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ABSTRACT

Goal representation affects the performance of Hierarchical Reinforcement Learn-
ing (HRL) algorithms by decomposing the complex learning problem into easier
subtasks. Recent studies show that representations that preserve temporally ab-
stract environment dynamics are successful in solving difficult problems and pro-
vide theoretical guarantees for optimality. These methods however cannot scale
to tasks where environment dynamics increase in complexity i.e. the temporally
abstract transition relations depend on larger number of variables. On the other
hand, other efforts have tried to use spatial abstraction to mitigate the previous
issues. Their limitations include scalability to high dimensional environments and
dependency on prior knowledge.
In this paper, we propose a novel three-layer HRL algorithm that introduces, at
different levels of the hierarchy, both a spatial and a temporal goal abstraction.
We provide a theoretical study of the regret bounds of the learned policies. We
evaluate the approach on complex continuous control tasks, demonstrating the
effectiveness of spatial and temporal abstractions learned by this approach.1

1 INTRODUCTION

Goal-conditioned Hierarchical Reinforcement Learning (HRL) (Dayan & Hinton, 1992) tackles task
complexity by introducing a temporal abstraction over learned behaviours, effectively decomposing
a large and difficult task into several simpler subtasks. Recent works (Vezhnevets et al., 2017;
Kulkarni et al., 2016; Nachum et al., 2019; Zhang et al., 2023; Li et al., 2021) have shown that
learning an abstract goal representations is key to proposing semantically meaningful subgoals and
to solving more complex tasks. In particular, representations that capture environment dynamics
over an abstract temporal scale have been shown to provide interesting properties with regards to
bounding the suboptimality of learned policies under abstract goal spaces (Nachum et al., 2019;
Abel et al., 2020), as well as efficiently handling continuous control problems.

However, temporal abstractions that capture aspects of the environment dynamics (Ghosh et al.,
2019; Savinov et al., 2019; Eysenbach et al., 2019; Zhang et al., 2023; Li et al., 2021) still cannot
scale to environments where the pairwise state reachability relation is complex. For instance, Zhang
et al. (2023) compute a k-reachability relation for a subset of the environment’s states defined with
an oracle (e.g., the oracle selects only the x, y dimensions). While sampling reachable goals is
useful to drive efficiency, the learned k-adjacency relation is difficult to learn for higher dimensions.
This situation typically happens when temporally abstract relations take into account more variables
in the state space. The main limitation of these approaches is the lack of a spatial abstraction to
generalise such relations over states.

Alternatively, other works (Kulkarni et al., 2016; Illanes et al., 2020; Garnelo & Shanahan, 2019;
Zadem et al., 2023) have studied various forms of spatial abstractions for goal spaces. These ab-

1Find open-source code at https://github.com/cosynus-lix/STAR
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stractions effectively group states with similar roles in sets to construct a discrete goal space. The
advantage of such representation is a smaller size exploration space that expresses large and long-
horizon tasks. In contrast to the algorithms that require varying levels of prior knowledge (Kulkarni
et al., 2016; Lyu et al., 2019; Illanes et al., 2020), GARA (Zadem et al., 2023) gradually learns
such spatial abstractions by considering reachability relations between sets of states. We refer to
this abstraction as reachability-aware abstraction. While such representation is efficient for low-
dimensional tasks, scalability remains an issue due to the lack of a temporal abstraction mechanism.
What is challenging about scaling GARA’s approach to more complex environments is exactly what
makes the set-based representation effective: the low-level agent must learn how to reach a set of
states that, especially in the initial phases of the algorithm when the abstraction is coarser, may be
“far” away. We tackle this problem introducing a new agent in the hierarchy that introduces a tem-
poral abstraction. Such an agent learns to select intermediate subgoals that: can be reached from a
state s executing the low-level agent; and helps constructing a trajectory from s to a goal abstract
state.

In this paper, we propose a three-layer HRL algorithm that achieves both a temporal and spatial
abstraction for capturing the environment dynamics. We motivate the use of temporal abstraction as
the key factor that can scale the abstraction proposed in Zadem et al. (2023), and the reachability-
aware spatial abstraction as a way to efficiently represent goals in complex tasks. We complement
the approach by adding theoretical guarantees on the bounds of suboptimality of policies learned
under this abstraction. Our approach is empirically evaluated on a set of challenging continuous
control tasks. Our work presents the following contributions:

(1) A novel Feudal HRL algorithm, STAR, to learn online subgoal representations and policies.
STAR consists of 3 agents: the high-level agent selects regions in the abstract reachability-
aware goal space, the middle-level agent selects concrete subgoals that help reaching abstract
goals, and the low-level agent learns to take actions in the environment (Section 3).

(2) Provide a theoretical motivation for using reachability-aware goal representations, showing a
suboptimality bound on the learned policy and that our algorithm progressively improves the
reachability-aware abstraction. (Section 4)

(3) Empirically show that STAR successfully combines both temporal and spatial abstraction for
more efficient learning, and that the reachability-aware abstraction scales to tasks with more
complex dynamics. (Section 5).

2 RELATED WORK

Building on ideas for introducing hierarchy in Reinforcement Learning (Sutton et al., 1999; Barto
& Mahadevan, 2003; Dayan & Hinton, 1992), recent advances have managed to considerably el-
evate HRL algorithms to tackle complex continuous control environments. Nachum et al. (2018)
introduces a two-level hierarchy that sample goals from a pre-defined oracle on the state space. This
approach provides a good basis for HRL algorithms as it is generic and addresses non-stationary
learning but may still be suboptimal as the goal sampling is unconstrained in the oracle.

To remedy this, Ghosh et al. (2019); Savinov et al. (2019); Eysenbach et al. (2019); Zhang et al.
(2023); Li et al. (2021) learn different goal representations that try to capture the environment dy-
namics. This idea has been validated under different theoretical formulations (Nachum et al., 2019;
Abel et al., 2020; Li et al., 2021). In particular, Li et al. (2021) learns a latent representation based
on slow-dynamics in the state space. The idea is that meaningful temporally abstract relations (over
k steps) are expressed by state features that slowly change over time. However, these features may
not be always sufficient to capture all the critical information about dynamics. Both Savinov et al.
(2019) and Zhang et al. (2023) use k-step reachability relations as a characterisation for environ-
ment dynamics. Their idea is to learn if goals (mappings of states in an embedding / oracle) reach
a potential goal in k steps. These relations are later used to drive the sampling of goals that can be
reached, resulting in more efficient learning. However, such learned pairwise relations are binary
and lack the information of which goals can be reached by applying a specific policy. Additionally,
without any spatial abstraction, it can be difficult to learn these relations for a complex transition
relation (e.g. a relation that require monitoring more that few variables).
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Commander
πComm : S × S :→ G

Tutor
πTut : S × G :→ S

Controller
πCont : S × S :→ A

EnvironmentRefinement

Gt+k ∼ πComm(st, g
∗) gt+l ∈ S

a ∈ Ast+1st+lst+k

s0 g∗ N0

E ,D
N ′

Figure 1: Architecture of STAR. The algorithm’s inputs are the initial state s0, the task goal g∗, and an initial
abstraction N0. STAR runs in a feedback loop a Feudal HRL algorithm (dashed red block) and an abstraction
refinement (blue box). The solid red blocks show the HRL agents (Commander, Tutor, Controller). The agents
run at different timescales (k > l > 1), shown with the solid, dashed, and dotted lines carrying the feedback
from the environment to the agents. The Refinement uses as inputs the past episodes (D) and a the list of
abstract goals (E) visited during the last episode, and outputs an abstraction.

