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Abstract

Data in biology is redundant, noisy, and sparse.
How does the type and scale of available data
impact model performance? In this work, we
specifically investigate how protein language mod-
els (pLMs) scale with increasing pretraining data.
We investigate this relationship by measuring the
performance of protein function prediction on a
suite of pLMs pretrained on yearly snapshots of
UniRef100 from 2011 to 2024. We find no ev-
idence of model saturation on this task: perfor-
mance improves—but not monotonically—with
added data, and this trend differs between unsu-
pervised and supervised experiments. Using a
well-characterized S-Lactamase protein from E.
coli, we find that unsupervised model predictions
get better year-over-year, though they do not yet
consistently perform better than the supervised
baseline. Our results underscore the need for tar-
geted data acquisition and deeper study of data
scaling in protein modeling.

1. Introduction

Protein fitness prediction and design is in a period of explo-
sive growth. The successful application of large language
models (LLMs) to biological problems has spurred the de-
velopment of powerful tools. While scaling laws related
to compute resources, model parameters, and data quan-
tity have become well-established in the field of natural
language processing (NLP) (Kaplan et al., 2020; Hernan-
dez et al., 2021; Hoffmann et al., 2022), analogous studies
around biological data have not yet been well-characterized.
Although the field is beginning to explore scaling in terms
of biological systems (Elnaggar et al., 2021; Hesslow et al.,
2022; Cheng et al., 2024; Fournier et al., 2024; Li et al.,
2024; Nguyen et al., 2024), to our knowledge, there is cur-
rently no comprehensive study that investigates how scaling
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laws relate to data scaling for the task of zero-shot and
semi-supervised protein fitness prediction.

1.1. Biological Data

The growth of biological data over the past two decades
has been extraordinary. This has enabled the biological
machine learning community to answer difficult questions
about the interplay of data scale, model performance and
how these relate to challenging tasks in biological predic-
tion. Much of this growth in biological data has been in the
form of massive sequencing databases such as Uniprot (Con-
sortium, 2024), MGnify (Richardson et al., 2022), OMG
(Cornman et al., 2024), and the Big Fantastic Database
(BFD)(Jumper et al., 2021). Uniprot is the oldest of these
and has experienced considerable growth over its lifetime
concomitant with improvements in sequencing. MGnify has
also provided considerable growth in sequences, through
the incorporation of billions of non-redundant metagenomic
assembly sequences. These databases have provided the
biological machine learning community with fantastic op-
portunities to grow the field and expand it into previously
impossible questions, evidenced by all of the models trained
on these collection of sequences (Jumper et al., 2021; Corn-
man et al., 2024; Notin et al., 2022; Lin et al., 2023; Madani
et al., 2023). Despite the dramatic growth of protein se-
quence databases, current sequencing efforts capture only a
tiny fraction of nature’s true protein diversity. Estimates sug-
gest that Earth harbors up to 1012 microbial species, most
of which remain unsequenced and many of which possess
proteins of previously unexplored functions, highlighting
how little of the protein universe has been incorporated into
Al models (Louca et al., 2019). This gap in sampling and
sequencing space represents a potentially fundamental chal-
lenge in model sufficiency and protein fitness prediction.

On the other hand, several highly curated data repositories
exist that provide annotations and experimental measure-
ments of protein mutational fitness data (Rubin et al., 2025).
Resources such as ProteinGym (Notin et al., 2023a) and the
TAPE benchmark (Rao et al., 2019) have become standard
for evaluating machine learning models on tasks like muta-
tion effect prediction and transfer learning. Testing model
performance on experimental data is necessary, and still it
only describes a narrow slice of the protein universe and
cannot fully capture the breadth, complexity, and noisiness
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of biological data encountered in real-world applications.

1.1.1. CHALLENGES

However, more data does not necessarily equate to better Al
model performance. Biological data presents several unique
challenges, only some of which are improved by increased
data abundance:

* Redundancy and imbalance: Overrepresentation of
specific families or taxa can bias training and obscure
generalization (Ding & Steinhardt, 2024; Poux et al.,
2016).

* Annotation sparsity: Many sequences lack experi-
mental validation or consistent functional labels (Rauer
et al., 2021).

* Noisy and heterogeneous data sources: Sequences
originate from a mix of high-throughput and manual
pipelines, often with varied quality standards (Chorlton,
2024).

* Functional ambiguity: Proteins can have multiple or
context-dependent functions, making supervised learn-
ing difficult (Jeffery, 2023).

