
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LORA DONE RITE: ROBUST INVARIANT TRANSFOR-
MATION EQUILIBRATION FOR LORA OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method
for LLM that reduces memory requirements. However, current LoRA optimizers
lack transformation invariance, meaning the actual updates to the weights depends
on how the two LoRA factors are scaled or rotated. This deficiency leads to in-
efficient learning and sub-optimal solutions in practice. This paper introduces
LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimiza-
tion, which can achieve transformation invariance and remain computationally ef-
ficient. We provide theoretical analysis to demonstrate the benefit of our method
and conduct experiments on various LLM tasks with different models including
Gemma 2B, 7B, and mT5-XXL. The results demonstrate consistent improvements
against existing optimizers. For example, replacing Adam with LoRA-RITE dur-
ing LoRA fine-tuning of Gemma-2B yielded 4.6% accuracy gain on Super-Natural
Instructions and 3.5% accuracy gain across other four LLM benchmarks (Hel-
laSwag, ArcChallenge, GSM8K, OpenBookQA).

1 INTRODUCTION

Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a popular parameter-efficient fine-tuning method
for Large Language Models (LLMs). By freezing the pretrained weights and injecting trainable
low-rank decomposition matrices into each layer, LoRA significantly reduces memory requirements
and mitigates overfitting in some limited data settings. More formally, let W ∈ Rm×n be a weight
matrix in an LLM, LoRA freezes W and introduces a low-rank fine-tuned weight Z added to W ,
where Z is represented by the multiplication of two thin matricesA andB, with a rank r,

Z = ABT ∈ Rm×n,A ∈ Rm×r,B ∈ Rn×r. (1)

These matrices, A and B, referred to as LoRA factors in this paper, have dimensions significantly
smaller than the original weights. Recent research has explored numerous variations and improve-
ments upon classic LoRA algorithm (Valipour et al., 2023; Zhang et al., 2023b; Liu et al., 2024;
Yaras et al., 2024).

Despite being widely used in practice, we found that applying standard optimizers to LoRA leads
to updates that are not “transformation invariant”. By definition of LoRA in equation 1, the same
update Z can be decomposed in multiple ways, i.e., Z = A1B

T
1 = A2B

T
2 . Ideally, an optimizer

should yield the same update toZ regardless of the specific factorization. However, commonly used
optimizers like Adam (Kingma & Ba, 2014), Adagrad (Duchi et al., 2011), RMSProp (Tieleman
& Hinton, 2012), and even second-order methods like Shampoo (Gupta et al., 2018), violate this
principle when applied to LoRA. This violation not only presents a mathematical inconsistency but
also leads to significant inefficiencies during training. In practice, we observe that one LoRA factor
often dominates the optimization process, receiving substantial updates while the other remains
nearly fixed. Although this can be partially mitigated by some recent proposed approaches such as
employing different learning rates for two factors (Hayou et al., 2024), is there a more principled
way to design an optimizer that inherently enforces transformation invariance for LoRA?

To address this challenge, we first prove that any form of diagonal preconditioner cannot achieve
transformation invariance, which motivates the use of matrix preconditioners. However, existing
matrix preconditioners like Shampoo lack transformation invariance and introduce significant com-
putational and memory overhead. To overcome these limitations, we propose LoRA-RITE (Robust

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Invariant Transformation Equilibration), a novel optimizer designed specifically for LoRA. LoRA-
RITE employs a transformation-invariant preconditioner on the low-rank side, achieving transfor-
mation invariance without incurring substantial overhead. Furthermore, we demonstrate how to
maintain this property when incorporating first and second moments, crucial for the practical effec-
tiveness of adaptive optimization methods. Empirical evaluations across various datasets and models
confirm the effectiveness of the proposed algorithm.

The contribution of this paper can be summarized below:

• We propose LoRA-RITE, the first adaptive matrix preconditioning optimizer for LoRA that
is transformation-invariant, the property that is lacking for most existing optimizers when
applying to LoRA. Theoretically, we provide a convergence analysis for our method.

• Despite utilizing matrix preconditioners, LoRA-RITE achieves little overhead in both
memory and time compared to first-order optimizers, especially when the LoRA rank (r)
is significantly smaller than the original matrix dimensions (m,n).

• The proposed optimizer leads to significantly improved performance across multiple
datasets and architectures. For instance, when applied to the GSM8K (Cobbe et al., 2021)
dataset with a Gemma 7B IT model (Gemma Team et al., 2024), LoRA-RITE achieves a
55.50% accuracy rate. This surpasses the widely-used Adam optimizer (Kingma & Ba,
2014) by a substantial margin (48.37%) and even outperforms the second-best optimizer
on this dataset, Lamb (You et al., 2020) (50.64%), by approximately 5%.

2 TRANSFORMATION INVARIANCE FOR LORA OPTIMIZATION

This section introduces the concept of transformation invariance in LoRA training and demonstrates
that most existing optimizers, when applied to LoRA, do not satisfy this property. This deficiency
leads to inefficient learning in practice.

2.1 DEFINITION OF TRANSFORMATION INVARIANCE

As introduced in equation 1, LoRA adds a low-rank factor Z = ABT to the original weight matrix
W and learnsA ∈ Rm×r,B ∈ Rn×r to minimize the fine-tuning loss. Observe that many different
LoRA factors (A1,B1), (A2,B2) can represent the same finetuned weight,

Z = A1B
T

1 = A2B
T

2 . (2)

When an optimizer is applied to train LoRA, it will produce different updates, δA1, δB1 or
δA2, δB2, based on the specific parameterization used. Even though (A1,B1) and (A2,B2) rep-
resent the same finetuned weight Z, those updates under different parameterizations can produce
different updates to Z. This suggests a serious mathematical inconsistency and implies that the
update could be suboptimal under some parameterizations.

