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ABSTRACT

Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method
for LLM that reduces memory requirements. However, current LoRA optimizers
lack transformation invariance, meaning the actual updates to the weights depends
on how the two LoRA factors are scaled or rotated. This deficiency leads to in-
efficient learning and sub-optimal solutions in practice. This paper introduces
LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimiza-
tion, which can achieve transformation invariance and remain computationally ef-
ficient. We provide theoretical analysis to demonstrate the benefit of our method
and conduct experiments on various LLM tasks with different models including
Gemma 2B, 7B, and mT5-XXL. The results demonstrate consistent improvements
against existing optimizers. For example, replacing Adam with LoRA-RITE dur-
ing LoRA fine-tuning of Gemma-2B yielded 4.6% accuracy gain on Super-Natural
Instructions and 3.5% accuracy gain across other four LLM benchmarks (Hel-
laSwag, ArcChallenge, GSM8K, OpenBookQA).

1 INTRODUCTION

Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a popular parameter-efficient fine-tuning method
for Large Language Models (LLMs). By freezing the pretrained weights and injecting trainable
low-rank decomposition matrices into each layer, LoRA significantly reduces memory requirements
and mitigates overfitting in some limited data settings. More formally, let W ∈ Rm×n be a weight
matrix in an LLM, LoRA freezes W and introduces a low-rank fine-tuned weight Z added to W ,
where Z is represented by the multiplication of two thin matricesA andB, with a rank r,

Z = ABT ∈ Rm×n,A ∈ Rm×r,B ∈ Rn×r. (1)

These matrices, A and B, referred to as LoRA factors in this paper, have dimensions significantly
smaller than the original weights. Recent research has explored numerous variations and improve-
ments upon classic LoRA algorithm (Valipour et al., 2023; Zhang et al., 2023b; Liu et al., 2024;
Yaras et al., 2024).

Despite being widely used in practice, we found that applying standard optimizers to LoRA leads
to updates that are not “transformation invariant”. By definition of LoRA in equation 1, the same
update Z can be decomposed in multiple ways, i.e., Z = A1B

T
1 = A2B

T
2 . Ideally, an optimizer

should yield the same update toZ regardless of the specific factorization. However, commonly used
optimizers like Adam (Kingma & Ba, 2014), Adagrad (Duchi et al., 2011), RMSProp (Tieleman
& Hinton, 2012), and even second-order methods like Shampoo (Gupta et al., 2018), violate this
principle when applied to LoRA. This violation not only presents a mathematical inconsistency but
also leads to significant inefficiencies during training. In practice, we observe that one LoRA factor
often dominates the optimization process, receiving substantial updates while the other remains
nearly fixed. Although this can be partially mitigated by some recent proposed approaches such as
employing different learning rates for two factors (Hayou et al., 2024), is there a more principled
way to design an optimizer that inherently enforces transformation invariance for LoRA?

To address this challenge, we first prove that any form of diagonal preconditioner cannot achieve
transformation invariance, which motivates the use of matrix preconditioners. However, existing
matrix preconditioners like Shampoo lack transformation invariance and introduce significant com-
putational and memory overhead. To overcome these limitations, we propose LoRA-RITE (Robust
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Invariant Transformation Equilibration), a novel optimizer designed specifically for LoRA. LoRA-
RITE employs a transformation-invariant preconditioner on the low-rank side, achieving transfor-
mation invariance without incurring substantial overhead. Furthermore, we demonstrate how to
maintain this property when incorporating first and second moments, crucial for the practical effec-
tiveness of adaptive optimization methods. Empirical evaluations across various datasets and models
confirm the effectiveness of the proposed algorithm.

The contribution of this paper can be summarized below:

• We propose LoRA-RITE, the first adaptive matrix preconditioning optimizer for LoRA that
is transformation-invariant, the property that is lacking for most existing optimizers when
applying to LoRA. Theoretically, we provide a convergence analysis for our method.

• Despite utilizing matrix preconditioners, LoRA-RITE achieves little overhead in both
memory and time compared to first-order optimizers, especially when the LoRA rank (r)
is significantly smaller than the original matrix dimensions (m,n).

• The proposed optimizer leads to significantly improved performance across multiple
datasets and architectures. For instance, when applied to the GSM8K (Cobbe et al., 2021)
dataset with a Gemma 7B IT model (Gemma Team et al., 2024), LoRA-RITE achieves a
55.50% accuracy rate. This surpasses the widely-used Adam optimizer (Kingma & Ba,
2014) by a substantial margin (48.37%) and even outperforms the second-best optimizer
on this dataset, Lamb (You et al., 2020) (50.64%), by approximately 5%.

2 TRANSFORMATION INVARIANCE FOR LORA OPTIMIZATION

This section introduces the concept of transformation invariance in LoRA training and demonstrates
that most existing optimizers, when applied to LoRA, do not satisfy this property. This deficiency
leads to inefficient learning in practice.

2.1 DEFINITION OF TRANSFORMATION INVARIANCE

As introduced in equation 1, LoRA adds a low-rank factor Z = ABT to the original weight matrix
W and learnsA ∈ Rm×r,B ∈ Rn×r to minimize the fine-tuning loss. Observe that many different
LoRA factors (A1,B1), (A2,B2) can represent the same finetuned weight,

Z = A1B
T

1 = A2B
T

2 . (2)

When an optimizer is applied to train LoRA, it will produce different updates, δA1, δB1 or
δA2, δB2, based on the specific parameterization used. Even though (A1,B1) and (A2,B2) rep-
resent the same finetuned weight Z, those updates under different parameterizations can produce
different updates to Z. This suggests a serious mathematical inconsistency and implies that the
update could be suboptimal under some parameterizations.

