
Under review as a conference paper at ICLR 2023

OPTIMIZING DATA-FLOW IN BINARY NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Binary Neural Networks (BNNs) can significantly accelerate the inference time
of a neural network by replacing its expensive floating-point arithmetic with bit-
wise operations. Most existing solutions, however, do not fully optimize data
flow through the BNN layers, and intermediate conversions from 1 to 16/32 bits
often further hinder efficiency. We propose a novel training scheme that can in-
crease data flow and parallelism in the BNN pipeline; specifically, we introduce
a clipping block that decreases the data-width from 32 bits to 8. Furthermore,
we reduce the internal accumulator size of a binary layer, usually kept using 32-
bit to prevent data overflow without losing accuracy. Additionally, we provide
an optimization of the Batch Normalization layer that both reduces latency and
simplifies deployment. Finally, we present an optimized implementation of the
Binary Direct Convolution for ARM instruction sets. Our experiments show a
consistent improvement of the inference speed (up to 1.77 and 1.9× compared
to two state-of-the-art BNNs frameworks) with no drop in accuracy for at least
one full-precision model.

1 INTRODUCTION

In the last decade deep neural networks (DNNs) have come to demonstrate high accuracy on many
datasets like ImageNet Russakovsky et al. (2015), outperforming legacy methods and sometimes
even human experts(Krizhevsky et al. (2012), Simonyan & Zisserman (2014), Szegedy et al. (2015),
He et al. (2016)). These improvements have been achieved by increasing the depth and complexity
of the network, leading to intensive usage of computational resources and memory bandwidth. Large
DNN models run smoothly on expensive GPU-based machines but cannot be easily deployed to edge
devices (i.e., small mobile or IoT systems), which are typically more resource-constrained. Various
techniques have been introduced to mitigate this problem, including network quantization Choi et al.
(2018); Hubara et al. (2016); Lin et al. (2017); Rastegari et al. (2016); Zhou et al. (2016), network
pruning Han et al. (2015); Wen et al. (2016) and efficient architecture design Howard et al. (2017);
Tan & Le (2019).

Recent work on quantization (e.g. Courbariaux et al. (2016); Hubara et al. (2016); Liu et al. (2018);
Martinez et al. (2020)) has shown that a DNN model can be even quantized to 1-bit (also known
as binarization) thus achieving a remarkable speedup compared to the full precision network. The
memory requirement of such a binarized DNN (BNN) is drastically reduced compared to a DNN
of the same structure, since a significant proportion of weights and activations can be represented
by 1-bit, usually {−1,+1}. In addition, high-precision multiply-and-accumulate operations can be
replaced by faster XNOR and popcount operations.

However, the aggressive quantization can make BNN’s less accurate than their full-precision coun-
terparts. Some researchers showed that the performance loss often arises from the gradient mismatch
problem caused by the non-differentiable binary activation function Darabi et al. (2018); Liu et al.
(2018). This non-differentiability of the quantization functions prevents gradient back-propagation
through the quantization layer. Therefore, previous works used straight-through-estimator (STE) to
approximate the gradient on non-differentiable layers Bengio et al. (2013); Hubara et al. (2016).

Furthermore, to prevent that the binarization of weights and activations leads to feature maps of
lower quality and capacity, a combination of binary and floating-point layers is usually adopted.
Unfortunately, each time a binary layer is connected to a floating-point one, the efficiency of the

1



Under review as a conference paper at ICLR 2023

pipeline is compromised by input/output layer data type conversion. In addition, the internal par-
allelism of a binary layer depends on the encoding of the accumulator, which is often maintained
at 32 bits to prevent overflow. In this paper we present several optimizations that allow training a
BNN with an inter-layer data width of 8 bits. Most prior work on BNN’s emphasize overall net-
work accuracy; in contrast, our aim is to preserve initial accuracy while improving efficiency. Our
contributions (graphically highlighted in Figure 1i and 1ii) can be summarized as follows:

• a novel training scheme is proposed to improve the data-flow in the BNN pipeline (Section
3.1); specifically, we introduce a clipping block to shrink the data width from 32 to 8 bits
while simultaneously reducing the internal accumulator size.

• we provide (Section 3.2) an optimization of the Batch Normalization layer that decreases
latency and simplifies deployment.

• we optimize the Binary Direct Convolution method for ARM instruction sets (Section 3.3).

