
To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

BEYOND ADVERSARIAL ROBUSTNESS: BREAKING
THE ROBUSTNESS-ALIGNMENT TRADE-OFF IN OB-
JECT RECOGNITION

Pinyuan Feng1∗ Drew Linsley2,3∗ Thibaut Boissin4 Alekh Karkada Ashok2

Thomas Fel5 Stephanie Olaiya2 Thomas Serre2,3

1Department of Psychology, Columbia University, USA
2Department of Cognitive and Psychological Sciences, Brown University, USA
3Carney Institute for Brain Science, Brown University, USA
4Institut de Recherche Technologique Saint-Exupéry, France
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ABSTRACT

A well-known limitation of deep neural networks (DNNs) is their sensitivity to
adversarial attacks (Szegedy et al., 2014). That DNNs can easily be fooled by
minute image perturbations imperceptible to humans has long been considered
a significant vulnerability of deep learning, which may eventually force a shift
towards modeling paradigms that are faithful to biology. Nevertheless, the ever-
evolving capabilities of DNNs have largely eclipsed these early concerns. Do
adversarial perturbations continue to pose a threat to DNNs?

Here, we investigate whether DNN improvements in image categorization have
led to concurrent improvements in robustness to adversarial perturbations. We
evaluated DNN adversarial robustness in two ways. First, we measured the toler-
ance of DNNs to adversarial perturbations by recording the norm of the small-
est image perturbation needed to change a model’s decision using a standard
“minimum-norm” robustness metric. Second, we measured alignment of pertur-
bations and the degree to which they target pixels that are diagnostic for human
observers. We uncover a surprising trade-off: as DNNs have improved on Ima-
geNet, they have grown more tolerant to adversarial perturbations. However, these
perturbations are also progressively less aligned with features critical to humans
for object recognition.

To better understand the source of this trade-off, we turn to DNN training methods
that have previously been reported to align DNNs with human vision, namely ad-
versarial training (Goodfellow et al., 2014) and harmonization (Fel et al., 2022).
Our results show that both methods improve this trade-off, significantly increas-
ing the tolerance to adversarial perturbations and alignment of DNN perturbations
with human visual features. Harmonized models, unlike adversarially trained
ones, are also able to maintain their ImageNet accuracy in the process. Our find-
ings suggest that, the vulnerability of DNNs to adversarial perturbations can be at
least partially mitigated by augmenting the trends in model scaling that are driv-
ing development today with training routines that align models with biological
intelligence. We release our code and data to support continued progress toward
studying the adversarial behavior of DNNs.

*These authors contributed equally to this work. Email: pf2477@columbia.edu
†https://github.com/TonyFPY/Adversarial_Alignment

1

https://github.com/TonyFPY/Adversarial_Alignment


To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

1 INTRODUCTION

For at least a decade, it has been known that the behavior of deep neural networks (DNNs)
can be controlled by small “adversarial” perturbations of the input that are imperceptible to hu-
mans (Szegedy et al., 2014; Biggio & Roli, 2017). Given the myriad of ways in which DNNs are
increasingly being deployed in our everyday lives, this vulnerability may pose a significant security
threat. In recent years, the dangers of adversarial perturbations have been gradually overshadowed as
they have continuously been scaled-up. Billion-parameter DNNs that have been trained on internet-
scale datasets rival or surpass humans performance across vision, language, and reasoning tasks.
However, it is not yet known how this scaling of DNNs has affected their sensitivity to adversarial
perturbations.

There are several ways to make DNNs more “robust” to adversarial attacks, meaning that it will
take a larger image perturbation (in terms of pixel change) than usual to change a model’s deci-
sion (Kurakin et al., 2018). For example, there are algorithmic defenses that can be incorporated into
DNN inference (Cohen et al., 2019) and training routines that increase the adversarial robustness of
DNNs (Madry et al., 2018; Zhang et al., 2019; Cisse et al., 2017). These approaches carry two key
drawbacks. First, there is a well-established trade-off between a model’s adversarial robustness and
task accuracy (Yang et al., 2020; Stutz et al., 2019). Second, while improving a DNN’s robustness
means that a stronger perturbation is needed to attack it, there is no constraint on which image pixels
are attacked. Humans rely on some visual features more than others to recognize objects (Schyns
& Oliva, 1994; Ullman et al., 2016; Linsley et al., 2019a; Fel et al., 2022). If a perturbation targets
features that are less important to humans for recognition, it may be challenging to notice regardless
of the size of the perturbation (Malhotra et al., 2020) regardless of the perturbation strength (Fig. 1).
We propose that for DNNs to be genuinely robust to adversarial attacks, perturbations should be as
noticeable to humans as possible. That is, the minimal perturbation needed to change a model’s de-
cision should result in large changes to object features that are diagnostic to humans for recognition
(Fig. 1).