Based on this observation, we propose that LoRA optimization should ensure transformation invari-
ance, defined as follows:
Definition 1 (Transformation Invariance). Let (A1,B1) and (A2,B2) be any two pairs of LoRA
factors that satisfy equation 2. An optimizer exhibits transformation invariance if its updates,
(δA1, δB1) and (δA2, δB2), satisfy

(A1 + δA1)(B1 + δB1)T = (A2 + δA2)(B2 + δB2)T := Z + δZ. (3)

This means the optimizer should produce the same update, δZ, to the fine-tuned weights for any
equivalent LoRA factorizations. To satisfy equation 3, the following equality should hold

δA1B
T
1 +A1δB

T
1 + δA1δB

T
1 = δA2B

T
2 +A2δB

T
2 + δA2δB

T
2 . (4)

This leads to the following sufficient condition for transformation invariance, which will be used in
our later derivations:

δA1B
T
1 = δA2B

T
2 , A1δB

T
1 = A2δB

T
2 , δA1δB

T
1 = δA2δB

T
2 . (5)

As a special case, scalar scale invariance as introduced in Definition 2 is a weaker version of trans-
formation invariance, which only requires that updates remain equivalent when the LoRA factors
are scaled up or down by a constant factor. Formally, we define it as:

2
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Definition 2 (Scalar Scale Invariance). Let (A1,B1) be a pair of LoRA factors and let A2 =
sA1,B2 = (1/s)B1 for some nonzero constant s. An optimizer exhibits scalar scale invariance if
its updates, (δA1, δB1) and (δA2, δB2), satisfy

(A1 + δA1)(B1 + δB1)T = (A2 + δA2)(B2 + δB2)T .

Surprisingly, we will show that most commonly used optimizers, when applied to LoRA, do not
even satisfy this weaker form of transformation invariance.

2.2 EXISTING OPTIMIZERS ARE NOT SCALAR SCALE INVARIANT

In this subsection we show both gradient descent and Adam are not scalar scale invariant, and in
fact, almost all the existing optimizers are not scalar scale invariant when applying to LoRA.

For gradient descent, letA2 = sA1,B2 = (1/s)B1, by chain rule, since Z = ABT , we have

∇A1 = ∇ZB1,∇A2 = ∇ZB2 = (1/s)∇A1.

Consequently, for gradient descent, we have

∇A2B
T

2 = (1/s)∇A1B
T

2 = (1/s2)∇A1B
T

1 .

Therefore, the first term in equation 4 scales by 1/s2, and we can similarly derive that the second
term scales by s2 while the third term remain identical. Therefore, gradient descent is not scalar
scale invariant, and the gradient can be arbitrary large when s goes to 0 or infinity.

Can this issue be mitigated by adaptive updates such as Adam? The answer is no. Let

δAdamA1 := ∇A1/
√
∇A1 ◦ ∇A1

be the Adam update, where all the operations are element-wise, and we omit the momentum part for
simplicity. We have

δAdamA2 =
(1/s)∇A1

(1/s)
√
∇A1 ◦ ∇A1

= δAdamA1.

As a result,
δAdamA2B

T

2 = δAdamA1B
T

2 = (1/s)δAdamA1B
T

1 ,

which means Adam also does not satisfy scalar scale invariance. Actually, one can see most of the
existing optimizers, such as Adagrad (Duchi et al., 2011), RMSProp (Tieleman & Hinton, 2012),
and Shampoo (Gupta et al., 2018) are not scale or transformation invariance.

2.3 BENEFITS OF TRANSFORMATION INVARIANCE

Why is transformation invariance important? Beyond the mathematical argument that different pa-
rameterizations of the same weight update should be equivalent, we demonstrate that transformation
invariance leads to more efficient feature learning.

The concept of efficient feature learning, introduced in (Hayou et al., 2024), describes the asymptotic
training behavior of LoRA as the network width grows. Specifically, for LoRA, the update to the
matrix Z = ABT can be decomposed into three parts

δZ = (A+ δA)(BT + δBT )−ABT

= δABT +AδBT + δAδBT ,

where the third term is typically negligible as it depends on the square of the learning rate. Efficient
feature learning requires that both δABTx and AδBTx is of θ(n0) = θ(1) with respect to the
network width n, where x is the input embedding. In other words, let the scale be θ(nα), it neither
explodes (α > 0) nor diminishes (α < 0), when the network width n grows.

Hayou et al. (2024) show that conventional optimizer does not satisfy efficient feature learning.
This can be seen from Figure 1, where the weight norm for factorB changes significantly while the
weight norm for factorA barely changes.

Here we show that under mild assumptions, a transformation-invariant optimizer guarantees efficient
feature learning. The proof is deferred to the appendix.

3
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Theorem 1. Any optimizer that is transformation-invariant and uses the same update rule for both
A andB will achieve efficient feature learning.

Beyond the efficient learning guarantee, in practice when training LoRA with existing optimizers,
it’s often the case that only one of the LoRA factors is updating properly, while the other remain
almost unchanged, as shown in Figure 1. This is also a consequence of lacking scalar scale invari-
ance, as the initial scale for the two LoRA factors can be very different (one from 0 while other
from Gaussian random). we also show that the proposed algorithm as shown in the next section,
which satisfies transformation invariant, achieves significantly improvements over previous LoRA
optimizers in many empirical tasks.

(a) Weight norm of the A factor (b) Weight norm of the B factor

Figure 1: The weight norm ofA andB across different training steps.

3 OUR PROPOSED OPTIMIZER

3.1 NON-DIAGONAL PRECONDITIONER IS NECESSARY FOR TRANSFORMATION INVARIANCE

We first show that using non-diagonal preconditioner matrix is necessary for achieving transforma-
tion invariance, which motivates the proposed algorithm.

Most existing optimizers utilize the following framework:

vec(δA) = P vec(∇A), (6)

where vec(·) reshapes a matrix into a column vector and P ∈ Rmr×mr is a symmetric precondi-
tioning matrix. Diagonal preconditioning methods like Adam and Adagrad assume P is a diagonal
matrix, while matrix preconditioning methods such as Shampoo assume P is non-diagonal.

