately 3%,
regardless of the presence of additional data. The benefit
of incorporating extra data contributes around 8% improve-
ment, applicable to both SGD and ME-A. A similar trend
is observed with adversarial loss, with a small difference be-
ing that ME-A exerts a slightly lesser impact on adversarial
loss, reducing to about 1%. These experiments support the
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Figure 3. Robust generalization gap and robust test accuracy in the
experiments of SGD and ME-A.

assertion that there is an additive relationship between ro-
bust overfitting and sample complexity. The enhancements
gained from reducing robust overfitting and from addressing
sample complexity can be cumulatively superimposed.

6.3. Discussion of Exisitng Algorithms

In our final discussion, we study the empirical performance
of methods listed in Table 2. ERM, essentially weight de-
cay, is already a common practice in deep learning. MYS,
however, is not implementable due to memory constraints.
Regarding PPM, its experimentation is part of the ablation
study on the parameter τ provided in Appendix C.2. When
τ = 0, its performance similar to that of SGD. Notably, none
of these methods can mitigate robust overfitting. In contrast,
SWA demonstrates practical improvements in robust gen-
eralization, achieving robust test accuracy comparable to
ME-A, as exemplified in Gowal et al. (2020). The similarity
between SWA and ME-A suggests that our theory may offer
insights into SWA, particularly when considering p → 0.
However, it is important to note that while SWA shows prac-
tical promise, it lacks provable results, unlike ME-A, which
is theoretically underpinned. This theoretical assurance is a
significant advantage of ME-A over SWA.

Table 3. Robust test accuracy on adversarial loss and TRADES
loss. The term ‘+data’ means addition unlabeled data with labeled
to unlabeled data ratio 3:7 is added to the training set. The no-
tion ↓ means the improvement mainly comes from reducing the
underlying term.

Algorithm AutoAttack Stability
AT Loss TRADES

SGD 50.80±0.23% 51.91% O(T qϵ+ T q/n)
+data 58.41±0.25% 59.45% O(T qϵ+ T q/n ↓)

ME-SGD 51.66±0.16% 55.23±0.19% O(T qϵ ↓ +T q/n)
+data 59.14±0.18% 62.76±0.15% O(T qϵ+ T q/n ↓)

Recent studies, including (Rebuffi et al., 2021), indicate that
robust generalization can be further enhanced by generating
additional data using diffusion models. In our theoretical
framework, the use of both pseudo-labeled data and gener-
ated data serves to optimize the terms O(T q/n). In Table
4, we classify key existing methods for robust generaliza-
tion into two distinct categories. This categorization helps
validate our theoretical model.

Table 4. Existing approaches for improving adversarially robust
generalization.

Algorithms Types Empirical Theoretical

SWA Robust Overfitting ! %

ME-A ! !

Pseudo Labeled Data Sample Complexity !

Generated Data !

7. Conclusion
In this paper, we introduce ME-A, an approach designed
to achieve uniform stability for adversarial training under
the assumption that the standard loss function is non-convex
and smooth. The primary objective of ME-A is to mitigate
robust overfitting, a phenomenon commonly observed in
practice.

One of the limitations of our analysis is the assumption of
−l-weak convexity of the adversarial loss function, or equiv-
alently, the l-gradient Lipschitz assumption of the standard
loss function. In practice, this assumption is reasonable for
neural network training. If the loss function is differentiable
and the training trajectory remains within a bounded region,
it ensures that the loss function exhibits l-smoothness along
the training trajectory. However, the main difficulty lies
in estimating the value of l. Furthermore, designing new
algorithms that are uniformly stable for non-convex and non-
smooth problems remains a challenging task. In summary,
we anticipate that ME-A will serve as an inspiration for the
development of novel algorithms in deep learning.
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A. Proof of Theorems
A.1. Proof of Lemma 4.1 and 4.3

The proof of Lemma 4.1 and 4.3 are related. It suffices to prove the Lemma in weakly-convex case. We first state the Lemma
in weakly-convex case.

Lemma A.1. Assume that h is −l-weakly convex. Let p > l. Then, M(u;S) satisfies

1. minu M(u;S) has the same global solution set as minw RS(w).