There are reasons to believe that the scaling laws that have helped DNNs reach their many recent
successes in vision and language may at least partially improve their adversarial robustness (Bubeck
& Sellke, 2023). Large-scale vision transformers are as robust to random image perturbations as
humans are (Dehghani et al., 2023; Geirhos et al., 2021), and it is possible that this means larger
adversarial perturbations are needed to attack these models. However, state-of-the-art DNNs also
learn to recognize objects using different visual features than humans (Fel et al., 2022). It is unclear
how these attributes of large-scale DNN vision interact and whether or not they affect the adversarial
robustness of models.

Contributions. In this work, we evaluate a large and representative sample of DNNs from the
past decade to understand how their adversarial robustness has changed as they have evolved and
improved on ImageNet. We measure adversarial robustness in two ways: (i) the average ℓ2 distance
between clean and perturbed images, which we refer to as perturbation tolerance, and (ii) the align-
ment of these attacks with object features that humans find diagnostic for recognition, which we
refer to as human alignment. We discover the following:

• DNNs have grown signficantly more tolerant to the size of adversarial perturbations as they have
improved on ImageNet. This means that the scaling of DNNs over the past several years has
brought some defense against adversarial attacks.

• In contrast, successful attacks on DNNs are becoming significantly less aligned with humans as
they target image pixels that are less important for human vision.

• Most importantly, there is a pareto-front governing the trade-off between Perturbation Tolerance
and Adversarial Human Alignment, suggesting that new approaches are needed for human-like
adversarial robustness.

• We find that this pareto front can be broken by training routines that have previously been found
effective at aligning DNNs with human perception: the harmonization (Fel et al., 2022) and adver-
sarial training (Madry et al., 2018). Both approaches lead to DNNs with significantly improved
Perturbation Tolerance and Adversarial Human Alignment; however, only harmonization leads to
models that maintain (or slightly improve) their accuracy.
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Figure 1: We propose a new goal for adversarial robustness: Robust models should be tolerant
to strong adversarial image perturbations, and successful attacks should target object features
that are diagnostic to humans for classification. Adversarial perturbations that are large in size
and aligned with human perception are more likely to be noticed by users, which will help neutral-
ize them. Depicted here are ImageNet images, the corresponding human feature importance map
from ClickMe (Linsley et al., 2019a), and adversarial perturbations from ℓ2 Fast Minimum-Norm
(FMN) attacks on three different DNNs that are designed to change the models’ decisions from
animal→non-animal. One DNN can be attacked with a weak perturbation (as measured by ℓ2 dis-
tance between clean and attacked images), and the successful attack is misaligned with the ClickMe
feature importance map according to the Spearman correlation between the two (Low Tolerance/Low
Alignment). Another DNN is more tolerant to perturbations, but successful perturbations affect fea-
tures that are different than those that humans rely on for object recognition (High Tolerance/Low
Alignment). A third DNN approaches our ideal outcome: successful attacks are only possible with
strong perturbations, and those perturbations affect features humans find diagnostic (High Toler-
ance/High Alignment). Please zoom in for more details.

2 RELATED WORK

2.1 ADVERSARIAL PERTURBATIONS AND HUMAN PERCEPTION

The vulnerability of DNNs to adversarial perturbations represents a major threat to the safety and
security of real-world DNN-based applications. That adversarial perturbations are imperceptible to
humans has also made them a popular source for study in the vision sciences. There is evidence
that adversarial perturbations on convolutional neural networks (CNNs) can transfer to humans in
rapid psychophysics experiments (Elsayed et al., 2018; Gaziv et al., 2023). Others have found that
neurons in primate inferotemporal cortex share a similar tolerance to adversarial perturbations as
adversarially trained DNNs (Guo et al., 2022). On the other hand, others have claimed that the
similarities between the adversarial robustness of DNN and human perception can be arbitrarily
controlled by experimental design and stimulus choices (Malhotra et al., 2020; Dujmović et al.,
2020; Malhotra et al., 2022). Moreover, researchers have shown that scaling up can help adversarial
training achieve better performance on adversarial defenses, but the generated adversarial examples
become biased relative to human perception (Bartoldson et al., 2024). Unlike prior work, our study
enriches and reconciles these disparate claims by demonstrating that adversarial robustness, as it is
commonly used to describe Perturbation Tolerance, need not entail alignment with humans. DNNs
that achieve Perturbation Tolerance and Adversarial Human Alignment will bring us one step closer
toward artificial vision systems that see as humans do.
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2.2 ALIGNING THE VISUAL STRATEGIES OF HUMANS AND MACHINES