Based on this observation, we propose that LoRA optimization should ensure transformation invari-
ance, defined as follows:
Definition 1 (Transformation Invariance). Let (A1,B1) and (A2,B2) be any two pairs of LoRA
factors that satisfy equation 2. An optimizer exhibits transformation invariance if its updates,
(δA1, δB1) and (δA2, δB2), satisfy

(A1 + δA1)(B1 + δB1)T = (A2 + δA2)(B2 + δB2)T := Z + δZ. (3)

This means the optimizer should produce the same update, δZ, to the fine-tuned weights for any
equivalent LoRA factorizations. To satisfy equation 3, the following equality should hold

δA1B
T
1 +A1δB

T
1 + δA1δB

T
1 = δA2B

T
2 +A2δB

T
2 + δA2δB

T
2 . (4)

This leads to the following sufficient condition for transformation invariance, which will be used in
our later derivations:

δA1B
T
1 = δA2B

T
2 , A1δB

T
1 = A2δB

T
2 , δA1δB

T
1 = δA2δB

T
2 . (5)

As a special case, scalar scale invariance as introduced in Definition 2 is a weaker version of trans-
formation invariance, which only requires that updates remain equivalent when the LoRA factors
are scaled up or down by a constant factor. Formally, we define it as:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Definition 2 (Scalar Scale Invariance). Let (A1,B1) be a pair of LoRA factors and let A2 =
sA1,B2 = (1/s)B1 for some nonzero constant s. An optimizer exhibits scalar scale invariance if
its updates, (δA1, δB1) and (δA2, δB2), satisfy

(A1 + δA1)(B1 + δB1)T = (A2 + δA2)(B2 + δB2)T .

Surprisingly, we will show that most commonly used optimizers, when applied to LoRA, do not
even satisfy this weaker form of transformation invariance.

2.2 EXISTING OPTIMIZERS ARE NOT SCALAR SCALE INVARIANT

In this subsection we show both gradient descent and Adam are not scalar scale invariant, and in
fact, almost all the existing optimizers are not scalar scale invariant when applying to LoRA.

For gradient descent, letA2 = sA1,B2 = (1/s)B1, by chain rule, since Z = ABT , we have

∇A1 = ∇ZB1,∇A2 = ∇ZB2 = (1/s)∇A1.

Consequently, for gradient descent, we have

∇A2B
T

2 = (1/s)∇A1B
T

2 = (1/s2)∇A1B
T

1 .

Therefore, the first term in equation 4 scales by 1/s2, and we can similarly derive that the second
term scales by s2 while the third term remain identical. Therefore, gradient descent is not scalar
scale invariant, and the gradient can be arbitrary large when s goes to 0 or infinity.

Can this issue be mitigated by adaptive updates such as Adam? The answer is no. Let

δAdamA1 := ∇A1/
√
∇A1 ◦ ∇A1

be the Adam update, where all the operations are element-wise, and we omit the momentum part for
simplicity. We have

δAdamA2 =
(1/s)∇A1

(1/s)
√
∇A1 ◦ ∇A1

= δAdamA1.

As a result,
δAdamA2B

T

2 = δAdamA1B
T

2 = (1/s)δAdamA1B
T

1 ,

which means Adam also does not satisfy scalar scale invariance. Actually, one can see most of the
existing optimizers, such as Adagrad (Duchi et al., 2011), RMSProp (Tieleman & Hinton, 2012),
and Shampoo (Gupta et al., 2018) are not scale or transformation invariance.

2.3 BENEFITS OF TRANSFORMATION INVARIANCE

Why is transformation invariance important? Beyond the mathematical argument that different pa-
rameterizations of the same weight update should be equivalent, we demonstrate that transformation
invariance leads to more efficient feature learning.

The concept of efficient feature learning, introduced in (Hayou et al., 2024), describes the asymptotic
training behavior of LoRA as the network width grows. Specifically, for LoRA, the update to the
matrix Z = ABT can be decomposed into three parts

δZ = (A+ δA)(BT + δBT )−ABT

= δABT +AδBT + δAδBT ,

where the third term is typically negligible as it depends on the square of the learning rate. Efficient
feature learning requires that both δABTx and AδBTx is of θ(n0) = θ(1) with respect to the
network width n, where x is the input embedding. In other words, let the scale be θ(nα), it neither
explodes (α > 0) nor diminishes (α < 0), when the network width n grows.

Hayou et al. (2024) show that conventional optimizer does not satisfy efficient feature learning.
This can be seen from Figure 1, where the weight norm for factorB changes significantly while the
weight norm for factorA barely changes.

Here we show that under mild assumptions, a transformation-invariant optimizer guarantees efficient
feature learning. The proof is deferred to the appendix.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Theorem 1. Any optimizer that is transformation-invariant and uses the same update rule for both
A andB will achieve efficient feature learning.

Beyond the efficient learning guarantee, in practice when training LoRA with existing optimizers,
it’s often the case that only one of the LoRA factors is updating properly, while the other remain
almost unchanged, as shown in Figure 1. This is also a consequence of lacking scalar scale invari-
ance, as the initial scale for the two LoRA factors can be very different (one from 0 while other
from Gaussian random). we also show that the proposed algorithm as shown in the next section,
which satisfies transformation invariant, achieves significantly improvements over previous LoRA
optimizers in many empirical tasks.

(a) Weight norm of the A factor (b) Weight norm of the B factor

Figure 1: The weight norm ofA andB across different training steps.

3 OUR PROPOSED OPTIMIZER

3.1 NON-DIAGONAL PRECONDITIONER IS NECESSARY FOR TRANSFORMATION INVARIANCE

We first show that using non-diagonal preconditioner matrix is necessary for achieving transforma-
tion invariance, which motivates the proposed algorithm.

Most existing optimizers utilize the following framework:

vec(δA) = P vec(∇A), (6)

where vec(·) reshapes a matrix into a column vector and P ∈ Rmr×mr is a symmetric precondi-
tioning matrix. Diagonal preconditioning methods like Adam and Adagrad assume P is a diagonal
matrix, while matrix preconditioning methods such as Shampoo assume P is non-diagonal.

For transformation invariance property, we assume A2 = A1R,B2 = B1R
−T where R is an

invertible matrix, thus
∇A2 = ∇ZB2 = ∇A1R

−T .

For simplicity, we consider the case where n = m = 1 to simplify the vectorization operation in
equation 6, then we have

δABT = ∇AP TBT .

In this case, if we have two equivalent LoRA pairs (A1,B1), (A2,B2) with their corresponding
preconditioners P1,P2, transformation invariance implies

δA2B
T

2 = ∇A2P
T
2 B

T

2 = ∇A1(R−TP2R
−1)BT

1 = ∇A1P
T
1 B

T

1 (7)

for arbitrary invertible R. This implies P1,P2 cannot be diagonal, otherwise there exists an R
to break the final equation of equation 7. We can easily extend this argument to the cases when
m,n > 1 by looking at one row ofA andB.