To introduce spatial abstraction, Zadem et al. (2023) introduce GARA, a spatial abstraction for the
goal space that captures richer information from k step reachability relations. This algorithm learns
online a discretisation of the state space that serves as an abstract goal space. This abstraction
generalizes reachability relations over sets of states, greatly reducing the difficulty of the learning
problem. This approach however was only validated on a 4-dimensional environment and suffers
from scalability issues as the abstraction is learned concurrently with the hierarchical policies. As
GARA starts learning from a coarse abstraction (composed of a small number of large sets), the goal
set is often distant from the current state, thus it can be difficult to learn meaningful policies that
manage to reach a desired goal set. Under such circumstances, the approach is blocked targeting a
hard to reach goal and cannot improve as it lacks any mechanism to propose easier, more granular
subgoals. To alleviate this discrepancy, we introduce a new agent in the hierarchy of GARA that
applies a temporal abstraction (Sutton et al., 1999). Our intuition is to synthesise between the
discrete goal chosen from the top-down process and the temporal transitions allowed by the current
low-level policy from the bottom-up process, through a mid-level agent that acts as an intelligent
tutoring system and learns to select intermediate goals g ∈ S that: (a) can be reached from a state s
executing the current low-level agent; and (b) helps constructing a trajectory from s to a goal abstract
state G ∈ G.

3 SPATIO-TEMPORAL ABSTRACTION VIA REACHABILITY

We consider a goal-conditioned Markov Decision Process (S,A, P, rext) as environment, where
S ⊆ Rn is a continuous state space, A is an action space, P (st+1|st, at) is a probabilistic transition
function, and rext : S ×S → R is a parameterised reward function, defined as the negative distance
to the task goal g∗ ∈ S , i.e rext(s, g

∗) = −∥g∗ − s∥2. The multi-task reinforcement learning
problem consists in learning a goal conditioned policy π to sample at each time step t an action
a ∼ π(st | g∗), so as to maximizes the expected cumulative reward. The spatial goal abstraction is
modeled by a set-based abstraction defined by a function N : S → 2S that maps concrete states
to sets of states (i.e., ∀s ∈ S,N (s) ⊆ S). We write GN to refer to the range of the abstraction N ,
which is intuitively the abstract goal space. We further drop the subscript (i.e., write G) when N is
clear from the context and denote elements of G with the upper case letter G.

We propose a HRL algorithm, Spatio-Temporal Abstraction via Reachability (STAR), that learns,
at the same time, a spatial goal abstraction N and policies at multiple time scales. The STAR
algorithm, shown in Figure 1, has two main components: a 3-levels Feudal HRL algorithm (enclosed
in the red dashed lines); and an abstraction refinement component (shown in the blue solid lines).
STAR runs the Feudal HRL algorithm and the abstraction refinement in a feedback loop, refining
the abstraction N at the end of every learning episode. Observe that the high-level agent (called
Commander) samples a goal G from the abstract goal space G, and that such a goal can be difficult
to reach from the current state. The first intuition of the algorithm is that, to reach a possibly very far
goal G set by the high-level agent (Controller), the middle-level agent (Tutor) achieves a temporal
abstraction of the Controller actions by sampling an intermediate subgoal g ∈ S of a difficulty
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level adapted to the current non-optimal policy. The second intuition is that the algorithm learns the
abstraction iteratively. Every refinement obtains a finer abstraction N ′ from N . Intuitively, N ′ will
split at least a goal G1 ∈ GN in two goals G′

1, G
′′

1 ∈ GN ′ if there are different states in G1 (i.e.,
sa, sb ∈ G1) that cannot reach the same target G2 ∈ G when applying the same low-level policy.
While we will define such reachability property precisely later, intuitively the refinement separates
goal states that ”behave differently” under the same low level policy (i.e., N ′ would represent more
faithfully the environment dynamic).

We first explain how STAR uses the different hierarchy levels to address the challenges of learning
policies when the abstraction is coarse (Section 3.1), and then formalize a refinement that obtains a
reachability aware abstraction (Section 3.2).

3.1 A 3-LEVEL HIERARCHICAL ALGORITHM FOR TEMPORAL ABSTRACTION

The feudal architecture of STAR is composed of a hierarchy with three agents:

1. Commander: the highest-level agent learns the policy πComm : S × S → G that is a goal-
conditioned on g∗ and samples an abstract goal G ∈ G that should help to reach the task
goal g∗ from the current agent’s state (Gt+k ∼ πComm(st, g

∗)).
2. Tutor: the mid-level agent is conditioned by the Commander goal G. It learns the policy
πTut : S × G → S and picks subgoals in the state space (gt+l ∼ πTut(st, Gt+k)).

3. Controller: the low-level policy πCont : S × S → A is goal-conditioned by the Tutor’s
subgoal g and samples actions to reach given goal (a ∼ πCont(st, gt+l)). 2

The agents work at different time scales: the Commander selects a goal Gt+k every k steps, the
Tutor selects a goal gt+l every l steps (with k multiple of l), and the Controller selects an action to
execute at every step. Intuitively, the Commander’s role in this architecture is to select an abstract
goal Gt+k (i.e. a set of states that are similar and of interest to solve the task) from the current
state st. However, the initial abstraction G of the state space is very coarse (i.e., the abstract regions
are large sets and still do not represent the agent’s dynamic). This means that learning a flat policy
that reaches Gt+k from st is very challenging. The Tutor samples subgoals gt+l from S that are
intermediate, easier targets to learn to reach for the Controller, instead of a possibly far away state
that might prove too difficult to reach. Intuitively, the Tutor implements a temporal abstraction
mechanism. The structure of STAR guides the agent through the large state-goal abstraction, while
it also allows the agent to learn manageable low-level policies.

We set the reward at each level of the hierarchy following the above intuitions. The Comman-
der receives the external environment reward after k steps for learning to reach the task goal g∗:
rComm(st) := maxx∈N (st) rext(x, g

∗) . This reward is computed as the extrinsic reward of the clos-
est point in N (st) to g∗. The Tutor helps the Controller to reach the abstract goal, and is thus re-
warded by a distance measure between st and theGt+k; rTut(st, Gt+k) := −∥st − Center(Gt+k)∥2,
where Center(Gt+k) is the center of the goal Gt+k. Finally, the Controller is rewarded with
respect to the Euclidean distance between subgoals sampled by the Tutor and the reached state:
rCont(st, gt+l) := −∥gt+l − st∥2. This intrinsic reward allows the Controller to learn how to reach
intermediate subgoal states gt+l.

