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ABSTRACT

Next-generation multimodal foundation models capable of any-to-any cross-
modal generation and multi-turn interaction will serve as core components of
artificial general intelligence systems, playing a pivotal role in human-machine
interaction. However, most existing multimodal models remain constrained by
autoregressive architectures, whose inherent limitations prevent a balanced inte-
gration of understanding and generation capabilities. Although hybrid and decou-
pling strategies have been explored to address these tasks within unified frame-
works separately, their redundant, non-integrated designs limit their applicability
to broader scenarios, such as cross-modal retrieval. In this work, we introduce
NExT-OMNI, an open-source omnimodal foundation model that achieves unified
modeling through discrete flow paradigms. By leveraging metric-induced proba-
bility paths and kinetic optimal velocities, NExT-OMNI natively supports any-
to-any understanding and generation with enhanced response efficiency, while
enabling broader application scenarios through concise unified representations
rather than task-decoupled designs. Trained on large-scale interleaved text, im-
age, video, and audio data, NExT-OMNI delivers competitive performance on
multimodal understanding and generation benchmarks, while outperforming prior
unified models in multi-turn multimodal interaction and cross-modal retrieval,
highlighting its architectural advantages as a next-generation multimodal foun-
dation model. To advance further research, we will release training details, data
protocols, and open-source both the code and model checkpoints.

1 INTRODUCTION

Unified multimodal understanding and generation has emerged as a critical bottleneck for achieving
artificial general intelligence (AGI), attracting growing academic attention (Dong et al., 2024; Ge
et al., 2024; Fu et al., 2024; Xie & Wu, 2024). Numerous studies (Wu et al., 2024c; Dong et al.,
2024; Ge et al., 2024; Wu et al., 2024b) have attempted to leverage successful autoregressive (AR)
techniques from large language models (LLMs) (Touvron et al., 2023; Yang et al., 2024; Wu et al.,
2024d) to achieve unified modeling of multimodal understanding and generation. However, these
attempts have failed to achieve desired outcomes due to inherent conflicts within AR paradigms
when handling understanding and generation tasks (Wu et al., 2024b;c; Dong et al., 2024).

Subsequent works have adopted hybrid architectures (Xie et al., 2024; Zhou et al., 2024) and mod-
ular decoupling techniques (Wu et al., 2024a; Deng et al., 2025; Chen et al., 2025a) to separately
process understanding and generation tasks within relatively unified frameworks. These methods
improve performance on both task categories and narrow the gap between open-source models and
closed-source systems (OpenAI, 2025; DeepMind, 2025). Nevertheless, such AR-based hybrid ar-
chitectures primarily rely on decoupling rather than fusion design. Although effective in under-
standing and generation tasks, they inevitably introduce additional parameterized modules, thereby
increasing structural complexity and slowing inference. Moreover, this separated design struggles to
support tasks that demand deep multimodal feature fusion and flexible any-to-any cross-modal tasks,
such as cross-modal retrieval, which limits their applicability to more general multimodal scenarios.

In recent years, models based on discrete diffusion and flow matching have demonstrated competi-
tive advantages over traditional AR counterparts across multiple domains, including language mod-
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Synthesize natural, clear speech from the following text: So, what's your take on, 

you know, the ethics of  those Reality TV shows?

Generate a clip audio: Distorted guitars, steady bass, sharp drum beats, and a 

tight rock structure.

Generate a video of a bird walking towards 

a flower based on the given image. Elaborate on the visual and narrative elements of the video in detail.

The video shows a close-up of a large pile of meat, likely chicken, being cooked on a grill. The meat is 

covered in a red sauce, possibly a marinade or a barbecue sauce. The grill is outdoors, as indicated by the 

blurred greenery in the background. The meat is being cooked in a large pan or tray, which is placed on the 

grill. The cooking process is shown in three stages: the meat is first placed on the grill, then it is covered with 

the red sauce, and finally, it is cooked until it reaches a golden-brown color. The style of the video is realistic 

and it captures the details of the cooking process.

What is the difference between image 1 and image 2?

In the two images, the character is shown hugging Doraemon while 

holding a heart-shaped object, set against a backdrop of a pink-

orange sunset and greenery. However, there are noticeable 

differences between the two scenes: in the first image, the 

character's left leg is extended outward, and a green square-

shaped gadget is attached to their belt, while Doraemon's round 

bell remains visible on his chest. In the second image, the character's 

leg is tucked inward, the green gadget is replaced with a pink 

cylindrical device on the belt, and Doraemon's bell has transformed 

into a heart-shaped pink object.

Generate a photo of: An Astronaut riding a horse….

Tell me something about the audio

It seems like a car engine revving

Turn the speech input into text.

九条小姐呀，她是我的朋友. 嗯? 我
认识她让你觉得很意外嘛, 哼,你可
能误会了，我加入荒泷派就和她有
交情，我们俩的切磋…

Database
G

en
er

at
ion

Understa
nd

ing

Retrieval

Unified Rep.

Instruction: Retrieve 

A similar image

Query Text + Image

Emerald green 

hummingbird

Image Candidate

Instruction: Retrieve a Wiki page

that answers this question

Query Text + Image

Which company 

owns this product?

Text+Image Candidate

The Coca-Cola Company, 

established on May 8, 1886, 

is headquartered in Atlanta, 

Georgia, USA, and is the 

world‘s largest beverage 

company…

Instruction: Find a Wiki article that

answers my question

Query Text + Image

What year was  this 

painting created?

Text Candidate

The "Mona Lisa" was created between 1503 

and 1517, depicting an elegant and serene 

female figure, considered a typical 

representative of the urban bourgeois 

women during the rise of capitalism.

Figure 1: Overview of the NExT-OMNI framework. NExT-OMNI is a unified framework for om-
nimodal tasks, offering strong understanding, generation, and retrieval capabilities. The framework
enables any-to-any operations across modalities for both generation and understanding tasks, while
achieving accelerated processing. It also supports cross-modal retrieval by leveraging rich multi-
modal representations aggregated within its architecture.

eling (Nie et al., 2025; Ye et al., 2025a), image modeling (Rombach et al., 2022a; Li et al., 2024e),
and audio modeling (Du et al., 2024; Li et al., 2025c). Unlike sequential AR models, these mod-
els begin with completely corrupted sequences and iteratively denoise entire sequences in parallel,
enabling richer bidirectional information integration to enhance task performance. In addition, they
achieve flexible and controllable generation through inherent iterative refinement processes, while
demonstrating accelerated sampling potential through parallel decoding, providing a more promis-
ing fusion perspective for any-to-any multimodal understanding and generation tasks. However, this
research direction remains underexplored, with its potential in unified understanding, generation,
and retrieval yet to be fully realized.

To address this research gap, we propose NExT-OMNI, a fully open-source omnimodal foundation
model based on discrete flow matching (DFM) techniques (Shaul et al., 2024), trained on large-
scale, carefully curated interleaved multimodal datasets encompassing images, text, video, and au-
dio. As shown in Figure 1, NExT-OMNI achieves faster any-to-any omnimodal generation through
a streamlined unified architecture, while enabling more precise cross-modal retrieval through uni-
fied representations with intermediate feature fusion. Overall, NExT-OMNI not only demonstrates
competitive performance with reduced latency on standard multimodal understanding and genera-
tion benchmarks, but also exhibits superior performance in multi-turn multimodal interaction and
cross-modal retrieval. These results highlight that DFM-based unified multimodal understanding
and generation modeling architectures provide a powerful fusion perspective for advancing multi-
modal unification with broader applicability.

The contributions of this paper are summarized as follows: 1) We propose NExT-OMNI, the first
open-source omnimodal model built entirely on DFM, which is capable of achieving any-to-any gen-
eration across text, images, video, and audio with faster inference. 2) We design a reconstruction-
enhanced unified representation with intermediate feature fusion. This design not only enables pre-
cise cross-modal retrieval but also supports multi-turn any-to-any multimodal interactions, demon-
strating advantages over separated AR-based frameworks. 3) We conduct extensive experiments
across understanding, generation, and retrieval benchmarks. Results show that NExT-OMNI consis-
tently achieves competitive or superior performance with reduced latency, validating the potential of
DFM-based architectures as a promising paradigm for unified multimodal modeling.
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Text TokenizerVision Encoder Audio Encoder

Self Attention

FFN

Unified Discrete Flow

Velocity Prediction

LM HeadVision Head Audio Head

Vision Decoder Audio Decoder

Flow Matching Sample by Time

Codebook Embedding Codebook EmbeddingWord Embedding

Cross-Modal Retrieval Based on 

Unified Representation

Any-to-Any Generation

t=0

t=1Reconstruction Loss

Cross Entropy Loss
Random Token Vison Token

Text Token Audio Token

Figure 2: Pipeline of the NExT-OMNI framework. NExT-OMNI employs a DFM paradigm for
unified omnimodal training, with multimodal self-attention at every layer to deeply fuse information
across modalities. Unlike prior methods using multiple encoders or mixture-of-experts, it trains a
single encoder simultaneously for understanding and generation, producing unified representations
that enable any-to-any multimodal tasks with a streamlined architecture and strong generalization.

2 METHOD

2.1 ARCHITECTURE

Modality Encoders. We design vision and audio encoders grounded in unified representation prin-
ciples (Luo et al., 2024a; Wu et al., 2024c; Ma et al., 2025a), enabling unified representational
modeling. This design allows single-modal encoders to support both generation and understanding
tasks, while also mitigating encoder redundancy.

Backbone. NExT-OMNI is initialized from the pretrained weights of AR-based LLMs and employs
discrete flow matching within a three-stage progressive training framework on carefully curated om-
nimodal data. Following previous work (Gong et al., 2024b; Ye et al., 2025a; Wang et al., 2025),
we retain the shifting operation to output logits by one position during training, enabling our model
to inherit the next-token prediction capabilities of AR-based LLMs to the greatest extent possi-
ble. To expand model application scenarios such as cross-modal retrieval while streamlining model
structure, we utilize deep bidirectional attention feature fusion rather than relying on additional
MoE/MoT decoupling mechanisms (Xie et al., 2024; Deng et al., 2025).

Modality Heads. Since NExT-OMNI employs discrete flow matching, it eliminates the need for
additional diffusion or flow heads (Dong et al., 2024; Luo et al., 2024a; Han et al., 2025; Chen et al.,
2025a) specifically designed for generation optimization. Instead, it only requires lightweight heads
for discrete token decoding, thereby substantially improving training efficiency and accelerating
generation response. Furthermore, we introduce separate modality-specific heads for decoding each
type of modality data, rather than extending the language model’s vocabulary head directly. This
design effectively preserves text generation capabilities. Additional details on the modality encoders
and heads are provided in Appendix D.