Consequently, we have to adopt matrix preconditioning to achieve transformation invariance.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 ACHIEVING TRANSFORMATION INVARIANCE

To achieve transformation invariance, we begin by recognizing that the LoRA weights, A and B,
can be decomposed into their respective orthogonal bases and magnitudes:

A = UARA, B = UBRB,

where UA and UB can be obtained through QR decomposition. If A or B has a rank less than r,
we can append orthogonal column vectors to UA or UB without affecting the results.

Observe that the gradients ofA andB,

∇A = ∇ZB, ∇B = ∇ZTA,

depend on both the basis and the magnitude. To achieve transformation invariance, we introduce the
concept of “unmagnified gradients”:

∇̄A ≡ ∇ZUB = ∇AR†B, ∇̄B ≡ ∇ZTUA = ∇BR†A, (8)
where R†A and R†B are the pseudo-inverse of RA and RB . These unmagnified gradients, relying
solely on the column spaces ofA andB, remain invariant to transformations of the LoRA weights.
This invariance forms the cornerstone of our algorithm’s ability to achieve transformation invariance.

Adaptive preconditioning methods like Adam have demonstrated superiority over non-adaptive
methods like SGD. Furthermore, as established earlier, matrix preconditioning is crucial for achiev-
ing transformation invariance. Therefore, we propose utilizing these unmagnified gradients for adap-
tive matrix preconditioning. Additionally, we only precondition on the shorter side of size r, which
ensures low time and memory complexity of the proposed method.

Since our update rule is symmetric for A and B, for brevity, from now on we only describe the
update rule for A. For simplicity, let’s first discuss the case without momentum. We propose the
following update rule:

δA = η∇̄A((∇̄A)T ∇̄A)−1/2(R−TB ), (9)
where η is the learning rate. This update can be broken down into two parts. The first part

∇̄A((∇̄A)T ∇̄A)−1/2

resembles the adaptive preconditioning mechanism in Adagrad, but employs matrix operations in-
stead of element-wise operations. Crucially, the use of unmagnified gradients ensures this term
remains consistent across all equivalent LoRA pairs, up to the choice of the basis.

The second part R−TB adjusts the magnitude of the update for different LoRA pairs. Since
R−TB BT = UT

B , this effectively takes out the magnitude ofBT in δABT . We thus have

δA1B
T

1 = ∇̄A1((∇̄A1)T ∇̄A1)−1/2(R−TB1
BT

1 ) = ∇̄A1((∇̄A1)T ∇̄A1)−1/2UT

B1

= ∇̄A2(((∇̄A2)T ∇̄A2))−1/2UT

B2
= δA2B

T

2 .
(10)

This demonstrates that our proposed method satisfies transformation invariance. Note that this sim-
plified update rule does not yet incorporate accumulated first and second moments, which will be
addressed in the following paragraphs.

Incorporating second moment. Adaptive optimizers typically employ accumulated second mo-
ments for preconditioning. A naive approach might involve replacing the (∇̄A)T ∇̄A term in equa-
tion 9 with its accumulated sum over history:∑T

t=1
(∇̄At)

T ∇̄At.

However, since each ∇̄At is computed with respect to the basis at a specific step, directly summing
them is mathematically unsound. Instead, we must account for the varying basis at each step. To
achieve this, we accumulate the second moment as follows:

V̄At = PAtV̄At−1P
T

At
+ (∇̄At)

T ∇̄At, (11)

where V̄At−1
is the accumulated second moment based on the previous basis at step t − 1, and

PAt
:= (UBt

)TUBt−1
transforms it to the new basis at step t. During the adjustment,

Tr(PAt
V̄At−1

P T

At
) ≤ Tr(V̄At−1

),

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

indicating a potential loss of information from the accumulated second moment. To quantify this
loss, for symmetric positive definite matricesX1,X2 ∈ Rr×r, we define

dλ(X1,X2) ≡ max
i
|λi(X1)− λi(X2)| ≤ min

U
‖X1 −UX2U

T‖,
where λi(X) is the i-th eigenvalue of X , and U ∈ Rr×r is an orthogonal matrix that reflects our
freedom to choose the basis. We then define the “escaped mass” as

ρAt = ρAt−1 + dλ(V̄At−1 ,PAtV̄At−1P
T

At
). (12)

To compensate for this, we add ρAtI to our preconditioner, ensuring that
V̄At

+ ρAt
I

monotonically increases under a suitable choice of basis, even though the choice of basis does not
influence the actual update.

Finally, our unmagnified preconditioned step, when incorporating second moment, can be written as
S̄At

= ∇̄At(V̄At
+ ρAt

I)−1/2. (13)

Note that similar to Adam, we can turn equation 11 into the Exponential Moving Average (EMA)
form, where we multiple the first term by 1−β2 and the second term by β2, with the hyper-parameter
β2 ∈ (0, 1) controls the decay rate. Additionally, for numerical stability we add a small εI to V̄At

before taking the inverse square root.

Incorporating first moment. Similar to the second moment, the first moment must also be ad-
justed for changes in the basis using a projection matrix. The update rule for maintaining the first
moment can then be written as

M̄At
= β1M̄At−1

P T

At
+ (1− β1)S̄At

.

Our final proposed update rule, incorporating both first and second moment, is
δAt = M̄At

R−TB . (14)

Algorithm 1 LoRA-RITE

1: Initialize: unmagnified first and second moment M̄A0
= 0, V̄A0

= 0
2: for t = 1 . . . T do
3: Compute the gradient∇At;
4: QR decomposition over the LoRA factorBt: Bt = UBt

RBt
;

5: Compute the unmagnified gradient ∇̄At = ∇AtR
−1
Bt

and PAt
= (UBt

)TUBt−1
;

6: Update the unmagnified second moment V̄At
= PAt

V̄At−1
P T

At
+ (∇̄At)

T ∇̄At;
7: Update the escaped mass ρAt

= ρAt−1
+ dλ(V̄At−1

,PAt
V̄At−1

P T

At
);

8: Compute the unmagnified precondition step S̄At = ∇̄At(V̄At + ρAtI)−1/2;
9: Update the unmagnified first moment M̄At = β1M̄At−1P

T

At
+ (1− β1)S̄At ;

10: Update model parametersAt+1 = At − ηtM̄At
R−TB .