2. The gradient of M(u;S) is ∇uM(u;S) = p(u− w(u;S)).

3. M(u;S) is pl/(p− l)-weakly convex in u.

4. M(u;S) is max{p, pl/(p− l)}-gradient Lipschitz continuous.

Lemma 4.1 and 4.3 hold by letting l = 0. To simplify the notation, we use M(u) as a short hand notation of M(u;S).
Similar to h(u), K(u), and w(u).

1. Let w∗ ∈ argminRS(w). We have

RS(w
∗) = K(w∗, u = w∗, S) ≥ K(w(u), u = w∗, S) ≥ RS(w(u = w∗)).

Then, the equality holds. Therefore, w = u = w∗ is the optimal solution of both minw RS(w) and minu M(u;S).

2. Since K(w, u) is a (p− l)-strongly convex function, w(u) is unique. Then

M(u) = h(w(u)) +
p

2
∥w(u)− u∥2.

By taking the derivative of M(u) with respect to u, we have

∇uM(u) =

[
∂w(u)

∂u

]T
· ∇w(u)h(w(u)) +

[
∂w(u)

∂u
− I

]T
· p(w(u)− u). (A.1)

=

[
∂w(u)

∂u

]T
· (∇w(u)h(w(u)) + p(w(u)− u)) + p(u− w(u)). (A.2)

Since w(u) is the optimal solution of K(w, u), we have

∇w(u)K(w(u), u) = ∇w(u)h(w(u)) + p(w(u)− u) = 0. (A.3)

Therefore, the first term in A.2 is equal to zero. We have ∇uM(u) = p(u− w(u)).

3. In Equation (A.3), take the derivatives with respect to u on both sides, we have[
∂w(u)

∂u

]T
∇2

wh(w) + p(

[
∂w(u)

∂u

]T
− I) = 0.

Organizing the terms, we have [
∂w(u)

∂u

]T
(∇2

wh(w) + pI) = pI.

Since h(w) is −l-weakly convex, ∇2
wh(w) + pI is positive definite. Then,[

∂w(u)

∂u

]T
≺ p

p− l
I. (A.4)

Then,

∇2
uM(u) = [

∂

∂u
p(u− w(u))]T = p(I −

[
∂w(u)

∂u

]T
) ≻ p(1− p

p− l
)I.

14



Uniformly Stable Algorithms for Adversarial Training and Beyond

Therefore, M(u) is a pl/(p− l)-weakly convex function.

4. By Equation (A.4), we have

∥∇M(u1)−∇M(u2)∥
= p∥u1 − w(u1)− u2 − w(u2)∥
≤ pmax{∥u1 − u2∥, ∥w(u1)− w(u2)∥}
≤ pmax{1, l/(p− l)}∥u1 − u2∥
= max{p, pl/(p− l)}∥u1 − u2∥.

Therefore, M(u;S) is max{p, pl/(p− l)}-gradient Lipschitz continuous.

A.2. Proof of Lemma 4.2 and 4.4

Now we discuss the proof of the uniform stability of inner and outer minimization.

Proof of Lemma 4.2: It suffices to prove the Lemma in weakly-convex case. We first introduce the following Lemma of
uniform stability of inner minimization.

Lemma A.2 (Uniform Stability of Inner Minimization in Weakly-Convex Case). In weakly-convex case, for neighbouring
S and S′, we have

∥w(u;S)− w(u;S′)∥ ≤ 2L/(n(p− ℓ)).

Proof. By the (p− l)-strongly convexity of K(w, u;S), we have

(p− l)∥w(u;S)− w(u;S′)∥
≤ ∥∇K(w(u;S), u;S)−∇K(w(u;S′), u;S)∥
≤ ∥∇K(w(u;S), u;S)−∇K(w(u;S′), u;S′)∥

+
1

n
∥∇h(w(u;S′), zi)∥+

1

n
∥∇h(w(u;S′), z′i)∥

=
1

n
∥∇h(w(u;S′), zi)∥+

1

n
∥∇h(w(u;S′), z′i)∥

≤ 2L

n
,

where the second inequality is due to the definition of K(w, u;S), the third one is due to the first-order optimally condition,
and the last inequality is because of the bounded gradient of h(w; z).