2.2 UNIFIED REPRESENTATION MODELING

We first perform warmup training for unified representation modeling of the modality encoders. Two
objectives are combined: (i) a reconstruction loss LM

rec, implemented with an auxiliary VQVAE (Van
Den Oord et al., 2017) quantizer and modality-specific decoders that capture low-level details; (ii)
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a semantic alignment loss LM
sem with an auxiliary text encoder or text decoder that emphasize high-

level semantic alignments. Here, the superscript M corresponds to the modality. Given a continuous
input vector zM, which is obtained from a modality input XM encoded by the corresponding modality
encoder EM, the goal is to map it to the closest vector in a learnable codebook CM. The quantization
process is formulated as zq = argminc∈CM ∥zM − c∥2, where CM = {cM

1 , c
M
2 , . . . , c

M
K}, and K is

the number of codebook entries. The aim is to map the input zM to the most representative vector
cM
k ∈ CM via a VQ loss LM

VQ. Then we use the corresponding modality decoder DM to restore the
modality input XM conditioned on the representative vector via a modality restoration loss LM

R . The
reconstruction loss can be formulated as LM

rec = LM
R +LM

VQ +LM
G , where LM

G is a discriminator loss.
The total warmup training objective for our unified representation-based modality encoders can be
expressed:

LM
total = LM

rec + LM
sem, M ∈ {A,V}. (1)

In more detail, to address the distinct semantic granularity requirements of vision modality V and
audio modality A, we adopt token-level caption generation alignment LA

sem = LA
cap, for the audio en-

coder, following Whisper (Radford et al., 2023), and sentence-level contrastive semantic alignment
LV

sem = LV
constra for the vision encoder, following CLIP-ViT (Dosovitskiy et al., 2021).

2.3 DISCRETE FLOW MATCHING MODELING

As illustrated in Figure 2, given an omnimodal vision-text-audio sequence input sampled from target
distributions q(·), NExT-OMNI first utilizes VQVAE-based modality encoders and text tokenizers
to convert it into discrete target token sequences x1 = (x11, x

2
1, . . . , x

D
1 ), where each element xn1

is arranged in the order in which they appear in the original content. At each training step, a time
t ∈ [0, 1] is uniformly sampled, and a noisy sequence xt is sampled according to the probability
path pt(·|x1) defined in Appendix A. Then, the model receives a noisy sequence xt as an input and
predicts x1, outputting per-token logits for each position. Note that, unlike previous methods (Wang
et al., 2024b; Han et al., 2025) that directly utilize discrete tokens, we extract continuous representa-
tive vector cM

zq with rich semantic and detailed information from the corresponding quantizer code-
books CM of modality encoders based on discrete tokens, and achieve dimensional alignment with
text embeddings through lightweight projection. This simple yet effective method enables the model
to achieve superior performance in subsequent optimization. During training, we only perform cor-
rection training on the response portions of instruction data. The discrete flow matching (DFM)
modeling is defined as the expected cross-entropy loss between the ground-truth sequence x1 and
the model’s predicted distribution as follows:

Lce = Et∼U [0,1], x1∼q(·), xt∼pt(·|x1)

[
−

D∑
i=1

log p1|t
(
xi1|xt

)]
(2)

In addition to the cross-entropy loss mentioned above, to prevent the model from overly favoring
semantic information during DFM training while discarding fine-grained information embedded
in the unified representations of modality encoders, which would degrade model performance on
understanding and generation tasks, we constrain the DFM training by reusing the corresponding
reconstruction losses from the modality encoders in unified representation modeling. This maintains
rich and detailed information, which not only improves understanding and generation performance
but also enhances deep multimodal feature fusion, providing more precise cross-modal retrieval
capabilities. The overall training objective can then be rewritten below:

Loverall = λ1 · Lce + λ2 · LV
rec + λ3 · LA

rec, (3)

where λ1, λ2, and λ3 are the coefficient that controls the trade-offs between DFM modeling and the
modality reconstruction loss. We adopt the GradNorm (Chen et al., 2018) method to dynamically
adjust the coefficient, ensuring equal gradient update contributions to the model during training.

2.4 MORE DETAILS OF TRAINING AND INFERENCE

During joint training, different data modalities require different training modules due to modality dif-
ferences, and random mixed training leads to load imbalance that wastes substantial computational
resources. To improve training efficiency, we conduct training for only one modality within any
given training batch, achieving the joint training objective through interleaved training of multiple
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tasks and gradient accumulation, effectively enhancing computational resource utilization efficiency
and achieving a 1.4× improvement in training efficiency.

As illustrated in Figure 3, to further improve NExT-OMNI’s performance on understanding tasks,
we design a dynamic length generation strategy. Specifically, during training, we insert additional
<PAD> tokens to ensure that response sequences participating in training are multiples of the block
size. During inference, leveraging the properties that simple tokens can be determined in a single de-
noising step, we dynamically adjust to appropriate preset generation lengths in block size increments
based on <EOS> confidence, then perform multi-step iterative denoising. This strategy dramati-
cally enhances the model’s text generation capabilities at minimal cost. Furthermore, we observe
phenomena similar to DLLM (Liu et al., 2025b) during the multi-step denoising process in inference,
where most features change minimally throughout the multi-step denoising procedure, providing op-
portunities for inference acceleration using caching mechanisms. We cache and perform minimal
updates on the instruction portion throughout the entire inference process, while adaptively updat-
ing during the response process based on the cosine similarity between value features and cached
features. This vanilla adaptive cache implementation, combined with the parallel decoding advan-
tages of NExT-OMNI’s DFM architecture, achieves a 1.2× inference response speed improvement
compared to AR architectures. Our cache acceleration and dynamic generation strategies enable
superior performance with faster response speed.

Instruction Response

Instruction

Block Size

Block Size

0.23

0.45

0.89

Expand

Expand

0.23>0.75 

0.45>0.75 

Expand Stop

Training

Inference

Instruction Response

EOS

PAD

Random

Instruction

Response

t=0

t=1

Cache

Adaptive 

Cache

Figure 3: Illustrations of dynamic generation strategy (left) and vanilla adaptive cache design
(right). During training, responses are padded to multiples of the block size, allowing the model
to extend preset response lengths in block-size increments during inference. This improves perfor-
mance on understanding tasks that require dynamic-length generation. The vanilla adaptive cache
caches instruction features and selectively caches response features based on feature cosine similar-
ity, accelerating inference and decoding. Combined with parallel decoding, this simple yet efficient
caching design enables NExT-OMNI to generate responses faster than AR-based models.

3 EXPERIMENTS

In this section, extensive experiments are conducted to demonstrate the superiority of the proposed
NExT-OMNI and justify our claims. We first introduce implementation details (Section 3.1). Fol-
lowing this, a series of results on various practical tasks and subsequent discussions are provided,
including omnimodal understanding (Section 3.2), vision interaction (Section 3.4), speech interac-
tion (Section 3.3), and multimodal retrieval (Section 3.5). Finally, the ablation study (Section 3.6)
is presented to examine the contributions of different components in NExT-OMNI, offering deeper
insights into the factors that drive its success. For experiments on single-turn interactions such as
text-to-image and text-to-audio generation, please refer to Appendix H for more details.

3.1 IMPLEMENTATION DETAILS

Model Configurations. We initialize our vision encoder and audio encoder with CLIP-ViT-
Large (Dosovitskiy et al., 2021) and Whisper-Turbo (Radford et al., 2023) weights, respectively,
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then perform joint training for reconstruction and semantic alignment using auxiliary VQVAE (Van
Den Oord et al., 2017) and corresponding decoders. Specifically, we conduct warmup training on
70M image-text pairs constructed from LAION (Schuhmann et al., 2022) and DataComp (Li et al.,
2024c). The image resolution is set to 256×256 with a downsampling rate of 16. We reuse the
text encoder from CLIP-ViT to extract caption semantics for the computation of the contrastive loss
LV

constra. For the audio encoder, we conduct warmup training using a combination of open-source
datasets, including LibriSpeech (Panayotov et al., 2015), WenetSpeech (Zhang et al., 2022), and
AudioCaps (Kim et al., 2019), totaling 2,000 hours, supplemented by proprietary speech and music
datasets amounting to 100,000 hours. During this process, we set the maximum audio clip length
to 15 seconds and employ Qwen2.5-0.5B (Yang et al., 2024) for the computation of the audio cap-
tion loss LA

cap. We initialize NExT-OMNI with Qwen2.5-7B (Yang et al., 2024) weights, equipped
with the warmup-trained vision encoder and audio encoder, along with lightweight modality heads
containing nearly 128M parameters, and conduct progressive three-stage DFM training on carefully
constructed omnimodal data. Throughout this process, we set the classifier-free guidance (Ho &
Salimans, 2022) probability to 0.1 for multimodal generation tasks and the response padding block
size to 64 for multimodal understanding tasks. We reuse the reconstruction terms LA

rec and LV
rec

from the modal encoder warmup. These steps enhance multimodal generation, understanding, and
retrieval capabilities comprehensively.

Pre-Training (PT). To efficiently and stably conduct flow matching modeling, we perform om-
nimodal joint training during the alignment pre-training stage using short audio clips within 15
seconds, single images at 256×256 resolution with 16× downsampling, and short text with a max-
imum context window of 2K, leveraging large amounts of low-quality data to rapidly achieve om-
nimodal alignment. We train on a mixture of image-text pairs and audio-text pairs. Specifically,
ImageNet-1K (Deng et al., 2009), JourneyDB (Pan et al., 2023), LAION (Schuhmann et al., 2022),
and FLUX (Labs, 2024) synthetic data for image generation; re-captioned image-text pairs from
COYO (Byeon et al., 2022), CommonCrawl (Common Crawl, 2007), LAION (Schuhmann et al.,
2022), and DataComp (Li et al., 2024c) for image understanding; LibriSpeech (Panayotov et al.,
2015), WenetSpeech (Zhang et al., 2022), AudioCaps (Kim et al., 2019), and proprietary data for
audio understanding and generation. To prevent degradation of the model’s textual capabilities, we
sample shorter pure text data from Infinity-Instruct (Li et al., 2025a) and Evol-Instruct (Xu et al.,
2024), and incorporate them into the mixed training dataset.

Continued Pre-Training (CPT). During the CPT stage, we increase image resolution to 384×384
and introduce long text, interleaved image-text, video, and long audio data with a maximum context
window of 16K. This enables the model to support natural multi-turn visual and audio interactions
while possessing the capability to understand and preliminarily generate short videos. For video
data, we uniformly extract 8 frames as a multi-image input. For long audio data, we decompose
them into multiple chunks with a maximum length of 15 seconds. Our experiments demonstrate
that this simple strategy efficiently endows the model with video and long audio understanding and
generation capabilities. Beyond partial resampling of pre-training stage data, we also incorporate
PixMo (Deitke et al., 2024) and LLaVA-OneVision (Li et al., 2024a) training data for image under-
standing; FLUX (Labs, 2024) synthetic data for image generation; MMC4-Core (Zhu et al., 2023),
OmniCorpus (Li et al., 2025b), and ShareGPT4Video (Chen et al., 2024c) supporting multi-image
and short video understanding; OpenVid (Nan et al., 2024) and internal video data for video gener-
ation; OpenOmni (Luo et al., 2025) synthetic data exceeding 15 seconds and proprietary audio data
for audio understanding and generation.