For transformation invariance property, we assume A2 = A1R,B2 = B1R
−T where R is an

invertible matrix, thus
∇A2 = ∇ZB2 = ∇A1R

−T .

For simplicity, we consider the case where n = m = 1 to simplify the vectorization operation in
equation 6, then we have

δABT = ∇AP TBT .

In this case, if we have two equivalent LoRA pairs (A1,B1), (A2,B2) with their corresponding
preconditioners P1,P2, transformation invariance implies

δA2B
T

2 = ∇A2P
T
2 B

T

2 = ∇A1(R−TP2R
−1)BT

1 = ∇A1P
T
1 B

T

1 (7)

for arbitrary invertible R. This implies P1,P2 cannot be diagonal, otherwise there exists an R
to break the final equation of equation 7. We can easily extend this argument to the cases when
m,n > 1 by looking at one row ofA andB.

Consequently, we have to adopt matrix preconditioning to achieve transformation invariance.

4
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3.2 ACHIEVING TRANSFORMATION INVARIANCE

To achieve transformation invariance, we begin by recognizing that the LoRA weights, A and B,
can be decomposed into their respective orthogonal bases and magnitudes:

A = UARA, B = UBRB,

where UA and UB can be obtained through QR decomposition. If A or B has a rank less than r,
we can append orthogonal column vectors to UA or UB without affecting the results.

Observe that the gradients ofA andB,

∇A = ∇ZB, ∇B = ∇ZTA,

depend on both the basis and the magnitude. To achieve transformation invariance, we introduce the
concept of “unmagnified gradients”:

∇̄A ≡ ∇ZUB = ∇AR†B, ∇̄B ≡ ∇ZTUA = ∇BR†A, (8)
where R†A and R†B are the pseudo-inverse of RA and RB . These unmagnified gradients, relying
solely on the column spaces ofA andB, remain invariant to transformations of the LoRA weights.
This invariance forms the cornerstone of our algorithm’s ability to achieve transformation invariance.

Adaptive preconditioning methods like Adam have demonstrated superiority over non-adaptive
methods like SGD. Furthermore, as established earlier, matrix preconditioning is crucial for achiev-
ing transformation invariance. Therefore, we propose utilizing these unmagnified gradients for adap-
tive matrix preconditioning. Additionally, we only precondition on the shorter side of size r, which
ensures low time and memory complexity of the proposed method.

Since our update rule is symmetric for A and B, for brevity, from now on we only describe the
update rule for A. For simplicity, let’s first discuss the case without momentum. We propose the
following update rule:

δA = η∇̄A((∇̄A)T ∇̄A)−1/2(R−TB ), (9)
where η is the learning rate. This update can be broken down into two parts. The first part

∇̄A((∇̄A)T ∇̄A)−1/2

resembles the adaptive preconditioning mechanism in Adagrad, but employs matrix operations in-
stead of element-wise operations. Crucially, the use of unmagnified gradients ensures this term
remains consistent across all equivalent LoRA pairs, up to the choice of the basis.

The second part R−TB adjusts the magnitude of the update for different LoRA pairs. Since
R−TB BT = UT

B , this effectively takes out the magnitude ofBT in δABT . We thus have

δA1B
T

1 = ∇̄A1((∇̄A1)T ∇̄A1)−1/2(R−TB1
BT

1 ) = ∇̄A1((∇̄A1)T ∇̄A1)−1/2UT

B1

= ∇̄A2(((∇̄A2)T ∇̄A2))−1/2UT

B2
= δA2B

T

2 .
(10)

This demonstrates that our proposed method satisfies transformation invariance. Note that this sim-
plified update rule does not yet incorporate accumulated first and second moments, which will be
addressed in the following paragraphs.

Incorporating second moment. Adaptive optimizers typically employ accumulated second mo-
ments for preconditioning. A naive approach might involve replacing the (∇̄A)T ∇̄A term in equa-
tion 9 with its accumulated sum over history:∑T

t=1
(∇̄At)

T ∇̄At.

However, since each ∇̄At is computed with respect to the basis at a specific step, directly summing
them is mathematically unsound. Instead, we must account for the varying basis at each step. To
achieve this, we accumulate the second moment as follows:

V̄At = PAtV̄At−1P
T

At
+ (∇̄At)

T ∇̄At, (11)

where V̄At−1
is the accumulated second moment based on the previous basis at step t − 1, and

PAt
:= (UBt

)TUBt−1
transforms it to the new basis at step t. During the adjustment,

Tr(PAt
V̄At−1

P T

At
) ≤ Tr(V̄At−1

),

5
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indicating a potential loss of information from the accumulated second moment. To quantify this
loss, for symmetric positive definite matricesX1,X2 ∈ Rr×r, we define

dλ(X1,X2) ≡ max
i
|λi(X1)− λi(X2)| ≤ min

U
‖X1 −UX2U

T‖,
where λi(X) is the i-th eigenvalue of X , and U ∈ Rr×r is an orthogonal matrix that reflects our
freedom to choose the basis. We then define the “escaped mass” as

ρAt = ρAt−1 + dλ(V̄At−1 ,PAtV̄At−1P
T

At
). (12)

To compensate for this, we add ρAtI to our preconditioner, ensuring that
V̄At

+ ρAt
I

monotonically increases under a suitable choice of basis, even though the choice of basis does not
influence the actual update.

Finally, our unmagnified preconditioned step, when incorporating second moment, can be written as
S̄At

= ∇̄At(V̄At
+ ρAt

I)−1/2. (13)

Note that similar to Adam, we can turn equation 11 into the Exponential Moving Average (EMA)
form, where we multiple the first term by 1−β2 and the second term by β2, with the hyper-parameter
β2 ∈ (0, 1) controls the decay rate. Additionally, for numerical stability we add a small εI to V̄At

before taking the inverse square root.