3.2 REFINING N VIA REACHABILITY ANALYSIS

While we follow the high level description of the refinement procedure of the GARA (Zadem et al.,
2023) algorithm, we adapt it to our notation and to the new theoretical results on the refinement we
present later (which holds for both GARA and STAR). Furthermore, in the rest of this Section and
in Section 4, we will assume a 2-level hierarchy, where πComm is the high-level policy (e.g., πhigh),
and πlow is the hierarchical policy obtained composing πTut and πCont.

We first define the k-step reachability relation for a goal-conditioned policy πNLow :

Rk
πNLow

(Gi, Gj) :=

s′ ∈ S | s ∈ Gi, s
k

GGGGGGGGGGGA

πNLow(., Gj)
s′

 ,

2In the following, we use the upper-case G letter for goals in G and the lower-case g for subgoals in S.
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where s
k

GGGGGGGGGGGA

πNLow(., Gj)
s′ means that s can reach s′ by executing the policy πNLow(.,Gj) (targeting Gj)

in k steps. In other words, Rk
πNLow

(Gi, Gj) is the set of states reached when starting in any state in
Gi and applying the policy πNLow(., Gj) for k steps.

The algorithm uses the notion of reachability property among a pair of abstract goals:

Definition 1 (Pairwise Reachability Property) Let N : S → 2S be a set-based abstraction and
Gi, Gj ∈ GN . N satisfies the pairwise reachability property for (Gi, Gj) if Rk

π∗
NLow

(Gi, Gj) ⊆ Gj .

The algorithm decides to refine the abstract representation after an episode of the HRL algorithm.
Let E := {G0, . . . , Gn} be the list of goals visited in the last episode. The refinement algorithm
analyzes all the pairs (Gi, Gi+1) ∈ E , for 0 ≤ i < n, and refines N in a new abstraction N ′ by
”splitting”Gi if it does not satisfy the pairwise reachability property. Each refinement obtains a new,
finer abstraction N ′ where the reachability property is respected in one more goal. We formalize
when an abstraction N ′ refines an abstraction N with respect to the reachability property as follows:

Definition 2 (Pairwise Reachability-Aware Refinement) Let N : S → 2S and N ′ : S → 2S

be two set-based abstractions such that there exists Gi ∈ GN , GN ′ = (GN \ {Gi}) ∪ {G′
1, G

′
2},

G′
1 ∪ G′

2 = Gi, and G′
1 ∩ G′

2 = ∅. N ′ refines N (written as N ′ ≺ N ) if, for some Gj ∈ GN ,
N ′ satisfies the pairwise reachability property for (G′

1, Gj), while N does not satisfy the pairwise
reachability property for (Gi, Gj).

3.2.1 REFINEMENT COMPUTATION

We implement the refinement similarly to GARA. We represent an abstraction N directly with the
set of abstract states GN := {G1, . . . , Gn}, a partition of the state space S (i.e., all the sets in GN
are disjoint and their union is S). We represent each G ∈ GN as a multi-dimensional interval (i.e.,
a hyper-rectangle). We (i) train a neural network Fk predicting the k-step reachability from each
partition in GN ; and (ii) for eachGi, Gi+1 ∈ E , we check pairwise reachability from FK ; and (iii) if
pairwise reachability does not hold, we compute a refinement N ′ of N .

We approximate the reachability relation with a forward model, a fully connected feed forward
neural network Fk : S × GN → S. Fk(st, Gj), is trained from the replay buffer and predicts the
state st+k the agent would reach in k steps starting from a state st when applying the low level
policy πNLow(s,Gj) conditioned on the goal Gj . We avoid the non-stationarity issue of the lower-
level policy πNLow by computing the refinement only when πNLow is stable. See Appendix C for more
details. We use the forward model Fk to evaluate the policy’s stability in the regions visited in E
by computing the Mean Squared Error of the forward model predictions on a batch of data from the
replay buffer, and consider the model stable only if the error remains smaller than a parameter σ
over a window of time.

Checking the reachability property for (Gi, Gj) amounts to computing the output of Fk(s,Gj), for
all states s ∈ Gi, i.e., Rk

πNLow
(Gi, Gj) := {Fk(s,Gj) | s ∈ Gi}, and checking if Rk

πNLow
(Gi, Gj) ⊆

Gj . Technically, we compute an over-approximation R̃k
πNLow

(Gi, Gj) ⊇ Rk
πNLow

(Gi, Gj) with the
Ai2 (Gehr et al., 2018) tool. Ai2 uses abstract interpretation (Cousot & Cousot, 1992; Rival & Yi,
2020) to compute such an over-approximation: the tool starts with a set-based representation (e.g.,
intervals, zonotopes, . . . ) of the neural network input, the set Gi, and then computes the set of
outputs layer-by-layer. In Fk, each layer applies first a linear transformation (i.e. for the weights
and biases) and then a piece-wise ReLU activation function. For each layer, Ai2 computes first an
over-approximation of the linear transformation (i.e., it applies the linear transformation to the input
set), and then uses this result to compute an over-approximation of the ReLU activation function,
producing the new input set to use in the next layer. Such computations work on abstract domains:
for example, one can over-approximate a linear transformation applied to an interval by computing
the transformation, and then a convex-hull to obtain the output in the form of an interval. The
over-approximations for ReLU activation functions are described in detail in Gehr et al. (2018).

We split the set Gi when it does not satisfy the reachability property w.r.t. Gi+1. Since Gi is an
interval, we implement the algorithm from (Zadem et al., 2023; Wang et al., 2018) that: (i) stops if
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Gi satisfies the reachability property or none of the states in Gi reach Gj ; and otherwise (ii) splits
Gi in two intervals, G′

i and G′′
i , calling the algorithm recursively on both intervals. This results in

two sets of intervals, subsets ofGi, that either satisfy the reachability property or not. Such intervals
are the new intervals replacing Gi in the new abstraction (see Appendix F).

4 THEORETICAL PROPERTIES OF THE REFINEMENT

In this section, we motivate the adoption of the goal-space abstraction and the reachability-
aware refinement showing that: (i) there exists a bound on the sub-optimality of policies trained
with a reachability-aware abstraction; and (ii) the reachability-aware refinement gradually finds a
reachability-aware abstraction. Our results apply to both STAR and GARA (Zadem et al., 2023),
and all the proofs are available in the Appendix A.

The theoretical results hold under the assumptions that the environment M is deterministic and
the reward signal rext is bounded in the environment. Consequently, we assume that the distance
separating a state s ∈ S from all the states s′ ∈ S that s can reach in one step is bounded. Thus,
there is an upper bound Rmax := max

s,s′∈S,
∑

a∈A P (s′|s,a)≥0
∥s− s′∥2 on the reward signal.

Let π∗ be the optimal hierarchical policy composed by a high-level policy g ∼ π∗
high(s, g

∗) that sam-
ples g ∈ S, and a low-level policy a ∼ π∗

low(s, g) that samples actions a ∈ A. Since the environment
is deterministic, there exists an optimal high-level trajectory containing the goals sampled with π∗

high
and an optimal low-level trajectory containing all the visited states:

T ∗
high := {g0, g1, . . . , gm}, T ∗

Low := {s0, s1, . . . , sm·k}, with si·k = gi, for 0 ≤ i ≤ m.