Supervised Fine-Tuning (SFT). In the SFT stage, we train the model to learn all multimodal-
related instruction data, equipping it with any-to-any generation capabilities to accomplish diverse
multimodal generation and understanding tasks. We collect LLaVA-OneVision (Li et al., 2024a)
and PixMo (Deitke et al., 2024) instruction data for image generation; LLaVA-Video (Zhang et al.,
2025b) instruction data for video understanding; OpenOmni (Luo et al., 2025) for multi-turn audio
interaction; InterSyn (Ma et al., 2025b) for multi-turn image interaction; along with BLIP3-o (Chen
et al., 2025a), ShareGPT-4o-Image (Chen et al., 2025b), Nano-consistent (Ye et al., 2025b) image
generation, and TIP-I2V (Wang & Yang, 2024) video generation to construct an omnimodal training
dataset. To further enhance the model’s understanding, reasoning, and generation reasoning capa-
bilities, we obtain 4M high-quality reasoning capability enhancement data through MMEvol (Luo
et al., 2024b) sampling and filtering, and synthesize 5M reasoning-generated image data based on
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Table 1: Comparison with existing state-of-the-art omnimodal models on omnimodal under-
standing benchmarks, including OmniBench, WorldSense, and AV-Odyssey. Here, “T”, “V”,
and “A” represent text, vision, and audio modality inputs, respectively. We mark the best perfor-
mance in bold.

Model OmniBench WorldSense AV-Odyssey AVG.
T+V T+A T+A+V A T+A T+A+V T+A+V

AnyGPT (Zhan et al., 2024) 20.1 16.2 18.0 16.5 17.2 16.2 - -
OmniFlow (Li et al., 2025c) 20.4 18.7 20.6 20.4 18.9 19.7 - -
Video-SALMONN (Sun et al., 2024a) 34.9 35.9 35.6 - - - 25.3 -
UnifiedIO2-large (Lu et al., 2024) 29.1 29.1 27.1 25.2 20.9 23.3 26.0 25.8
UnifiedIO2-xlarge (Lu et al., 2024) 34.8 31.2 38.0 23.4 20.7 24.7 26.3 28.4
UnifiedIO2-xxlarge (Lu et al., 2024) 33.5 32.5 34.0 25.9 23.7 25.9 27.2 29.0
NExT-GPT (Wu et al., 2023) 22.1 21.4 24.3 23.2 27.4 23.3 25.5 23.9
OneLLM (Han et al., 2024) 32.3 28.7 30.5 23.0 28.6 22.8 27.4 27.6
VideoLLaMA2 (Cheng et al., 2024) 31.7 26.2 28.9 23.8 28.5 25.4 26.8 27.3
VITA (Fu et al., 2024) 33.5 30.1 33.1 30.5 32.1 31.2 26.4 31.0
VITA 1.5 (Fu et al., 2025) 34.7 31.2 33.4 32.9 37.5 36.9 30.6 33.9
OpenOmni (Luo et al., 2025) 38.3 36.7 37.4 34.1 38.9 37.2 32.8 36.5

NExT-OMNI 41.4 39.5 40.7 37.2 42.1 40.5 36.4 39.7

FLUX (Labs, 2024) for image generation improvement. Based on high-quality instruction fine-
tuning data, NExT-OMNI achieves superior performance across multiple evaluation benchmarks.

3.2 OMNIMODAL UNDERSTANDING

To assess the omnimodal capabilities of NExT-OMNI, we conduct evaluations against current state-
of-the-art omnimodal large language models (OLLMs) across three canonical benchmarks, includ-
ing OmniBench (Li et al., 2024d), WorldSense (Hong et al., 2025), and AV-Odyssey (Gong et al.,
2024a). As shown in Table 1, NExT-OMNI exhibits superior or comparable performance relative
to advanced autoregressive-based OLLMs under various modal combination input conditions. In
comparison with OpenOmni, our model achieves a 3.2 absolute average performance improvement
across the three datasets. These results indicate that discrete flow matching (DFM) demonstrates
potential as a viable alternative to the autoregressive (AR) paradigm for omnimodal modeling.

3.3 SPEECH INTERACTION
Table 2: Comparison with existing state-
of-the-art unified speech-language model
on multi-turn speech interaction bench-
marks Spoken QA. Here, “T” and “S” rep-
resent text and speech (belonging to the au-
dio modality) inputs, respectively. We mark
the best performance in bold and the second-
best performance with an underline.

Model Llama Q. Web Q. AVG.
S→T S→S S→T S→S S→T S→S

SpeechGPT (Zhang et al., 2023a) 21.6 - 6.5 - 14.1 -
Moshi (Défossez et al., 2024) 62.3 21.0 26.6 9.2 44.5 15.1
GLM-4-Voice (Zeng et al., 2024) 64.7 50.7 32.2 15.9 48.5 33.3
Freeze-Omni (Wang et al., 2024c) 72.0 - 44.7 - 58.4 -
LLaMA-Omni (Fang et al., 2024) 67.7 49.0 33.4 23.7 50.6 36.4
VITA-1.5 (Fu et al., 2025) 76.7 - 42.7 - 59.7 -
Stream-Omni (Zhang et al., 2025a) 76.3 65.0 44.2 27.5 60.3 46.3
OpenOmni (Luo et al., 2025) 74.6 67.2 44.5 28.9 59.6 48.1
NExT-OMNI 78.4 66.4 45.6 28.3 62.0 47.4

To verify NExT-OMNI’s capabilities in multi-
turn speech interaction, we conduct experiments
on knowledge-based LLaMA Question and Web
Question, covering both speech-to-text (S→T) and
speech-to-speech (S→S) tasks. As shown in Ta-
ble 2, under training with multi-turn speech in-
struction data of a similar scale, compared to AR-
based speech-language models such as Stream-
Omni (Zhang et al., 2025a), NExT-OMNI demon-
strates competitive knowledge-based speech interac-
tion capabilities on Spoken QA. This indicates that
DFM-based omnimodal models can handle complex
scenarios of multi-turn speech interaction, providing
strong support for unified omnimodal generation and
understanding tasks based on DFM.

3.4 VISION INTERACTION

To explore the high-level capabilities of NExT-OMNI in multi-turn vision interaction, we evaluate
it on the interleaved image-text generation benchmark OpenING (Zhou et al., 2025). This bench-
mark requires models to perform multi-turn interleaved image generation based on input content
and employs additional judge models for content consistency scoring, challenging the model’s abil-
ity to naturally determine image generation positions and contextual understanding capabilities. As
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Table 3: Comparison with existing state-of-the-art unified vision-language model on multi-turn
vision interaction benchmarks OpenING. We mark the best performance in bold.

Model GPT Evaluation IntJudge Evaluation AVG.
FDT w/o Tie w/ Tie (0) w/ Tie (.5) FDT w/o Tie w/ Tie (0) w/ Tie (.5)

MiniGPT-5 (Zheng et al., 2023) 28.6 28.4 28.0 28.7 24.5 15.5 9.9 27.9 23.9
NExT-GPT (Wu et al., 2023) 22.6 22.4 22.1 22.7 31.0 21.7 13.4 32.6 23.5
DEEM (Luo et al., 2024a) 25.6 25.4 25.2 25.9 31.2 21.3 13.6 32.3 25.1
Show-o (Xie et al., 2024) 30.8 30.2 29.6 30.6 31.5 21.1 12.5 32.9 27.4
Emu2 (Sun et al., 2024b) 41.7 41.6 40.6 41.9 36.3 33.8 21.9 39.5 37.2
SEED-LLaMA (Ge et al., 2023b) 41.0 40.9 40.5 41.0 50.1 47.7 31.6 48.5 42.7
VILA-U (Wu et al., 2024c) 50.5 50.1 50.3 50.5 51.4 51.2 32.3 50.9 48.4
Anole (Chern et al., 2024) 53.4 53.1 52.6 53.1 53.4 52.0 33.9 51.3 50.4
SEED-X (Ge et al., 2024) 54.8 55.1 54.1 55.0 49.9 49.6 33.6 49.7 50.2
MMaDA (Yang et al., 2025) 51.4 52.6 51.1 52.5 47.6 47.2 31.8 47.4 47.7
FUDOKI (Wang et al., 2025) 47.6 49.2 47.8 48.6 44.4 44.1 30.1 44.2 44.5

NExT-OMNI 58.7 58.3 57.4 58.6 56.3 57.7 37.5 55.4 55.0

shown in Table 3, compared to vision-language unified models MMaDA (Yang et al., 2025) and
FUDOKI (Wang et al., 2025) with similar architectures, NExT-OMNI demonstrates superior perfor-
mance in multi-turn interactive generation for real-world usage scenarios, reflecting NExT-OMNI’s
advantages in general capabilities under multi-turn real-world contexts. Furthermore, compared to
AR-based classical works VILA-U (Wu et al., 2024c) and SEED-X (Ge et al., 2024), NExT-OMNI
also exhibits superior effectiveness, indicating that the DFM strategy possesses considerable poten-
tial in interactive generation consistency and merits further attention.

3.5 MULTIMODAL RETRIVAL

To provide more insights into the impact of paradigms and unified representations in broader multi-
modal task scenarios such as multimodal retrieval, we adopt the MM-Embed (Lin et al., 2024) ap-
proach to sample a 100K subset from the dataset M-BEIR (Wei et al., 2024) for multimodal retrieval
training. Specifically, for input multimodal queries and retrieval candidates, we extract features
from the <EOS> token after model encoding for multimodal retrieval ranking fine-tuning, and test
on multiple multimodal retrieval benchmarks, including InfoSeek (Chen et al., 2023), OVEN (Hu
et al., 2023), FashionIQ (Wu et al., 2021), and CIRR (Liu et al., 2021). We select classical works (Wu
et al., 2024a; Deng et al., 2025; Wang et al., 2025; Wu et al., 2024c; Xie et al., 2024; Yang et al.,
2025) with different paradigms and representations, and report Top 5 retrieval accuracy in Table 4.