Incorporating first moment. Similar to the second moment, the first moment must also be ad-
justed for changes in the basis using a projection matrix. The update rule for maintaining the first
moment can then be written as

M̄At
= β1M̄At−1

P T

At
+ (1− β1)S̄At

.

Our final proposed update rule, incorporating both first and second moment, is
δAt = M̄At

R−TB . (14)

Algorithm 1 LoRA-RITE

1: Initialize: unmagnified first and second moment M̄A0
= 0, V̄A0

= 0
2: for t = 1 . . . T do
3: Compute the gradient∇At;
4: QR decomposition over the LoRA factorBt: Bt = UBt

RBt
;

5: Compute the unmagnified gradient ∇̄At = ∇AtR
−1
Bt

and PAt
= (UBt

)TUBt−1
;

6: Update the unmagnified second moment V̄At
= PAt

V̄At−1
P T

At
+ (∇̄At)

T ∇̄At;
7: Update the escaped mass ρAt

= ρAt−1
+ dλ(V̄At−1

,PAt
V̄At−1

P T

At
);

8: Compute the unmagnified precondition step S̄At = ∇̄At(V̄At + ρAtI)−1/2;
9: Update the unmagnified first moment M̄At = β1M̄At−1P

T

At
+ (1− β1)S̄At ;

10: Update model parametersAt+1 = At − ηtM̄At
R−TB .

11: end for

The proposed algorithm, LoRA-RITE (Robust Invariant Transformation Equilibration for LoRA
training), is summarized as Algorithm 1, where we show the updates for A, and update for B can
be derived in the same way. Note that we have shown that the main update rule of equation 13
satisfies transformation invariance, and this property can be extended even after adding the first and
second moment into the algorithm, as shown in the following theorem (proof in Appendix).
Theorem 2. In Algorithm 1, every unmagnified terms are consistent across all equivalent LoRA
pairs. Consequently, Algorithm 1 is transformation invariant.

Time and Space Complexity The time and space complexity of our algorithm is similar to first
order methods like Adam when r � m,n. In each iteration of Algorithm 1, the dominant com-
putational costs arise from (1) QR-decomposition for m-by-r and n-by-r matrices which takes
O(nr2 + mr2) time, (2) matrix inverses and roots for r-by-r matrices which takes O(r3) time,
and (3) matmuls with time complexity O(nr2 + mr2). Thus, the overall complexity per step is
O(mr2 + nr2 + r3). It is only r times slower than Adam, and since r is very small, this overhead
is negligible when comparing with the back-propagating time. The memory cost of our method is
O(mr + nr) which is the same as Adam. We summarize the time and space complexity of our
method versus some commonly used optimizers in Table 7 in the Appendix.
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3.3 THEORETICAL ANALYSIS

Following previous work (Gupta et al., 2018; Feinberg et al., 2023), we provide a convergence
analysis of the proposed algorithm within the online optimization framework (Hazan et al., 2016;
Shalev-Shwartz et al., 2012).

In online convex optimization setting, a parameter θt ∈ K is chosen iteratively, where K is a convex
decision set. After the decision of θt, a convex loss function ft is revealed, potentially chosen
adversarially. The regret accumulated by the algorithm up to step T is defined as

RegretT =
∑T

t=1
ft(θt)−min

θ∈K

∑T

t=1
ft(θ).

In the online convex optimization analysis, we bound the first-order condition∇θT
t (θt− θ∗) where

θ∗ represents an arbitrary minimizer, and then use convexity to connect it to the loss function.
However, due to the inherent structure of LoRA, loss functions f are not convex with respect to θ.
Therefore, we directly bound the first-order condition instead.

We assume for the fine-tuned weight Z of each layer, the convex decision set imposes the following
constrains:

‖A‖F ≤ DA, ‖B‖F ≤ DB,
where ‖ · ‖ denotes the Frobenius norm. Additionally, we assume the gradient satisfies ‖∇Z‖F ≤
G. Following previous work, we analyze convergence in the simplified scenario where the first
moment is omitted and the second moment is a summation, similar to Adagrad. For LoRA-RITE,
our theoretical analysis yields the following result:

Theorem 3. LoRA-RITE satisfies:

1

T

∑T

t=1

1

η
∇θT

t (θt − θt+1) = O(GT−1/2),

where η is a fixed constant learning rate.

This theorem shows that the method either converges to a particular stable solution or just move
around in directions that does not change the function value, suggesting a form of convergence. To
further strengthen the guarantee, we introduce an additional assumption:

Assumption 1. Let
X̄At

= (V̄At
+ ρAt

I)−1/2

be the unmagnified preconditioner PAt = (UBt)
TUBt−1 , andQAt = R−TBt

RT
Bt−1

, then we have

‖X̄−1
At
−QAt

X̄−1
At−1

QT
At
‖ ≤ µ‖X̄−1

At
− PAt

X̄−1
At−1

P T
At
‖.

This assumption essentially constrains the change in RBt to be relatively smooth. Under this as-
sumption, we can establish the following stronger convergence result:

Theorem 4. Under Assumption 1, our proposed method satisfies:

1

T

∑T

t=1
∇θT

t (θt − θ∗) = O(GDADBT
−1/2).

Our analysis closely resembles that of one-side matrix Adagrad. The key idea is to have a change of
variable for bothA andB such that all the quantities get replace by its unmagnified counterparts.