Let N : S → 2S be a set-based abstraction. We write π∗
N for the optimal hierarchical policy

obtained with the abstraction N . We write T ∗
NHigh

and T ∗
NLow

for the optimal high- and low-level
trajectories respectively. Below, we provide an upper bound on the difference between the optimal
hierarchical policy π∗ and the optimal hierarchical policy π∗

N when N is a reachability-aware.

Definition 3 (Reachability-Aware Abstraction) Let N : S → 2S be a set-based abstraction, π∗
N

the corresponding optimal hierarchical policy, and T ∗
high the optimal high-level trajectory from π∗

high.
N is a reachability-aware abstraction with respect to T ∗

high if:

1. States are contained in their abstraction: ∀s ∈ S, s ∈ N (s).

2. The abstractions of the goals in the optimal trajectory are disjoint:
∀gi, gj ∈ T ∗

high, (gi ̸= gj → N (gi) ∩N (gj) = ∅).

3. The abstractions of each consecutive goals in the optimal trajectory satisfy the pairwise
reachability property:

∀gi, gi+1 ∈ T ∗
high, R

k
π∗
NLow

(N (gi),N (gi+1)) ⊆ N (gi+1).

4. The reward in the final abstract goal N (gm) is bounded:
∃ϵ > 0,∀s ∈ N (gm).|rext(gm)− rext(s)| ≤ ϵ.

Theorem 1 (Sub-optimal Learning) Let M be a deterministic environment with task goal g∗ ∈ S
and rext(s) = −∥g∗ − s∥2. Let N : S → 2S be a reachability-aware abstraction with respect to
T ∗

high. Then, for s0 ∈ T ∗
Low and s′0 ∈ T ∗

NLow
we have that:

|Vπ∗(s0)− Vπ∗
N
(s′0)| ≤

 mk
2∑

i=0

γii+

mk∑
i=mk

2

γi(mk − i)

 · 2Rmax +
1− γmk+1

1− γ
ϵ, (1)

where Vπ(s) is the value function for a policy π (Sutton & Barto, 1998).
Moreover, if there exists a B ≥ ϵ > 0 such that for all 1 ≤ i ≤ m, max

x,y∈N (gi)
∥x − y∥ ≤ B, then

∀si ∈ T ∗
Low and ∀s′i ∈ T ∗

NLow
we have that:

|Vπ∗
Low
(s0)− Vπ∗

NLow
(s′0)| ≤

1− γmk+1

1− γ
(kRmax +B). (2)
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Equation (1) in the above theorem provides a bound on the sub-optimality of the hierarchical policy
when trained under a set-based reachability-aware abstraction N . Intuitively, the worst trajectory
T ∗
NLow

, starting from s′0 ∈ N (s0), can progressively deviate from T ∗
Low as i increases. When i ≥ mk

2 ,
the trajectories progressively converge around N (gm). Equation (2) defines a tighter upper bound
when there is a boundB on the maximum distance between two states in each abstract goal in T ∗

NHigh
.

In practice, the existence of the bound B is valid when the state space is bounded. In this case, the
deviation of the two trajectories is independent from i and is stable across time.

Lemma 1 Let N and N ′ be two set-based abstractions such that N ′ ≺ N and N satisfies the
Conditions (1), and (4) of a reachability-aware abstraction (Definition 3). Also, let Gi ∈ T ∗

NHigh

(note that Gi ∈ GN ), and Gi be the goal refined in N ′. Then, the abstraction N ′ satisfies the
following:

1. ∃ gi ∈ T ∗
high such that N does not satisfy the reachability property for (N (gi),N (gi+1)),

while N ′ does for (N ′(gi),N (gi+1)).

2. If there exists gj ∈ T ∗
high such that gj ∈ N (gi), then gj ̸∈ N ′(gi).

Theorem 2 Given an initial set-based abstraction N and assuming N (gm) satisfies the Conditions
(1), and (4) of Definition 3, we compute a reachability-aware abstraction after applying a finite
number of reachability-aware refinements.

Theorem 2 follows from Lemma 1 and shows that applying the reachability-aware refinement for a
finite number of times we compute a reachability-aware abstraction. In practice, the assumption that
N (gm) verifies criteria 1 and 4 of Def.3 is reasonable since the goal g∗ is known in the environment.
That is to say, N (gm) could correspond to a region whose center is g∗ and radius is Rmax.

5 EXPERIMENTAL EVALUATION

In this section we answer the following research questions: 1) Do the spatial and temporal abstrac-
tion of STAR allow for more data-efficient learning? 2) Does the reachability-aware abstraction
scale to more complex environments compared to a more concrete reachability relation? 3) How
does the learned abstraction decompose the environment to allow for learning successful policies?

5.1 ENVIRONMENT SETUP

(a) Ant Maze (b) Ant Fall (c) Ant Maze Cam

Figure 2: Ant environments

We evaluate our approach on a set of challenging tasks in the Ant environments (Fig.2) adapted from
Duan et al. (2016) and popularised by Nachum et al. (2018). The Ant is a simulated quadrupedal
robot whose body is composed of a torso and four legs attached by joints. Furthermore, each leg
is split into two parts by a joint in the middle to allow bending. The observable space of the Ant
is composed of the positions, orientations and velocities of the torso as well as the angles and an-
gular velocities in each joint. Overall the state space is comprised of 30 dimensions. The actions
correspond to applying forces on actuators in the joint. This actions space is continuous and 8-
dimensional. We propose the following tasks:

1. Ant Maze: in this task, the ant must navigate a ’⊃’-shaped maze to reach the exit posi-
tioned at the top left.
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2. Ant Fall: the environment is composed of two raised platforms seperated by a chasm. The
ant starts on one of the platforms and must safely cross to the exit without falling. A mov-
able block can be push into the chasm to serve as a bridge. Besides the precise maneuvers
required by the ant, falling into the chasm is a very likely yet irreversible mistake.

3. Ant Maze Cam: this is a more challenging version of Ant Maze. The upper half of the
maze is fully blocked by an additional obstacle that can only be opened when the ant looks
at the camera (in yellow in Fig. 2c) when on the red spot. The exit remains unchanged.

We note that these tasks are hierarchical in nature as reaching the goal requires correctly controlling
the ant to be able to move (low-level) and then navigating to the exit (high-level). Moreover, in both
Ant Maze Cam and Ant Fall, no reward is attributed to the intermediate behaviour that unlocks the
path to the exit (looking at the camera, pushing the block). Under such circumstances, the underlying
dynamics are more complex making the reachability relations more difficult to extract.

5.2 COMPARATIVE ANALYSIS

We compare STAR with the following algorithms:

1. GARA (Zadem et al., 2023): this algorithm learns a spatial abstraction via reachability
analysis using a two-level hierarchical policy.

2. HIRO (Nachum et al., 2018): this algorithm relies on a Manager to sample goals directly
from the state space S and learns how to achieve them using the controller.

3. HRAC (Zhang et al., 2023): adopting the same architecture as HIRO, this approach tries to
approximate a reachability relation between goals in an abstract space and use it to sample
rewarding reachable goals. The reachability relation is derived from measuring the shortest
transition distance between states in the environment.