To prove the effectiveness of the proposed optimizations in Section 4 we provide experimental eval-
uations that show’s the speed-up relative to state-of-the-art BNN engines like LCE Bannink et al.
(2021) and DaBNN Zhang et al. (2019).

2 RELATED WORK

BNNs were first introduced by Courbariaux et al. (2016), who established an end-to-end gradient
back-propagation framework for training the binary weights and activations. They achieved good
success on small classification datasets including CIFAR10 Krizhevsky et al. (2009) and MNIST
Netzer et al. (2011), but encountered a severe accuracy drop on ImageNet.

Many subsequent studies focused on enhancing BNN accuracy. Rastegari et al. (2016) proposed
XNOR-Net, where real-valued scaling factors are used to multiply the binary weight kernels, and this
methodology then became a representative binarization approach to bridge the gap between BNN’s
and their real-valued counterparts. The Bi-Real Net Liu et al. (2018) added shortcuts to propagate
values along the feature maps, which further boosted the top-1 accuracy on ImageNet; nevertheless,
the model still relies on 32-bit floating point to execute batch normalization and addition operator
(as shown in Fig. 1iia).

One of the major weaknesses of BNN’s is the gradient approximation by the STE binarization func-
tion Courbariaux et al. (2016). In fact, STE computes the derivative of sign as if the binary operation
was a linear function, as reported in the following formula :

A(x) = max(−1,min(1, x)), STE(x) = A′(x) = [−1 ≤ x ≤ 1]

The implementation of STE stated above, uses the STE with the addition that it cancels the gradients
when the inputs get too large Hubara et al. (2016). STE provides a coarse approximation of the
gradient that inevitably affects the testing accuracy of the BNN. To address this issue, other recent
studies tried to improve the performance of BNNs by adopting a proper optimization method for
the quantization. Inspired by STE, many works update the parameters approximately introducing
auxiliary loss functions Gu et al. (2019); Qin et al. (2020).

Besides many efforts to develop more efficient and accurate architectures, a few works have provided
benchmarks on real devices such as ARM processors. Based on the analysis provided in Bannink
et al. (2021), the fastest inference engines for binary neural networks, with proven benchmarks
(Section 4 of Bannink et al. (2021)), are LCE and DaBNN.

3 DATA-FLOW OPTIMIZATIONS

As illustrated in Fig. 1a, the most commonly used BNN architectures (e.g., VGG and ResNet) have
four essential blocks in each convolution/fully-connected (CONV/FC) layer: sign (binarization),
XNOR, popcount and Batch Normalization (BN). Since the weights, inputs and outputs are all bi-
nary, the traditional multiply-and-accumulate operation is replaced by XNOR and bit counting (i.e.,
popcount). XNOR and popcount are usually fused to improve efficiency. The use of Batch Nor-
malization after each binarized layer is very important in BNN’s as pointed out by Santurkar et al.

2



Under review as a conference paper at ICLR 2023

(2018). Figures 1i and 1ii (b and c) point out our proposed BNN optimizations during training and
inference. Before discussing them in detail, we show the data-flow bottlenecks that affect existing
solutions and then describe how to reduce them.

(i) VGG style block. (ii) ResNet style block.

Figure 1: a) Standard BNN blocks used in Rastegari et al. (2016) and Liu et al. (2018). b) BNN
block with output convolution clipping used during training. c) Optimized BNN block adopted
during inference. Popcount operation is performed using saturation arithmetic in order to keep the
data width to 8 bits at inference time. BN is replaced in by a comparison in case i, while in ii BN is
8-bit quantized.

In Figs. 2i and 2ii we report an example of binary convolutional layer outputs for a VGG and a
ResNet model. The ranges of activation values after popcount (green histograms) exceed the interval
[−128;+127] 1, so adopting an 8-bit encoding would lead to overflow. To prevent such a data loss,
most of the existing BNN frameworks (including Bannink et al. (2021); Zhang et al. (2019)) encode
such data in 32-bit floating point. On the other hand, the ranges of values after BN (red histograms
in Fig. 2) are more limited.

In this paper, we propose to quantize the popcount output with 8-bit integers through a two-stages
training procedure, which is designed to preserve model accuracy. In the next subsection we show
how to apply this technique to VGG and ResNet models.

(i) VGG Small output layers (ii) ResNet output layers

Figure 2: Example of output distributions after binary convolution. i, refers to a VGG style network
while ii to a ResNet architecture. Green shows the distribution before the BN layer and red afterward.