Compared to one-side matrix Adagrad, which has a regret bound of

O(G(D2
A +D2

B)T−1/2) ≥ O(GDADBT
−1/2),

our method has a better performance when the two LoRA factors exhibit imbalance magnitudes.
This advantage is particularly relevant because previous work has shown that LoRA factors often
exhibit such imbalances (Hayou et al., 2024), which can also be seen in Figure 1, providing an
explanation for the strong empirical performance of our method.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 RELATED WORK

Related Optimizers Adaptive first-order optimizers like Adagrad (Duchi et al., 2011) utilize accu-
mulated second moments, essentially diagonal preconditioners, to scale updates for each coordinate.
This approach, adopted by optimizers like Adam (Kingma & Ba, 2014) and RMSProp (Tieleman
& Hinton, 2012), has become the standard for training deep neural networks, including LoRA, and
many other similar first-order methods have also been developed in the literature (Loshchilov &
Hutter, 2017; Chen et al., 2024). However, as discussed in Section 3.1, these methods lack transfor-
mation invariance when applied to LoRA.

Several higher-order preconditioners have shown promise in various training scenarios (Shi et al.,
2023). For example, Shampoo (Gupta et al., 2018) approximates the full second moment matrix
using a Kronecker product, leading to the following preconditioned gradient:

L−1/4GR−1/4, L = L+GGT , R = R+GTG (15)

where L ∈ Rm×m, R ∈ Rn×n are the left and right preconditioner matrices, and G ∈ Rm×n is
the gradient. Many other higher-order methods follow this framework (Martens & Grosse, 2015;
Morwani et al., 2024; Duvvuri et al., 2024). These methods incur O(m2 + n2) additional memory
overhead and require periodic computation of roots of L and R with O(m3 + n3) computational
cost. This complexity significantly exceeds that of our proposed method, as demonstrated in Table 7.
Comparing equation 15 and equation 13 reveals that our method applies preconditioning only to
the low-rank side of LoRA, resulting in negligible overhead. Furthermore, unlike our provably
transformation-invariant approach, Shampoo-based methods lack this property.

Lars (You et al., 2017) and Lamb (You et al., 2020) are layer-wise adaptive optimization methods
originally designed for large batch training. They dynamically adjust the update norm for each
weight matrix based on its current norm, which ensure scalar scale invariance. Nonetheless, they
still lacks transformation invariance.

Variants of LoRA As large language models (LLMs) grow in size, full fine-tuning on down-
stream tasks becomes increasingly resource-intensive. Parameter-efficient fine-tuning (PEFT) meth-
ods such as (Houlsby et al., 2019; He et al., 2022b;a; Lester et al., 2021; Li & Liang, 2021) have
emerged to address this issue by reducing the number of trainable paramters. As a popular PEFT
algorithm, LoRA (Hu et al., 2022) has been the subject of extensive research, with numerous varia-
tions and improvements proposed. One line of research focuses on dynamically adjusting the LoRA
rank during training. This includes DyLoRA (Valipour et al., 2023), IncreLoRA (Zhang et al.,
2023a), and AdaLoRA (Zhang et al., 2023b). Another approach involves enhancing LoRA perfor-
mance through the addition of extra scaling matrices, which includes DoRA (Liu et al., 2024) and
DeepLoRA (Yaras et al., 2024). These directions are orthogonal to our work.

Regarding LoRA optimization, Hayou et al. (2024) highlight the limitations of traditional optimiz-
ers as they fail to achieve efficient feature learning. To address this issue, they propose LoRA+,
which uses two different learning rates ηA and ηB for LoRA weights. However, this leads to an
extra hyperparameter to be tuned in practice. In contrast, Zhang & Pilanci (2024) propose the use
of matrix preconditioning methods to achieve efficient feature learning. They propose the use of
Riemannian gradient descent for LoRA optimization. As far as we know, Riemannian gradient de-
scent is the only method in the literature that satisfies transformation invariance. However, similar
to gradient descent, Riemannian gradient descent does not incorporate momentum and adaptivity,
so it performs worse than Adam in their experiments. To improve the performance, they propose
to combine Riemannian gradient descent with element-wise Adam, which becomes ScaledAdam.
However, this combination makes ScaledAdam no longer transformation invariant.

5 EXPERIMENTS

We evaluated the proposed LoRA optimizer against other optimizers across a range of datasets. This
included the Super-Natural Instructions dataset, a comprehensive collection of diverse NLP tasks,
as well as four standard LLM benchmarking datasets.

We compare the following optimizer:

• Adam (Kingma & Ba, 2014): The most widely used default optimizer for LoRA finetuning.
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Table 1: Experimental results on the Super-Natural instruction dataset.

Model Optimizer Cause Effect Coreference Title Data to GlobalClassification Resolution Generation Text

Gemma-2B

Adam 58.93 77.06 51.30 55.52 50.51/74.54
LoRA+ 58.84 76.08 51.32 55.68 49.76/74.20

ScaledAdam 58.71 77.55 51.16 55.69 49.40/74.01
Shampoo 58.11 77.17 51.30 55.48 50.79/74.74

Lamb 60.97 80.69 52.26 55.85 53.53/76.43
LoRA-RITE 61.26 82.02 52.26 55.98 55.11/77.12

Gemma-7B

Adam 67.17 86.05 51.58 55.38 58.46/78.17
LoRA+ 65.50 86.67 51.51 55.34 58.19/78.29

ScaledAdam 65.79 85.05 51.61 55.40 57.32/77.92
Shampoo 66.29 85.62 51.86 55.43 57.99/78.27

Lamb 69.62 86.57 51.87 55.5 57.79/78.18
LoRA-RITE 71.26 88.14 52.17 55.62 59.71/79.05

Table 2: Experimental results on LLM benchmarking datasets.

Model Optimizer HellaSwag ArcChallenge GSM8K OpenBookQA Avg.