4. LESSON (Li et al., 2021): a HRL algorithm that learns a latent goal representations based
on slow dynamics in the environment. The latent space learns from features that are slow
to change over k steps, in order to capture a temporal abstraction.

In line with HIRO and HRAC, STAR relies on an oracle ψ(s) that transforms the observations of
the high-level agents (Tutor and Commander). In practice ψ() corresponds to a feature selection
applied to states. In contrast, LESSON learns a latent goal space without an oracle. In Ant Maze
ψ(s) = (x, y), in Ant Fall ψ(s) = (x, y, z), and in Ant Maze Cam, ψ(s) = (x, y, θx, θy, θz).

Fig.3 shows that STAR outperforms all of the state-of-art approaches by reaching a higher success
rate with less timesteps. In particular GARA, operating only under a spatial abstraction mechanism
is unable to solve Ant Maze, the easiest task in this analysis. HIRO on the other hand learns less
efficient policies due to it lacking a spatial abstraction component. These results show that STAR,
which combines temporal and spatial abstractions, is a more efficient approach.

To discuss the second research question, we first observe that, while the high-level dynamics of
Ant Maze can be captured by the x, y dimensions, the dynamics of Ant Fall require all the x, y, z
dimensions (z expresses if the ant is safely crossing above the pit or if it has fallen), and Ant Maze
Cam requires x, y, θx, θy, and θz (the orientation angles are necessary to unlock the access to the
upper part of the maze). Fig.3 shows that HRAC is unable to capture meaningful relations between
subgoals and fails at solving either Ant Fall or Ant Maze Cam due to the increased complexity
in capturing the high-level task dynamic. Similarly, LESSON is unable to learn a good subgoal
representation using slow dynamics in Ant Maze Cam. In fact, θx,θy , and θz are features that do not
respect the LESSON’s slowness objective (i.e., they can vary rapidly across k steps). As a results,
the goal abstraction in LESSON may overlook them, losing critical information in the process.
Instead, STAR is capable of abstracting these dimensions and converging to a successful policy.
We remark that STAR, similarly to HRAC, can be seen as extensions of HIRO with the addition
of a reachability-based component that improves goal representation. However, the results shown
in Fig. 3 highlight how the addition of the reachability information in HRAC is even detrimental
for the performance when the number of features in the oracle increases (e.g., on Ant Fall and Ant
Maze Cam). Instead, the STAR’s reachability-aware spatial abstraction and intermediate temporal
abstraction allow the algorithm to scale to more complex tasks.
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Figure 3: Comparative evaluation averaged over 10 runs for STAR, GARA, HRAC, HIRO and LESSON.

5.3 REPRESENTATION ANALYSIS

We answer the third research question examining the progress of the STAR’s Commander agent
at different timesteps during learning when solving the Ant Maze. From Fig.4 we can see that,
progressively, the ant explores trajectories leading to the goal of the task. Additionally, the frequency
of visiting goals in the difficult areas of the maze (e.g., the tight corners) is higher, and these goals
are eventually refined later in the training, jibing with the configuration of the obstabcles. Note
that the Commander’s trajectory at 3M timesteps sticks close to the obstacles and pass through
the maze’s opening, resembling an optimal trajectory. This study provides some insight on how
STAR gradually refines the goal abstraction to identify successful trajectories in the environment.
In particular, STAR learns a more precise abstraction in bottleneck areas where only a few subset of
states manage to reach the next goal. We provide the representation analysis on Ant Fall in Appendix
B.

Figure 4: Frequency of goals visited by the Commander when evaluating a policy learned after 1M, 2M, and
3M timesteps (averaged over 5 different evaluations with 500 maximum timesteps). The subdivision of the
mazes represent (abstract) goals. The color gradient represents the frequency of visits of each goal. Grey areas
correspond to the obstacles of the environment in Ant Maze.

6 CONCLUSION

In this paper, we propose a novel goal-conditioned HRL algorithm, STAR, that combines spatial and
temporal abstractions. The spatial representation groups states with similar environment dynamics,
and the temporal abstraction compensates for the non-optimality of the low-level policy, allow-
ing online learning of both the policies and the representations. STAR’s high-level agent learns a
coarse, although precise, spatial approximation of the environment dynamics that, differently from
other algorithms using reachability for goal representation, scales to more complex continuous con-
trol environments. STAR outperforms the existing algorithms that use either one of the abstractions
and that struggle to learn meaningful representations. Here, we further provide a theoretical justi-
fication for reachability-aware abstractions, showing that we can use such representations to learn
sub-optimal policies and learn them with a sequence of refinements. In the future, we plan to ex-
tend our approach to stochastic environments, which would require a different reachability property,
and non-Markovian environments, which would require adding a history component to the spatial
abstraction.
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A PROOFS OF THEOREMS

A.1 PROOF OF THEOREM 1:

In this part of the proof, we will study the optimality of the hierarchical policies across the last k
steps of the trajectory. First, we consider the optimal trajectory for a flat (non-hierarchical policy) in
the environment described by M :

T ∗ := {s0, s1, . . . , sM}, where sM = g∗

The optimal hierarchical policy π∗ composed by π∗
High and π∗

Low samples a goal g ∈ S every k steps
(where k is a parameter). The following optimal trajectories are thus:

T ∗
High := {g0, g1, . . . , gm}, where gm = g∗

T ∗
Low := {s0, s1, . . . , smk}, where sn·k = gn, n ∈ [[0, . . . ,m]] and smk = g∗ 3

The optimal hierarchical policy π∗
N under the abstraction N (defined by Def.3) yields the optimal

trajectories:
T ∗
NHigh

:= {N (g0),N (g1), . . . ,N (gm)}
T ∗
NLow

:= {s′0, s′1, . . . , s′mk}, where s′n·k ∈ N (gn), n ∈ [[0, . . . ,m]] and s′mk ∈ N (gm)

We make the distinction between s and s′ since π∗
Low and π∗

NLow
do not necessarily follow the same

trajectory. Whereas π∗
Low is conditioned by goals that act as points in the state space, π∗

NLow
is

conditioned by a whole set of points. Moving forward, we specify the following rewards functions
for the hierarchical policies learning without abstraction and with the abstraction N :

For π∗, rHigh(s, g
∗) = rext(s) = −∥g∗ − s∥2 and rLow(s, g) = −∥g − s∥2

For π∗
N , rNHigh(s, g

∗) = max
x∈N (s)

rext(x, g
∗) = max

x∈N (s)
−∥g∗−x∥2 and rNLow(s,N (g)) = 1x∈N (g)(s).

Intuitively, rNHigh(s) is computed over the closest point to g∗ in N (s). rNLow(s,N (g)) is a binary
reward that expresses if the agent reaches its abstract goal. This reward is chosen in this proof for its
generality; it simply expresses that the agent should reach N (g). In practice it is sparse and difficult
to optimise (it is replaced in STAR by the negative distance to the center of N (g)).