3.1 TWO-STAGE CLIPPING

Our training procedure selectively executes or skips a clipping operation at each binary layer (row
b of Figs. 1i and 1ii, blue blocks). A two-stage training method is introduced to avoid accuracy
loss when clipping is enabled: during a first warm-up stage, the model is trained without any range
constraints, while in the second stage (details are reported in Algorithm 1) the network is trained with

1We actually consider the symmetric quantization interval [−127;+127] because this choice enables a
substantial optimization opportunity, as reported in Appendix B of Jacob et al. (2018).

3



Under review as a conference paper at ICLR 2023

the clipping block enabled. Based on the high accuracy reached at the end of the first training stage,
in the second training stage the model better tolerates clipping 8-bit quantization; we experimentally
found that this approach preserves the accuracy of a model that does not contain clipping.

Algorithm 1: Second stage training procedure for BNNs
Input: The full-precision weights W; the input training dataset
Output: BNN model with convolution output clipped

1 Initialize network weights W
2 repeat

// Forward Propagation
3 for l = 1 to L do
4 Binarize floating point weights: W l

bin = sign
(
W l

)
5 Binarize floating point features of previous layer: F l−1

bin = sign
(
F l−1

)
6 Compute binary convolutions features: F l

out = F l−1
bin ∗W l

bin

7 Clip F l
out values to interval [−127;+127] with:

F l
out clipped = max

(
min

(
127, F l

out

)
,−127

)
8 Perform Batch Normalization: BN

(
F l
out clipped

)
= γl F

l
out clipped−µl

σl + βl

// Backward Propagation
9 for l = 1 to L do

10 Compute gradients based on the binarization weights W l
bin, clipped convolutions

F l
out clipped and batch normalization output BN

(
F l
out clipped

)
11 Update full-precision weights W l

12 until convergence

3.2 BATCH NORMALIZATION OPTIMIZATION

The BN layers after the clipping are also optimized/8-bit quantized to further increase the data-
flow of the inference pipeline. The Batch Normalization layer scales and shifts the output of the
CONV/FC layer as follows:

BN
(
F l
out

)
= γ

F l
out − µ

σ
+ β (1)

where γ, µ, σ and β are learned parameters and F l
out is the ouput feature of layer l that is the input

of BN function.

The BN optimization depends on the network model: VGG or ResNet. In both cases we show that
it is possible to keep the inter-layer data type to 8-bit with appropriate changes to the binary layer
structure.

• VGG style block. When the BN layer is inserted in a pipeline similar to Fig. 1i, where the
following block is still binary, the BN operation can be simplified replacing multiplication
and division in Eq. 1 with a simple comparison with a threshold τ . The simplification of
Eq. 1 leads to:

sign
(
BN

(
F l
out

))
=

{
+1 if BN

(
F l
out

)
≥ 0

−1 otherwise

γ
F l

out−µ
σ + β ≥ 0 ⇒ τ

.
= µ− β σ

γ

sign
(
BN

(
F l
out

))
=

{
+1 if F l

out ≥ τ else − 1
(
when γ

σ ≥ 0
)

−1 if F l
out ≤ τ else + 1

(
when γ

σ < 0
)}

(2)

4



Under review as a conference paper at ICLR 2023

The threshold τ of Eq. 2 can be computed offline and easily quantized to 8 bits in order to
exploit the output features of layer l. Therefore, when multiple BNN modules are stacked,
Batch Normalization can be replaced by a threshold comparison according to Eq. 2.

• ResNet style block. When a BNN block is placed in a ResNet style pipeline, followed by
an addition operator, Fig. 1ii, the BN layer can be executed while both scaling and bias
factors to 8 bits. As reported in Fig. 3, the internal data representation of a quantized BN
layer is expanded to 16-bit to preserve accuracy during quantization but the input/output
data type still remains within 8 bits. The complete iterative quantization procedure we
adopted is reported in Algorithm 2 of Appendix 6. The procedure iterates over floating-
point layers (basically all BN layers) inside the binary blocks and, for each one: computes
the quantization scale; quantizes; freezes the weights; and retrains the remaining layers.

Figure 3: a): 8-bit symmetric quantization procedure that reserves fractional/integer bits based on
the range of input 32-bit floating point values. b): implementation of the BN layer with 8-bit quan-
tization using an internal 16-bit representation to preserve accuracy.