11: end for

The proposed algorithm, LoRA-RITE (Robust Invariant Transformation Equilibration for LoRA
training), is summarized as Algorithm 1, where we show the updates for A, and update for B can
be derived in the same way. Note that we have shown that the main update rule of equation 13
satisfies transformation invariance, and this property can be extended even after adding the first and
second moment into the algorithm, as shown in the following theorem (proof in Appendix).
Theorem 2. In Algorithm 1, every unmagnified terms are consistent across all equivalent LoRA
pairs. Consequently, Algorithm 1 is transformation invariant.

Time and Space Complexity The time and space complexity of our algorithm is similar to first
order methods like Adam when r � m,n. In each iteration of Algorithm 1, the dominant com-
putational costs arise from (1) QR-decomposition for m-by-r and n-by-r matrices which takes
O(nr2 + mr2) time, (2) matrix inverses and roots for r-by-r matrices which takes O(r3) time,
and (3) matmuls with time complexity O(nr2 + mr2). Thus, the overall complexity per step is
O(mr2 + nr2 + r3). It is only r times slower than Adam, and since r is very small, this overhead
is negligible when comparing with the back-propagating time. The memory cost of our method is
O(mr + nr) which is the same as Adam. We summarize the time and space complexity of our
method versus some commonly used optimizers in Table 7 in the Appendix.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 THEORETICAL ANALYSIS

Following previous work (Gupta et al., 2018; Feinberg et al., 2023), we provide a convergence
analysis of the proposed algorithm within the online optimization framework (Hazan et al., 2016;
Shalev-Shwartz et al., 2012).

In online convex optimization setting, a parameter θt ∈ K is chosen iteratively, where K is a convex
decision set. After the decision of θt, a convex loss function ft is revealed, potentially chosen
adversarially. The regret accumulated by the algorithm up to step T is defined as

RegretT =
∑T

t=1
ft(θt)−min

θ∈K

∑T

t=1
ft(θ).

In the online convex optimization analysis, we bound the first-order condition∇θT
t (θt− θ∗) where

θ∗ represents an arbitrary minimizer, and then use convexity to connect it to the loss function.
However, due to the inherent structure of LoRA, loss functions f are not convex with respect to θ.
Therefore, we directly bound the first-order condition instead.

We assume for the fine-tuned weight Z of each layer, the convex decision set imposes the following
constrains:

‖A‖F ≤ DA, ‖B‖F ≤ DB,
where ‖ · ‖ denotes the Frobenius norm. Additionally, we assume the gradient satisfies ‖∇Z‖F ≤
G. Following previous work, we analyze convergence in the simplified scenario where the first
moment is omitted and the second moment is a summation, similar to Adagrad. For LoRA-RITE,
our theoretical analysis yields the following result:

Theorem 3. LoRA-RITE satisfies:

1

T

∑T

t=1

1

η
∇θT

t (θt − θt+1) = O(GT−1/2),

where η is a fixed constant learning rate.

This theorem shows that the method either converges to a particular stable solution or just move
around in directions that does not change the function value, suggesting a form of convergence. To
further strengthen the guarantee, we introduce an additional assumption:

Assumption 1. Let
X̄At

= (V̄At
+ ρAt

I)−1/2

be the unmagnified preconditioner PAt = (UBt)
TUBt−1 , andQAt = R−TBt

RT
Bt−1

, then we have

‖X̄−1
At
−QAt

X̄−1
At−1

QT
At
‖ ≤ µ‖X̄−1

At
− PAt

X̄−1
At−1

P T
At
‖.

This assumption essentially constrains the change in RBt to be relatively smooth. Under this as-
sumption, we can establish the following stronger convergence result:

Theorem 4. Under Assumption 1, our proposed method satisfies:

1

T

∑T

t=1
∇θT

t (θt − θ∗) = O(GDADBT
−1/2).

Our analysis closely resembles that of one-side matrix Adagrad. The key idea is to have a change of
variable for bothA andB such that all the quantities get replace by its unmagnified counterparts.

Compared to one-side matrix Adagrad, which has a regret bound of

O(G(D2
A +D2

B)T−1/2) ≥ O(GDADBT
−1/2),

our method has a better performance when the two LoRA factors exhibit imbalance magnitudes.
This advantage is particularly relevant because previous work has shown that LoRA factors often
exhibit such imbalances (Hayou et al., 2024), which can also be seen in Figure 1, providing an
explanation for the strong empirical performance of our method.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 RELATED WORK

Related Optimizers Adaptive first-order optimizers like Adagrad (Duchi et al., 2011) utilize accu-
mulated second moments, essentially diagonal preconditioners, to scale updates for each coordinate.
This approach, adopted by optimizers like Adam (Kingma & Ba, 2014) and RMSProp (Tieleman
& Hinton, 2012), has become the standard for training deep neural networks, including LoRA, and
many other similar first-order methods have also been developed in the literature (Loshchilov &
Hutter, 2017; Chen et al., 2024). However, as discussed in Section 3.1, these methods lack transfor-
mation invariance when applied to LoRA.

Several higher-order preconditioners have shown promise in various training scenarios (Shi et al.,
2023). For example, Shampoo (Gupta et al., 2018) approximates the full second moment matrix
using a Kronecker product, leading to the following preconditioned gradient:

L−1/4GR−1/4, L = L+GGT , R = R+GTG (15)

where L ∈ Rm×m, R ∈ Rn×n are the left and right preconditioner matrices, and G ∈ Rm×n is
the gradient. Many other higher-order methods follow this framework (Martens & Grosse, 2015;
Morwani et al., 2024; Duvvuri et al., 2024). These methods incur O(m2 + n2) additional memory
overhead and require periodic computation of roots of L and R with O(m3 + n3) computational
cost. This complexity significantly exceeds that of our proposed method, as demonstrated in Table 7.
Comparing equation 15 and equation 13 reveals that our method applies preconditioning only to
the low-rank side of LoRA, resulting in negligible overhead. Furthermore, unlike our provably
transformation-invariant approach, Shampoo-based methods lack this property.