We observe two phenomena. First, models based on discrete flow or diffusion (such as FU-
DOKI (Wang et al., 2025) and MMaDA (Yang et al., 2025)) outperform AR or hybrid architecture
models (Wu et al., 2024a; Deng et al., 2025; Xie et al., 2024; Wu et al., 2024c). We attribute this to
the fact that corrective bidirectional information encoding training methods can better aggregate con-
textual multimodal information compared to AR architectures based on causal masking mechanisms.
During single feature extraction, they degrade to BERT-like feature extraction approaches (Lee et al.,
2024), providing superior multimodal representations and demonstrating broader application poten-
tial of DFM. Another finding is that while using decoupling mechanisms (multiple encoders and
MOT (Liang et al., 2024) mechanisms like Bagel) performs better on multimodal understanding and
generation tasks, compared to unified representation methods (Wu et al., 2024c; Xie et al., 2024;
Yang et al., 2025), they essentially involve routing between different models. The encoded features
remain overly separated, making it difficult to produce unified representations, resulting in subopti-
mal performance on feature similarity-based multimodal retrieval tasks, which conversely limits the
application scenarios of these methods. Based on these two findings, NExT-OMNI, which employs
unified representation and DFM paradigm modeling, also demonstrates considerable potential in
application scenarios beyond multimodal generation and understanding.

3.6 ABLATION STUDY

We conduct ablation studies on key components of NExT-OMNI, including the modeling paradigm,
representation methods, dynamic generation strategy (DGS), and reconstruction item. Bench-
marks include image understanding (VQAv2 (Goyal et al., 2017)), audio understanding (Audio-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comparison with existing classic unified models on various multimodal retrieval
benchmarks, including InfoSeek, OVEN, FashionIQ, and CIRR. Here, “T”, “A”, and “V” repre-
sent text, vision, and audio modality inputs, respectively. We mark the best performance in bold.

Model Paradigm Rep. InfoSeek OVEN FashionIQ CIRR AVG.
V+T→T V+T→V+T V+T→T V+T→V+T V+T→V V+T→V

Janus (Wu et al., 2024a) AR Decoupled 21.3 35.4 22.4 37.8 12.4 30.1 26.6
Bagel (Deng et al., 2025) AR+Diff. Decoupled 23.1 38.2 24.5 39.6 13.1 32.4 28.5
FUDOKI (Wang et al., 2025) DFM Decoupled 25.4 40.0 25.3 41.6 15.5 34.9 30.5
VILA-U (Wu et al., 2024c) AR Unified 23.3 37.4 24.0 38.5 13.6 33.8 28.4
Show-o (Xie et al., 2024) AR+Discrete Diff. Unified 24.8 39.3 25.6 42.5 15.9 35.2 30.6
MMaDA (Yang et al., 2025) Discrete Diff. Unified 25.9 40.8 26.5 43.7 17.5 36.3 31.8

NExT-OMNI DFM Unified 27.6 41.5 27.1 44.6 18.9 37.6 32.9

Table 5: Ablation study on several key components of NExT-OMNI. Here, “S” represents speech
(belonging to the audio modality) inputs. We mark the best performance in bold.

Paradigm Rep. DGS. Recon. Und. Gen. Retrival AVG.
VQAv2 AudioCaps GenEval Spoken QA (S→S) InfoSeek OVEN

AR Decoupled × × 55.2 62.8 53.4 16.4 28.3 32.1 41.4
DFM Decoupled × × 52.3 60.1 59.8 20.3 29.6 33.7 42.6
DFM Unified × × 51.7 59.4 59.2 19.5 32.8 35.6 43.0
DFM Unified ✓ × 54.3 61.9 59.4 19.8 33.1 35.4 43.9
DFM Unified ✓ ✓ 56.2 63.4 62.6 21.7 33.7 36.1 45.6

Caps (Kim et al., 2019)), image generation (GenEval (Ghosh et al., 2023)), speech generation (Spo-
ken QA (Fang et al., 2024)), and multimodal retrieval (InfoSeek and OVEN).

Compared to the AR-based baseline with decoupled representations (i.e., an understanding-oriented
encoder and a generation-oriented encoder), replacing the training paradigm with DFM (see Table 5)
leads to a decline in understanding performance, but yields notable improvements in generation and
retrieval tasks. When shifting further to unified representations, conflicts emerge due to the different
granularity requirements of generation and understanding, resulting in an overall performance drop.
Nevertheless, feature-based multimodal retrieval still benefits under this setting. These observations
are consistent with our earlier findings, suggesting that unified representations may hold greater
potential for broader applications.

When we introduce the DGS during training to better serve text generation tasks requiring dynamic
length generation capabilities, we can significantly improve the performance on multimodal under-
standing tasks, achieving competitive performance with AR models. When we incorporate modality
reconstruction loss terms during training, the model’s performance on generation and retrieval tasks
is significantly enhanced, while also providing some gains for understanding tasks. This indicates
that reconstruction can add more low-level fine-grained information constraints to features encoded
by visual encoders, alleviating the model’s bias toward excessive focus on high-level semantic infor-
mation, thereby enhancing fine-grained information in unified representations and providing good
support for subsequent generation and retrieval tasks.

4 CONCLUSION

In this paper, we introduce NExT-OMNI, the first omnimodal foundation model fully built on dis-
crete flow matching, which supports understanding, generation, and retrieval across text, images,
video, and audio within a unified architecture. By incorporating reconstruction-feedback-enhanced
unified representations and dynamic-length generation strategies, NExT-OMNI achieves deep fu-
sion of multimodal features while substantially reducing model complexity. This design not only
strengthens generation, understanding, and retrieval capabilities, but also establishes a new paradigm
for unified multimodal modeling. Extensive experiments demonstrate the effectiveness of NExT-
OMNI and provide insights into how architectural design interacts with unified representations in
multimodal tasks. Looking ahead, we plan to extend NExT-OMNI to broader domains, such as
action trajectory generation in vision-language-action models and video generation for physical AI
understanding in world models, where we expect it to play an even greater role.
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ETHICS STATEMENT

This work advances unified omnimodal large language models by introducing discrete flow match-
ing modeling paradigms and reconstruction-enhanced unified representations, enhancing multi-
modal understanding, generation, and retrieval capabilities, enabling efficient text-vision-audio in-
tegration for applications such as assistive tools, creative content, and education. However, high-
quality image and audio generation also poses risks, including potential misuse for misinformation
or manipulation. While our model is not identity-specific, downstream applications should include
safeguards such as watermarking and prompt filtering. We advocate for ethical use, emphasizing
fairness, robustness, and transparency.

REPRODUCIBILITY STATEMENT

Experimental settings are carefully described and listed in Section 3. We detail the model design,
data curation, and supplement implementation details in Appendix D, Appendix E, and Appendix F,
respectively. To further ensure reproducibility, we promise to release training details, data protocols,
and open-source both the code and model checkpoints.
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A PRELIMINARIES OF DISCRETE FLOW MATCHING

We provide a brief introduction to the mathematical processes of training and inference in discrete
flow matching (DFM) (Shaul et al., 2024). Analogous to continuous flow matching (Lipman et al.,
2022), DFM defines a family of time-dependent probability distributions {pt(x)}t∈[0,1] that define a
smooth transition, or probability paths, from a source distribution p(x) to a target distribution q(x).
Here, x = {x1, x2, . . . , xD} lies in the discrete space S = T D, where D denotes the number of
discrete variables and T = [K] = {1, 2, . . . ,K} represents the finite set of possible discrete values.
Each pt(x) is constructed as pt(x) =

∑
x1∈S pt(x|x1)q(x1), where the conditional distribution is

factorized across dimensions. Namely, pt(x|x1) =
∏D

i=1 pt(x
i|xi1). Note that each pt(x

i|xi1) defines
a univariate interpolation between a base distribution p(xi) and a one-hot distribution δxi

1
(xi)1. A

common design for the interpolation is the mixture path, defined via a time-dependent scheduler
κt(x

i
1) ∈ [0, 1], i.e.,

pt(x
i|xi1) = (1− κt(x

i
1))p(x

i) + κt(x
i
1)δxi

1
(xi), (4)

where κ0(·) = 0 and κ1(·) = 1. To obtain a more semantically meaningful transition path, we can
adopt a metric-induced probability path as follows:

pt(x
i|xi1) = Softmax(−βtd(x

i, xi1)), (5)

where d(·, ·) is the cosine distance function between token embeddings, and βt ∈ [0,∞] is a mono-
tonic schedule.

After minimizing the kinetic energy (Shaul et al., 2024), the probability velocities can be formulated
as follows:

ui
t(x

i, z|x1) = pt(x
i|xi1)

∂βt

∂t
max

{
d(zi, xi1)− d(xi, xi1), 0

}
. (6)

Intuitively, for the i-th coordinate zi ∈ T , this velocity ensures that probability mass flows from the
state zi to the state xi only when xi lies closer to xi1 than zi does, i.e., d(xi, xi1) < d(zi, xi1). As a
result, the flow monotonically progresses toward xi1.

During training, we sample xt from pt(x
i|xi1) and feed it into the model to fit the target x1. During

inference, we employ an Euler solver for enhanced sampling robustness as recommended in (Shaul
et al., 2024). This solver simulates the continuous-time Markov chain (CTMC) process {xt}t∈[0,1].
Given that xt ∼ pt, the solver updates the i-th coordinate from time t to t+h following the procedure
below:

• Sample xi1 ∼ pi1|t(·|xt) from our model;

• Compute the total conditional transition rate λi =
∑

xi ̸=xi
t
ui
t(x

i, xit|xi1) (see Eq. (6));

• Draw a uniform random variable Zi
change ∼ U [0, 1];

• Sample xit+h as follows: if Zi
change ≤ 1 − exp{−hλi}, sample xit+h from ui

t(·,x
i
t|x

i
1)

λi (1 −
δxi

t
(·)); otherwise set xit+h = xit.

The procedure begins with completely corrupted sequences and iteratively denoises entire sequences
in parallel, enabling richer bidirectional information integration to enhance final performance. We

set βt = c
(

t
1−t

)a

with c = 3 and a = 0.9, as suggested in (Shaul et al., 2024).