A suboptimality bound will be derived for the last k steps of the trajectory, and by induction will be
proven for the rest. Given criteria.4:

∀s ∈ N (gm).|rext(gm)− rext(s)| ≤ ϵ

we can claim that:
|Vπ∗

Low
(smk)− Vπ∗

NLow
(s′mk)| ≤ ϵ

To derive the upper bound on suboptimality, we will proceed by computing Vπ∗
NLow

on the worst
possible optimal trajectory T ∗

NLow
. This gives:

|Vπ∗
Low

(smk−1)− Vπ∗
NLow

(s′mk−1)| = |rext(smk−1) + γrext(smk)− rext(s
′
mk−1)− γrext(s

′
mk)|

≤ |rext(smk−1)− rext(s
′
mk−1)|+ γ|rext(smk)− rext(s

′
mk)|

By triangle inequality.

The second term in the inequality corresponds exactly to γ|Vπ∗
Low

(smk) − Vπ∗
NLow

(s′mk)| which is
bounded by γϵ. The first term can be expanded as such:

|rext(smk−1)− rext(s
′
mk−1)| = rext(smk−1)− rext(s

′
mk−1)( since rext(smk−1) ≥ rext(s

′
mk−1))

= −∥g∗ − smk−1∥2 + ∥g∗ − s′mk−1∥2
≤ −∥g∗ − smk−1∥2 + ∥g∗ − smk−1∥2 + ∥smk−1 − s′mk−1∥2
≤ ∥smk−1 − s′mk−1∥2

3k is chosen as a divisor of M to simplify the notations.
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Since the abstraction guarantees that starting from N (gm−1), a state s′ ∈ N (gm) is reached with
π∗
NLow

in k steps, then the state s′mk should at the worst, be reachable in one step from s′mk−1. In
addition, the state s′mk−1 should at the worst be reachable from s′(m−1)k in k − 1 steps.

In other words, the worst state s′mk−1 is the farthest state from gm that reaches s′mk in 1 step and is
reached by s′(m−1)k in k − 1 steps. We will bound ∥smk−1 − s′mk−1∥2 using the two reachability
relations.

On one hand, since smk−1 also reaches gm = g∗ in 1 step then ∥gmk − smk−1∥2 ≤ Rmax. Then:

∥smk−1 − s′mk−1∥2 ≤ ∥smk−1 − gm∥2 + ∥gm − s′mk∥2+∥s′mk − s′mk−1∥2
≤ 2Rmax + ϵ

On the other hand, gm−1 = s(m−1)k reaches smk−1 in k − 1 steps, and then ∥gm−1 − smk−1∥2 ≤
(k − 1)Rmax. Similarly, we could have:

∥smk−1 − s′mk−1∥2 ≤ ∥smk−1 − gm−1∥2 + ∥gm−1 − s′(m−1)k∥2+∥s′(m−1)k − s′mk−1∥2
≤ 2(k − 1)Rmax + ∥gm−1 − s′(m−1)k∥2

This results in two distinct bounds for ∥smk−1 − s′mk−1∥2 origination from a forward reachability
relation, and a backwards reachability relation. This provides the following bound:

|Vπ∗
Low

(smk−1)− Vπ∗
NLow

(s′mk−1)| ≤ min(2Rmax + ϵ, 2(k − 1)Rmax + ∥gm−1 − s′(m−1)k∥2) + γϵ

Bounding ∥gm−1 − s′(m−1)k∥2 depends on the nature of the abstraction, and more specifically if
the abstract sets can be bounded or not. Starting from the more general case, Def.3 guarantees that
s′(m−1)k is reachable from s′0 in m.(k− 1) steps. To simplify the computation, can also assume that
∥s0 − s′0∥2 ≤ ϵ. (In practice, usually s0 = s′0). Also, s(m−1)k is reachable from s0 in m.(k − 1)
steps. Thus :

∥gm−1 − s′(m−1)k∥2 = ∥gm−1 − s0 + s0 − s′0 + s′0 − s′(m−1)k∥2
≤ 2k(m− 1)Rmax + ϵ

Then:

|Vπ∗
Low

(smk−1)− Vπ∗
NLow

(s′mk−1)| ≤ min(2Rmax + ϵ, 2(mk − 1)Rmax + ϵ) + γϵ

≤ 2min(1, (mk − 1))Rmax + (γ + 1)ϵ

≤ 2Rmax + (γ + 1)ϵ

With an iteration process the above reasoning can be extended: ∀i ∈ {0, . . . ,mk}:

|rext(si)− rext(s
′
i)| = rext(si)− rext(s

′
i)( since rext(si) ≥ rext(s

′
i))

= −∥g∗ − si∥2 + ∥g∗ − s′i∥2
≤ −∥g∗ − si∥2 + ∥g∗ − si∥2 + ∥si − s′i∥2
≤ ∥si − s′i∥2
≤ min(2(mk − i)Rmax + ϵ, 2iRmax + ϵ)

≤ 2min(mk − i, i)Rmax + ϵ

with min(mk − i, i) = i if i ≤ mk
2 else min(mk − i, i) = mk − i.
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Finally the bound can be computed as:

|Vπ∗
Low

(s0)− Vπ∗
NLow

(s′0)| =
mk∑
i=0

γi(rext(si)− rext(s
′
i))

≤
mk∑
i=0

γi∥si − s′i∥2

≤
mk∑
i=0

γi(2min(mk − i, i)Rmax + ϵ)

≤
mk
2∑

i=0

γi(2iRmax + ϵ) +

mk∑
i=mk

2

γi(2(mk − i)Rmax + ϵ)

≤
mk
2∑

i=0

γi(2iRmax) +

mk∑
i=mk

2

γi(2(mk − i)Rmax) +
1− γmk+1

1− γ
ϵ

≤ (

mk
2∑

i=0

γii+

mk∑
i=mk

2

γi(mk − i))2Rmax +
1− γmk+1

1− γ
ϵ

We will now examine the case if ∃B ≥ ϵ > 0 such that ∀i ∈ {1, . . . ,m},maxx,y∈N (gi)∥x− y∥ ≤
B. Following the reasoning established before, we can claim that:

|rext(si)− rext(s
′
i)| ≤ ∥si − s′i∥2

≤ min(2iRmax +B, 2(k − i)Rmax +B)

≤ 2(
k

2
Rmax) +B

≤ kRmax +B

Ultimately,

|Vπ∗
Low

(s0)− Vπ∗
NLow

(s′0)| =
mk∑
i=0

γi(rext(si)− rext(s
′
i))

≤ 1− γmk+1

1− γ
(kRmax +B)

A.2 PROOF OF LEMMA 1 AND THEOREM 2:

By definition of N ′, since Gi ∈ T ∗
NHigh

then ∃gi ∈ Gi (since the reward for the high-level agent is
rNHigh(Gi) = max

s∈Gi

rext(s)) such that gi reaches a state in Ni+1: To prove this we can first consider

the coarsest abstraction N : S → GN ⊆ 2S s.t GN = {G0, G1} with G1 = N (gm) (assumed to
satisfy criteria 1 and 4) and G0 = N (g0) = · · · = N (gm−1). In this case, the goal in question gi is
in N (gm−1) and by definition reaches gm ∈ G1. This corresponds to gm−1. Thus, the process of
refinement splits G0 such as G0 = G′ ∪ G′′, G′ ∩ G′′ = ∅ and identifies G′ such that gm−1 ∈ G′

(since G′ satisfies the reachability property for (G′, Gi+1)) and G′′ = N ′(g0) = · · · = N ′(gm−2).
Additionally, G′, G′′ and G1 are disjoint by definition of the refinement.