Next, we move to the proof of Lemma 4.4. Lemma 4.4 is not obtained from the work of (Hardt et al., 2016). Notice that

M(u;S) = min
w∈W

1

n

∑
z∈S

K(w, u; z) ̸= 1

n

∑
z∈S

min
w∈W

K(w, u; z).

minu M(u;S) is not a finite sum problem. The analysis in (Hardt et al., 2016) can only be applied to finite sum problems.
Lemma 4.4 requires a different proof. In summary, there are two steps:

1. Build the recursion from ∥ut
S − ut

S′∥ to ∥ut+1
S − ut+1

S′ ∥;

2. Unwind the recursion.

The main difference comes from the first step.
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Step 1.

∥ut+1
S − ut+1

S′ ∥
= ∥ut

S − ut
S′ − αt(∇M(ut

S ;S)−∇M(ut
S′ ;S′))∥

≤ ∥ut
S − ut

S′ − αt(∇M(ut
S ;S) +∇M(ut

S′ ;S))∥+ αt∥∇M(ut
S′ ;S′)−∇M(ut

S′ ;S)∥
≤ ∥ut

S − ut
S′∥+ αt∥∇M(ut

S′ ;S′)−∇M(ut
S′ ;S)∥

= ∥ut
S − ut

S′∥+ αtp∥ut
S′ − ut

S′ − w(ut
S′ , S) + w(ut

S′ , S′)∥

≤ ∥ut
S − ut

S′∥+
2Lαt

n
,

where the second inequality is due to the non-expansive property of convex function , the last inequality is due to Lemma
A.2.

Step 2. Unwinding the recursion, we have

∥uT
S − uT

S′∥ ≤
2L
∑T

t=1 αt

n
.

A.3. Proof of Theorem 4.5

Proof. We decompose ∥ut+1
S − ut+1

S′ ∥ as

E∥ut+1
S − ut+1

S′ ∥
= E∥ut

S − αt∇uK(wt
N,S , u

t
S ;S)− ut

S′ + αt∇uK(wt
N,S′ , ut

S′ ;S′)∥
≤ E∥ut

S − αt∇uM(ut
S ;S)− ut

S′ + αt∇uM(ut
S′ ;S′)∥

+ 2αtE∥∇uK(wt
N,S , u

t
S ;S)−∇uM(ut

S ;S)∥

≤ E∥ut
S − ut

S′∥+
2Lαt

n
+ 2αtpE∥wt

N − w(ut)∥

≤ E∥ut
S − ut

S′∥+
2Lαt

n
+ 2αtpε(A).

Unwind the recursion and let uT be the output of the algorithm. We have

Egen ≤ L

(
2L

n
+ 2pε(A)

) T∑
t=1

αt.

If we choose w(uT ) to be the algorithm output, we have

Egen ≤ LE∥w(uT
S ;S)− w(uT

S′ ;S′)∥

= LE∥uT
S − 1

p
∇M(uT

S , S)− uT
S′ −

1

p
∇M(uT

S′ ;S′))∥

≤ LE∥uT
S − uT

S′∥+
2L2

np

≤ L

(
2L

n
+ 2pε(A)

) T∑
t=1

αt +
2L2

np
.

(A.5)

where the first equality is due to ∇M(u;S) = p(u− w(u)), the second inequality is due to the non-expansive propertiy of
M(u;S).
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A.4. Proof of Theorem 4.7

The proof contains two steps. The first step is to build the recursion, which is based on the error bound and the decomposition
of Lemma 4.4. The second step is to unwind the recursion, which is adopt from the analysis of uniform stability in non-
smooth case (Hardt et al., 2016).