B RELATED WORK

Unified Vision-Language Models. Unified vision-language models (Team, 2024; Dong et al., 2024;
Tian et al., 2024; Luo et al., 2024a; Wu et al., 2024b) have attracted significant research attention
due to their powerful multimodal understanding and generation capabilities. SEED and the Emu se-
ries (Ge et al., 2023b; 2024; Sun et al., 2023; 2024b; Wang et al., 2024b) adopt discrete autoregres-
sive modeling approaches, unifying multimodal understanding and generation through next-token

1If xi = xi
1, δxi1(x

i)=1; else, δxi1(x
i)=0.
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prediction paradigms. However, this coarse unification approach is susceptible to granularity mis-
matches between understanding and generation tasks, hindering further performance improvements.
The Janus series models (Wu et al., 2024a; Chen et al., 2025c) decouple visual encoding for under-
standing and generation to address granularity mismatch issues, but introducing additional encoders
limits flexibility. Subsequently, VILA-U (Wu et al., 2024c) and UniTok (Ma et al., 2025a) focus
on constructing unified representations, using unified encoders to alleviate granularity conflicts be-
tween generation and understanding tasks, but still adhere to autoregressive modeling paradigms
and lag behind specialized models (Rombach et al., 2022a; Xie et al., 2025) in generation tasks.
Some works, such as BLIP-3o (Chen et al., 2025a), introduce additional diffusion-based specialized
generation models for generation optimization to achieve impressive results, but further increase
methodological complexity. To balance the effectiveness of generation and understanding tasks,
some works attempt to use hybrid architectures. For instance, Show-o (Xie et al., 2024) and Trans-
fusion (Zhou et al., 2024) integrate diffusion objectives into large language models for image gen-
eration, but this design breaks the autoregressive paradigm and complicates the unification of both
tasks. Bagel (Deng et al., 2025) introduces MOT (Liang et al., 2024) architecture to successfully
achieve excellent performance in both tasks within a relatively unified hybrid architecture, but the
introduction of these decoupling mechanisms makes generation and understanding separate compo-
nents, departing significantly from the ideal of a concise unified architecture. Some works (Yang
et al., 2025; Wang et al., 2025) attempt to completely abandon autoregressive architectures, pursu-
ing unified vision-language modeling from the perspective of discrete diffusion or flow matching,
achieving considerable results. However, due to the lack of robust language foundation model sup-
port and engineering optimization, speed and effectiveness remain suboptimal.

Omnimodal Language Models. With the advancement of multimodal research, models are increas-
ingly shifting toward unified frameworks that seamlessly integrate diverse input and output modali-
ties. By tokenizing different data types into shared representations, models such as AnyGPT (Zhan
et al., 2024) and Unified-IO2 (Lu et al., 2024) achieve seamless cross-modal task adaptability, en-
abling them to process audio, text, and images without requiring significant architectural modifi-
cations. OneLLM (Han et al., 2024) and NExT-GPT (Wu et al., 2023) enhance generation and
understanding performance by unifying input spaces and introducing additional diffusion heads.
Meanwhile, video-SALMONN (Sun et al., 2024a) enhances video understanding by incorporat-
ing fine-grained temporal modeling, improving the model’s ability to interpret speech and actions
within videos. To enhance human-computer interaction, the VITA series (Fu et al., 2024; 2025) in-
troduces duplex communication schemes, enabling fluid and intuitive exchanges between users and
AI models. EMOVA (Chen et al., 2024b) and OpenOmni (Luo et al., 2025) further extend the ex-
pressive capabilities of multimodal systems by integrating controllable emotional speech synthesis,
providing more natural and engaging user interactions. The Qwen-Omni series (Xu et al., 2025a;b)
further expanded the scale of training models and data, greatly enhancing the performance of the
omni models. However, these works still rely on autoregressive architectures and additional large-
scale continuous flow matching modeling heads for omnimodal modeling, while more unified and
lightweight discrete flow matching and diffusion architectures remain unexplored. To address this
gap, we propose NExT-OMNI in this work.

C LIMITATION AND DISCUSSION

Limitation. Due to resource constraints, we conduct training and validation only at the 7B param-
eter scale with 2T tokens. While NExT-OMNI provides insights into how discrete flow matching
can better unify generation, understanding, and retrieval tasks, its full potential has not been demon-
strated due to the lack of corresponding large language model foundation support. In the future,
we hope to explore broader application scenarios, such as trajectory generation in vision-language-
action models and world model exploration, where visual generation assists physical perception, to
demonstrate the potential of NExT-OMNI.

Discussion. Here, we provide further discussion on the future of omnimodal unified models. Some
argue that building unified models consumes substantial resources yet struggles to achieve perfor-
mance comparable to generation-only and understanding-only models, questioning the necessity
of constructing unified models. We address this concern as follows: unified models are built to
achieve greater generalizability. In the future, unified omnimodal models will serve as a “world
brain” to interact with the real world, with their general capabilities expected to be continuously
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Figure 4: The Pipeline of vision encoder (left) and audio encoder (right) warmup training. Dur-
ing the modal encoder warmup training phase, self-supervised reconstruction is performed through
additional quantizers and modal decoders, while semantic alignment at different granularities is
achieved through text encoders or text decoders.

enhanced through multimodal data collected via interactions, thereby evolving iteratively to ex-
pand the model’s capability boundaries and ultimately achieve Artificial General Intelligence (AGI).
Our goal in building unified models is to enable mutual reinforcement among diverse tasks such as
understanding and generation, ultimately expanding the boundaries of intelligence. For instance,
through extensive vision generation learning, models can deepen their understanding of physical
laws by precisely generating imagined moments, subsequently producing reasonable actions. Con-
versely, a deeper understanding of physical laws can enable models to generate more realistic image
sequences. Based on this rationale, while building unified models may incur certain performance
trade-offs, their general capabilities offer more promising prospects. On this spiraling path of devel-
opment with its inevitable challenges, we must persist in this direction.

D MODEL DESIGN

Here, we provide additional details regarding the design principles and training process of modality
encoders and modality heads.

D.1 MODALITY ENCODERS

Similar to previous work (Luo et al., 2024a; Wu et al., 2024c; Ma et al., 2025a; Ye et al., 2025c;
Wan et al., 2025), we design modality encoders based on unified representation methods, conduct-
ing simultaneous self-supervised reconstruction and semantic alignment optimization during the
warmup training stage. As shown in Figure 4, we employ additional quantizers and modality de-
coders to assist reconstruction training, while utilizing text encoders and decoders for sentence-
level and token-level semantic alignment training, respectively. To pursue superior performance,
we adopt multi-codebook quantization (MCQ) (Ma et al., 2025a) for quantization, where separating
the codebook into multiple independent sub-codebooks significantly enhances both reconstruction
and semantic alignment effectiveness. However, we also observe that while increasing the number of
sub-codebooks improves performance on reconstruction and downstream multimodal understanding
tasks, it degrades performance on downstream multimodal generation tasks, as predicting multiple
sub-codebook indices at a single position becomes more challenging. Therefore, to achieve an op-
timal trade-off, we set vocabulary sizes of 4×4096 and 2×2048 for the vision encoder and audio
encoder in the warmup training, respectively.

Vision Encoder. We initialize our vision encoder with CLIP-ViT-Large (Dosovitskiy et al., 2021)
weights and conduct unified representation training on nearly 70M image-text pairs composed of
LAION (Schuhmann et al., 2022) and DataComp (Li et al., 2024c), incorporating both sentence-
level image-text contrastive loss LV

constra and VQVAE-based reconstruction loss LV
rec optimization.

In more detail, the VQVAE-based reconstruction loss consists of a pixel-level reconstruction loss
LV

R , a perceptual loss LV
P based on the LPIPS metric (Zhang et al., 2018), a discriminator loss

LV
G to enhance reconstruction fidelity (Karras et al., 2019), and a vector quantization loss LV

VQ to
minimize distance between the encoder output and its nearest code entry. It is denoted as LV

rec =
LV

R + λVQ · LV
VQ + λP · LV

P + λG · LV
G, where λ denotes the weight factor for the corresponding loss
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Table 6: Comparison with existing state-of-the-art vision tokenizer and audio tokenizer. We
mark the best performance in bold.

Model Codebooks UTMOS↑ PESQ↑ STOI↑ Model Codebooks rFID↓ Acc↑

WavTokenizer 4096 4.048 2.373 0.914 UniTok 8×4096 0.38 78.6
Audio Encoder (Ours) 2×2048 4.126 2.467 0.923 Vision Encoder (Ours) 4×4096 0.33 79.4

term. The image-text contrastive loss term LV
constra is basically the same as in CLIP-VIT (Dosovitskiy

et al., 2021). Therefore, the final loss term can be written as LV
overall = LV

rec + LV
contra. During this

process, we maintain training hyperparameters consistent with UniTok (Ma et al., 2025a).

Audio Encoder. We initialize our audio encoder with Whisper-Turbo (Radford et al., 2023) weights
and conduct unified representation training on nearly 102K hours of audio-text pairs composed of
LibriSpeech (Panayotov et al., 2015), WeNetSpeech (Zhang et al., 2022), AudioCaps (Kim et al.,
2019), and proprietary data, incorporating both token-level audio caption loss LA

cap and VQVAE-
based reconstruction loss LA

rec optimization. The VQVAE-based reconstruction loss consists of a
mel-spectrum reconstruction loss LA

R , a feature matching loss LA
F based on a L2 norm loss, a discrim-

inator loss LA
G (Ji et al., 2024), and a vector quantization loss LA

VQ to minimize distance between the
encoder output and its nearest code entry. It is denoted as LA

rec = LA
R +λVQ ·LA

VQ+λF ·LA
F +λG ·LA

G ,
where λ is the weight factor for the corresponding loss term. The audio-text caption loss term LA

cap is
basically the same as in Qwen-Audio (Chu et al., 2023). Therefore, the final loss term can be written
as LA

overall = LA
rec +LA

cap. During this process, we maintain training hyperparameters consistent with
WavTokenizer (Ji et al., 2024).

Quantitative and Qualitative Analysis. To validate the effectiveness of our warmup-trained vision
encoder, we conduct image reconstruction and classification evaluation on ImageNet (Deng et al.,
2009), reporting rFID (IDEFICS, 2023) and zero-shot classification accuracy, and compare with
the state-of-the-art unified representation vision encoder UniTok (Ma et al., 2025a). Similar to the
vision encoder configuration, we perform speech reconstruction comparison tests on the LibriSpeech
test-clean split (Panayotov et al., 2015), employing UTMOS (Saeki et al., 2022), PESQ (Rix et al.,
2001), and STOI (Ji et al., 2024) metrics, and compare with the state-of-the-art WavTokenizer (Wang
et al., 2022). As shown in Table 6, our modality encoders demonstrate superior reconstruction
and semantic classification performance, capable of producing reliable unified representations for
multimodal generation, understanding, and retrieval. Furthermore, to more intuitively demonstrate
the superiority of our modal encoders, we provide visualization results of reconstructions. As shown
in Figure 6, we can observe that our vision encoder achieves better reconstruction performance
compared to UniTokin details such as font edges and bear eye colors. As shown in Figure 5, we
can see that our audio encoder produces clearer reconstructed mel-spectrograms for different audio
types compared to WavTokenizer. These results validate the effectiveness of our modality encoder
warmup training.

Table 7: Ablation study on the scalability of NExT-OMNI. Here, “S” represents speech (belong-
ing to the audio modality) inputs. We mark the best performance in bold.