Lars (You et al., 2017) and Lamb (You et al., 2020) are layer-wise adaptive optimization methods
originally designed for large batch training. They dynamically adjust the update norm for each
weight matrix based on its current norm, which ensure scalar scale invariance. Nonetheless, they
still lacks transformation invariance.

Variants of LoRA As large language models (LLMs) grow in size, full fine-tuning on down-
stream tasks becomes increasingly resource-intensive. Parameter-efficient fine-tuning (PEFT) meth-
ods such as (Houlsby et al., 2019; He et al., 2022b;a; Lester et al., 2021; Li & Liang, 2021) have
emerged to address this issue by reducing the number of trainable paramters. As a popular PEFT
algorithm, LoRA (Hu et al., 2022) has been the subject of extensive research, with numerous varia-
tions and improvements proposed. One line of research focuses on dynamically adjusting the LoRA
rank during training. This includes DyLoRA (Valipour et al., 2023), IncreLoRA (Zhang et al.,
2023a), and AdaLoRA (Zhang et al., 2023b). Another approach involves enhancing LoRA perfor-
mance through the addition of extra scaling matrices, which includes DoRA (Liu et al., 2024) and
DeepLoRA (Yaras et al., 2024). These directions are orthogonal to our work.

Regarding LoRA optimization, Hayou et al. (2024) highlight the limitations of traditional optimiz-
ers as they fail to achieve efficient feature learning. To address this issue, they propose LoRA+,
which uses two different learning rates ηA and ηB for LoRA weights. However, this leads to an
extra hyperparameter to be tuned in practice. In contrast, Zhang & Pilanci (2024) propose the use
of matrix preconditioning methods to achieve efficient feature learning. They propose the use of
Riemannian gradient descent for LoRA optimization. As far as we know, Riemannian gradient de-
scent is the only method in the literature that satisfies transformation invariance. However, similar
to gradient descent, Riemannian gradient descent does not incorporate momentum and adaptivity,
so it performs worse than Adam in their experiments. To improve the performance, they propose
to combine Riemannian gradient descent with element-wise Adam, which becomes ScaledAdam.
However, this combination makes ScaledAdam no longer transformation invariant.

5 EXPERIMENTS

We evaluated the proposed LoRA optimizer against other optimizers across a range of datasets. This
included the Super-Natural Instructions dataset, a comprehensive collection of diverse NLP tasks,
as well as four standard LLM benchmarking datasets.

We compare the following optimizer:

• Adam (Kingma & Ba, 2014): The most widely used default optimizer for LoRA finetuning.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Experimental results on the Super-Natural instruction dataset.

Model Optimizer Cause Effect Coreference Title Data to GlobalClassification Resolution Generation Text

Gemma-2B

Adam 58.93 77.06 51.30 55.52 50.51/74.54
LoRA+ 58.84 76.08 51.32 55.68 49.76/74.20

ScaledAdam 58.71 77.55 51.16 55.69 49.40/74.01
Shampoo 58.11 77.17 51.30 55.48 50.79/74.74

Lamb 60.97 80.69 52.26 55.85 53.53/76.43
LoRA-RITE 61.26 82.02 52.26 55.98 55.11/77.12

Gemma-7B

Adam 67.17 86.05 51.58 55.38 58.46/78.17
LoRA+ 65.50 86.67 51.51 55.34 58.19/78.29

ScaledAdam 65.79 85.05 51.61 55.40 57.32/77.92
Shampoo 66.29 85.62 51.86 55.43 57.99/78.27

Lamb 69.62 86.57 51.87 55.5 57.79/78.18
LoRA-RITE 71.26 88.14 52.17 55.62 59.71/79.05

Table 2: Experimental results on LLM benchmarking datasets.

Model Optimizer HellaSwag ArcChallenge GSM8K OpenBookQA Avg.

Gemma-2B

Adam 83.76 45.31 24.26 64.0 54.33
LoRA+ 83.75 45.31 23.65 64.4 54.28

ScaledAdam 83.52 45.22 23.96 64.8 54.38
Shampoo 83.26 44.88 23.35 63.6 53.77

Lamb 86.60 47.35 26.76 68.0 57.18
LoRA-RITE 87.28 49.06 30.10 68.8 58.81

Gemma-7B

Adam 94.07 54.78 48.37 77.60 68.71
LoRA+ 93.99 54.01 48.75 77.60 68.59

ScaledAdam 93.31 52.90 48.07 75.80 67.52
Shampoo 94.15 52.47 49.05 76.80 68.12

Lamb 95.11 69.80 50.64 83.20 74.69
LoRA-RITE 95.59 71.76 55.50 84.80 76.91

• LoRA+ (Hayou et al., 2024): Adam with different learning rate for A and B. We set the
learning ofB to be 4 times large thanA, which is the value they used for decoder models.

• ScaledAdam (Zhang & Pilanci, 2024): A variant of Adam designed for LoRA optimization.
• Shampoo (Gupta et al., 2018): One of the most well-known adaptive matrix precondition-

ing method. To obtain a similar training time as the other methods, the block size is set to
512 and the preconditioners are updated every 100 steps.

• Lamb (You et al., 2020): A variant of Adam that normalizes the updates for each layer
based on the norm of the parameters.

• LoRA-RITE: Our proposed optimizer that is transformation invariant.

For each optimizer applied on each dataset, we search for the best learning rate from 2 ∗ 10−6 to
2 ∗ 10−2. The other hyperparameters are listed in the appendix. For most of the experiments we
chose rank r = 16 for LoRA, based on the ablation study over the rank at the end of experiments.
We conduct experiments on Gemma (Gemma Team et al., 2024) 2B, 7B, and mT5-XXL (Xue et al.,
2021) using TPUs.

Results on Super-Natural Instruction Dataset The Super-Natural instruction dataset (Wang
et al., 2022) contains a collection of 1600+ NLP tasks, including both classification and genera-
tion tasks. We use a 10% split of the data for validation. Following (Wang et al., 2022), we use the
exact match accuracy to evaluate classification and ROUGE-L score to evaluate generation tasks.