In spite of these data challenges, there has been consis-
tent growth in the applications of protein language models
(pLMs) across a variety of tasks. However, pLMs are not
fully task agnostic. More complex protein tasks (e.g., moon-
lighting proteins, experimental outcomes, protein fitness
and function, etc.) put a greater burden on the model’s un-
derlying ability to generalize (Zhou et al., 2024). In practice,
increasing the complexity of biological tasks demands more
richly labeled datasets.

1.2. Scaling Laws

Scaling laws have helped researchers balance resources be-
tween compute, parameters, and training data in order to
make optimal models. Teams have measured scaling laws
of parameters and compute for protein language models (EI-
naggar et al., 2021; Cheng et al., 2024; Fournier et al., 2024;
Li et al., 2024; Serrano et al., 2024) as well as published
scaling laws experiments as new models are released (Notin
et al., 2022; Bhatnagar et al., 2025; Rives et al., 2021).

Despite this, our understanding of biological data scaling
laws remains exceptionally limited. While there is consen-
sus that more data is better’, this heuristic often obscures
the nuanced reality that not all data contributes equally to
model performance. As previously noted, high sequence
redundancy can degrade model performance while strategic
data curation can improve outcomes (Cornman et al., 2024).
Diminishing returns in performance are frequently observed
as datasets grow in size (Gordon et al., 2024).

Recent work has begun to address these questions. The
AMPLIFY suite of models (Fournier et al., 2024), trained
on UniRef100 snapshots, spanning from 2011-2024, offers
a unique window into how model performance changes as
the biological sequence pretraining data expands. While
many models offer publicly available checkpoints across
varying parameter sizes, no other set of models (including
ESM, ProGen, and other protein language models) provides
a systematic investigation of training data effects with check-
points released across distinct training data splits. Despite
their relatively small parameter counts and single-seed train-
ing, AMPLIFY models exhibit competitive performance,
remarkable speed, and unique training data splits, enabling
a new set of questions around data growth and model gener-
alization to be addressed.

1.3. Our contribution

Here, we first seek to understand the performance of pLMs
trained on increasing amounts of unlabeled, publicly-hosted
sequence data. We use the suite of AMPLIFY mod-
els trained on time-based snapshots of UniRef100 from
2011-2024. Notably, we use Spearman correlation of log-
likelihoods of ProteinGym sequences and direct experimen-
tal measurements of mutant fitness in ProteinGym as our
metric for model performance.

If biological data follows scaling laws similar to those ob-
served in other fields, then model performance should im-
prove predictably as more data is incorporated into the
model. In this way, we would project data saturation on
the field and provide concrete steps for achieving that. To
evaluate the presence or absence of this phenomenon, we
use the sequence embeddings from those models in concert
with assay data on protein sequences to understand how
semi-supervised learning performance changes with both
unlabeled training data and labeled training data. In both
of these cases, we fail to find the clear hallmarks of scaling
laws. From this we infer that for the protein function task,
we have not yet reached data saturation.

2. Methods
2.1. Task Datasets

We focus on protein variant effect prediction using the
ProteinGym benchmark (Notin et al., 2023a), specifi-
cally the substitution datasets from the ProteinGym 1.0
release, with proteins shorter than AMPLIFY’s context
limit of 2048 amino acids. The DMS_score from
the resulting 213 datasets is used as the phenotypic
label of protein function. We exclude four datasets
because of max context lengths of sequences in AM-
PLIFY: AOA140D2T1_ZIKV_Sourisseau-2019;9576
variants, BRCA2_HUMAN_Erwood_2022_HEK293T; 265
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1630 variants and
15711 variants,

variants, POLG_HCVJF_Qi_2014;
POLG_CXB3N_Mattenberger_2021;
in total comprising 1% of ProteinGym.

2.2. Models
2.2.1. ZERO-SHOT

There is only one collection of models, to our knowledge,
that share a unified training scheme across many differ-
ent pretraining datasets. We therefore use the suite of 14
AMPLIFY models (Fournier et al., 2024) trained on yearly
releases of UniRef100 from 2011 to 2024.

Sequence Log Probability: To compute the zero-shot “fit-
ness” of a protein sequence, we follow the standard practice
of approximation using the log probability from the model.
We apply a softmax over the output logits at each position
to extract a probability for each of the actual tokens, and
sum their logarithms.

To evaluate zero-shot performance, we compare the log-
likelihood assigned by each model to the corresponding
DMS_score label for each mutant in ProteinGym, using
the Spearman correlation coefficient as the evaluation metric,
shown in Figure 1.
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Figure 1. The total number of sequences stored in UniProt from
2011-2024 grows year over year while the correlation of an AM-
PLIFY model trained on these yearly sources of data bounces
between a range of performance, though generally shows an in-
creasing trend.