3.3 BINARY DIRECT CONVOLUTION OPTIMIZATION ON ARM

The GEMM (GEneral Matrix Multiplication) is a widely adopted method to efficiently implement
convolutions. However, as reported in Zhang et al. (2018b), the GEMM approach increases the
memory footprint of the model, making a model’s port to an embedded device more difficult. Fur-
thermore, GEMM routines are not always optimized for convolutions on ARM devices, in particular
ARMv8 (64-bit ARM architecture) and its relevant operations such as vcount and addv.

vcount takes an N-byte vector as input and outputs an N-byte vector containing the number of 1s
present in each input byte. addv takes an N-byte vector as input and outputs the sum of the N bytes
as one single value.

Inspired by Zhang et al. (2018b) and Zhang et al. (2019) we propose a hybrid direct binary convo-
lution (see Fig. 4) that uses both the addv instruction and the common add operations. The binary
convolution is usually composed of three different steps: binarization/bit-packing, padding and con-
volution. Zhang et al. (2019), executes these steps in a sequential way. In contrast, we devise a more
cache-friendly approach that collapses the previous steps in one operation executed with tiling. We
also devise a different kernel memory layout that better fits ARMv8 SIMD processing instructions,
as illustrated in Fig. 4.

The implementation details of our binary convolution are reported in Fig. 5. The operation Extract
sign bit executes the binarization, bit-packing and padding. Then, the (bit-wise) XNOR output is
consumed by the popcount operation (vcnt 8-bit wise, add and addv). On the ARM architecture, the
latter can be implemented with vcount and a sequence of additions (addv instructions). We decided
to implement several pair-wise additions and only a final addv instruction (which is more expen-
sive). The entire convolution process does not provide intermediate outputs but instead processes
the input data as a whole. It is worth noting that the clipping operation can be obtained for free
on ARM devices by exploiting its saturation arithmetic; all the addition operations (add and addv)
can be limited to the fixed range [−127;+127] by simply adding the postfix q to the operations and
executing max to avoid −128 value.

5



Under review as a conference paper at ICLR 2023

Figure 4: The 7 × 7 input image with 3 different channels (denoted by color) is con-
volved with two separate kernels to obtain a 5 × 5 output with two output channels. To
better exploit the SIMD 128-bit registers a different memory layout for kernel is devised:
[outchannels, Hfilter, Wfilter, inchannels].

Figure 5: The 3×3×128 input patch is convolved (XNOR + popcount) with one kernel through the
Extract sign bit, XNOR and then popcount operations. Popcount is performed using vcnt, summing
in pairs the vcnt output and the last step uses the addv operation. TL (top left), TM (top middle), TR
(top right) and ML (middle left) indicate the position of elements inside the 3× 3 patch.

4 EXPERIMENTAL RESULTS

In this section, we first evaluate the efficiency result of our approach compared to the state-of-art
BNN frameworks such as LCE and DaBNN; the comparison is carried out on real hardware devices
like Raspberry Pi Model 3B and 4B with 64-bit OS. Then, we present various accuracy benchmarks
of the proposed two-stage training procedure focusing on CIFAR-10, SVHN and ImageNet, and to
two different architectures: VGG and Resnet-18.

4.1 EFFICIENCY ANALYSIS

To validate the efficiency of our method we focused on the convolution macro-block of Fig. 1 and
compared the efficiency of the proposed approach with LCE and DaBNN, which, to the best of our
knowledge, are the fastest inference engines for binary neural networks.

6



Under review as a conference paper at ICLR 2023

Our assessment was performed on ARMv8 platforms, Raspberry Pi 3B and 4B. We implemented,
differently from our predecessors, the convolution operation using ARM NEON intrinsics instead
of inline assembly. Intrisics allow to produce code easier to maintain and automatically fit both
ARMv7 and ARMv8 platforms without losing appreciable performance compared to pure assembly
code. In Fig. 6 we compare implementations on targets Rpi 3B and 4B. Our solution shows a clear
performance improvement for single binarized convolutions for all kernels; the performance boost
is more evident when the binarization/bitpacking and data conversion operations are considered
in addition to binary convolution only. In summary, our solution, including all the optimizations
introduced in Section 3, accelerates binary convolution up to 1.77 and 1.9× compared to LCE and
DaBNN.

(i) Raspberry Pi 3 benchmark.

(ii) Raspberry Pi 4 benchmark.

Figure 6: Latency evaluation of our method compared to DaBNN and LCE on Raspberry Pi 3B (i)
and 4B (ii) devices. The improved lower latency of our approach is accentuated when considering
not only the binary convolution itself (left) but bitpacking and padding as well (right).