Table 1 presents the performance of individual fine-tuning on two classification and two generation
tasks for 2,000 steps. It also includes the performance of fine-tuning on the global training set of
over 1,600 tasks for 10,000 steps, reporting both exact match accuracy and ROUGE-L score evalu-
ated on the global validation set. As shown in Table 1, our proposed method demonstrates superior
performance across both classification and generation tasks. Compared to Adam, our method can
achieve 2.3% to 4.9% accuracy improvements on the classification tasks and also shows significant
improvements in the global training setting. Further, we found that Lamb performs well on some

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Ablation study on different ranks and different model architectures.

Gemma-2B (rank=4) Gemma-2B (rank=16) mT5-XXL (rank=4) mT5-XXL (rank=16)

Adam 63.00 64.0 72.00 72.20
ScaledAdam 63.00 64.8 70.80 74.60

Lamb 67.80 68.0 70.40 73.40
LoRA-RITE 70.40 68.8 74.80 75.00

Table 4: Number of training steps per second for different optimizers. LoRA-RITE has small over-
head compared with first-order methods.

Adam LoRA+ ScaledAdam Shampoo Lamb LoRA-RITE

Gemma-2B 0.948 0.930 0.917 0.837 0.929 0.878
Gemma-7B 0.120 0.120 0.114 0.112 0.116 0.114

of the datasets but there’s still a significant gap between Lamb and LoRA-RITE. Since Lamb en-
forces scalar scale invariance but not transformation invariance, this result implicitly suggests that
transformation invariance is crucial for achieving optimal performance.

Results on other LLM Benchmarking Datasets We also evaluate the performance on common
LLM benchmarking datasets, including HellaSwag (Zellers et al., 2019), ArcChallenge (Clark et al.,
2018), GSM8K (Cobbe et al., 2021), and OpenBookQA (Mihaylov et al., 2018). The summary
information of these datasets is in the appendix. The results are presented in Table 2. We can
observe that the trend is similar to the SuperNatural instruction results, where LoRA-RITE achieves
the best performance on all the datasets, and Lamb is usually the second best optimizer.

Ablation Study We conduct an ablation study on the choice of different LoRA ranks and model
architectures. Specifically, we considered rank 4 and 16 on both Gemma 2B (decoder only) and
mT5-XXL (encoder-decoder) on the OpenBookQA dataset. As we can see from Table 3, our pro-
posed method performs consistently well across different LoRA ranks. Furthermore, our method
can be successfully applied to mT5-XXL which has an encoder-decoder architecture, showing the
generalizability of the proposed optimizer.

Training Speed Comparison We compare the training speed of different optimizers. Table 4
shows the number of training steps per second for different optimizers with LoRA rank 16 on the
OpenBookQA dataset using TPUv5e. As we can see, LoRA-RITE is only 8% slower than Adam on
Gemma 2B, while the difference decreases to 5% when model size increased to 7B. Also, Shampoo
is slower than LoRA-RITE in this case despite it recomputes the preconditioner with much lower
frequency (once every 100 steps). This is due to our approach of preconditioning only the low-rank
side of the LoRA factors.

6 CONCLUSION

Current LoRA optimization techniques lack transformation invariance, meaning equivalent LoRA
parameterizations can yield significantly different updates. This hinders efficient feature learning
and often leads to suboptimal solutions in practice. We introduce a novel, transformation-invariant
optimization algorithm with comparable time and memory overhead to Adam. Our algorithm consis-
tently achieves higher accuracy than existing LoRA optimizers across diverse datasets and models.

Limitations Although this work introduces a better optimizer for LoRA, it is important to ac-
knowledge that LoRA itself has limitations. For instance, LoRA has smaller representational power
and may result in a minor performance decrease compared to full fine-tuning. Also, how to select
rank to strike a good trade-off between efficiency and accuracy may be non-trivial in practice.

The work focuses on addressing transformation-invariance when the optimization problem can be
written in the form of f(AB), and this assumption may not hold for other parameter-efficient struc-
tures beyond LoRA. Applying LoRA-RITE to ensure transformation invariance for the other more
complicated LoRA variants will be an interesting future direction.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and Shangsong Liang. Revisiting parameter-efficient
tuning: Are we really there yet? In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pp. 2612–2626, 2022.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Sai Surya Duvvuri, Fnu Devvrit, Rohan Anil, Cho-Jui Hsieh, and Inderjit Dhillon. Caspr: Com-
bining axes preconditioners through kronecker approximation for deep learning. In Forty-first
International Conference on Machine Learning, 2024.

Vladimir Feinberg, Xinyi Chen, Y Jennifer Sun, Rohan Anil, and Elad Hazan. Sketchy: Memory-
efficient adaptive regularization with frequent directions. arXiv preprint arXiv:2302.03764, 2023.

Thomas Mesnard Gemma Team, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, and et al.
Gemma. 2024. doi: 10.34740/KAGGLE/M/3301. URL https://www.kaggle.com/m/
3301.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
In Forty-first International Conference on Machine Learning, 2024.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends R© in Opti-
mization, 2(3-4):157–325, 2016.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022a.

Shwai He, Liang Ding, Daize Dong, Jeremy Zhang, and Dacheng Tao. Sparseadapter: An easy
approach for improving the parameter-efficiency of adapters. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pp. 2184–2190, 2022b.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045–3059, 2021.

11

https://www.kaggle.com/m/3301
https://www.kaggle.com/m/3301


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2017. URL https://api.semanticscholar.org/
CorpusID:53592270.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approxi-
mate curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach, Sham Kakade, and Lucas Janson. A new
perspective on shampoo’s preconditioner. arXiv preprint arXiv:2406.17748, 2024.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends R© in Machine Learning, 4(2):107–194, 2012.

Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li,
Kaushik Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel py-
torch implementation of the distributed shampoo optimizer for training neural networks at-scale.
arXiv preprint arXiv:2309.06497, 2023.

T. Tieleman and G. Hinton. Lecture 6.5—RMSProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural networks for machine learning. 2012.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 3274–3287, 2023.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, et al.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. In Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
5085–5109, 2022.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer, 2021.
URL https://arxiv.org/abs/2010.11934.