2.2.2. SUPERVISED

Sequence Embedding: To obtain each protein’s sequence
embedding for supervised learning tasks, we tokenize the
sequence, pass it through an AMPLIFY model, extract the
hidden states from the final layer, and compute the mean
over the sequence dimension.

We train ridge regression models (Hoerl & Kennard, 1970)

using sequence embeddings as input features (z) and DMS
fitness values as labels (y) to study scaling in a super-
vised learning context. Although more sophisticated semi-
supervised and supervised architectures exist (Hsu et al.,
2022; Notin et al., 2023b; Groth et al., 2024), here we use
ridge regression due to its computational efficiency, mod-
ularity (i.e., compatibility with diverse inputs and labels),
and high interpretability.

Splitting Within Datasets: We implement two versions
of the cross-validation schemes introduced in Tranception
(Notin et al., 2022) and used in ProteinNPT (Notin et al.,
2023b) for benchmarking. In a Random split, we randomly
partition the data into train/test splits in 10% increments,
ranging from 10/90 to 90/10. Each split ratio is replicated
five times with different random seeds (Figure 2A). In the
Contiguous scheme, we divide each protein sequence into
five equal-length contiguous segments and train/test on sub-
sets of these contiguous chunks (Figure 2B). In the Modulo
scheme, we split the positions of the protein into five groups
and conduct train/test splits on subsets of these (Figure S5)

Splitting Between Datasets: We would like to understand
how information from one assay might help inform future
experiments, as this is one of the main motivations for ap-
plying machine learning to protein function prediction tasks.
ProteinGym contains a protein, S-Lactamase, with four dif-
ferent experiments, performed on nearly identical sets of
mutations. In a structured split between these different ex-
periments, we train on the earliest experiment from 2012,
and test on the remaining three from 2013, 2014, and 2015;
train on the earliest two experiments, and test on the remain-
ing two; and train on the earliest three experiments and test
on the remaining one dataset. Results are shown in Figure 3.

3. Results and Discussion

We find that model performance does not increase mono-
tonically with the amount of sequence data used for train-
ing. The Spearman correlation between experimental data
and model-predicted fitness fluctuates year-to-year, showing
some decreases even with more training data (Figure 1). For
instance, there is a consistent drop in performance between
the years of 2018 to 2021, despite an additional billion se-
quences (and several hundred billion tokens) in UniRef100.
One possible interpretation is that between 2014 and 2018,
the sum of data added to the model had more relative in-
fluence on the model’s predictive capabilities of protein
function than the data that were added between 2019 and
2021. Overall, the variability in correlation suggests that
the model remains sensitive to the specific sequences added
or removed at each timepoint, indicating that it has not yet
reached data saturation sufficient for robust generalization.

At its best year, this suite of models achieves an average
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Figure 2. A) Random train/test splits within a dataset training on
increasing amounts of labeled data do not reveal large differences
from each of the AMPLIFY models. Using one-hot encoding
as the sequence representation outperforms model embeddings
until a substantial amount of training data is used. B) Contiguous
train/test splits within a dataset do not show an obvious trend
relating performance to amount of pretraining data seen by the
AMPLIFY model.

Spearman correlation of 0.38. When we perform ridge re-
gression, this correlation jumps substantially, leading to the
expected boost in performance and continuing to under-
score the importance of experimental labels. Even training
on 10% of the dataset can increase performance to 0.52,
and to around 0.675 when training on 80% of the dataset
(Figure 2A).

Both the Contiguous (Figure 2B) or Modulo (Figure S5)
data splitting schemes show that performance improves con-
sistently with the inclusion of more labeled training groups.
However, at any given group count, model performance
does not show a consistent trend with respect to pre-training
year.

Finally, we zoom-in on the 5-Lactamase datasets to test the
hypothesis that, for this well-characterized protein family
with abundant data, scaling laws may begin to emerge. In-
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Figure 3. Unsupervised learning is shown with grey traces, and
we see that performance does generally get better as the AM-
PLIFY models train on more UniRef100 data. When doing semi-
supervised learning—shown in blue traces, we do not see the same
improvement and the lines are quite stable.

deed, we see that the unsupervised predictions of fitness
for all four datasets show improvements in correlation with
most AMPLIFY models, beginning with a weak correla-
tion of around 0.25 and improving to correlations more
than 0.6 (Figure 3). When applying ridge regression in
a semi-supervised setup—training on a single dataset and
testing on others—we observe a stable correlation around
0.6 across all AMPLIFY models (lightest blue line in Fig-
ure 3). Notably, this line intersects the unsupervised curve
around 2020, indicating that training on just one experimen-
tal dataset can match the zero-shot performance of much
larger models trained on a decade of UniRef100 data. As
additional datasets are incorporated into training, perfor-
mance improves monotonically, with two- and three-dataset
models outperforming all unsupervised baselines.