Gemma-2B

Adam 83.76 45.31 24.26 64.0 54.33
LoRA+ 83.75 45.31 23.65 64.4 54.28

ScaledAdam 83.52 45.22 23.96 64.8 54.38
Shampoo 83.26 44.88 23.35 63.6 53.77

Lamb 86.60 47.35 26.76 68.0 57.18
LoRA-RITE 87.28 49.06 30.10 68.8 58.81

Gemma-7B

Adam 94.07 54.78 48.37 77.60 68.71
LoRA+ 93.99 54.01 48.75 77.60 68.59

ScaledAdam 93.31 52.90 48.07 75.80 67.52
Shampoo 94.15 52.47 49.05 76.80 68.12

Lamb 95.11 69.80 50.64 83.20 74.69
LoRA-RITE 95.59 71.76 55.50 84.80 76.91

• LoRA+ (Hayou et al., 2024): Adam with different learning rate for A and B. We set the
learning ofB to be 4 times large thanA, which is the value they used for decoder models.

• ScaledAdam (Zhang & Pilanci, 2024): A variant of Adam designed for LoRA optimization.
• Shampoo (Gupta et al., 2018): One of the most well-known adaptive matrix precondition-

ing method. To obtain a similar training time as the other methods, the block size is set to
512 and the preconditioners are updated every 100 steps.

• Lamb (You et al., 2020): A variant of Adam that normalizes the updates for each layer
based on the norm of the parameters.

• LoRA-RITE: Our proposed optimizer that is transformation invariant.

For each optimizer applied on each dataset, we search for the best learning rate from 2 ∗ 10−6 to
2 ∗ 10−2. The other hyperparameters are listed in the appendix. For most of the experiments we
chose rank r = 16 for LoRA, based on the ablation study over the rank at the end of experiments.
We conduct experiments on Gemma (Gemma Team et al., 2024) 2B, 7B, and mT5-XXL (Xue et al.,
2021) using TPUs.

Results on Super-Natural Instruction Dataset The Super-Natural instruction dataset (Wang
et al., 2022) contains a collection of 1600+ NLP tasks, including both classification and genera-
tion tasks. We use a 10% split of the data for validation. Following (Wang et al., 2022), we use the
exact match accuracy to evaluate classification and ROUGE-L score to evaluate generation tasks.

Table 1 presents the performance of individual fine-tuning on two classification and two generation
tasks for 2,000 steps. It also includes the performance of fine-tuning on the global training set of
over 1,600 tasks for 10,000 steps, reporting both exact match accuracy and ROUGE-L score evalu-
ated on the global validation set. As shown in Table 1, our proposed method demonstrates superior
performance across both classification and generation tasks. Compared to Adam, our method can
achieve 2.3% to 4.9% accuracy improvements on the classification tasks and also shows significant
improvements in the global training setting. Further, we found that Lamb performs well on some

9
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Table 3: Ablation study on different ranks and different model architectures.

Gemma-2B (rank=4) Gemma-2B (rank=16) mT5-XXL (rank=4) mT5-XXL (rank=16)

Adam 63.00 64.0 72.00 72.20
ScaledAdam 63.00 64.8 70.80 74.60

Lamb 67.80 68.0 70.40 73.40
LoRA-RITE 70.40 68.8 74.80 75.00

Table 4: Number of training steps per second for different optimizers. LoRA-RITE has small over-
head compared with first-order methods.

Adam LoRA+ ScaledAdam Shampoo Lamb LoRA-RITE

Gemma-2B 0.948 0.930 0.917 0.837 0.929 0.878
Gemma-7B 0.120 0.120 0.114 0.112 0.116 0.114

of the datasets but there’s still a significant gap between Lamb and LoRA-RITE. Since Lamb en-
forces scalar scale invariance but not transformation invariance, this result implicitly suggests that
transformation invariance is crucial for achieving optimal performance.

Results on other LLM Benchmarking Datasets We also evaluate the performance on common
LLM benchmarking datasets, including HellaSwag (Zellers et al., 2019), ArcChallenge (Clark et al.,
2018), GSM8K (Cobbe et al., 2021), and OpenBookQA (Mihaylov et al., 2018). The summary
information of these datasets is in the appendix. The results are presented in Table 2. We can
observe that the trend is similar to the SuperNatural instruction results, where LoRA-RITE achieves
the best performance on all the datasets, and Lamb is usually the second best optimizer.

Ablation Study We conduct an ablation study on the choice of different LoRA ranks and model
architectures. Specifically, we considered rank 4 and 16 on both Gemma 2B (decoder only) and
mT5-XXL (encoder-decoder) on the OpenBookQA dataset. As we can see from Table 3, our pro-
posed method performs consistently well across different LoRA ranks. Furthermore, our method
can be successfully applied to mT5-XXL which has an encoder-decoder architecture, showing the
generalizability of the proposed optimizer.

Training Speed Comparison We compare the training speed of different optimizers. Table 4
shows the number of training steps per second for different optimizers with LoRA rank 16 on the
OpenBookQA dataset using TPUv5e. As we can see, LoRA-RITE is only 8% slower than Adam on
Gemma 2B, while the difference decreases to 5% when model size increased to 7B. Also, Shampoo
is slower than LoRA-RITE in this case despite it recomputes the preconditioner with much lower
frequency (once every 100 steps). This is due to our approach of preconditioning only the low-rank
side of the LoRA factors.

6 CONCLUSION

Current LoRA optimization techniques lack transformation invariance, meaning equivalent LoRA
parameterizations can yield significantly different updates. This hinders efficient feature learning
and often leads to suboptimal solutions in practice. We introduce a novel, transformation-invariant
optimization algorithm with comparable time and memory overhead to Adam. Our algorithm consis-
tently achieves higher accuracy than existing LoRA optimizers across diverse datasets and models.

Limitations Although this work introduces a better optimizer for LoRA, it is important to ac-
knowledge that LoRA itself has limitations. For instance, LoRA has smaller representational power
and may result in a minor performance decrease compared to full fine-tuning. Also, how to select
rank to strike a good trade-off between efficiency and accuracy may be non-trivial in practice.