4.2 ACCURACY ANALYSIS

We evaluated two VGG-style networks for CIFAR-10 and SVHN: VGG-11 Xu et al. (2019) and
VGG-Small Zhang et al. (2018a) which are both high-capacity networks for classification. Pre-
trained Larq binary models (BinaryResNetE18 and BinaryDenseNet28) were adopted to evaluate
the accuracy on ImageNet.

Results on CIFAR10 and SVHN. For CIFAR10 the RGB images are scaled to the interval
[−1.0;+1.0] and the following data augmentation was used: zero padding of 4 pixels for each

7



Under review as a conference paper at ICLR 2023

(i) CIFAR10 first training stage curves. (ii) CIFAR10 second training stage curves.

(iii) SVHN first training stage curves. (iv) SVHN second training stage curves.

Figure 7: Training loss and testing accuracy curves for VGG11 and VGGSmall on CIFAR10 and
SVHN of the first and second training stages.

side, a random 32× 32 crop and a random horizontal flip. No augmentation is used at test time. The
models have been trained for 140 epochs.
On SVHN the input images are scaled to the interval [−1.0;+1.0] and the following data augmen-
tation procedure is used: random rotation (±8 degrees), zoom ([0.95, 1.05]), random shift ([0; 10])
and random shear ([0; 0.15]). The models have been trained for 70 epochs.

The accuracy achieved by the models is reported in Table 1 showing that the clip operation does not
substantially affect the overall accuracy and the two-stage clipping allows to preserve the original
accuracy. Fig. 7 shows the training and validation curves on CIFAR10 and SVHN; we can note that
a limited number of epochs is necessary during the second training stage.

Method Topology Bit-width CIFAR10 top1 % SVHN top1 %
BNN Courbariaux et al. (2016) VGGSmall Zhang et al. (2018a) 32 FP 93.8 96.5

Main/Subsidiary Network VGG11 Xu et al. (2019) 32 FP 83.8 -
BNN VGGSmall 1-bit 89.9 96.5

XNOR-Net Rastegari et al. (2016) VGGSmall 1-bit 82.0 96.5
Bop Helwegen et al. (2019) VGGSmall 1-bit 91.3 -
Main/Subsidiary Network VGG11 1-bit 82.0 -

ours VGGSmall 1-bit 88.8 96.1
ours VGG11 1-bit 83.7 95.5

Table 1: Accuracy comparison of our method with SOTA on CIFAR10 and SVHN.

8



Under review as a conference paper at ICLR 2023

Results on ImageNet. Tests were performed by using pre-trained binary versions of ResNet18 and
DenseNet28 Bethge et al. (2019) taken from zoo literature of Plumerai Larq. Each BNN module
(refer to Fig. 1) has been modified according to Fig. 1ii. Residual blocks seem to be more robust to
clipping compared to VGG style blocks (Results are in Table 2).

Method Topology Bit-width top1 % top5 %
XNOR-Net Rastegari et al. (2016) ResNet-18 1-bit 51.2 73.2

Bi-Real Net Liu et al. (2018) ResNet-18 1-bit 56.4 79.5
Bethge et al. (2019) BinaryResNetE18 1-bit 58.1 80.6
Bethge et al. (2019) BinaryDenseNet28 1-bit 60.7 82.4

ours BinaryResNetE18 1-bit 58.1 80.6
ours BinaryDenseNet28 1-bit 60.7 82.4

Table 2: Accuracy comparison of our method with SOTA on ImageNet.

5 CONCLUSION

This paper introduced several optimization in the BNN data-flow that together achieve a speed-
up of 1.77 and 1.9× compared to state-of-the-art BNNs frameworks, without any accuracy loss
for at least one full-precision model. In the future, we intend to investigate: (i) the application of
similar optimization techniques to ternary neworks, which naturally get higher accuracies; (ii) the
simplification of the training procedure, possibly collapsing it to a single stage to further reduce
training time and complexity.

REFERENCES

Tom Bannink, Adam Hillier, Lukas Geiger, Tim de Bruin, Leon Overweel, Jelmer Neeven, and
Koen Helwegen. Larq compute engine: Design, benchmark and deploy state-of-the-art binarized
neural networks. Proceedings of Machine Learning and Systems, 3:680–695, 2021.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Joseph Bethge, Haojin Yang, Marvin Bornstein, and Christoph Meinel. Back to simplicity: How to
train accurate bnns from scratch? arXiv preprint arXiv:1906.08637, 2019.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srini-
vasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural
networks. arXiv preprint arXiv:1805.06085, 2018.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, and Vahid Partovi Nia. Bnn+: Improved
binary network training. 2018.

Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin Cao, Jianzhuang Liu, and David Doer-
mann. Projection convolutional neural networks for 1-bit cnns via discrete back propagation. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 8344–8351, 2019.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, Kwang-Ting Cheng, and Roe-
land Nusselder. Latent weights do not exist: Rethinking binarized neural network optimization.
Advances in neural information processing systems, 32, 2019.

9



Under review as a conference paper at ICLR 2023

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. Advances in neural information processing systems, 29, 2016.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704–2713, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Larq. Zoo literature. https://docs.larq.dev/zoo/api/literature/. Online.

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network.
Advances in neural information processing systems, 30, 2017.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational capability and advanced
training algorithm. In Proceedings of the European conference on computer vision (ECCV), pp.
722–737, 2018.

Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. Training binary neural
networks with real-to-binary convolutions. arXiv preprint arXiv:2003.11535, 2020.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei Yu, and Jingkuan
Song. Forward and backward information retention for accurate binary neural networks. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2250–
2259, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? Advances in neural information processing systems, 31, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. Advances in neural information processing systems, 29, 2016.

10

https://docs.larq.dev/zoo/api/literature/


Under review as a conference paper at ICLR 2023

Yinghao Xu, Xin Dong, Yudian Li, and Hao Su. A main/subsidiary network framework for simpli-
fying binary neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7154–7162, 2019.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned quantization for
highly accurate and compact deep neural networks. In Proceedings of the European conference
on computer vision (ECCV), pp. 365–382, 2018a.

Jianhao Zhang, Yingwei Pan, Ting Yao, He Zhao, and Tao Mei. dabnn: A super fast inference frame-
work for binary neural networks on arm devices. In Proceedings of the 27th ACM international
conference on multimedia, pp. 2272–2275, 2019.

Jiyuan Zhang, Franz Franchetti, and Tze Meng Low. High performance zero-memory overhead
direct convolutions. In International Conference on Machine Learning, pp. 5776–5785. PMLR,
2018b.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

6 BATCH NORMALIZATION QUANTIZATION PROCEDURE

The 8-bit quantization procedure used to quantize the BN layers, as shown in Fig. 3, is reported in
Algorithm 2. The quantization procedure adopted is symmetric and keeps unaltered the zero point
representation.

11



Under review as a conference paper at ICLR 2023

Algorithm 2: Procedure to quantize the BN floating point layers in a BNN model where convo-
lution output is clipped.
Input: The full-precision weights W; the input training dataset
Output: BNN model with BN float layers replaced by 8-bit quantized version

1 for l = 1 to L do
2 if l is BN floating point then
3 Compute range of features F l

out as: Rangel =
[
min

(
F l
out

)
;max

(
F l
out

)]
// lN is the number of layer variables (4 for BN)

4 for h = 1 to lN do
5 Compute range of variable wl

h as: Rangewl
h
=

[
min

(
wl

h

)
;max

(
wl

h

)]
// 1 bit is reserved for sign

6 Compute number of bits used for range as: RangeBitswl
h
=

clip
(⌈

log2

(
max

(
abs

(
Rangewl

h
[0]

)
,
(
Rangewl

h
[1]

)))⌉
, 0, 15

)
7 Compute number of bits used for fractional part as:

FracBitswl
h
= 15−RangeBitswl

h

8 Select the Integer part (range) for all N weights as:

RangeBitswl = max
(
RangeBitswl

h

)
9 Select the Fractional part for all weights as: FracBitswl = 15−RangeBitswl

10 for h = 1 to lN do
11 Add quantization noise to floating point weights wl

h as:
wl

qh
= 1

FracBits
wl
round

(
2FracBits

wl ∗ wl
h

)
12 Replace wl

h with wl
qh

13 Freeze wl weights and retrain the model
// Export the quantized weights of layer l for deployment

14 for h = 1 to lN do
15 wl

quantizedh
= round

(
2FracBits

wl ∗ wl
qh

)

12


	Introduction
	Related Work
	Data-Flow Optimizations
	Two-stage Clipping
	Batch Normalization Optimization
	Binary Direct Convolution optimization on ARM

	Experimental Results
	Efficiency Analysis
	Accuracy Analysis

	Conclusion
	Batch Normalization Quantization procedure