Taken to its extreme, it is possible for a DNN to have an arbitrarily high tolerance to adversarial
perturbations. However, we argue that tolerance alone is an incomplete description of DNN robust-
ness, since a strong perturbation could be achieved through large changes to unnoticeable pixels
(for instance, on an image boundary) (Malhotra et al., 2020). This is one of the many reasons why
there is a growing urgency in computer vision to ensure that DNNs that rival human performance
on image benchmarks can succeed with visual strategies that are interpretable and approximately
consistent with those of humans. There has been progress made towards this goal by evaluating or
co-training DNNs with data on human attention and saliency, gathered from eye tracking or mouse
clicks during passive or active viewing (Linsley et al., 2017; 2019b; Jiang et al., 2015; Lai et al.,
2019; Ebrahimpour et al., 2019). Others have found success by comparing the behaviors of DNNs
with humans, either by optimizing for distances between patterns of behavior (Peterson et al., 2018;
Roads & Love, 2020; Muttenthaler et al., 2022; Sucholutsky & Griffiths, 2023), or by combining
behavioral data with human eye tracking (Langlois et al., 2021). Another direct comparison of hu-
man and DNN alignment involved identifying the minimal image patch needed by each for object
recognition (Ullman et al., 2016; Funke et al., 2018). In this work, we turn to harmonization, an
approach that forces DNNs to solve tasks by relying on similar features as humans (Fel et al., 2022).

3 METHODS

3.1 EXPERIMENTAL STIMULI

We evaluated models on a standard ImageNet subset used for evaluating adversarial attacks (En-
gstrom et al., 2019) (see A.1 for details), consisting of 960 images from 240 categories. To simplify
the adversarial perturbation space, and control for potential confounds related to the perceptual
distance between ImageNet’s 1000 categories, we reduced the task to animal vs. non-animal classi-
fication. Next, we paired each image with a visual feature importance map from human participants
that highlights parts of objects relevant for recognition taken from ClickMe (Linsley et al., 2019a).
These maps highlight parts of the faces of animals, the wheels and front grilles of cars, and the wings
and cockpits of airplanes.

3.2 DNN MODEL ZOO

We evaluated 309 DNNs that are representative of the variety of approaches used in computer vision
today. Each model was implemented in PyTorch with the TIMM toolbox (Wightman, 2019), us-
ing pre-trained weights downloaded from TIMM. There were 125 convolutional neural networks
(CNNs) trained on ImageNet, 78 vision transformers (ViT), and 52 hybrid architectures that used
a combination of CNN and ViT. Also, we incorporated 54 models pre-trained using representative
self-supervised learning methods, such as CLIP (Radford et al., 2021) and DINO (Caron et al.,
2021; Oquab et al., 2023), which have emerged as effective training paradigms for learning gen-
eralizable visual representations on large-scale unlabeled data. Additional details on these DNNs,
including individual licenses, can be found in A.2.

Neural Harmonizer. There is a growing body of work indicating that the representations and
perceptual behaviors of DNNs are becoming less aligned with humans as they improve on Ima-
geNet (Fel et al., 2022; Kumar et al., 2022; Bowers et al., 2022). It has also been found that this
misalignment can be partially addressed by the neural harmonizer, a training routine that forces
DNNs to learn object recognition using features that are diagnostic for humans (Fel et al., 2022).
As this approach has significantly improved the alignment of DNNs with humans, we hypothesized
that it would also improve the Adversarial Human Alignment of DNNs without inhibiting their abil-
ity to accurately recognize objects. In our experiment, we evaluated the impact of harmonization
(harmonized) on 9 models (see A.3 for details on training).

Robustified DNNs. We also tested 33 adversarially-trained (Robust) DNNs. We trained ResNet18,
ResNet50, Wide ResNet-50-2 (He et al., 2016; Zagoruyko & Komodakis, 2016) to be tolerant to
ℓ∞-bounded and ℓ2-bounded PGD perturbations (Madry et al., 2018) using the robustness pack-
age (Engstrom et al., 2019). A DNN’s robustness to these attacks is controlled by a hyper-
parameter ϵ, which is the maximum allowable perturbation. For ℓ2-bounded perturbationa, we
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Figure 2: The Perturbation Tolerance of DNNs has significantly increased as they have improved
on ImageNet. Each dot denotes a DNN’s performance on multi-label ImageNet (Shankar et al.,
2020) vs. its average ℓ2 robustness radius to ℓ2 minimum-norm attacks, which we call Perturbation
Tolerance. Error bars denote standard error, and the variance is so small for some models that it is
invisible. The yellow region represents human performance, with mean=95.14% and std=2.02%.

trained models with ϵ ∈ {0.01, 0.03, 0.05, 0.1, 0.25, 0.5} and for ℓ∞-bounded attacks, we used
ϵ ∈ {0.5/255, 1.0/255, 2.0/255, 4.0/255, 8.0/255}. In evaluation, we used a different perturbation
(see Section 3.3) to ensure fair comparisons across models, as training on a specific attack would
inherently bias the models toward better performance against that same attack during evaluation
(see A.4 for more details).