The work focuses on addressing transformation-invariance when the optimization problem can be
written in the form of f(AB), and this assumption may not hold for other parameter-efficient struc-
tures beyond LoRA. Applying LoRA-RITE to ensure transformation invariance for the other more
complicated LoRA variants will be an interesting future direction.
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A APPENDIX

A.1 HYPERPARAMETERS

Table 5 shows our hyperparameters. We set weight decay and dropout probability to 0 as our early
experiments suggest that setting a non-zero value does not improve the performance of the baselines.

Table 5: The setting for hyperparameters.

Hyperparameter Value

Learning rate 2 ∗ 10−6 to 2 ∗ 10−2

Weight decay 0
Dropout prob 0
LoRA target qproj, kproj , vproj, oproj
LoRA rank 16

LoRA α 16
Batch size 16
Train step 2000

LR schedule Linear decay
Warmup step 100

Evaluation period 100
Momentum β1 0.9

Second moment β2 0.999

A.2 DATASET

Table 6 shows the summary information of the LLM benchmarking datasets. We use the test set to
evaluate ArcChallenge, as it is much larger than the development set.

Table 6: Summary information of the LLM benchmarking datasets.

Dataset #Train #Dev #Test Split for Eval

HellaSwag 39905 10042 10003 Dev
ArcChallenge 1119 299 1172 Test

GSM8K 7473 NA 1319 Test
OpenBookQA 4957 500 500 Dev

A.3 PROOF OF THEOREM 1

Let ‖A1‖ = θ(na), ‖B1‖ = θ(nb), ‖∇Z‖ = θ(nc), η = θ(nd), where η is the learning rate
and n is the network width. Since Z = A1B

T
1 , from chain rule we know ∇A = ∇ZB and

∇B = ∇ZTA. Since the update rule is symmetric, we can express the updates as

‖δA1‖ = θ(nxa+yb+zc+d), ‖δB1‖ = θ(nxb+ya+zc+d).

If the update rule is scalar scale invariant, then for anyA2 = nδA1,B2 = n−δB1 we have

‖δA1‖‖B1‖ = ‖δA2‖‖B2‖,

which means

xa+ (y + 1)b+ zc+ d = x(a+ δ) + (y + 1)(b− δ) + zc+ d,

thus xδ − (y + 1)δ = 0 for all δ, which means y = x− 1. Consequently, we have

‖δA1‖‖B1‖ = θ(nxa+(y+1)b+sc+d) = θ(nxa+xb+sc+d).
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Table 7: Time and space complexity comparison for LoRA optimization.

Algorithm Time Complexity Space Complexity

Forward/Backward Ω(nm) Ω(nm)
Full Matrix Adagrad (Duchi et al., 2011) O(m3r3 + n3r3) O(m2r2 + n2r2)

Adam (Kingma & Ba, 2014) O(mr + nr) O(mr + nr)
Lamb (You et al., 2020) O(mr + nr) O(mr + nr)

Shampoo (Gupta et al., 2018) O(m3 + n3 + r3) O(m2 + n2 + r2)
KFAC (Martens & Grosse, 2015) O(m3 + n3 + r3) O(m2 + n2 + r2)

ScaledAdam (Zhang & Pilanci, 2024) O(mr2 + nr2) O(mr + nr)
LoRA-RITE (our proposed) O(mr2 + nr2) O(mr + nr + r2)

Similarly, we have

‖A1‖‖δB1‖ = θ(nxb+(y+1)a+sc+d) = θ(nxb+xa+sc+d).

Since these two are equal, we can achieve efficient feature learning
‖A‖‖δB‖‖x‖ = ‖δA‖‖B‖‖x‖ = θ(1),

where x is the input vector, by selecting a proper learning rate η = θ(nd).

A.4 PROOF OF THEOREM 2

For matrixXA ∈ Rm×r,HA ∈ Rr×r, we call them consistent if
XAU

T

B ∈ Rm×n

and
UBHAU

T

B ∈ Rn×n

are respectively the same across all equivalent LoRA pairs.

First, one should note the fact that
UBU

T

B

is the same across all equivalent pairs. Thus,
UB(∇̄A)T ∇̄AUT

B = UBU
T

B∇ZT∇ZUBUT

B

implies (∇̄A)T ∇̄A is consistent.

This combined with the fact that PAt
V̄At−1

P T

At
is consistent if V̄At−1

is consistent and that V̄A0
=

0 implies V̄At is consistent.

Lastly, since

UB(V̄At + ρAtI)−1/2UT

B = (UBV̄AtU
T

B + ρAtUBU
T

B)−1/2,

both S̄At
and M̄At

are consistent, which completes our proof.

A.5 PROOF OF THEOREM 3

For convenience, for matrixX ∈ Rm×r,H ∈ Rr×r, we define
‖X‖H = Tr(XHXT )1/2.

We also utilize the following lemma for online optimization.
Lemma 1 (Lemma 5.13 Hazan et al. (2016)). For online optimization, if θt is updated as θt+1 =
θt − ηXtgt, then we have

T∑
t=1

∇θT

t (θt − θ∗) ≤
1

2η
‖θ1 − θ∗‖2X−1

1
+
η

2

T∑
t=1

(gt)
TXtgt

+
1

2η

T∑
t=2

(θt − θ∗)T (X−1
t −X−1

t−1)(θt − θ∗).
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Lemma 2 (Lemma 5.13, 5.14 Hazan et al. (2016)). For arbitrary matrix Gt ∈ Rm×r, Ht =∑t
i=1G

T
i Gi, we have

T∑
t=1

‖Gt‖H−1/2
t

≤ 2 Tr(H
1/2
T )

Proof of Theorem 3

Since we are preconditioning each layer independently, all three terms in Lemma 1 can be written as
summation over the L layers. For simplicity, from now on we omit the summation and the subscript
for layers.