Proof:

Step 1. We decompose ∥ut+1
S − ut+1

S′ ∥ as

∥ut+1
S − ut+1

S′ ∥
= E∥ut

S − αt∇uK(wt
N,S , u

t
S ;S)− ut

S′ + αt∇uK(wt
N,S′ , ut

S′ ;S′)∥
≤ E∥ut

S − αt∇uM(ut
S ;S)− ut

S′ + αt∇uM(ut
S′ ;S′)∥

+ 2αtE∥∇uK(wt
N,S , u

t
S ;S)−∇uM(ut

S ;S)∥
≤ ∥ut

S − ut
S′ − αt(∇M(ut

S ;S)−∇M(ut
S′ ;S′))∥+ 2αtpε(A)

≤ ∥ut
S − ut

S′ − αt(∇M(ut
S ;S) +∇M(ut

S′ ;S))∥+ αt∥∇M(ut
S′ ;S′)−∇M(ut

S′ ;S)∥+ 2αtpε(A)

≤ ∥ut
S − ut

S′∥+ αt∥∇M(ut
S ;S)−∇M(ut

S′ ;S)∥+ αt∥∇M(ut
S′ ;S′)−∇M(ut

S′ ;S)∥+ 2αtpε(A)

≤ (1 + αtβ)∥ut
S − ut

S′∥+ αt∥∇M(ut
S′ ;S′)−∇M(ut

S′ ;S)∥+ 2αtpε(A), (A.6)

where the first inequality is due to triangular inequality, the second inequality is due to the assumption of the convergence
rate of the inner minimization problem, and the third and fourth inequalities are due to triangular inequality. The last
inequality is due to the gradient Lipschitz of M(u;S) and β = max{p, pl/p− l}. Then,

αt∥∇M(ut
S′ ;S′)−∇M(ut

S′ ;S)∥
= αtp∥ut

S′ − ut
S′ − w(ut

S′ , S) + w(ut
S′ , S′)∥

≤ 2Lpαt

(p− l)n
, (A.7)

where the first inequality is due to the form of ∇M(u;S), the last equality is due to Lemma A.2.

Combining Equation (A.6) and (A.7), we have

∥ut+1
S − ut+1

S′ ∥

≤ (1 + αtβ)∥ut
S − ut

S′∥+
2Lpαt

(p− l)n
+ 2αtpε(A). (A.8)

Step 2. Let S and S′ be two samples of size n differing in only a single example. Consider two trajectories w1
1, . . . , w

T
1

and w1
2, . . . , w

T
2 induced by running SGD on sample S and S′, respectively. Let δt = ∥wt

1 − wt
2∥. Let t0 ∈ {0, 1, . . . , n},

be the iteration that δt0 = 0, but SGD picks two different samples form S and S′ in iteration t0 + 1, then

Egen ≤ t0
n
B + LE [δT | δt0 = 0] . (A.9)

Let ∆t = E [δt | δt0 = 0], and αt ≤ c/(βt). Then,

∆t+1 ≤ (1 + αtβ)∆t +

(
2Lp

(p− l)n
+ 2pε(A)

)
αt

=

(
1 +

cβ

t

)
∆t +

(
2Lp

(p− l)n
+ 2pε(A)

)
c

t

≤ exp

(
cβ

t

)
∆t +

(
2Lp

(p− l)n
+ 2pε(A)

)
c

t
.
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Here we used the fact that 1 + x ≤ exp(x) for all x.

Using the fact that ∆t0 = 0, we can unwind this recurrence relation from T down to t0 + 1. This gives

∆T ≤
T∑

t=t0+1

{
T∏

k=t+1

exp
(

βc
k

)}( 2Lp

(p− l)n
+ 2pε(A)

)
c

t

=

T∑
t=t0+1

exp

(
βc

T∑
k=t+1

1
k

)(
2Lp

(p− l)n
+ 2pε(A)

)
c

t

≤
T∑

t=t0+1

exp
(
βc log(Tt )

)( 2Lp

(p− l)n
+ 2pε(A)

)
c

t

=

(
2Lp

(p− l)n
+ 2pε(A)

)
cT βc

T∑
t=t0+1

t−βc−1

≤
(

2Lp

(p− l)n
+ 2pε(A)

)
1

βc
c

(
T

t0

)βc

≤ p

β

(
2L

(p− l)n
+ 2ε(A)

)(
T

t0

)βc

,

Plugging this bound into (A.9), we get

Egen ≤ Bt0
n

+
Lp

β

(
2L

(p− l)n
+ 2ε(A)

)(
T

t0

)βc

.