Model Size Training Steps Und. Gen. AVG.
VQAv2 AudioCaps ActivityNet-QA GenEval Spoken QA (S→S) VBench

0.5B 0.5K 42.1 48.6 28.3 18.2 8.4 12.7 26.4
1.5B 0.5K 45.3 52.3 31.7 22.8 11.2 16.3 30.0
7B 0.5K 48.7 55.9 34.2 28.5 13.7 20.1 33.5
7B 1K 52.4 59.1 36.1 45.2 17.3 27.4 39.6
7B 1.5K 54.9 61.7 37.4 58.9 20.1 32.8 44.3
7B 2K 56.2 63.4 37.8 62.6 21.7 34.6 46.1

D.2 MODALITY HEADS

Since we employ multi-codebook quantization (MCQ) for quantization, prediction requires fore-
casting multiple sub-codebook indices for a single position, which poses challenges for vision and
audio head architectures. To overcome this problem, we design two different modality head struc-
tures, as illustrated in Figure 7. The left structure represents an autoregressive multi-sub-codebook
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Original

Ours

WavTok

Text Transcription:  [马尼耶峰是南极洲的山峰，位于葛拉汉地西岸，处于勒鲁湾和比

戈湾之间，海拔高度1,345米，由法国探险队发现，现时由南极条约体系管理。]

Audio Caption:  [Distorted guitars, steady bass, sharp drum beats, and a tight 

rock structure. ]

Figure 5: Qualitative results on audio reconstruction in a max duration of 15s.

Original Ours Unitok Original Ours Unitok

Figure 6: Qualitative results on image reconstruction in a resolution of 256×256.

index prediction modal head, which uses the hidden features output by NExT-OMNI at each position
as conditions to complete the prediction of multiple sub-codebook indices through the next-token
prediction paradigm. The right structure employs multiple separate heads to complete the prediction
of multiple sub-codebook indices in parallel through multi-token prediction (Gloeckle et al., 2024;
Liu et al., 2025a). Under equal parameter counts, the former provides more stable prediction re-
sults compared to the latter at the cost of slightly increased computational overhead, and is therefore
adopted in our framework.

Head 4

NExT-OMNI

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4

1

1 1-1 1-2 1-3 2 2-1 2-2 2-3

2

Head

NExT-OMNI
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1 2
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Head 3
Head 2

Head 1
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2-2

2-3
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Multi Head Attention

Figure 7: Illustration of modality heads. We design two different lightweight modal head struc-
tures for multiple sub-codebook indices prediction: next-token prediction (left) and multi-token
prediction (right).
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Table 8: Overview of stages, training data, tasks, and sizes used for building NExT-OMNI.
Here, “I”, “T”, “A”, and “V” are the abbreviations of the image, text, audio, and vision, respectively.

Model Stage Data Task Size

Vision Encoder Warmup LAION (Schuhmann et al., 2022), DataComp (Li et al., 2024c),COYO (Byeon et al., 2022) I→I, I→T 70M

Audio Encoder Warmup LibriSpeech (Panayotov et al., 2015), WenetSpeech (Zhang et al., 2022) A→A, A→T 102K HoursAudioCaps (Kim et al., 2019), Proprietary Data

NExT-OMNI

PT

LLaVA-Recap-CC12M (Li et al., 2024a; Common Crawl, 2007), DataComp (Li et al., 2024c) I→T 32M

Blip3-o (Chen et al., 2025a), ImageNet-1K (Deng et al., 2009), JourneyDB (Pan et al., 2023) T→I 25M

Infinity-Instruct (Li et al., 2025a), Evol-Instruct (Xu et al., 2024) Text 4M

Proprietary Data, AudioCaps (Kim et al., 2019) A→T 16MLibriSpeech (Panayotov et al., 2015), WenetSpeech (Zhang et al., 2022)

Proprietary Data, AudioCaps (Kim et al., 2019) T→A 6M

CPT

LLaVA-O (Li et al., 2024a), PixMo (Deitke et al., 2024),MAmmoTH-VL (Guo et al., 2024) I→T 10M

Blip3-o (Chen et al., 2025a), Flux-Reason (Fang et al., 2025) T→I 12M

MMC4-core (Zhu et al., 2023), OmniCorpus (Li et al., 2025b) V→T 12MShareGPT4Video (Chen et al., 2024c)

OpenVid (Nan et al., 2024), Internal Video Data T→V 2M

Infinity-Instruct (Li et al., 2025a), Evol-Instruct (Xu et al., 2024) Text 2.3M

Proprietary Data, AudioCaps (Kim et al., 2019) A→T 12M

OpenOmni (Luo et al., 2025), AudioCaps (Kim et al., 2019) T→A 1.3M

SFT

LLaVA-O (Li et al., 2024a), PixMo (Deitke et al., 2024), MMEvol (Luo et al., 2024b), Und-4M I→T 7.6M

OpenOmni (Luo et al., 2025) T+A→T+A 0.5M

InterSyn (Ma et al., 2025b) T+I→T+I 1.7M

Infinity-Instruct (Li et al., 2025a), Evol-Instruct (Xu et al., 2024) Text 0.8M

LLaVA-Video (Zhang et al., 2025b) V→T 0.9M

OpenVid (Nan et al., 2024), TIP-I2V (Wang & Yang, 2024) T→V,T+I→V 1M

BLIP3-o-60K (Chen et al., 2025a), ShareGPT-4o-Image (Chen et al., 2025b) T→I, T+I→I 5.8MGen-5M, Nano-consistent (Ye et al., 2025b)

E DATA CURATION

E.1 DATASET CURATION DETAILS

In addition to proprietary data, we collect publicly available data encompassing diverse tasks for
three-stage progressive training, including generation-related tasks such as text-to-image, text-to-
video, and text-to-audio, as well as understanding-related tasks, including image understanding,
video understanding, and audio understanding. We summarize the important information of all
training data in Table 8.

E.2 DATASET SYNTHETIC DETAILS

Visual Understanding. We randomly sample 1.2M data from LLaVA-OneVision (Li et al., 2024a)
and PixMo (Deitke et al., 2024) datasets as seed data, and apply the MMEvol (Luo et al., 2024b)
algorithm using the Qwen2.5-VL (Bai et al., 2025) model as the generator. Through three rounds of
evolution, we construct approximately 4M instruction data (Und-4M) that are rich in diversity and
complexity, to enhance the model’s capability for solving complex problems.

Image Generation. Based on user prompts from JourneyDB (Pan et al., 2023) and Midjourney-
Prompts datasets, we use the Qwen2.5 (Yang et al., 2024) model to construct numerous similar syn-
thetic prompts containing more fine-grained descriptions. Subsequently, we employ FLUX (Labs,
2024) as the image generator to rapidly generate large quantities of images based on user and syn-
thetic prompts under the configuration of 4 sampling steps and 512×512 resolution. Finally, we
collect approximately 5M high-quality synthetic data (Gen-5M).

F ADDITIONAL IMPLEMENTATION DETAILS

We report additional implementation details about training hyper-parameters and training data in
Table 9.
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Table 9: Training recipes for NExT-OMNI. The three training stages are introduced in Section 3.1.
Stage I: Pre-Training (PT), Stage II: Continue Pre-Training (CPT), Stage III: Super-
vised Fine-tuning (SFT).

Stage I Stage II Stage III

Phase PT CPT SFT

Training Hyper-Parameters

Image Resolution 256×256 384×384 384×384
Audio Duration ≤15s ≥15s ≥15s
Video Frames ≤8 ≤8
LLM Qwen2.5 7B Qwen2.5 7B Qwen2.5 7B

Learning Rate 2e-5 (modality encoder&decoder) 1e-6 (modality encoder&decoder) 1e-6 (modality encoder&decoder)
1e-4 (others) 2e-5 (others) 2e-5 (others)

Optimizer AdamW AdamW AdamW
Optimizer hyper-parameters β1, β2, ϵ=0.9, 0.995, 1e-6 β1, β2, ϵ=0.9, 0.999, 1e-8 β1, β2, ϵ=0.9, 0.999, 1e-8
Weight Decay 0.05 0.05 0.05
Training iterations 10K 18K 25K
Warmup steps 1K 500 500
Learning Rate Scheduler Cosine Cosine Cosine
Batch Size Per GPU 16 8 4
Maximum Token Length 2K 16K 16K

Training Data

Data Size ∼83M ∼52M ∼18M
Data Type Pair Pair/Interleave Instruction

G ADDITIONAL ABLATION STUDY

Although NExT-OMNI demonstrates competitive performance against the SOTA methods, its scal-
ability has yet to be validated. As is well known, scalability is crucial for model performance. We
conduct ablation experiments to assess the scalability concerning data count and model size. As
shown in Table 7, gradually increasing the training data enables the model to successfully scale
while achieving improved results. Additionally, increasing the sizes of backbone leads to sustained
performance enhancements, indicating that NExT-OMNI possesses good scalability.

H ADDITIONAL EXPERIMENTS RESULTS

Image Understanding. We evaluate the image understanding capabilities of NExT-OMNI on sev-
eral benchmarks, including POPE (Li et al., 2023b), MME-P (Fu et al., 2023), SEED (Ge et al.,
2023a), MMB (Liu et al., 2024c), GQA (Ainslie et al., 2023), MMMU (Yue et al., 2024), and MM-
Vet (Yu et al., 2024). As shown in Table 3, NExT-OMNI not only outperforms models MMaDA
and FUDOKI with similar architectures, but also achieves highly competitive results compared to
autoregressive (AR)-based multimodal large language models. Notably, NExT-OMNI unleashes the
potential of discrete flow matching (DFM) in understanding tasks through dynamic length gener-
ation and caching methods, while achieving faster generation speeds compared to AR models as
shown in Figure 12. These results demonstrate that DFM represents a highly promising alternative
to AR architectures and merits significant attention.

Image Generation. We evaluate the image generation capabilities of NExT-OMNI on the widely
used GenEval (Ghosh et al., 2023) and DPG-Bench (Hu et al., 2024) benchmarks. NExT-
OMNI achieves competitive overall performance in both Table 11 and Table 12, scoring 0.85 on
GenEval and 84.46 on DPG-Bench, demonstrating strong performance in both generation-only and
understanding-generation categories with smaller model parameters and faster response speeds.
These results highlight the advantages of the discrete flow matching framework modeling, which
allows bidirectional integration of visual information, first generating image layouts and then pro-
gressively filling in details, better aligning with the natural characteristics of image generation.