For our method, the preconditionerXAt
is as follows,

XAt
= R−1

Bt
V̄
−1/2
At

R−TBt
.

We define the unmagnified preconditioner

X̄At
= V̄

−1/2
At

.

Then by Lemma 2, for theA factor, we have

T∑
t=1

vec(∇At)
T vec(δAt) =

T∑
t=1

Tr(∇AT

t δAt)

=η

T∑
t=1

‖∇At‖2XAt
= η

T∑
t=1

‖∇̄At‖2X̄At
≤ 2ηTr(V̄

1/2
AT

).

(16)

Since
Tr(V̄

1/2
AT

) = O(GT 1/2),

this completes our proof.

Proof of Theorem 4

We continue from the proof of Theorem 3 and utilize Lemma 1. We already bound the second term
in Theorem 3, so we only need to bound the third term.

For the third term, we have

‖At −A∗‖2X−1
At
−X−1

At−1

= ‖(At −A∗)RT
Bt
‖2
X̄−1

At
−QAtX̄

−1
At−1

QT
At

≤D2
AD

2
B‖X̄−1

At
−QAtX̄

−1
At−1

QT
At
‖ ≤ µD2

AD
2
B‖X̄−1

At
− PAtX̄

−1
At−1

P T
At
‖,

where the last inequality comes from our assumption.

Consequently, since
X̄−1
At
� PAtX̄

−1
At−1

P T
At
,

we have
T∑
t=1

‖X̄−1
At
− PAt

X̄−1
At−1

P T
At
‖ ≤

T∑
t=1

Tr(X̄−1
At
− PAt

X̄−1
At−1

P T
At

) ≤ Tr(X̄−1
AT

) = Tr(V̄
1/2
AT

).

Summing up the second and third term, we get

(2η +
1

η
µD2

AD
2
B) Tr(V̄

1/2
AT

).

Choosing η = (1/
√

2)µ1/2DADB , we have

2
√

2µ1/2DADB) Tr(V̄
1/2
AT

) = O(DADBGT
−1/2),

which completes the proof.
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(a) Super-Natural instruction (b) OpenBookQA

Figure 2: The training loss curve for the Super-Natural instruction dataset and the OpenBookQA
dataset.

A.6 TRAINING LOSS CURVE VISUALIZATION

To cross-validate the effectiveness of LoRA-RITE, we plot the training loss curve of each method
for the Super-Natural instruction dataset and the OpenBookQA dataset. Figure 2 shows that LoRA-
RITE has the lowest training loss, which demonstrates the effectiveness of our method.

A.7 UPDATE MAGNITUDE VISUALIZATION

To visualize the update magnitude of the two LoRA factors, we plot the update norm divided by the
weight norm, ‖δA‖/‖A‖ and ‖δB‖/‖B‖.
Figure 3 and Figure 4 show that for conventional optimizers, factorA barely changes, while LoRA-
RITE is able to learn the factor A effectively. This demonstrates the importance of transformation
invariance.

(a) Update magnitude of the A factor (b) Update magnitude of the B factor

Figure 3: The update magnitude ofA andB for the Super-Natural instruction dataset.

A.8 ABLATION STUDY ON DIFFERENT RANKS

To study the effect of different LoRA ranks, we conduct additional ablation study on different
datasets.

As we can see from Table 8, higher rank generally improves LoRA performance, approaching full
fine-tuning. This explains why the performance gap between LoRA-RITE and other methods nar-
rows at higher ranks, as they all converge towards the results of full fine-tuning.

Additionally, one can observe that LoRA has inherent regularization properties. As noted in pre-
vious research (Chen et al., 2022), this means that sometimes a lower rank can actually lead to
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(a) Update magnitude of the A factor (b) Update magnitude of the B factor

Figure 4: The update magnitude ofA andB for the OpenBookQA dataset.

Table 8: Ablation study on different ranks on Gemma-2B on the LLM benchmarking datasets.

Optimizer Rank HellaSwag ArcChallenge GSM8K OpenBookQA Avg.

Adam
r = 4 81.83 42.32 20.92 63.0 52.02
r = 16 83.76 45.31 24.26 64.0 54.33
r = 64 84.56 46.67 26.08 67.0 56.08

ScaledAdam
r = 4 81.95 44.80 21.15 63.0 52.73
r = 16 83.52 45.22 23.96 64.8 54.38
r = 64 84.42 48.21 26.61 67.0 56.56

Lamb
r = 4 86.01 46.67 25.25 67.8 56.43
r = 16 86.60 47.35 26.76 68.0 57.18
r = 64 87.83 47.53 29.04 62.8 56.80

LoRA-RITE
r = 4 87.08 49.57 29.49 70.4 59.14
r = 16 87.28 49.06 30.10 68.8 58.81
r = 64 87.89 49.91 31.46 68.8 59.52

better performance. This effect depends on factors like model generalization and training data size.
This explains why LoRA-RITE achieves better performance at rank 4 instead of 16 and why Lamb
achieves better performance at rank 16 than rank 64.

A.9 BEST LEARNING RATE FOR DIFFERENT OPTIMIZERS

In Table 9, we list the best learning rate for each optimizer on the LLM benchmarking datasets. We
observe that LoRA-RITE and Lamb usually prefer a larger learning rate than the other baselines.
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Table 9: Best Learning Rate for Different Optimizers on LLM benchmarking datasets.

Model Optimizer HellaSwag ArcChallenge GSM8K OpenBookQA

Gemma-2B

Adam 1e-5 5e-5 1e-5 5e-5
LoRA+ 1e-5 5e-5 1e-5 5e-5

ScaledAdam 5e-5 5e-5 1e-5 2e-4
Shampoo 1e-5 5e-5 5e-5 5e-5

Lamb 5e-3 5e-3 5e-3 5e-3
LoRA-RITE 2e-4 1e-3 2e-4 2e-4
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