By induction, the lemma is proven. The induction also leads to a reachability-aware abstraction
proving theorem 2.

B REPRESENTATION ANALYSIS IN ANT FALL

Similarly to the study established in 5.3, we provide the results obtained in Ant Fall (visualizing the
5 dimensional representation for Ant Maze Cam is less feasible).
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Figure 5: Frequency of goals visited by the Commander when evaluating a policy learned after 1M, 2M, and
3M timesteps (averaged over 5 different evaluations with 500 maximum timesteps). The subdivision of the
mazes represent (abstract) goals. The color gradient represents the frequency of visits of each goal. Grey areas
correspond to the platforms of the environment in Ant Fall. The red box is the movable block. Observe that,
around 3M timesteps, goals are further split across the z-axis above the pit.

Fig.5 shows that after 1M steps the ant gradually learns to approach the area nearing the movable
block (colored in yellow in the figure). Around 2M steps, the ant starts succeeding at crossing
the pit by pushing the block forward. By 3M steps, the Commander has refined the abstraction and
identified as goal the bridge-like region (immediately at the back of the movable block) that it targets
most frequently to maximise its success to cross the chasm.

This representation further validates our hypothesis regarding the ability the reachability-aware ab-
straction to identify areas of interest in the environment and orient the learning of the agent towards
optimal behaviour.

C ADDRESSING NON-STATIONARITY

Since STAR is a 3-level HRL algorithm, non-stationarity can affect the learning of the Tutor as well
as the Commander.

To solve this problem in the Tutor, we incorporate the policy correction approach from Nachum
et al. (2018) which adequately relabels subgoals in the replay buffer that are unadapted to the current
policy of the agent.

Additionally, we address non-stationarity in the Commander level by only refining the abstraction
when the controller’s policy is stable. Precisely, reachability analysis for (Gi, Gj) is only engaged
when the controller’s policy πNLow(s ∈ Gi, Gj) has roughly converged to a deterministic behaviour
and is not randomly taking actions. Since the forward model is trained on data generated by πNLow ,
it could be used as a proxy for assessing behaviour stability. Every time the transition (Gi, Gj) is
explored, the error error(Fk(s ∈ Gi, Gj)) is evaluated and stored. Finally, we infer the stability of
learned policies from the progress of the error in the forward model during a window of time; if the
last 10 evaluated errors satisfy error(Fk(s ∈ Gi, Gj)) < σ then the policy is considered stable and
reachability analysis is conducted.

D COMMANDER POLICY LEARNING

D.1 POLICY TRAINING

The Commander’s policy mainly uses Q-learning (Watkins & Dayan, 1992) to learn a policy πComm
for goal sampling. This choice is adapted to the discrete and small nature of the problem that the
Commander is expected to solve. More precisely, both the state and action spaces of the Commander
correspond to G since the Commander is in a state Gt and has to select a next partition Gt+k to
target. Additionally, we use the learned reachability relations to orient the exploration of the agent
towards reachable goals. This is done by restricting the exploration to sample reachable goals when
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possible. Formally, at a goalGi, the Q-values are computed only goalsGj thatGi is known to reach
(following reachability analysis).

D.2 HANDLING A GROWING STATE SPACE

Following a refinement of the goal space G, a new goal space G′ is formed such that |G′| >
|G|. To handle a growing state space, the Commander transfer the Q-table computed on the
state space G to the new state space G′. Assuming that Gi is the goal that was refined in
G, then G′

i1
and G′

i2
are the newly created goals with G′

i1
reaching G′

i+1 = Gi+1. In that
case, Q(G′

i1
, G′

i+1) = max
G∈G′

Q(G′, G′
i+1) and Q(G′

i2
, G′

i+1) = min
G∈G′

Q(G′, G′
i+1). Additionally,

∀G′ ∈ G, s.t G′ ̸= G′
i1

and G′ ̸= G′
i2
, Q(G′, G′

i1
) = Q(G′, G′

i2
) = Q(G′, Gi) (here G = G′). In-

versely, ∀G′ ∈ G, s.t G′ ̸= G′
i+1 = Gi+1, Q(G′

i1
, G′) = Q(G′

i2
, G′) = Q(Gi, G

′) (here G = G′).
In summary, the new Q-tables modifies the Q-values between the refined goal and its target while
preserving the rest of the values.

D.3 INITIALISATION OF THE ABSTRACTION

The algorithm start without an abstract goal. After initial exploration, and once the controller’s
policy is stable (see C for more details), we split S into a set of visited states and a set of unvisited
ones. Consequently the initial abstraction becomes G = G0 ∪ Gc

0, with G0 the set of visited states
and Gc

0 the complement of G0 in S, representing unvisited states. This resulting abstraction is still
coarse (e.g., partitions the state once space over the x and y dimensions) and is mainly useful to
identify an abstract state enclosing a neighborhood of the initial state.

E ENVIRONMENT DETAILS

The implementation adapts the same environments (Ant Maze, Ant Fall) used in Nachum et al.
(2018) with the addition of Ant Maze Cam. All of the environments use the Mujoco physics simula-
tor (Todorov et al., 2012). In all the following setups, the training episode ends atmax timesteps =
500. The reward signal is dense and corresponds to the negative Euclidean distance to the goal g∗
scaled by a factor of 0.1. Success is achieved when this distance is less than a fixed threshold of 5.

1. Ant Maze: The maze is composed of immovable blocks everywhere except in
(0, 0), (8, 0), (16, 0), (16, 8), (16, 16), (8, 16), (0, 16). The agent is initializes at position
(0, 0). At each episode, a target position is sampled uniformly from g∗x ∼ [−4, 20], g∗y ∼
[−4, 20]. At evaluation time, the agent is only evaluated for a fixed exit at (0, 16).

2. Ant Fall: the agent is initialized on an elevated platform of
height 4. Immovable blocks are placed everywhere except at
(−8, 0), (0, 0), (−8, 8), (0, 8), (−8, 16), (0, 16), (−8, 24), (0, 24). A pit is within range
[−4, 12]× [12, 20]. A movable block is placed at (8, 8). The agent is initialized at position
(0, 0, 4.5). At each episode, the target position is fixed to (g∗x, g

∗
y , g

∗
z) = (0, 27, 4.5). The

ant has to push the block into the pit and use it as a bridge to cross to the second platform.
At evaluation time, the agent is only evaluated for a fixed exit at (0, 27, 4.5).

3. Ant Maze Cam: This maze is similar to Ant Maze with the addition of a new block at
(16, 8) effectively closing any passage to the top half of the maze. For the block to be re-
moved, the ant needs to navigate to the area in the range [16, 20]× [0, 8] where a camera is
placed. In the area, the orientation ori(θx, θy, θz) needs to be negative simulating an iden-
tification process by the camera. ori(θx, θy, θz) is a function that projects the orientation
on the xy plane.