Can Yaras, Peng Wang, Laura Balzano, and Qing Qu. Compressible dynamics in deep overpa-
rameterized low-rank learning & adaptation. In Forty-first International Conference on Machine
Learning, 2024.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

12

https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://arxiv.org/abs/2010.11934


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned lora for fine-tuning foundation mod-
els. In Forty-first International Conference on Machine Learning, 2024.

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang Jiang, Bowen Wang, and Yiming Qian. In-
crelora: Incremental parameter allocation method for parameter-efficient fine-tuning. arXiv
preprint arXiv:2308.12043, 2023a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh Inter-
national Conference on Learning Representations, 2023b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 HYPERPARAMETERS

Table 5 shows our hyperparameters. We set weight decay and dropout probability to 0 as our early
experiments suggest that setting a non-zero value does not improve the performance of the baselines.

Table 5: The setting for hyperparameters.

Hyperparameter Value

Learning rate 2 ∗ 10−6 to 2 ∗ 10−2

Weight decay 0
Dropout prob 0
LoRA target qproj, kproj , vproj, oproj
LoRA rank 16

LoRA α 16
Batch size 16
Train step 2000

LR schedule Linear decay
Warmup step 100

Evaluation period 100
Momentum β1 0.9

Second moment β2 0.999

A.2 DATASET

Table 6 shows the summary information of the LLM benchmarking datasets. We use the test set to
evaluate ArcChallenge, as it is much larger than the development set.

Table 6: Summary information of the LLM benchmarking datasets.

Dataset #Train #Dev #Test Split for Eval

HellaSwag 39905 10042 10003 Dev
ArcChallenge 1119 299 1172 Test

GSM8K 7473 NA 1319 Test
OpenBookQA 4957 500 500 Dev

A.3 PROOF OF THEOREM 1

Let ‖A1‖ = θ(na), ‖B1‖ = θ(nb), ‖∇Z‖ = θ(nc), η = θ(nd), where η is the learning rate
and n is the network width. Since Z = A1B

T
1 , from chain rule we know ∇A = ∇ZB and

∇B = ∇ZTA. Since the update rule is symmetric, we can express the updates as

‖δA1‖ = θ(nxa+yb+zc+d), ‖δB1‖ = θ(nxb+ya+zc+d).

If the update rule is scalar scale invariant, then for anyA2 = nδA1,B2 = n−δB1 we have

‖δA1‖‖B1‖ = ‖δA2‖‖B2‖,

which means

xa+ (y + 1)b+ zc+ d = x(a+ δ) + (y + 1)(b− δ) + zc+ d,

thus xδ − (y + 1)δ = 0 for all δ, which means y = x− 1. Consequently, we have

‖δA1‖‖B1‖ = θ(nxa+(y+1)b+sc+d) = θ(nxa+xb+sc+d).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Time and space complexity comparison for LoRA optimization.

Algorithm Time Complexity Space Complexity

Forward/Backward Ω(nm) Ω(nm)
Full Matrix Adagrad (Duchi et al., 2011) O(m3r3 + n3r3) O(m2r2 + n2r2)

Adam (Kingma & Ba, 2014) O(mr + nr) O(mr + nr)
Lamb (You et al., 2020) O(mr + nr) O(mr + nr)

Shampoo (Gupta et al., 2018) O(m3 + n3 + r3) O(m2 + n2 + r2)
KFAC (Martens & Grosse, 2015) O(m3 + n3 + r3) O(m2 + n2 + r2)

ScaledAdam (Zhang & Pilanci, 2024) O(mr2 + nr2) O(mr + nr)
LoRA-RITE (our proposed) O(mr2 + nr2) O(mr + nr + r2)

Similarly, we have

‖A1‖‖δB1‖ = θ(nxb+(y+1)a+sc+d) = θ(nxb+xa+sc+d).

Since these two are equal, we can achieve efficient feature learning
‖A‖‖δB‖‖x‖ = ‖δA‖‖B‖‖x‖ = θ(1),

where x is the input vector, by selecting a proper learning rate η = θ(nd).

A.4 PROOF OF THEOREM 2

For matrixXA ∈ Rm×r,HA ∈ Rr×r, we call them consistent if
XAU

T

B ∈ Rm×n

and
UBHAU

T

B ∈ Rn×n

are respectively the same across all equivalent LoRA pairs.

First, one should note the fact that
UBU

T

B

is the same across all equivalent pairs. Thus,
UB(∇̄A)T ∇̄AUT

B = UBU
T

B∇ZT∇ZUBUT

B

implies (∇̄A)T ∇̄A is consistent.

This combined with the fact that PAt
V̄At−1

P T

At
is consistent if V̄At−1

is consistent and that V̄A0
=

0 implies V̄At is consistent.

Lastly, since

UB(V̄At + ρAtI)−1/2UT

B = (UBV̄AtU
T

B + ρAtUBU
T

B)−1/2,

both S̄At
and M̄At

are consistent, which completes our proof.

A.5 PROOF OF THEOREM 3

For convenience, for matrixX ∈ Rm×r,H ∈ Rr×r, we define
‖X‖H = Tr(XHXT )1/2.

We also utilize the following lemma for online optimization.
Lemma 1 (Lemma 5.13 Hazan et al. (2016)). For online optimization, if θt is updated as θt+1 =
θt − ηXtgt, then we have

T∑
t=1

∇θT

t (θt − θ∗) ≤
1

2η
‖θ1 − θ∗‖2X−1

1
+
η

2

T∑
t=1

(gt)
TXtgt

+
1

2η

T∑
t=2

(θt − θ∗)T (X−1
t −X−1

t−1)(θt − θ∗).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lemma 2 (Lemma 5.13, 5.14 Hazan et al. (2016)). For arbitrary matrix Gt ∈ Rm×r, Ht =∑t
i=1G

T
i Gi, we have

T∑
t=1

‖Gt‖H−1/2
t

≤ 2 Tr(H
1/2
T )

Proof of Theorem 3

Since we are preconditioning each layer independently, all three terms in Lemma 1 can be written as
summation over the L layers. For simplicity, from now on we omit the summation and the subscript
for layers.

For our method, the preconditionerXAt
is as follows,

XAt
= R−1

Bt
V̄
−1/2
At

R−TBt
.

We define the unmagnified preconditioner

X̄At
= V̄

−1/2
At

.