Audio Generation and Understanding. We validate our audio understanding and generation capa-
bilities on benchmarks LibirSpeech (Panayotov et al., 2015) and AudioCaps (Kim et al., 2019). As
shown in Table 13, compared to other omnimodal models, NExT-OMNI, as the first model to em-
ploy discrete flow matching modeling, achieves significantly superior performance in natural audio
generation, understanding, speech translation, and speech synthesis. These results further validate
the generalizability and scalability of discrete flow matching modeling, providing potential for future
applications in protein molecular structure prediction, 3D model generation, and other domains.
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Table 10: Multimodal understanding performance on various benchmarks. “Und.” and “Gen.” denote
the abbreviations of “Understanding” and “Generation”. † denotes models that integrate an external pre-trained
diffusion model.

Model Paradigm # Params POPE MME-P MMB SEED GQA MMMU MM-Vet

Und. Only
LLaVA (Liu et al., 2024b) AR 7B 76.3 809.6 38.7 33.5 - - 25.5
LLaVA-v1.5 (Liu et al., 2023) AR 7B 85.9 1510.7 64.3 58.6 62.0 35.4 31.1
InstructBLIP (Dai et al., 2023) AR 7B - - 36.0 53.4 49.2 - 26.2
Qwen-VL-Chat (Bai et al., 2023) AR 7B - 1487.5 60.6 58.2 57.5 - -
IDEFICS-9B (IDEFICS, 2023) AR 8B - - 48.2 - 38.4 - -
Emu3-Chat (Wang et al., 2024b) AR 8B 85.2 1244.0 58.5 68.2 60.3 31.6 37.2
InstructBLIP (Dai et al., 2023) AR 13B 78.9 1212.8 - - 49.5 - 25.6

Und. and Gen.
LaVIT† (Jin et al., 2024) AR 7B - - - - 46.8 - -
MetaMorph† (Tong et al., 2024) AR 8B - - 75.2 71.8 - - -
Gemini-Nano-1 (Team et al., 2023) - 1.8B - - - - - 26.3 -
ILLUME (Wang et al., 2024a) AR 7B 88.5 1445.3 65.1 72.9 - 38.2 37.0
TokenFlow-XL (Qu et al., 2024) AR 13B 86.8 1545.9 68.9 68.7 62.7 38.7 40.7
LWM (Liu et al., 2024a) AR 7B 75.2 - - - 44.8 - 9.6
VILA-U (Wu et al., 2024c) AR 7B 85.8 1401.8 - 59.0 60.8 - 33.5
Chameleon (Team, 2024) AR 7B - - - - - 22.4 8.3
Janus (Wu et al., 2024a) AR 1.5B 87.0 1338.0 69.4 63.7 59.1 30.5 34.3
Janus-Pro (Chen et al., 2025c) AR 1.5B 86.2 1444.0 75.5 68.3 59.3 36.3 39.8
Show-o (Xie et al., 2024) AR+Discrete Diff. 1.3B 73.8 948.4 - - 48.7 25.1 -
D-Dit (Li et al., 2024e) Discrete Diff.+Diff. 2.0B 84.0 1124.7 - - 59.2 - -
FUDOKI (Wang et al., 2025) DFM 1.5B 86.1 1485.4 73.9 68.2 57.6 34.3 38.0
MMaDA (Yang et al., 2025) Discrete Diff. 8B 86.1 1410.7 68.5 64.2 61.3 30.2 -
NExT-OMNI DFM 7B 87.4 1537.8 78.9 76.3 62.7 43.7 40.1

Table 11: Visual Generation Results on GenEval (Ghosh et al., 2023). “Und.” and “Gen.” denote
the abbreviations of “Understanding” and “Generation”.

Model Paradigm Single Obj. Two Obj. Counting Colors Position Color Attri. Overall↑
Gen. Only
SDv1.5 (Rombach et al., 2022a) Diff. 0.97 0.38 0.35 0.76 0.04 0.06 0.43
PixArt-α (Chen et al., 2024a) Diff. 0.98 0.50 0.44 0.80 0.08 0.07 0.48
SDv2.1 (Rombach et al., 2022a) Diff. 0.98 0.51 0.44 0.85 0.07 0.17 0.50
Emu3-Gen (Wang et al., 2024b) AR 0.98 0.71 0.34 0.81 0.17 0.21 0.54
SDXL (Podell et al., 2023) Diff. 0.98 0.74 0.39 0.85 0.15 0.23 0.55
DALLE3 (Betker et al., 2023) - 0.96 0.87 0.47 0.83 0.43 0.45 0.67
SD3-Medium (Rombach et al., 2022b) Diff. 0.99 0.94 0.72 0.89 0.33 0.60 0.74
SANA-1.5 (Xie et al., 2025) Diff. 0.99 0.93 0.86 0.84 0.59 0.65 0.81

Und. and Gen.
Chameleon (Team, 2024) AR - - - - - - 0.39
LWM (Liu et al., 2024a) AR 0.93 0.41 0.46 0.79 0.09 0.15 0.47
SEED-X (Ge et al., 2024) AR 0.97 0.58 0.26 0.80 0.19 0.14 0.49
Show-o (Xie et al., 2024) AR+Discrete Diff. 0.95 0.52 0.49 0.82 0.11 0.28 0.53
Transfusion (Zhou et al., 2024) AR+Diff. - - - - - - 0.63
D-DiT (Li et al., 2024e) Discrete Diff.+Diff. 0.97 0.80 0.54 0.76 0.32 0.50 0.65
ILLUME (Wang et al., 2024a) AR 0.99 0.86 0.45 0.71 0.39 0.28 0.61
Janus (Wu et al., 2024a) AR 0.97 0.68 0.30 0.84 0.46 0.42 0.61
Harmon (Wu et al., 2025) AR 0.99 0.86 0.66 0.85 0.74 0.48 0.76
Janus-Pro (Chen et al., 2025c) AR 0.99 0.89 0.59 0.90 0.79 0.66 0.80
Tar (Han et al., 2025) AR 0.99 0.91 0.76 0.81 0.57 0.51 0.76
MMaDA (Yang et al., 2025) Discrete Diff. 0.99 0.76 0.61 0.84 0.20 0.37 0.63
FUDOKI (Wang et al., 2025) DFM 0.96 0.85 0.56 0.88 0.68 0.67 0.77

NExT-OMNI DFM 0.99 0.92 0.79 0.85 0.78 0.74 0.85

Video Understanding. We evaluate the video understanding capabilities of NExT-OMNI on several
benchmarks, including MSVD-QA (Chen & Dolan, 2011), MSRVTT-QA (Xu et al., 2017),TGIF-
QA (Li et al., 2016), and ActivityNet-QA (Caba Heilbron et al., 2015). As shown in Table 14, com-
pared to models in understanding only or unified understanding-generation, NExT-OMNI achieves
superior performance across all metrics, demonstrating that the DFM-based framework possesses
considerable capability in understanding spatiotemporal relationships.

Video Generation. For video generation, we evaluate NExT-OMNI on VBench (Huang et al., 2024)
and compare it against classical approaches, including Open-Sora (OpenAI, 2025), VILA-U (Wu
et al., 2024c), and CogVideo (Hong et al., 2022). The results presented in Table 15 demonstrate that
our method achieves superior performance compared to these autoregressive (AR)-based classical
methods, highlighting the potential of discrete flow matching (DFM) in short video generation.
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Table 12: Visual Generation Results on DPG Bench (Hu et al., 2024). “Und.” and “Gen.” denote
the abbreviations of “Understanding” and “Generation”.

Model Paradigm Global Entity Attribute Relation Other Overall↑
Gen. Only
SDv1.5 (Rombach et al., 2022a) Diff. 74.63 74.23 75.39 73.49 67.81 63.18
PixArt-α (Chen et al., 2024a) Diff. 74.97 79.32 78.60 82.57 76.96 71.11
Emu3-Gen (Wang et al., 2024b) AR 85.21 86.68 86.84 90.22 83.15 80.60
SDXL (Podell et al., 2023) Diff. 83.27 82.43 80.91 86.76 80.41 74.65
Playground v2.5 (Li et al., 2024b) - 83.06 82.59 81.20 84.08 83.50 75.47
PixArt-Σ (Chen et al., 2024a) AR 86.89 82.89 88.94 86.59 87.68 80.54
DALLE3 (Betker et al., 2023) Diff. 90.97 89.61 88.39 90.58 89.83 83.50
SD3-Medium (Rombach et al., 2022b) Diff. 87.90 91.01 88.83 80.70 88.68 84.08

Und. and Gen.
Show-o (Xie et al., 2024) AR+Discrete Diff. - - - - - 67.48
TokenFlow-XL (Qu et al., 2024) AR 78.72 79.22 81.29 85.22 71.20 73.38
Janus (Wu et al., 2024a) AR 82.33 87.38 87.70 85.46 86.41 79.68
Janus-Pro (Chen et al., 2025c) AR 87.58 88.63 88.17 88.98 88.30 82.63
BLIP-3o (Chen et al., 2025a) AR+Diff. - - - - - 81.60
Tar (Han et al., 2025) AR 83.59 89.35 86.91 93.50 80.80 82.96
MMaDA (Han et al., 2025) Discrete Diff. 77.81 78.48 81.74 84.79 63.20 69.97
FUDOKI (Wang et al., 2025) DFM 80.55 89.73 88.05 93.66 78.00 83.63

NExT-OMNI DFM 81.09 89.76 88.36 94.37 81.63 84.46

Table 13: Comparison with state-of-the-art methods on speech-language and audio-language
benchmarks. Here, “T”, “S”, and “A” represent text, speech (belonging to the audio modality)
audio inputs, respectively.

Model
Librispeech (EN-WER) AudioCaps

Test clean Test other Test

S→T T→S S→T T→S A→T T→A

Speech Only
SpeechT5 (Ao et al., 2021) 2.4 - 5.8 - - -
SALMONN (Sun et al., 2024a) 2.1 - 4.9 - - -
Mini-Omni (Xie & Wu, 2024) 4.7 - 9.4 - - -
Freeze-Omni (Wang et al., 2024c) 3.2 - 7.7 - - -
Qwen2-Audio (Chu et al., 2023) 2.0 - 4.5 - - -

Omnimodal Und.
VITA (Fu et al., 2024) 8.1 - 18.4 - - -
EMOVA (Chen et al., 2024b) 4.0 3.4 - - - -
VITA 1.5 (Fu et al., 2024) 3.4 - 7.5 - - -
OpenOmni (Luo et al., 2025) 3.1 3.4 7.0 7.8 - -
Stream-Omni (Zhang et al., 2025a) 3.0 - 7.2 - - -

Omnimodal Und. and Gen.
AnyGPT (Zhan et al., 2024) 8.5 - - - - -
UnifiedIO2-xxlarge (Lu et al., 2024) - - - - 48.9 2.64
OmniFlow (Li et al., 2025c) - - - - 78.4 1.75
NExT-GPT (Wu et al., 2023) - - - - 81.3 1.74
NExT-OMNI 3.0 3.1 7.0 7.2 84.8 1.65

Table 14: Comparison with state-of-the-art methods on the video understanding benchmarks.

Model MSVD-QA MSRVTT-QA TGIF-QA ActivityNet-QA
Und. Only
Video-Chat (Li et al., 2023a) 56.3 45.4 34.4 -
VideoLLaMA (Zhang et al., 2023b) 51.6 29.6 - -
Video-ChatGPT (Maaz et al., 2023) 64.9 49.3 51.4 35.2
Video-LLava (Lin et al., 2023) 70.7 59.2 70.0 45.3

Und. and Gen.
UnifiedIO2 (Lu et al., 2024) 52.1 42.5 - -
NExT-GPT (Wu et al., 2023) 64.5 61.4 - -
Emu (Sun et al., 2023) - 18.8 8.3 -
Emu2 (Sun et al., 2024b) 31.4 28.7 - -
SEED-LLaMA (Ge et al., 2023b) 40.9 30.8 - -
VILA-U (Wu et al., 2024c) 73.4 58.9 51.3 51.6

NExT-OMNI 76.2 62.7 58.1 56.4
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Table 15: Comparison with state-of-the-art methods on video generation benchmarks
VBench (Huang et al., 2024).

Model Total Score Quality Score Semantic Score
Open-Sora (OpenAI, 2025) 75.9 78.8 62.3
CogVideo (Hong et al., 2022) 67.0 72.1 46.8
VILA-U (Wu et al., 2024c) 74.0 76.3 65.0

NExT-OMNI 80.1 80.8 77.5

Change the glowing text to depict the phrase \"NExT-OMNI is

the best\" in a metallic, engraved style.

Please help me add the logo to it.

Could you show me a pic of a typical terraced geothermal area and

point out what makes it so special?

Terraced geothermal areas, like those in Yellowstone, Pamukkale in

Turkey, and Chena Hot Springs in Alaska, are renowned for their

colorful hot springs. These vibrant hues arise from microbial

communities adapted to varying temperatures, while terraces form

through mineral deposition, primarily of silica or carbonate.

Minerals deposit in layers as geothermal waters cool, creating

terraces with vibrant colors due to sulfur (yellow), iron oxides

(orange and red), and silica (white). Different minerals reflect

specific wavelengths of light, which is why we see these distinct

colors. For instance, sulfur reflects yellow light while iron oxides

reflect longer wavelengths, appearing orange or red.

How do minerals affect the colors of terraces in geothermal areas?

Figure 8: Visualization case of multi-turn vision-language interaction.

I ADDITIONAL VISUALIZATION

In addition to the above experimental results, we provide additional visualization cases to supple-
ment the demonstration of NExT-OMNI’s extensive application scenarios and interesting properties.

Interesting Properties. We demonstrate NExT-OMNI’s iterative refinement inference process
across different modal data in Figure 11. Figure 16 presents image generation quality comparisons
with other similar models. Figure 21 showcases zero-shot cross-modal generalizability, capable of
accepting arbitrary data inputs and generating relevant outputs in other modalities. Figure 13 illus-
trates discrete flow matching’s single forward pass extraction of unified representations for cross-
modal retrieval. Moreover, as shown in Figure 22, NExT-OMNI can spontaneously perform “think
with images” without relying on external tools. By unlocking image generation during the reasoning
process, it can better solve complex tasks and improve performance, demonstrating the considerable
potential of NExT-OMNI.

High-Level Multi-Turn Interaction. We demonstrate multi-turn visual interaction capabilities in
Figure 8, where the model can autonomously perceive and select appropriate positions for image
generation, or manually control image generation positions. Figure 9 showcases multi-turn speech
interaction capabilities, where the model can accept speech inputs and produce speech outputs.

Basic Single-Turn Interaction. We also supplement visualization cases of NExT-OMNI’s single-
turn interactions, including image generation in Figure 14, audio generation in Figure 15, video gen-
eration in Figure 17, and omnimodal understanding in Figure 10, image understanding in Figure 18,
audio understanding in Figure 19, and video understanding in Figure 20. Overall, NExT-OMNI can
accomplish fundamental single-turn multimodal interactions with strong capabilities.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Text Transcription:

[Reality TV shows often blur the line between 

entertainment and exploitation, raising concerns about 

the well-being of  participants and the potential 

consequences of their actions.]

Text Transcription:

[So, what's your take on, you know, the ethics 

of those Reality TV shows?]

Figure 9: Visualization case of multi-turn speech-language interaction.

<image>\n <wave> \n What is happening to Mr. o'Hara?

He comes to a Western wedding.

Text Transcription

[Three people talking 

A: Welcome to Twelve Oaks, Mr. O'Hara. 

B: Thank you kindly, India. Your daughter's getting prettier 

every day, John. 

C: India, here are the O'Hara girls. We must greet them.]

Figure 10: Visualization case of omnimodal understanding.

J THE USE OF LARGE LANGUAGE MODELS

We declare that large language models (LLMs) were employed to assist with the refinement of this
manuscript, specifically, for grammar checking, language polishing, and improving the clarity and
fluency of the text. Additionally, LLMs were used in a limited capacity for minor debugging and
syntactic correction of code snippets included in the work.
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X0 X1

NExT-OMNI: Towards Next Omni-Modal Foundation Models with Discrete Flow Matching 

Q: Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6 kilometers per hour. How many kilometers can she run in 8 hours?
A: Lily runs 12 kilometers per hour for the first 4 hours, covering: 12km/h x 4hours=48km. Afterward, she runs 6 kilometers per hour for 4 hours, covering: 6km/h x 

4hours=24km. Adding both phases: 48km+24km=72km Lily can run 72 kilometers in 8 hours.

Figure 11: Visualization case of iterative refinement process.
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Figure 12: Visualization case of speed comparison on VBench (Huang et al., 2024).

Unified Rep.

Instruction: Retrieve 

A similar image

Query Text + Image

Emerald green 

hummingbird

Image Candidate

Instruction: Retrieve a Wiki page that 

answers this question

Query Text + Image

Which company 

owns this product?

Text+Image Candidate

The Coca-Cola Company,

established on May 8, 1886,

is headquartered in Atlanta,

Georgia, USA, and is the

world‘s largest beverage

company…

Instruction: Find a Wiki article that 

answers my question

Query Text + Image

What year was  this 

painting created?

Text Candidate

The "Mona Lisa" was created between 1503

and 1517, depicting an elegant and serene

female figure, considered a typical

representative of the urban bourgeois women

during the rise of capitalism.

Figure 13: Visualization case of multimodal retrieval based on unified representation.
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Figure 14: Visualization case of image generation.

Original

Ours

WavTok

Text Transcription:  [马尼耶峰是南极洲的山峰，位于葛拉汉地西岸，处于勒鲁湾和比

戈湾之间，海拔高度1,345米，由法国探险队发现，现时由南极条约体系管理。]

Audio Caption:  [Distorted guitars, steady bass, sharp drum beats, and a tight 

rock structure. ]

Figure 15: Visualization case of audio generation.

A flamingo standing on a crescent moon, with stars 

in the background
A panda holding balloons, surrounded by colorful 

clouds

A lion with butterfly wings, flying above a meadow A polar bear wearing a red scarf, enjoying ice 

cream

MMaDA FUDOKI Ours MMaDA FUDOKI Ours

Figure 16: Visualization case of image quality comparison.
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<image>\n Generate a video of a bird walking towards a flower 

based on the given image.

Figure 17: Visualization case of video generation.

Image 1: <image> \n Image 2: <image> \n What is the difference 

between image 1 and image 2?

In the two images, the character is shown hugging Doraemon while holding a heart-shaped object,

set against a backdrop of a pink-orange sunset and greenery. However, there are noticeable

differences between the two scenes: in the first image, the character's left leg is extended outward,

and a green square-shaped gadget is attached to their belt, while Doraemon's round bell remains

visible on his chest. In the second image, the character's leg is tucked inward, the green gadget is

replaced with a pink cylindrical device on the belt, and Doraemon's bell has transformed into a

heart-shaped pink object.

Figure 18: Visualization case of image understanding.

<wave> \n Tell me something about the wave

马尼耶峰是南极洲的山峰，位于葛拉汉地西岸，处于勒鲁湾和比戈
湾之间，海拔高度1,345米，由法国探险队发现,现时由南极条约体
系管理。

Distorted guitars, steady bass, sharp drum beats, and a tight rock 

structure. 

<wave> \n Turn the speech input into text.

Figure 19: Visualization case of audio understanding.
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The video shows a close-up of a large pile of meat, likely chicken, being cooked on a grill. The

meat is covered in a red sauce, possibly a marinade or a barbecue sauce. The grill is outdoors,

as indicated by the blurred greenery in the background. The meat is being cooked in a large

pan or tray, which is placed on the grill. The cooking process is shown in three stages: the meat

is first placed on the grill, then it is covered with the red sauce, and finally, it is cooked until it

reaches a golden-brown color. The style of the video is realistic and it captures the details of the

cooking process.

<image><image><image><image><image><image><image><image>\

n Elaborate on the visual and narrative elements of the video in detail.

Figure 20: Visualization case of video understanding.

霓虹灯下的魔幻都市

Audio Caption: [ Distorted guitars, steady bass, sharp 

drum beats, and a tight rock structure.  ]

Audio Caption: [ It seems like a car engine revving ]

Figure 21: Visualization case of cross-modal generation.

(Think with Image). Fruit Grid Puzzle

The fruit plate is a 2×2 grid, with each cell containing a fruit. The initial state is as follows:

Apple Banana

Pear Orange

Step 1: Swap the positions of the fruit in the top-left corner (cell 1) and the fruit in the bottom-

right corner (cell 4).

Step 2: Rearrange the fruits according to the following rules:

• If the fruit is round, it must be placed in the upper part of the grid.

• All other non-round fruits must be placed in the lower part of the grid.

Step 3: Rotate the fruit positions **clockwise** by one position.

Output the final fruit plate state with minimum operation cost.

1. First, I present the initial state <image1>.

2. Next, we swap the top-left and bottom-right fruits <image2>.

3. Then we rearrange according to the rules (round fruits above, non-round fruits below) 

<image3>.

4. Wait, it appears that the round fruits are apple and orange, while the non-round fruits are . 

banana and pear. I made an error. Now rearranging according to the rules <image4>.

5. It seems this doesn't satisfy the minimum operation cost requirement and needs correction 

<image5>.

6. Rotate the fruit positions clockwise by one position <image6>.

**Final Answer:**

Pear Orange

Banana Apple

1 2

3 4

5 6

Figure 22: Visualization case of thinking with images. NExT-OMNI can enhance its reasoning
ability through the ‘thinking with images’ mode, demonstrating strong potential in integrating visual
cues into intermediate reasoning steps, which improves interpretability and enables more accurate
problem-solving across complex multimodal tasks.
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