Let q = βc. We select t0 to optimize the right hand side

Egen ≤ Bt0
n

+
Lp

β

(
2L

(p− l)n
+ 2ε(A)

)(
T

t0

)βc

.

If algorithm A satisfies ε(A) = O(1/(p− l)n),

O
(
2LpT βcε(A)

β

)
= O

(
2LpT βc

β(p− l)n

)
= O

(
2LT βc

min{l, p− l}n

)
Let q = βc

1+βc , Optimize over t0. Then, we have

Egen ≤ O
(

2L2T q

min{l, p− l}n

)
.

A.5. Proof of Theorem 4.8

Now we consider the convergence rate of ME −A. In this part, we simply let M(u) and K(w, u) as short hand notations
of M(u;S) and K(w, u;S).

By the p-gradient Lipschitzness of M(u), we have

M(ut+1) ≤ M(ut) + ⟨∇M(ut), ut+1 − ut⟩+ p

2
∥ut+1 − ut∥2.

By the update rules of ut, we have ut+1 = ut − αt∇K(wt+1, ut) or ut+1 = ut + αtp(w
t+1 − ut). Then,

M(ut+1) ≤ M(ut)− αt⟨∇M(ut),∇K(wt+1, ut)⟩+ pα2
t

2
∥∇K(wt+1, ut)∥2.
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Based on the convexity of M(u), we have

M(u) ≤ M(u∗) + ⟨∇M(u), u− u∗⟩.

Then

M(ut+1)−M(u∗)

≤ ⟨∇M(ut), ut − u∗⟩ − αt⟨∇M(ut),∇K(wt+1, ut)⟩+ pα2
t

2
∥∇K(wt+1, ut)∥2

= ⟨∇M(ut), ut − u∗ − αt∇K(wt+1, ut)⟩+ pα2
t

2
∥∇K(wt+1, ut)∥2

= ⟨∇M(ut), ut+1 − u∗⟩+ pα2
t

2
∥∇K(wt+1, ut)∥2

= ⟨∇K(wt+1, ut), ut+1 − u∗⟩+ pα2
t

2
∥∇K(wt+1, ut)∥2

+⟨∇M(ut)−∇K(wt+1, ut), ut+1 − u∗⟩. (A.10)

Let αt = α ≤ 1/p. The sum of the first two terms is bounded by 1
2α [∥u

t − u∗∥2 − ∥ut+1 − u∗∥2], it is because

1

2α
[∥ut − u∗∥2 − ∥ut+1 − u∗∥2]

=
1

2α
[2α⟨∇K(wt+1, ut), ut − u∗⟩ − α2∥∇K(wt+1, ut)∥2]

= ⟨∇K(wt+1, ut), ut − u∗⟩ − α

2
∥∇K(wt+1, ut)∥2

= ⟨∇K(wt+1, ut), ut+1 − u∗⟩+ α

2
∥∇K(wt+1, ut)∥2

≥ ⟨∇K(wt+1, ut), ut+1 − u∗⟩+ pα2

2
∥∇K(wt+1, ut)∥2.

(A.11)

The Last term in Equation (A.10)

⟨∇M(ut)−∇K(wt+1, ut), ut+1 − u∗⟩ ≤ p∥wt+1 − w(ut)∥ · ∥ut+1 − u∗∥.

Then, we have

M(ut+1)−M(u∗)

=
1

2α
[∥ut − u∗∥2 − ∥ut+1 − u∗∥2] + ε(A)p∥ut+1 − u∗∥.

Sum over t = 0 to T , we obtain

Eopt ≤ O
(
∥u0 − u∗∥2

2αT
+ ε(A)p

∑T
t=1 ∥ut − u∗∥2

T

)
= O

(
D0

2αT
+ ε(A)pD1

)
.

Furthermore, if algorithm A satisfies ε(A) = O(1/pαT ), the generalization gap satisfies

Eopt ≤ O
(

1

Tα

)
.