Then by Lemma 2, for theA factor, we have

T∑
t=1

vec(∇At)
T vec(δAt) =

T∑
t=1

Tr(∇AT

t δAt)

=η

T∑
t=1

‖∇At‖2XAt
= η

T∑
t=1

‖∇̄At‖2X̄At
≤ 2ηTr(V̄

1/2
AT

).

(16)

Since
Tr(V̄

1/2
AT

) = O(GT 1/2),

this completes our proof.

Proof of Theorem 4

We continue from the proof of Theorem 3 and utilize Lemma 1. We already bound the second term
in Theorem 3, so we only need to bound the third term.

For the third term, we have

‖At −A∗‖2X−1
At
−X−1

At−1

= ‖(At −A∗)RT
Bt
‖2
X̄−1

At
−QAtX̄

−1
At−1

QT
At

≤D2
AD

2
B‖X̄−1

At
−QAtX̄

−1
At−1

QT
At
‖ ≤ µD2

AD
2
B‖X̄−1

At
− PAtX̄

−1
At−1

P T
At
‖,

where the last inequality comes from our assumption.

Consequently, since
X̄−1
At
� PAtX̄

−1
At−1

P T
At
,

we have
T∑
t=1

‖X̄−1
At
− PAt

X̄−1
At−1

P T
At
‖ ≤

T∑
t=1

Tr(X̄−1
At
− PAt

X̄−1
At−1

P T
At

) ≤ Tr(X̄−1
AT

) = Tr(V̄
1/2
AT

).

Summing up the second and third term, we get

(2η +
1

η
µD2

AD
2
B) Tr(V̄

1/2
AT

).

Choosing η = (1/
√

2)µ1/2DADB , we have

2
√

2µ1/2DADB) Tr(V̄
1/2
AT

) = O(DADBGT
−1/2),

which completes the proof.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Super-Natural instruction (b) OpenBookQA

Figure 2: The training loss curve for the Super-Natural instruction dataset and the OpenBookQA
dataset.

A.6 TRAINING LOSS CURVE VISUALIZATION

To cross-validate the effectiveness of LoRA-RITE, we plot the training loss curve of each method
for the Super-Natural instruction dataset and the OpenBookQA dataset. Figure 2 shows that LoRA-
RITE has the lowest training loss, which demonstrates the effectiveness of our method.

A.7 UPDATE MAGNITUDE VISUALIZATION

To visualize the update magnitude of the two LoRA factors, we plot the update norm divided by the
weight norm, ‖δA‖/‖A‖ and ‖δB‖/‖B‖.
Figure 3 and Figure 4 show that for conventional optimizers, factorA barely changes, while LoRA-
RITE is able to learn the factor A effectively. This demonstrates the importance of transformation
invariance.

(a) Update magnitude of the A factor (b) Update magnitude of the B factor

Figure 3: The update magnitude ofA andB for the Super-Natural instruction dataset.

A.8 ABLATION STUDY ON DIFFERENT RANKS

To study the effect of different LoRA ranks, we conduct additional ablation study on different
datasets.

As we can see from Table 8, higher rank generally improves LoRA performance, approaching full
fine-tuning. This explains why the performance gap between LoRA-RITE and other methods nar-
rows at higher ranks, as they all converge towards the results of full fine-tuning.

Additionally, one can observe that LoRA has inherent regularization properties. As noted in pre-
vious research (Chen et al., 2022), this means that sometimes a lower rank can actually lead to

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Update magnitude of the A factor (b) Update magnitude of the B factor

Figure 4: The update magnitude ofA andB for the OpenBookQA dataset.

Table 8: Ablation study on different ranks on Gemma-2B on the LLM benchmarking datasets.

Optimizer Rank HellaSwag ArcChallenge GSM8K OpenBookQA Avg.

Adam
r = 4 81.83 42.32 20.92 63.0 52.02
r = 16 83.76 45.31 24.26 64.0 54.33
r = 64 84.56 46.67 26.08 67.0 56.08

ScaledAdam
r = 4 81.95 44.80 21.15 63.0 52.73
r = 16 83.52 45.22 23.96 64.8 54.38
r = 64 84.42 48.21 26.61 67.0 56.56

Lamb
r = 4 86.01 46.67 25.25 67.8 56.43
r = 16 86.60 47.35 26.76 68.0 57.18
r = 64 87.83 47.53 29.04 62.8 56.80

LoRA-RITE
r = 4 87.08 49.57 29.49 70.4 59.14
r = 16 87.28 49.06 30.10 68.8 58.81
r = 64 87.89 49.91 31.46 68.8 59.52

better performance. This effect depends on factors like model generalization and training data size.
This explains why LoRA-RITE achieves better performance at rank 4 instead of 16 and why Lamb
achieves better performance at rank 16 than rank 64.

A.9 BEST LEARNING RATE FOR DIFFERENT OPTIMIZERS

In Table 9, we list the best learning rate for each optimizer on the LLM benchmarking datasets. We
observe that LoRA-RITE and Lamb usually prefer a larger learning rate than the other baselines.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Best Learning Rate for Different Optimizers on LLM benchmarking datasets.

Model Optimizer HellaSwag ArcChallenge GSM8K OpenBookQA

Gemma-2B

Adam 1e-5 5e-5 1e-5 5e-5
LoRA+ 1e-5 5e-5 1e-5 5e-5

ScaledAdam 5e-5 5e-5 1e-5 2e-4
Shampoo 1e-5 5e-5 5e-5 5e-5

Lamb 5e-3 5e-3 5e-3 5e-3
LoRA-RITE 2e-4 1e-3 2e-4 2e-4

19


	Introduction
	Transformation Invariance for LoRA Optimization
	Definition of Transformation Invariance
	Existing Optimizers are not Scalar Scale Invariant
	Benefits of Transformation Invariance

	Our Proposed Optimizer
	Non-diagonal preconditioner is necessary for transformation invariance
	Achieving Transformation Invariance
	Theoretical Analysis

	Related Work
	Experiments
	Conclusion
	Appendix
	Hyperparameters
	Dataset
	Proof of th:efficientlearning
	Proof of th:alginvariant
	Proof of th:boundonsecondterm
	Training Loss Curve Visualization
	Update Magnitude Visualization
	Ablation Study on Different Ranks
	Best Learning Rate for Different Optimizers