3.3 ADVERSARIAL ATTACKS AND EVALUATION

Ever since the introduction of adversarial attacks (Szegedy et al., 2014), the field has exploded with
variations that trade-off speed for effectiveness. In our study, we were interested in using attacks
that (i) could be applied to our model zoo and stimulus set in a reasonable amount of time, (ii)
would approach the smallest perturbation needed to change a model’s prediction, and (iii) yielded
continuous-valued perturbations that could be compared to ClickMe feature importance maps to
measure their alignment with human visual perception.

One group of candidates we considered is bounded-norm attacks, such as FGSM (Goodfellow et al.,
2014), BIM (Kurakin et al., 2018) , and PGD (Madry et al., 2018). These are popular methods that
are widely used for evaluating adversarial robustness due to their simplicity and efficiency. However,
they generate adversarial examples by perturbing inputs within a predefined norm constraint. This
means we need to additionally search for the minimum perturbation needed for an attack, which can
sometimes result in less accurate or suboptimal solutions. To address this limitation, we turned to
the Fast Minimum-Norm (FMN) adversarial attack (Pintor et al., 2021), which outperforms other
minimum-norm attacks in terms of speed, reliability, and effectiveness.

Following the FMN approach of Pintor et al. (2021), we ran ℓ2 FMN attack for 1000 iterations, using
an annealing step size that starts at 1.0 and decreases to 10−5. The initial step size for epsilon update
γ was set to 5.0. The algorithm performs normalized gradient descent and projects into an adaptive
epsilon to find the minimum norm. All attacks were successful for every image and model. We used
1 NVIDIA A6000 GPU for the attacks, which took between 30 and 240 minutes per model.

Perturbation Tolerance. We compute the ℓ2 distance between a clean image and the minimum ϵ
attacked counterpart, and we report the metric as the average distance from the evaluation over the
entire dataset to show how resistant models are to adversarial attacks. Higher Perturbation Tolerance
indicates larger changes to the input are required to change the model’s decision, and vice versa.
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Figure 3: Successful adversarial attacks on DNNs are becoming less aligned with human per-
ception as they have improved on ImageNet. Each dot denotes a DNN’s ImageNet performance
on multi-label accuracy (Shankar et al., 2020) vs. the average Spearman correlation between suc-
cessful attacks an images’ human feature importance maps from ClickMe. We call this correlation
a DNN’s Adversarial Human Alignment. Error bars denote standard error, and variance may be so
small for some models that they are not visible. We fit a regression line to show the decreasing trend.

Adversarial Human Alignment. We measure the average Spearman Rank Correlation between the
perturbation pattern from an attacked image and the human visual feature map of the corresponding
clean image. Adversarial Human Alignment is quantified by averaging the correlation across all
pairs. While humans and machines exhibit different levels of sensitivity to perturbation intensity,
our primary focus is on where the perturbations occur. We hypothesize that the spatial alignment
reveals whether models “fail in human-like ways.” In other words, we probe whether the perturbed
features overlap with the features humans find diagnostic for recognition, in order to determine
whether they share similar perceptual biases or not.

Multi-label Accuracy. We quantify the model’s performance on ImageNet using Multi-label Ac-
curacy (Shankar et al., 2020; Vasudevan et al., 2022). Unlike traditional top-1 and top-5 accuracy,
which evaluate models based on a single predicted label or a narrow set of candidates, multi-label
accuracy accounts for all semantically correct labels for an image. This metric also incorporates
human performance, allowing for a more direct comparison between humans and models.

4 RESULTS

DNNs are becoming more tolerant to adversarial attacks as they improve on ImageNet. We
used ℓ2 FMN to attack DNNs in our model zoo to change their object recognition decisions on each
image from our stimulus set. We computed Perturbation Tolerance scores for each DNN as the aver-
age ℓ2 distance between clean images and the minimum-attacked versions found by FMN. We found
that, as DNNs have improved on ImageNet, their Perturbation Tolerance has also improved, signif-
icantly (Fig. 2, ρs = 0.81, p < 0.001). We use a second-degree polynomial regression line to fit the
trends, but it fails to capture the continued growth beyond human-level ImageNet performance. The
most accurate DNN† we tested, rivaled the Perturbation Tolerance of several adversarially-trained
models despite being approximately 11.24% ∼ 46.62% more accurate on ImageNet. We also found
a shift in Perturbation Tolerance based on model architecture. ViTs are significantly more tolerant
to attacks than CNNs (Fig. 2, ViT vs. CNN, T (163) = 9.11, p < 0.001). For the learning paradigm,
models pre-trained through self-supervised learning, which achieve higher accuracy on ImageNet,
are significantly more robust than those trained through supervised learning (Fig. 2, SSL vs. