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ABSTRACT

Balancing competing objectives is omnipresent across disciplines, from drug design
to autonomous systems. Multi-objective Bayesian optimization is a promising
solution for such expensive, black-box problems: it fits probabilistic surrogates
and selects new designs via an acquisition function that balances exploration and
exploitation. In practice, it requires tailored choices of surrogate and acquisition
that rarely transfer to the next problem, is myopic when multi-step planning is
often required, and adds refitting overhead, particularly in parallel or time-sensitive
loops. We present TAMO, a fully amortized, universal policy for multi-objective
black-box optimization. TAMO uses a transformer architecture that operates across
varying input and objective dimensions, enabling pretraining on diverse corpora
and transfer to new problems without retraining: at test time, the pretrained model
proposes the next design with a single forward pass. We pretrain the policy
with reinforcement learning to maximize cumulative hypervolume improvement
over full trajectories, conditioning on the entire query history to approximate the
Pareto frontier. Across synthetic benchmarks and real tasks, TAMO produces fast
proposals, reducing proposal time by 50–1000× versus alternatives while matching
or improving Pareto quality under tight evaluation budgets. These results show
that transformers can perform multi-objective optimization entirely in-context,
eliminating per-task surrogate fitting and acquisition engineering, and open a path
to foundation-style, plug-and-play optimizers for scientific discovery workflows.

1 INTRODUCTION

Multi-objective optimization (MOO; Deb et al., 2016; Gunantara, 2018) is ubiquitous in science and
engineering: practitioners routinely balance accuracy vs. cost in experimental design (Schoepfer et al.,
2024), latency vs. quality in adaptive streaming controllers (Peroni & Gorinsky, 2025), or efficacy vs.
toxicity in drug discovery (Fromer & Coley, 2023; Lai et al., 2025). In these settings, each evaluation
of the black-box objectives can be slow or costly, making sample efficiency paramount; the goal is to
obtain high-quality approximations of the Pareto front with a minimal number of queries.

The standard sample-efficient paradigm for such problems is Multi-objective Bayesian optimization
(MOBO; Garnett, 2023): fit probabilistic surrogates for each objective, typically using Gaussian
processes (GPs; Rasmussen & Williams, 2006), then select the next query by maximizing an
acquisition that balances exploration–exploitation to efficiently improve a chosen multi-objective
utility, such as hypervolume, scalarizations, or preference-based criteria (Daulton et al., 2020;
Belakaria et al., 2019; Daulton et al., 2023b). While effective, this recipe has three drawbacks in
real-world use. First, each new problem requires training surrogates from scratch and repeatedly
optimizing the acquisition, adding non-trivial GP overhead that can bottleneck decision latency in
parallel or time-sensitive settings. Second, performance critically depends on modeling choices
(kernel, likelihood, acquisition, initialization), especially when data are scarce, a setting MOBO is
intended to handle. Third, most acquisitions are myopic, optimizing a one-step gain, which can be
suboptimal when Pareto-front discovery requires multi-step planning.

Amortized optimization (Finn et al., 2017; Amos et al., 2023) addresses these issues by shifting
computation offline. The idea is to pre-train on a distribution of related optimization tasks, either
generated synthetically or drawn from real, previously solved datasets. At test time, proposing a new
design then reduces to a single forward pass. Recent efforts have explored methods for amortized
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Multi-
objective

End-to-end
amortized

Input
agnostic

Output
agnostic

Vanilla MOBO (Daulton et al., 2020) ✓ ✗ N/A N/A
BOFormer (Hung et al., 2025) ✓ ✗ N/A ✗
NAP (Maraval et al., 2023) ✗ ✓ ✗ ✗
DANP (Lee et al., 2025) ✗ ✗ ✓ ✗

TAMO (this work) ✓ ✓ ✓ ✓

Figure 1: Comparison of multi-objective optimization workflows. (Top left) Previous methods like
traditional MOBO or acquisition-only amortized BOFormer (Hung et al., 2025) are bottlenecked by a
slow process of fitting a GP surrogate. (Top right) TAMO is fully amortized: a dimension-agnostic
transformer policy is trained once, offline, on diverse synthetic tasks, and at deployment maps the
history to the next query in a single forward pass.

Bayesian optimization (Volpp et al., 2020; Chen et al., 2022; Maraval et al., 2023; Zhang et al., 2025;
Hung et al., 2025), but few address the multi-objective setting. For instance, Hung et al. (2025) only
amortizes the acquisition function calculation while still relying on a GP surrogate, and its pretrained
model is tied to a fixed number of objectives, which prevents transfer across heterogeneous tasks. A
method that tackles these challenges would let practitioners pool heterogeneous legacy datasets for
pretraining, resulting in improved outcomes in scarce-data regimes. It would also enable reusing a sin-
gle optimizer as design spaces and objective counts change, and issue instant proposals in closed-loop
laboratories, high-throughput campaigns, reducing overhead when evaluations are cheap or parallel.

Contributions.

• We introduce TAMO, a fully amortized policy for multi-objective optimization that maps the
observed history directly to the next query (Figure 1). Training uses reinforcement learning
to optimize a hypervolume-oriented utility over entire trajectories, encouraging long-horizon
rather than one-step gains. At inference, proposals are produced by a single forward pass.

• TAMO is dimension agnostic on both inputs and outputs: we introduce a transformer architec-
ture with a novel dimension-aggregating embedder that jointly represents all input features
and objective values regardless of dimensionality. This enables pretraining on heterogeneous
tasks, synthetic or drawn from real meta-datasets, and transfer to new problems without
retraining. To our knowledge, this is the first end-to-end, dimension-agnostic architecture
for black-box optimization, let alone MOO (Figure 1, bottom).

• We evaluate TAMO on synthetic and real multi-objective tasks, observing 50×–1000×
lower wall-clock proposal time than GP-based MOBO and baselines such as BOFORMER,
which amortizes the acquisition but still relies on task-specific surrogates, while matching
Pareto quality and sample efficiency. We further provide an empirical assessment of the
generalization capabilities of TAMO, along with its sensitivity to deployment knobs.
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2 PRELIMINARIES

Multi-objective Optimization. Consider a multi-objective optimization problem in which one aims
to optimize a function f(x) = [f1(x), . . . , fdy (x)] ∈ Rdy , and observations y = f(x) + ε where
X ⊂ Rdx is a compact search space. In many practical scenarios, it is not possible to find a single
design x that is optimal for all objectives simultaneously. Instead, the notion of Pareto dominance
is used to compare objective vectors. An objective vector f(x) Pareto-dominates another vector
f(x′), denoted f(x) ≻ f(x′), if f (m)(x) ≥ f (m)(x′) ∀m ∈ {1, . . . , dy} and there exists at least
one objective m′ such that f (m′)(x) > f (m′)(x′). The Pareto frontier (PF) associated with a set of
designs X ⊆ X is P(X) =

{
f(x) : x ∈ X,∄x′ ∈ X s.t. f(x′) ≻ f(x)

}
. A common goal in

multi-objective optimization is to approximate the global frontier P(X ) within a limited budget of T
function evaluations. One popular way to assess solution quality is the hypervolume (HV) indicator.
For a reference point r ∈ Rdy , the hypervolume HV(P(X) | r) measures how much of the objective
space between r and the frontier P(X) is “covered” by Pareto-optimal points. In practice, the choice
of r depends on domain-specific considerations (Yang et al., 2019).

Reinforcement Learning. Recent work leverages RL to learn non-myopic strategies in black-box
optimization, accounting for downstream impact of each evaluation (Maraval et al., 2023; Zhang et al.,
2025; Hung et al., 2025). An RL problem is a Markov decision process (MDP) (Sutton et al., 1998)
with states, actions, transition dynamics, a reward encoding the optimization goal, and a discount
factor weighting future vs. immediate rewards. The output is a policy πθ(a | s), a distribution over
actions a for a state s that maximizes expected discounted return. In the amortized regime, one policy
is trained offline on a distribution of tasks and then deployed across new problems without retraining.

3 TASK-AGNOSTIC AMORTIZED MULTI-OBJECTIVE OPTIMIZATION (TAMO)

We introduce TAMO, a fully amortized framework for multi-objective black-box optimization. TAMO
encodes the optimization history and a candidate set with a transformer backbone and directly outputs
acquisition utilities. To stabilize policy learning, we additionally incorporate a prediction task into
our objective function. Section 3.1 details the construction of pretraining tasks for policy learning and
prediction; Section 3.2 presents the TAMO architecture; Section 3.3 formalizes the RL objective and
MDP; and Section 3.4 outlines training and inference procedures. Figure 1 illustrates our workflow.

3.1 PRETRAINING DATASET CONSTRUCTION

We pre-train TAMO on a diverse distribution of synthetic multi-objective optimization tasks, denoted
by p(τ). Each task τ ∼ p(τ) is defined by a black-box function fτ : X ⊂ Rdτ

x → Rdτ
y , where the

input and output dimensions, dτx and dτy , vary across tasks. This heterogeneity is key to learning a
universal, dimension-agnostic policy. The full generative process for p(τ), which is based on GP
priors with varied kernels and properties, is detailed in Appendix A.

During each training step, we sample two distinct mini-batches from task distributions to jointly
optimize the model for policy learning and auxiliary prediction:

• Policy-learning batches. To train the decision-making policy, each batch contains a history set
Dh = {(xh,yh)}Nh

h=1 and a query set Dq = {xq}Nq

q=1. The policy conditions on the history to
select the most promising query from the query set.

• Prediction batches. To facilitate policy learning, we include an auxiliary prediction task to help
the model learn the function landscape. We sample N input-output pairs from a fresh function
draw. These pairs are then randomly partitioned into a context set Dc = {(xc,yc)}Nc

c=1 and a target
set Dp = {xp}Np

p=1, on which the model performs an in-context regression task.

For each dataset type s ∈ {h, q, c, p}, the individual elements are denoted as xs
t,j where t ∈

{1, . . . , T} indexes the data point and j ∈ {1, . . . , dτx} indexes the input dimension. Similarly, for
outputs we have yst,k where k ∈ {1, . . . , dτy} indexes the output dimension.
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3.2 MODEL ARCHITECTURE

TAMO’s architecture is designed around a single, shared backbone that operates in two distinct tasks
during training: the prediction task and the optimization task. Each forward pass processes one
mini-batch, either a prediction batch (D(c),D(t)) or an optimization batch (D(h),D(q)). While the
input data types differ conceptually (context↔ history and target↔ query), they are processed by
the same core components. The architecture comprises four parts: (i) a dimension-agnostic embedder
mapping an observation to a vector regardless of input/output dimension; (ii) a transformer encoder
that aggregates variable-size histories/contexts and exposes a compact summary; (iii) lightweight
task conditioning via a small number of tokens; and (iv) two heads: a prediction head and a policy
head. The dimension-agnostic embedder and the transformer encoder blocks are shared across tasks.

(I) Dimension-agnostic embedder. We apply learnable scalar-to-vector maps ex : R → Rde and
ey : R → Rde dimension-wise, resulting in ex = ex(x) ∈ Rdτ

x×de and ey = ey(y) ∈ Rdτ
y×de .

Both functions ex and ey are parameterized as feedforward neural networks. After L transformer
layers on the concatenated tokens [ex; ey], we apply learnable dimension-specific positional tokens
px ∈ Rdτ

x×de and py ∈ Rdτ
y×de element-wise and mean-pool across the dτx+dτy token axis to obtain

a single representation E ∈ Rde . These positional tokens are randomly sampled for each batch
from fixed pools of learned embeddings. We introduce the positional tokens to prevent the spurious
symmetries over dimensionalities from a permutation-invariant set encoder, allowing the model to
distinguish between features and objectives with the same values. During training, the embedder is
applied to Dh and Dq to yield Eh and Eq for the optimization task, and to Dc and Dp to yield Ec

and Ep for the prediction task. Each observation contributes O(1) tokens, so the cost scales with the
number of observations, not with dτx or dτy . Figure 2 summarizes the embedder.

Figure 2: Dimension-agnostic em-
bedder for a single observation.

(II) Transformer encoder–decoder. We stack B := B1 +B2

transformer layers and split them into two phases. For the first
B1 layers, the observed tokens interact. The history (or context)
tokens undergo self-attention to produce Êh (or Êc), capturing
intra-set structure. The query (or target) tokens then use cross-
attention with the keys/values provided by Êh (or Êc), yielding
Êq (or Êp). No task-specific tokens are present in B1. This
phase is the only path through which queries/targets access
information from the history/context. Then, for the last B2

layers, the sequence is reduced to only the query/target tokens
together with a small set of task-specific tokens (defined below).
All history/context tokens are removed from the sequence. An
attention mask enforces that, in these final layers, query/target
tokens are permitted to attend only to the task-specific tokens
(no query–query attention and no access to history/context).
The task-specific tokens may self-attend among themselves.

(III) Task-specific tokens. Task-specific tokens are introduced
only at the entrance to the last B2 layers. For each task type, we introduce distinct tokens that guide
the decoder’s computation. For prediction tasks, the additional tokens comprise a prediction task
token and the output-index positional token p

(k)
y indicating which scalar ypi,k is to be predicted. For

optimization tasks, the additional tokens comprise an optimization task token, a time-budget token
gtime = MLPθ

(
(T−t)/T

)
, and an aggregated input-dimension token

∑dτ
x

j=1 p
(j)
x . An attention mask

restricts query/target tokens in B2 to attend only to these tokens; the history/context never appears in
B2. This design yields constant overhead in dτx and dτy , and linear cost in token size.

(IV) Heads. The architecture terminates in two heads that share the backbone but produce different
outputs depending on the task.

Prediction head. Given the prediction tokens {Êp
i }

Np

i=1 and an output-index positional token p
(k)
y , the

model produces, for each prediction input xp
i , the parameters of a K-component univariate Gaussian

mixture that models the scalar ypi,k. Concretely, an MLP applied to Êp
i yields mixture weights

{ϕiℓ}Kℓ=1, means {µiℓ}Kℓ=1, and positive scales {σiℓ}Kℓ=1, with the weights normalized by a softmax
(
∑K

ℓ=1 ϕiℓ = 1) and the scales enforced positive via a softplus transform. The resulting predictive
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density is:

p
(
ypi,k | x

p
i ,D

c
)
=

K∑
ℓ=1

ϕiℓN
(
ypi,k; µiℓ, σ

2
iℓ

)
. (1)

Prediction tasks use samples disjoint from optimization tasks to prevent reward leakage.

Policy head. Given the query tokens {Êq
i }

Nq

i=1, the model assigns each query xq
i a scalar acquisition

utility αi := MLPθ(Ê
q
i ). These utilities are converted into a categorical policy over the query set

using a softmax:

πθ

(
xq
i | t, T,H1:t−1

)
=

exp(αi)∑Nq

r=1 exp(αr)
. (2)

During training we sample actions from this distribution; at inference we act greedily by selecting the
next query with the largest probability. For a detailed visualization of the full architecture, please
refer to Figure S1.

3.3 POLICY LEARNING

We cast the dimension-agnostic optimization problem as a Markov decision process (MDP):
• State. At step t, the state is st = (Dh, t, T ), where Dh is the current historical observations and
T is the total budget.

• Action. The action selects a candidate index i⋆ ∈ {1, . . . , Nq} and sets xt = xq
i⋆ .

• Reward. After querying the objectives and observing yt, we update the history Dh := Dh ∪
{(xt,yt)} and define the normalized hypervolume level:

rt =
HV

(
P(Dh) | r

)
HV⋆

τ

, HV⋆
τ := HV

(
P(X ) | r

)
, HV

(
P(∅) | r

)
= 0.

Here HV⋆
τ is the task-wise hypervolume of the optimal frontier with respect to the fixed ref-

erence point r. We set r to the componentwise worst value, r = [ŷ(1), . . . , ŷ(d
τ
y)] with

ŷ(k) := minx∈X f
(k)
τ (x), which makes the hypervolume well defined and the reward bounded in

[0, 1]. This ratio measures the fraction of maximum achievable hypervolume already captured by
the current Pareto approximation (larger is better), and the normalization provides scale invariance
across heterogeneous tasks (Teoh et al., 2025).

The policy πθ(x |s) maximizes the expected discounted return:

J(θ) = Eτ∼p(τ)

[
Eπθ

[ T∑
t=1

γt−1rt

]]
, (3)

and we estimate gradients with REINFORCE (Williams, 1992):

∇θJ(θ) ≈ Eτ,πθ

[
T∑

t=1

∇θ log πθ(xt |st)γt−1rt

]
. (4)

Because we train on synthetic tasks, we can evaluate rt exactly during learning.

3.4 TRAINING AND INFERENCE

Training. We train TAMO in two phases. First, we warm up the backbone on the prediction task by
minimizing a negative log-likelihood over (Dc,Dp), which encourages accurate in-context regression
and useful representations:

L(p)(θ) = −Eτ∼p(τ)

 1

Np dτy

Np∑
i=1

dτ
y∑

k=1

log p
(
ypi,k

∣∣xp
i ,D

c
) . (5)

After warm-up we transition to the joint training phase, where we optimize the policy with the
trajectory objective J(θ) (Eq. 3), aligning the learning signal with improvements in Pareto quality
alongside the prediction objective. The overall objective combines both terms:

L(θ) = λpL(p)(θ) + L(rl)(θ), L(rl)(θ) = −J(θ), (6)
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and is optimized with REINFORCE (Eq. 4); the coefficient λp > 0 trades off prediction and policy
signals. In all experiments, we fixed λp = 1.0. Specifically, the prediction loss L(p) and RL loss L(rl)

are calculated from two distinct forward passes through the model with different datasets, which are
then summed for a single backward pass. Training on full trajectories directly rewards long-horizon
improvements, while amortization enables learning from many tasks offline.

Inference. At deployment, TAMO iteratively approximates the Pareto frontier under a budget T . We
initialize the history with a random observation Dh ← {xh

0 , y
h
0 } and set t← 1. Each iteration scores

the current candidate set Dq with a single forward pass and proposes:

xt = argmax
xq

i∈Dq

πθ

(
xq
i

∣∣ t, T,Dh
)
. (7)

The proposed query xt is then evaluated, and the resulting observation is used to update the history.
This process is iterated until the cumulative evaluation cost meets the budget. Detailed descriptions
of the algorithms for training and inference are provided in Appendix B .

4 RELATED WORK

Multi-objective Bayesian Optimization (MOBO). This line of work builds on Bayesian Opti-
mization (Garnett, 2023), leveraging a combination of a statistical surrogate and an acquisition
function to seek high-quality approximations to the Pareto set under tight evaluation budgets. Three
families are prominent. scalarization methods convert MOBO into single-objective subproblems
(e.g., ParEGO, TS-TCH; Knowles, 2006; Paria et al., 2020), letting practitioners reuse mature BO
tooling and sweep preferences in parallel. Indicator-based methods optimize hypervolume-oriented
criteria such as EHVI or HVKG (Daulton et al., 2020; 2023a), directly aligning the acquisition with
the final Pareto-quality metric. Lastly, information-theoretic methods (PESMO, MESMO, PFES;
Hernández-Lobato et al., 2016; Belakaria et al., 2021; Suzuki et al., 2020) select points that maximize
information gain about the Pareto set or frontier, offering a principled exploration strategy. These
approaches are effective but hinge on a carefully tuned, task-specific surrogate–acquisition pairing
that must be refit and re-optimized at each iteration, all while remaining largely myopic. We instead
learn a fully amortized policy that reduces design proposal to a single neural-network forward pass,
dramatically lowering inference latency.

Amortization and meta-learning. Amortization replaces per-task inference with a model trained
offline to operate in-context, exemplified by prior-data fitted transformers that achieve strong in-
context performance after pretraining on large, heterogeneous datasets (Hollmann et al., 2025;
Qu et al., 2025). In parallel, Conditional Neural Processes and their transformer variants learn
predictors that condition on a context set and generalize via a single forward pass (Garnelo et al.,
2018; Kim et al., 2019; Nguyen & Grover, 2022; Chang et al., 2025), with recent work extending
them to dimension-agnostic settings (Dutordoir et al., 2023; Lee et al., 2025). These works focus on
amortizing prediction. More recently, several studies leverage in-context pretrained neural processes
for sequential decision-making (Huang et al., 2024; Zhang et al., 2025; Huang et al., 2025); our
approach falls into this line as well.

Amortized black-box optimization. Several approaches train neural networks to amortize black-box
optimization directly, typically by mapping histories to proposals or by predicting acquisition values,
with success under scalar observations (Volpp et al., 2020; Chen et al., 2022; Yang et al., 2023;
Maraval et al., 2023; Song et al., 2024; Huang et al., 2024), and even binary feedback (Zhang et al.,
2025). Complementary to surrogate/acquisition amortization, transfer-BO with Monte Carlo Tree
Search learns the search space itself by building a data-driven hierarchy of promising subregions on
source tasks and reusing it to warm-start a new target before adapting online (Wang et al., 2024).
However, none of these methods is simultaneously end-to-end (no per-task surrogate or acquisition),
natively multi-objective, and capable of cross-dimensional transfer. The closest is BOFormer (Hung
et al., 2025), which uses sequence modeling to mitigate myopia in MOBO, but still relies on task-
specific surrogates and fixed output dimensional setups, necessitating additional training when the
dimension changes. We address all three by pretraining a fully amortized, foundation-style policy.
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Figure 3: Synthetic and real-world multi-objective benchmarks: simple regret (top) and cumu-
lative inference time (bottom) vs. oracle calls (mean ± 95% CIs over 30 runs). TAMO achieves
competitive regret while cutting proposal time by 50×–1000×.

5 EXPERIMENTS

We evaluate TAMO on synthetic GP tasks and standard analytic testbeds, as well as on real-world
problems (Section 5.1). Subsequently, Section 5.2 studies the generalization capabilities of TAMO,
e.g., with respect to unseen task dimensionalities during training on both synthetic tasks and a
real-world problem. We conclude with several ablation studies related to the batch size and query set
size employed at inference time (Section 5.3). Additional experiments can be found in Appendix E.
We emphasize that a single pretrained model is used across all experiments.

Baselines. We compare against strong MOBO baselines, including decomposition and indicator-
based methods (qNParEGO Knowles 2006, qNEHVI Daulton et al. 2020, qHVKG Daulton et al.
2023a), sequence-modeling MOBO (BOFormer Hung et al. 2025), and a random search baseline.
Baselines are tuned with their recommended defaults unless otherwise noted.

Metrics. We report performance via HV-based simple regret at a fixed evaluation budget. We also
measure wall-clock proposal time end-to-end, which for GP-based baselines includes surrogate
fitting and acquisition optimization, and for our method consists of a single forward pass. For
single-objective, we additionally report standard simple regret.

Implementation. TAMO is implemented using PyTorch (Paszke et al., 2019). Hyperparameter
settings can be found in Appendix D.3. Code will be made available upon acceptance. For all vanilla
MOBO baselines, we used the implementation from the BoTorch library (Balandat et al., 2020).
For BOFormer (Hung et al., 2025), we used the publicly available implementation and pretrained
model from its official code repository. To ensure a fair comparison, the domain size (i.e., the size
of the candidate query set) during testing is set to 2048, consistent with the configuration used for
TAMO.

5.1 SYNTHETIC AND REAL-WORLD TASKS

Synthetic examples. On synthetic MOO testbeds (details in Section D.2), TAMO attains competitive
or better simple regret across the entire budget (Figure 3). On GP-DX2–DY2, which is in-distribution
for all methods (30 GP draws), TAMO performs on par with the best GP baselines. On the remaining
three problems, out-of-distribution for all baselines, TAMO yields the strongest performance, except
on Branin–Currin where qNEHVI and qNParEGO do better. We hypothesize this gap stems from the
objectives in being well described by long length scales, outside the reach of our pretraining corpus:
synthetic GP samples using lengthscales ℓ ∼ N (2/3, 0.5) over [−5, 5]dx (Section D.3). Lastly, our
method can also be applied effortlessly to single-objective BO, yielding competitive results compared
to other GP-based alternatives (Figure S2).
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Figure 4: Out-of-distribution evaluations. (a) Dimensionality: simple regret (top) and cumulative
inference time (bottom) on tasks whose input/output dimensions are unseen at pretraining. (b)
Decoupled observations: regret vs. cumulative cost when, at step t, the optimizer may observe
both objectives at cost 2 (dark blue) or only one at cost 1 (cyan). Curves show means with 95%
confidence intervals over 60 runs (GP-DX3-DY2, GP-DX3-DY3) and 30 runs (others) with random
initial observations. TAMO shows reasonable generalization across unseen dimensionalities and
decoupled feedback settings, while retaining orders-of-magnitude faster proposal times and
broadly competitive regret

Real-world example. We compare our model, pretrained only with synthetic GP samples, with
other baselines on the real-world oil sorbent multi-objective problem (Daulton et al., 2022). The
result is shown in Figure 3. TAMO remains competitive with GP-based alternatives, yielding the best
performance, closely followed by qNParEGO.

Wall-clock time. Nevertheless, the primary advantage is speed: cumulative inference time is lower by
roughly 50×–1000×, growing slowly with budget because each proposal is a single forward pass. By
contrast, GP-based methods incur substantial overhead from repeated surrogate refits and acquisition
optimization. Even BOFormer, which amortizes the acquisition but still relies on a GP surrogate,
remains noticeably slower than TAMO.

5.2 GENERALIZATION

We investigate the generalization capabilities of TAMO in two different test-time scenarios: unseen
dimensionalities, or decoupled observations.

Out-of-distribution dimensionalities. We test cross-dimensional transfer by pretraining TAMO on
GP tasks with dx∈{1, 2} and dy∈{1, 2, 3}, then evaluating on (i) GP-DX3–DY2 and GP-DX3–DY3,
and (ii) the real-world LaserPlasma task (dx=4, dy=3; Section D.2), all with unseen input/output
dimensionalities. On the synthetic OOD settings (Figure 4a, left, middle), TAMO attains regret broadly
comparable to the strongest GP baselines across the budget; even with 60 repetitions, we do not
observe statistically decisive differences between methods. On LaserPlasma (Figure 4a, right), TAMO
improves over BOFormer (which amortizes only the acquisition) but trails conventional MOBO
baselines in regret. Across all cases, TAMO retains orders-of-magnitude advantages in cumulative
inference time.

Decoupled observations. We next test generalization to decoupled settings, where objectives can
be measured independently, a common setting when jointly observing all objectives is infeasible
or costly, also arising when historical logs contain partial objective labels. Budget T=100 with
cost 1 per objective: a full evaluation costs dy, a single-objective probe costs 1. Hence, a coupled
policy can do at most T/dy full evals, while a decoupled one can take up to T single-objective
measurements. Figure 4b plots regret vs. cumulative cost. On GP-DX2–DY2, Ackley–Rastrigin,
and Branin–Currin, the decoupled variant of TAMO closely tracks the coupled policy, indicating that
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TAMO can accommodate partial-feedback acquisition without retraining, offering a flexible trade-
off between measurement cost and optimization progress. The exception is Ackley–Rosenbrock,
where decoupling hurts performance, likely because the objectives peak at disparate locations, so
single-objective measurements transfer poorly and bias the search toward one goal.
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Figure 5: Effect of batch size on synthetic problems: simple regret for TAMO with q ∈ {1, 2, 5, 10}.
Curves show means with 95% CIs over 30 runs. Smaller q converges fastest; larger q incurs a
mild slowdown, compatible with wall-clock savings for parallel evaluations.

5.3 ABLATION STUDY

We examine TAMO’s sensitivity to deployment knobs: batch size (q) and query set size (Nq), and
quantify the accuracy–latency trade-offs they induce.

Batch size. We compare TAMO with q ∈ {1, 2, 5, 10}. For q > 1 we form batches via a light
fantasy loop (Chang et al., 2022): pick xt = argmaxxq

i∈Dqπθ(x
q
i | t, T,Dh), predict a provisional

outcome ŷt, augment Dh ← Dh ∪ (xt, ŷt), and repeat until q points are chosen (i.e., q forward
passes). Across all problems, smaller batches reduce simple regret fastest; larger q slows progress
modestly, consistent with the lack of real feedback within a batch (hallucination). Nonetheless,
degradation remains limited and all settings improve steadily with budget, indicating that when
parallel evaluations are cheap, q > 1 can cut wall-clock time for a small accuracy cost (Figure 5).

Query set size. TAMO scores Nq candidates per step; larger Nq improves coverage but raises proposal
cost. For Nq ∈ {256, 512, 1024, 2048}, regret is largely insensitive, except for Branin–Currin, where
a small Nq misses promising regions (Figure S3). Cumulative inference time grows roughly linearly
with Nq . Even for Nq = 2048 (our default), TAMO remains much faster than other baselines.

6 DISCUSSION

We introduced TAMO, a fully amortized, task-agnostic policy for multi-objective black-box optimiza-
tion. A single transformer backbone, trained offline with a prediction warm-up and a policy-level RL
objective, maps histories to proposals in one forward pass and operates across varying input/output di-
mensionalities. Empirically, TAMO delivers proposal times 50 to 1000 times lower than conventional
baselines while matching Pareto quality under tight evaluation budgets, sometimes even improving it.

Limitations. Our study highlights two main axes. First, pretraining data composition: although
synthetic GP corpora provide scale and control, they may miss salient real-world structure. Down-
stream performance is likely sensitive to GP kernel families and smoothness, input metrics (e.g.,
Mahalanobis/rotated anisotropy), multi-output correlations (coregionalization models), observation
models (homo-/heteroscedastic noise, decoupled observations), and simple landscape priors (e.g.,
adding a quadratic “bowl”). A systematic analysis that varies these ingredients would clarify how
synthetic dataset design drives transfer. Second, inference currently assumes a discrete candidate
pool, which can be restrictive in high-dimensional design spaces and in generative settings (e.g., de
novo drug design) where the action space is continuous or combinatorial. Nevertheless, in pool-based
scenarios like high-throughput screening and library/catalog search, this assumption aligns with
practice, and our method is highly effective.

Perspectives. We envision a bright future for TAMO as a universal engine for black-box optimization.
The modular design invites extensions to black-box constraints, cost-aware and multi-fidelity settings,
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while retaining the single-pass interface. Beyond scalar observations, alternative data modalities, like
preferential and multi-fidelity feedback, can also be incorporated with minor architecture changes. A
key challenge is scaling to higher-dimensional spaces, with promising directions including factorizing
the policy across input dimensions and moving from pool-based scoring to continuous policies or
generative proposal mechanisms, in the spirit of amortized design networks (Foster et al., 2021).
Lastly, as mentioned above, further work will investigate how the composition of the synthetic pre-
training corpus influences downstream performance, an important direction for improving robustness
and out-of-distribution behavior of amortized BO policies. Together, these advances position TAMO
to serve as a foundation model-style optimizer that transfers across domains, objectives, and design
spaces with minimal per-task tuning.

ETHICS STATEMENT

All authors have read and will adhere to the ICLR Code of Ethics. This work does not involve human
subjects, personally identifiable information, or sensitive attributes; experiments use synthetic data
and standard public benchmarks. We are not aware of foreseeable harms from the methodology
beyond typical risks of algorithmic misuse; the intended use is scientific and engineering optimization.
Compute and environmental impact were kept reasonable (single-model pretraining and standard
hardware); we report settings to support reproducibility. We will respect licenses of any third-party
assets used and disclose any conflicts of interest if they arise.

REPRODUCIBILITY STATEMENT

We document all experimental settings needed to facilitate replication: hyperparameters and optimizer
details (Section D), procedures for pretraining dataset generation (Section A), and step-by-step
algorithms for the training and prediction workflows (Section B). Code will be made available upon
acceptance.
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Appendix
The appendix is organized as follows:

• Section A describes the generative process leading to our synthetic pretraining dataset.

• Section B provides additional details regarding TAMO’s workflow, with Algorithm S1
described pretraining.

• Section C provides a detailed architecture figure along with attention masks for TAMO.

• Section D provides further details regarding experiments, including model hyperparame-
ters (Section D.3), computational resources (Section D.1) and test functions description
(Section D.2).

• Section E contains additional experiments and analyses:

– Single-objective Bayesian optimization
– Ablation study on the query set size
– Effect of prediction warm-up and the prediction term weight λp in the policy training

loss
– Ablation study on the discount factor γ in the RL objective
– Comparison between the standard multi-step and myopic TAMO variants
– Effect of model size on optimization performance
– Timing breakdown for GP baselines
– Evaluation on real-world HPO-3DGS hyperparameter optimization tasks
– Effect of pre-training dataset composition

• Section F displays several examples of GP samples used during pretraining (Section F.1), ex-
amples of mean prediction and proposed queries on GP samples (Section F.2, and Section F.3
in the decoupled setting).

• Section G describes to what extent Large Language Models (LLMs) were utilized throughout
this work and manuscript.

A GENERATIVE PROCESS OF SYNTHETIC PRETRAINING DATASET

The model evaluated in Section 5 was trained on a dataset of GP draws. This dataset was constructed
to include a variety of configurations, spanning diverse dimensionalities and function properties. All
functions were generated inside [−5.0, 5.0]dx using the following procedure:

• Input dimensionality dx ∼ U({1, 2}) and output dimensionality dy ∼ U({1, 2, 3}).
• Regarding output correlations, with probability 1/2, either independent output dimensions

are sampled, or they are drawn from a multi-task GP, with task covariance defined as
k(i, j) = (BBT + diag(v))i,j , i, j ∈ {1, · · · , dy}. In this case, B is a low-rank matrix
with rank r ∼ U({1, · · · , dy}).

• The data kernel along each output dimension is equally sampled from the RBF, Matérn-
3/2, Matérn-5/2 kernels, with standard deviation σ ∼ U [0.1, 1.0] and lengthscale l ∼
N (2/3, 0.5) truncated to the range [0.1, 2.0].

• The sampled function values, y, were centered and normalized to lie within [−1, 1]dy .

Examples with different dimensionalities are illustrated in Figures S12, S13, S14 and S15 (Sec-
tion F.1).

B PRETRAINING AND TEST-TIME ALGORITHMS

Algorithm S1 and Algorithm S2 describe the pre-training loops and test-time optimization procedure,
respectively.
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Algorithm S1 TAMO Pre-Training Algorithm

Require: task distribution p(τ), prediction context size Nc, prediction target size Np, query budget
T , number of burn-in iterations η, number of total iterations num_total_iterations

1: for iteration i = 1, . . . , num_total_iterations do
2: ▷ Prediction task
3: Sample a task τ ∼ p(τ)

4: Sample prediction batches Dc = {(xc
i , y

c
i )}

Nc
i=1 and Dp = {xp

i }
Np

i=1 from τ
5: Model predicts outcomes: p(ypi,k | x

p
i ,Dc),∀xp

i ∈ Dp

6: if i ≤ η then
7: Update model by minimizing the prediction loss L(p) (Equation 5)
8: else ▷ Policy learning task after burn-in phase
9: Sample a new task τ ∼ p(τ)

10: Sample query set Dq

11: Initialize a history set Dh ← {(xh
0 , y

h
0 )},xh

0 ∼ Dq

12: Set reference point r and calculate optimal Hypervolume: HV∗ ← HV(P(X ) | r)
13: Initialize Pareto set P ← {yh0 }
14: for t = 1, . . . , T do
15: Select next query point: xt ∼ πθ(· | Dh, t, T )
16: yt ← Evaluate(xt, τ)
17: Update history set: Dh ← Dh ∪ {(xt, yt)}
18: Update Pareto set: P ← P ∪ {yt}
19: Compute reward: rt =

HV(P|r)
HV∗

20: end for
21: Update model using the overall objective L (Equation 6)
22: end if
23: end for

Algorithm S2 TAMO Test-Time Algorithm

Require: Pre-trained TAMO model, new task τtest, query budget T , initial history setDh
0 := {xh, yh}

(with random samples if empty),
1: Dh ← Dh

0 ▷ Initialize the history set
2: P ← {yh} ▷ Initialize the Pareto set
3: for t = 1, . . . , T do
4: xt ∼ πθ(· | Dh, t, T ) ▷ Sample the next query location
5: yt ← Evaluate(xt, τtest)
6: Dh ← Dh ∪ {(xt, yt)} ▷ Update the history set
7: P ← P ∪ {yt} ▷ Update the Pareto set with the new observation
8: end for
9: return Dh,P
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C DETAILED MODEL ARCHITECTURE
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Figure S1: Detailed Architecture of TAMO.

D EXPERIMENTAL DETAILS

D.1 COMPUTATIONAL RESOURCES

We trained TAMO on one NVIDIA H100 80GB HBM3 GPU. All models are evaluated on Tesla
V100-SXM2-32GB GPUs.

D.2 TEST FUNCTIONS

GP samples optimization. This benchmark comprises 30 independent multi-output GP draws with
dx = 2 inputs and dy = 2 objectives in the dimensional in-distribution setting (Section 5.1), and
dx = 3, dy ∈ {2, 3} in the dimensional out-of-distribution setting (Section 5.2). We sample each
task using the same data-generating process described in Section D.3 and report average performance
over the 30 draws.

Ackley–Rastrigin dx = 2, dy = 2. Two-objective problem formed by pairing Ackley and Rastrigin
and maximizing their negations:

Ackley(x) = −20 exp
(
− 0.2

√√√√ 1
2

2∑
i=1

x2
i

)
− exp

(
1
2

2∑
i=1

cos(2πxi)
)
+ e+ 20,

Rastrigin(x) = 20 +

2∑
i=1

(
x2
i − 10 cos(2πxi)

)
,

And we set f (1)(x) = −Ackley(x), f (2)(x) = −Rastrigin(x).

Ackley–Rosenbrock dx = 2, dy = 2. We pair Ackley (above) with Rosenbrock:

Rosenbrock(x) = 100(x2 − x2
1)

2 + (1− x1)
2.

And we set f (1)(x) = −Ackley(x), f (2)(x) = −Rosenbrock(x).
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Branin–Currin dx = 2, dy = 2. Branin:

Branin(x1, x2) =
(
x2 − bx2

1 + cx1 − r
)2

+ s
(
1− t

)
cos(x1) + s,

where b = 5.1
4π2 , c =

5
π , r = 6, s = 10, t = 1

8π ,

and Currin:

Currin(z) =
(
1− e−1/(2z2)

)2300z31 + 1900z21 + 2092z1 + 60

100z31 + 500z21 + 4z1 + 20
.

We maximize f (1)(x) = −Branin(x) and f (2)(x) = −Currin(x).

Oil sorbent dx = 2, dy = 2. We also evaluate on the oil-sorbent multi-objective problem (Wang
et al., 2020; Daulton et al., 2022). The original task controls a material’s composition and man-
ufacturing with 5 ordinal and 2 continuous parameters to jointly maximize three objectives: oil
absorbing capacity, mechanical strength, and water contact angle. In our
study, we fix the ordinal parameters to constant values to obtain a 2D continuous design space with
the same three objectives.

Laser-Plasma dx = 4, dy = 3. We evaluate on the laser–plasma acceleration dataset (Irshad
et al., 2023), which contains 1025 particle-in-cell simulations of a laser wakefield accelerator. Each
record provides 4 continuous inputs (plasma density, upramp length, laser focus,
downramp length) and 3 objectives (total charge, distance of median, target
energy). To obtain a continuous black-box from tabulated simulations, we perform linear inter-
polation. This task differs in dimensionality from our pretraining distribution, providing an OOD
evaluation of cross-dimensional transfer.

Normalization. For all problems, we linearly rescale inputs to a common domain [−5, 5]dx and
rescale each objective independently to [−1, 1] prior to logging and hypervolume computation.
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D.3 HYPERPARAMETERS

Dimension-Agnostic Embedder
Number of learnable positional tokens for x 4
Number of learnable positional tokens for y 3
Number of Transformer layers (L) 4
Dimension of ex and ey 64

Transformer Encoder–Decoder
Dimension of Transformer inputs 64
Point-wise feed-forward dimension of Transformer 256
Number of self-attention layers in Transformer (B) 8
Number of self-attention heads in Transformer 4

Heads
Number of hidden layers in policy head 3
Number of components in GMM head (K) 20
Number of hidden layers in MLP for each GMM component 3

Training
Number of iterations 400000
Number of burn-in iterations 393500
Initial learning rate for warm-up iterations (lr1) 1 · 10−4

Initial Learning rate after warm-up (lr2) 4 · 10−5

Learning rate scheduling Linearly increase from 0 to lr1 in the first 5% of total iterations;
Cosine decay to 0 over total iterations

Size of prediction batch 32
Size of policy-learning batch 16
Weight on prediction loss (λrl) 1.0
discount factor (γ) 1.0
Size of context set Nc ∼ U [2, 50 · dτx]
Size of target set (Nt) 300−Nc

Size of query set (Nq) 256
Optimization budget T 100
Noise level σ 0.0
Number of initial observations during pretraining 1

Evaluation
Number of initial observations during test time 1
Noise level σ 0.0
Size of query set (Nq) 2048
Optimization budget (T ) 100

Table S1: Hyperparameter settings for TAMO evaluated in Section 5.

E ADDITIONAL EXPERIMENTS
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Figure S2: Simple regret and inference time on synthetic examples for single-objective optimization.
Mean with 95% confidence intervals computed across 30 runs with random initial observations.
Again, TAMO matches state-of-the-art regret while dramatically reducing proposal time.
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Figure S3: Effect of query set size. Simple regret (top) and cumulative inference time (bottom) for
TAMO with Nq ∈ {256, 512, 1024, 2048} on four synthetic tasks. Means with 95% CIs over 30 runs.
Larger Nq increases wall-clock roughly linearly while leaving regret essentially unchanged.
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Figure S4: Removing the prediction warm-up and prediction term from the training loss
(Equation 6). Simple regret on four synthetic tasks. Means with 95% CIs over 30 runs. Introducing
an auxiliary prediction task before and during policy training is decisive.
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Figure S5: Effect of the prediction term weight λp in the training loss (Equation 6) during policy
training. Simple regret on four synthetic tasks. Means with 95% CIs over 30 runs. Once policy
training starts, performance is relatively insensitive to λp, with slightly better results for larger
weights.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 25 50 75 100
Oracle Calls

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

pl
e 

R
eg

re
t

GP-DX2-DY2

0 25 50 75 100
Oracle Calls

AckleyRastrigin

0 25 50 75 100
Oracle Calls

AckleyRosenbrock

0 25 50 75 100
Oracle Calls

BraninCurrin

TAMO ( =0.25) TAMO ( =0.5) TAMO ( =0.75) TAMO ( =1.0)

Figure S6: Effect of the discount factor γ in the RL objective (Equation 4) during policy training.
Simple regret on four synthetic tasks. Means with 95% CIs over 30 runs. Overall, performance is
fairly robust to γ, with all policies eventually reaching similar regret levels, and a general trend
toward faster early regret reduction as the degree of non-myopicity (larger γ) increases.
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Figure S7: Effect of the pretraining horizon in the RL objective (Equation 4) during policy
training. We compare a myopic variant of TAMO, pretrained with horizon T = 1, to the standard
TAMO pretrained with T = 100. For the non-myopic model, each pretraining episode starts from a
single randomly sampled context point, and the policy acts for up to 100 steps. For the myopic case,
each episode starts from a randomly sampled context set, and the policy proposes a single additional
point, so every decision is strictly one-step. Simple regret on four synthetic tasks for single objective
optimization (top) and multi-objective optimization (bottom). Means with 95% CIs over 30 runs.
Results clearly advocate for longer pretraining horizons, except for the BraninCurrin problem.
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Figure S8: Effect of model size on optimization performance. We compare a smaller TAMO
variant, trained for the same number of iterations as the standard model but using 2 Transformer layers
per module (dimension-agnostic embedder, B1 layers, B2 layers) instead of 4. Simple regret on four
synthetic tasks. Means with 95% CIs over 30 runs. While the smaller model remains competitive,
the larger backbone consistently attains lower regret, especially on the more challenging tasks.
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Figure S9: Timing breakdown for GP baselines. Left: single-objective Branin with EI. Right:
multi-objective Branin–Currin with qNEHVI. Curves show cumulative inference time (mean ± 1 std
over 10 runs), decomposed into total time (blue), surrogate refits (orange), and acquisition-function
optimization (green). Acquisition optimization quickly dominates the cost in both cases, and
especially in the multi-objective setting.
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Figure S10: Transfer to HPO-3DGS hyperparameter optimization tasks Models are pretrained
on synthetic GP data with dx = 5, dy ∈ {2, 3}, then evaluated on four 3D-Gaussian-Splatting scenes
(Lego, Materials, Mic, Ship; dy = 2 for Lego/Materials and dy = 3 for Mic/Ship). Means with 95%
CI over 50 runs. Across all scenes, TAMO is competitive with the best-performing GP-based
methods (with qNEHVI slightly ahead on Mic), while achieving substantially lower inference
time.
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Figure S11: Effect of pretraining-prior composition on optimization performance. We compare
the original TAMO with two variants trained on modified synthetic priors. Top: Small-lengthscale
prior, where GP draws use shorter kernels by truncating the original lengthscale prior N (2/3, 0.52)
from [0.1, 2.0] to [0.1, 0.5]. Bottom: Quadratic-bowl prior, where for each of the 1 ≤ m ≤ dy
objectives we draw a GP and then sample an “optimum location” x⋆(m) uniformly in the design
space, adding a quadratic term ∥x− x⋆(m)∥2 to the m-th objective. Simple regret on four synthetic
benchmarks; curves show means with 95% confidence intervals over 30 runs. The small-lengthscale
prior slightly degrades performance except on Ackley–Rastrigin, while the quadratic-bowl
prior improves the Ackley-based tasks but hurts performance on Branin–Currin.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F VISUALIZATION EXAMPLES

F.1 EXAMPLES OF GP SAMPLES FROM PRETRAINING

Figures S12 to S15 show some examples of the GP samples used for pre-training.
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Figure S12: GP Samples used during pretraining with input dimension dx = 1 and output dimension
dy = 1, 2, 3.
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Figure S13: GP Samples used during pretraining with input dimension dx = 2 and output dimension
dy = 1.

F.2 EXAMPLES OF INFERENCE

Figure S16 and Figure S17 show examples of mean predictions and proposed queries within a total
budget T = 100 on GP samples, for input dimension dx = 2 and output dimensions dy = 1 and
dy = 2, respectively.
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Figure S14: GP Samples used during pretraining with input dimension dx = 2 and output dimension
dy = 2.
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Figure S15: GP Samples used during pretraining with input dimension dx = 2 and output dimension
dy = 3.

F.3 EXAMPLES OF DECOUPLED OBSERVATIONS

Figure S18 shows examples of mean predictions and proposed queries under the decoupled setting.
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Figure S16: Inference on GP examples (dx = 2, dy = 1), with query points proposed over 100
optimization steps (white circle, size increasing along with the number of queries).
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Figure S17: Inference on GP examples (dx = 2, dy = 2), with query points proposed over 100
optimization steps (white circles, size increasing along with the number of queries).
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Figure S18: Mean predictions and queries on GP examples (dx = 2, dy = 2) from TAMO under the
decoupled setting. Each column represents a distinct objective; queries to evaluate that objective are
outlined by circles, with the sizes increasing over time to show the optimization progress. Note no
queries overlap between objectives.
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