3.1. Future Work

We plan on extending this analysis to other families of pLMs
as well as exploring other methods for semi-supervised
learning. Quantifying the improvement year-to-year on an
individual assay may also allow more clear trends to emerge,
as they did with the -Lactamase example. We will also
test additional splits between datasets to understand scaling
laws in transfer learning. We will train on chosen datasets
(i.e. prokaryotic, or a specific protein class, etc) and test
on the remaining datasets in ProteinGym. We also hope to
randomly split ProteinGym between datasets and train on a
small number of randomly selected datasets and test on all
others (i.e. train on 10 datasets and test on remaining 210+;
train on 100 datasets and test on remaining 110+) to see how
performance is balanced between large-scale experimental
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data and LLMs.

4. Conclusion

Our findings suggest that for the protein function predic-
tion task, biological data scaling does not yet follow a sim-
ple, monotonic trend. Even as pretraining datasets grow,
model performance remains sensitive to data composition
and has yet to saturate. Experimental labels remain essen-
tial for boosting predictive power, and targeted benchmarks
like S-Lactamase highlight where scaling benefits begin
to emerge. Continued exploration of data scaling—across
families, tasks, and learning paradigms—is needed to guide
the next generation of biological language models.

Impact Statement

Work presented in this paper impacts the biological machine
learning community in understanding the scaling laws un-
derpinning biological data. Because we believe that current
public data repositories do not saturate biological data for
the task of predicting results of deep mutational scanning
experiments, we hope this motivates more scientists to pur-
sue data acquisition and curation. We also hope that the
field moves towards quantifying existing data in these repos-
itories & creating better metrics for summarizing complex
sequence data.
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A. Appendix

1e8  UniRef Sequence Growth (2011-2025)
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4 - UniRef90
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Number of Segs

Figure S1. UniRef100, UniRef90, and UniRef50 grow year over year from 2011 to 2025. UniRef100 grows faster than UniRef90 which
grows faster than UniRef50, demonstrating that we are collecting more sequences that are more similar to each other.
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Size of Clustered UniRef compared to UniRefl00
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Figure S2. The ratio of UniRef100 with either UniRef90 or UniRef50 shrinks year over year. If every single sequence in UniRef100 was
more than 90% or 50% different than every other sequence, we would see a flat line at 0.9 and 0.5 respectively. However, we see that both
of these trends start lower than that and shrink each year. Therefore we can infer that the data added continues to be less and less diverse.
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Figure S3. Figure S3 replicates Figure 1, partitioned by partitioned by MSA depth, as represented as Neft/L from ProteinGym. Proteins
with Low MSA depth generally get worse with later timepoints while proteins with Medium and High MSA depth generally improve.
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Figure S4. Figure S4 replicates Figure 2A, partitioned by by MSA depth, as represented as Neff/L from ProteinGym. Proteins with Low
MSA depth exhibit better performance with models trained on earlier timepoints of UniRef100. Whereas proteins with Medium and High
MSA depth do not show as large of a range.
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Figure S5. This is a similar plot as Figure 2B but with the Modulo train/test split. The top plot shows the results without one-hot plotted
and the bottom plot shows the results with one-hot plotted. One-hot encodings provide almost no information to the model when splitting
in this non-random way and the correlation hovers around 0 regardless of how much labeled data is used.
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Figure S6. When looking at the Modulo train/test splits by MSA depth, we see that the trend is similar between them and relatively flat.
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Spearman Correlation vs Dataset Size (20% Train)
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Figure S7. The number of mutants included in the dataset impacts the spread of spearman correlation between the model predictions and
the experimental values. With relatively smaller dateset sizes, the spearman correlations range from 0 to close to 1. Whereas with larger
dataset sizes ( 15,000 mutants measured), the model accuracy is always above 0.5. This is only for training on a random split of 20% of
the data and we see a similar trend across all random data splits.
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Spearman Correlation vs Dataset Size (Modulo)
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Figure S8. Identical Figure S7 but with the Modulo train/test split instead of random. Generally we see a similar trend of more spread out
data at lower number of mutations (rows). One-hot encoding, however, does look incredibly different and hovers around 0, with the mean
correlation shown in the dashed line.
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