B. Discussion on the Complexity of the Inner Problem
B.1. Convergence Rate of Strongly Convex Problems

In this section, we consider the convergence rate of the inner minimization problem. Notice that the inner problem is a
(p− l)-strongly convex, non-smooth problem.
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Lipschitz Case. We first consider the case that K(w, u; z) is Lipschitz. If we assume that the domain W of w is bounded
by DW /2, since

∥∇wK(w, u; z)∥ = ∥∇wh(w; z) + p(w − u)∥ ≤ L+ pDW ,

K(w, u; z) has bounded gradient LK = L+ pDW , i.e., K(w, u; z) is LK -Lipschitz. Then the convergence rate of running
SGD on the inner problem can be obtained from classical strongly-convex optimization results.

Lemma B.1. Given t and ut, suppose we run SGD on K(w, ut, S) w.r.t. w with stepsize cts ≤ 1/(p− l)s for N steps. wt
N

is approximately the minimizer with an error C2
1/N , i.e.,

E∥wt
N − w(ut)∥2 ≤ C2

1

N
,

where C1 = (L+ pDW )/(p− l).

By (Nemirovski et al., 2009), running SGD on K(w, u;S) with stepsize cs ≤ 1/s(p− l) iccurs an optimization error in

E∥wN − w(u)∥2 ≤ C2
1

N
,

where C1 = (L+ pDW )/(p− l). Then, by Jensen’s inequality, we have

ϵ(SGD) = E∥wN − w(u)∥ ≤
√

E∥wN − w(u)∥2 ≤ C1√
N

,

Non-Lipshitz Case. Without the DW /2-bounded assumption, K(w, ut, S) is not Lipshitz, but the sum of a Lipshitz
function (h(w)) and a gradient Lipshitz function (p2∥w − u∥2). We provide our convergence analysis in this case. In this
case, we apply subgradient method for this strongly convex problem. Consider the following optimization problem:

min
w

ϕ(w) := h(w) +
p

2
∥w − u∥2,

where h(·) is convex, L-Lipschitz and has bounded subgradients. We perform subgradient descent to ϕ:

wt+1 = wt − cgh(w
t)− cp(wt − u).

Theorem B.2. We can obtain ∥wt − w∗∥ ≤ ϵ with t ≤ Õ(1/ϵ2) steps, where the constant hidden in O only depends on L,
∥w0 − w∗∥ and p.

Proof. We have

∥wt+1 − w∗∥2

= ∥wt − cgt − cp(wt − u)− w∗∥2

= ∥(wt − w∗)− c(gt − g∗)− cp(wt − w∗)∥2,

where the last equality uses the optimality condition in w∗ that g∗ + p(w∗ − u) = 0 for some g∗ ∈ ∂(h(w∗)). We then have

∥(wt − w∗)− c(gt − g∗)− cp(wt − w∗)∥2

= (1− cp)∥wt − w∗∥2 + c2∥gt − g∗∥2

− (gt − g∗)T (wt − w∗)

≤ (1− cp)∥wt − w∗∥2 + c2L2,

where the last inequality uses the fact that ∥gt∥, ∥g∗∥ ≤ L and (gt − g∗)T (wt −w∗) ≥ 0. Let ∆t = ∥wt −w∗∥2. Then we
have the recursion

∆t+1 ≤ (1− cp)∆t + c2L2.

We have
(∆t+1 − cL2/p) ≤ (1− cp)(∆t − cL2/p).

Take c = ϵ/2 and we can attain the result.
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C. Other Discussion
C.1. Additional Related work

Additional Related Work. In addition to gradient descent, some variants of SGD are also proven to be non-uniformly
stable for convex non-smooth problems. We list the stability of most related results in Table 5. We can see that there are also
additional term in the bounds of the uniform stability of variants of SGD.

Adversarial Attack. Adversarial examples were first introduced in (Szegedy et al., 2014). Since then, adversarial attacks
have received enormous attention (Papernot et al., 2016; Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017). Nowadays,
attack algorithms have become sophisticated and powerful. For example, Autoattack (Croce & Hein, 2020) and Adaptive
attack (Tramer et al., 2020). Real-world attacks are not always norm-bounded (Kurakin et al., 2018). Xiao et al. (2022d)
considered non-ℓp attacks.