F THE REACHABILITY ANALYSIS

The reachability analysis in STAR closely follows the process detailed in Zadem et al. (2023). First,
we approximate the k-step reachability relations between states with a neural network model: Fk.
More precisely, Fk(st, Gj) predicts the state s′t+k reached after k steps when starting from st and
targeting the abstract goal Gj .
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To generalise these approximations from state-wise relations to set-wise relations, we rely on off-the-
shelf neural network reachability analysis techniques. Specifically, we use Ai2 (Gehr et al. (2018))
to compute the output of a neural network given a set of inputs. Consider the reachabilty analysis of
a transition (Gi, Gj), Ai2 computes an over-approximation of the output set of the forward model;
R̃k

πNLow
(Gi, Gj) = {s′t+k = Fk(st, Gj), st ∈ Gi}. This over-approximation is efficiently computed

layer-by-layer in the neural network using operations on abstract domains. In practice, our abstract
goals are represented as disjoint hyperrectangles since they are expressive in our applications and
simple to analyse.

The algorithm checks if R̃k
πNLow

(Gi, Gj) ⊆ Gj , i.e. the reached set of states is inside the abstract
goal. If the inclusion is valid, then the reachability property is verified in (Gi, Gj) and no splitting is
required. Similarly, if R̃k

πNLow
(Gi, Gj) ∩Gj = ∅ then the reachability property cannot be respected

for any subset in Gi and no refinement occurs. Otherwise, the algorithm splits the starting set Gi

in two subsets across a dimension of the hyperrectangle. Each split is recursively tested through
reachability analysis and searched accordingly until a subset that respects reachability is found or a
maximal splitting depth is reached.

Abstraction Refinement: As detailed in section F, an important step of our algorithm when
conducting reachability analysis on transition (Gi, Gj) is to verify if R̃k

πNLow
(Gi, Gj) ⊆ Gj . In

practice, since R̃k is an over-approximation, we can expect to have estimation errors in such a
way that verifying the precise inclusion is very difficult. We rely on a heuristic that checks if
V (R̃k

πNLow
(Gi,Gj)∩Gj)

V (Gj)
≥ τ1, with V () the volume of a hyperrectangle and τ1 a predefined thresh-

old. This heuristic roughly translates to checking if most of the approximated reached states
are indeed in the abstract goal. Similarly, to check if R̃k

πNLow
(Gi, Gj) ∩ Gj = ∅, we verify

V (R̃k
πNLow

(Gi,Gj)∩Gj)

V (Gj)
≤ τ2 with τ2 a preset parameter. That is to say, we check that most of the

abstract goal is not reached. Finally, we set a minimum volume ratio of a split compared to Gi.

G HYPERPARAMETERS

G.1 TUTOR-CONTROLLER NETWORKS

The implementation of our algorithm is adapted from the work of Zhang et al. (2023). The Tu-
tor and Controller use the same architecture and hyperparameters as HRAC (albeit with a different
goal space). It should also be noted that the policy correction method introduced in HIRO, is simi-
larly used in HRAC and STAR. Both the Tutor and Controller use TD3 (Fujimoto et al., 2018) for
learning policies with the same architecture and hyperparameters as in Zhang et al. (2023). The
hyperparameters for the Tutor and Controller networks are in table 1.

G.2 THE COMMANDER TRAINING

The Commander uses an ϵ-greedy exploration policy with ϵ0 = 0.99 and ϵmin = 0.01 with a linear
decay of a factor of 0.000001. The learning rate of the Commander is 0.01 for Ant Maze and Ant
Maze Cam and 0.005 for Ant Fall. The Commander’s experience is stored in a buffer of size 100000
(this buffer is used to train Fk). The Commander’s actions frequency is k = 30.

G.3 FORWARD MODEL

For the forward model we use a fully connected neural network with MSE loss. The network is of
size (32, 32). We use the ADAM optimiser. This neural network is updated every episode for transi-
tions (Gi, Gj) ∈ E if this transition has been sampled for a defined minimal number of Commander
steps (to acquire sufficient data). Table.2 shows the hyperparameters of Fk.

G.4 REACHABILITY ANLYSIS

Table.3 shows the hyperparametes of the reachability analysis.

17



Published as a conference paper at ICLR 2024

Hyperparameters Values Ranges
Tutor (TD3)
Actor learning rate 0.0001
Critic learning rate 0.001
Replay buffer size 200000
Batch size 128
Soft update rate 0.005
Policy update frequency 1
γ 0.99
Tutor action frequency l 10
Reward scaling 0.1 for Ant Maze (and Cam) / 1.0 for Ant Fall {0.1, 1.0}
Exploration strategy Gaussian (σ = 1.0) {1.0, 2.0}
Controller (TD3)
Actor learning rate 0.0001
Critic learning rate 0.001
Replay buffer size 200000
Batch size 128
Soft update rate 0.005
Policy update frequency 1
γ 0.95
Reward scaling 1.0
Exploration strategy Gaussian (σ = 1.0)

Table 1: Hyperparameters for Tutor and Controller networks based on Zhang et al. (2023)

Hyperparameters Values
Forward Model
learning rate 0.001
Buffer size 100000
Batch size 64
Commander steps for data-acquisition 5000 for Ant Maze and Cam/10000 for Ant Fall
Epochs 5

Table 2: Hyperparameters for the forward model

H STAR’S PSEUDO-CODE

For reproducibility, the code for STAR along with the experimental data are published in Zadem
et al. (2024).

Hyperparameters Values
Reachabililty Analysis
NN reachability analysis tool Ai2 (Gehr et al., 2018)
τ1 0.7
τ2 0.01
Minimal volume ratio of a split 0.125

Table 3: Hyperparameters for reachability analysis
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Algorithm 1 STAR
Input: Learning environment E.
Output: Computes πComm, πTut and πCont

1: DCommander ← ∅, DTutor ← ∅, DController ← ∅, G ← S
2: for t ≤ max timesteps do
3: E ← ∅
4: sinit ← initial state from E, st ← sinit
5: Gs ← G ∈ G such that st ∈ G
6: Gd ∼ πComm(Gs, g

∗)
7: gt ∼ πTut(st, Gd)
8: while true do
9: E ← E ∪ {(Gs, Gd)}

10: at ∼ πCont(st, gt)
11: (st+1, r

ext
t , done)← execute the action at at st in E

12: rController = −∥gt − st∥2
13: Update πCont
14: if not done then
15: st ← st+1, t← t+ 1
16: if t mod l = 0 then
17: rCommander = −∥st − Center(Gd)∥2
18: DTutor ← (st−l, Gd, gt−l, st, rTutor, done)
19: Update πTut
20: gt ∼ πTut(st, Gd)
21: if t mod k = 0 then
22: rCommander = −∥st − g∗∥2
23: Update DCommander ← (st−k, Gd, st, rCommander, done)
24: Update πComm
25: Gs ← G ∈ G such that st ∈ G
26: Gd ∼ πComm(st, gexit)
27: else
28: Update Fk with the data from DCommander
29: G ← Refine(G, E ,Fk)
30: break the while loop and start a new episode
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