Adversarially Robust Generalization. Even enormous algorithms were proposed to improve the robustness of DNNs
(Madry et al., 2018b; Gowal et al., 2020; Rebuffi et al., 2021), the performance was far from satisfactory. One major
issue is the poor robust generalization, or robust overfitting (Rice et al., 2020). A series of studies (Xiao et al., 2022c;
Ozdaglar et al., 2022) have delved into the concept of uniform stability within the context of adversarial training. However,
these analyses focused on general Lipschitz functions, without specific consideration for neural networks. There are many
approaches designed for mitigating robust overfitting (Chen et al., 2020; Yu et al., 2022; Li & Spratling, 2023; Dong
et al., 2022; Liu et al., 2023; Wang et al., 2024; Zhang et al., 2022). In addition to mitigating robust overfitting, several
methods for adversarial training have been made employing, including metric learning (Mao et al., 2019; Pang et al., 2020),
self-supervised learning (Naseer et al., 2020), domain invariant adversarial learning (Levi et al., 2022), and ensemble
learning (Tramèr et al., 2018).

Table 5. Uniform Stability for different variants of SGD algorithms in non-smooth convex minimization problem. Here T is the number
of iterations, n is the number of samples, and α > 0 is the step size.

Algorithms Upper Bounds Lower Bounds

(Bassily et al., 2020) GD (full batch) O(
√
Tα+ Tα/n) Ω(

√
Tα+ Tα/n)

(Bassily et al., 2020) SGD (w/replacement) O(
√
Tα+ Tα/n) Ω(min{1, T/n}

√
Tα+ Tα/n)

(Bassily et al., 2020) SGD (fixed permutation) O(
√
Tα+ Tα/n) Ω(min{1, T/n}

√
Tα+ Tα/n)

(Yang et al., 2021) SGD (Pairwise Learning) O(
√
Tα+ T lnTα/n) /

(Wang et al., 2022) Markov chain-SGD O(
√
Tα+ Tα/n) /

C.2. Additional Experiments

In this section, we provide ablation study about the hyperparameter of ME-A. Specifically, the value of p and the step size τ
affect the performance of ME-A.

Affect of p. We first consider the affect of the value of p. When p = 0, ME-A reduces to SWA. These experiments also
provide a comparison between ME-A and SWA. In the Theorem, p does not affect the uniform stability as long as α ≤ 1/p.
But p is related to the optimal rate of iteration complexity. We switch p from 0 to 1× 105 in the experiment of adversarial
training with ME-A using TRADES loss on CIFAR-10. The results are provided in Table 6. We can see that the value of p
does not give a major difference in the performance. The best performance is achieved when p = 1.

Affect of τ . Secondly, we consider the affect of the value of τt. When τt = 0, ME-A reduces to PPM. We simply let
τt = τ , i.e., fixed stepsize in the experiemnts. These experiments also provide a comparison between ME-A and PPM. In
the Theorem, τ should be large and closed to 1, especial for large t. We switch τ from 0 to 0.995 in the experiment of
adversarial training with ME-A using TRADES loss on CIFAR-10. The results are provided in Table 7. We can see that the
robust accuracy decreases as τ decreases. The best performance is achieved when τ = 0.995. Therefore, τ is better to be
large. In the experiments in the main contents, τt increases as t.
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Table 6. The affect of p in ME-A. We switch p from 0 to 1× 105 in the experiment of adversarial training with ME-A using TRADES
loss.

p = Robust Accuracy

0 (Reduced to SWA) 63.17
1× 10−5 63.38
1× 10−4 63.28
1× 10−3 63.19
1× 10−2 62.79
1× 10−1 62.69
1× 100 63.86
1× 101 62.89
1× 102 63.47
1× 103 62.40
1× 104 62.79
1× 105 63.41

Table 7. The affect of τ in ME-A. We switch τ from 0 to 0.995 in the experiment of adversarial training with ME-A using TRADES loss.

τ = Robust Accuracy

0 (Reduced to PPM) 56.86
0.1 57.02
0.3 57.78
0.5 58.34
0.7 60.32
0.9 62.57
0.995 63.17

22


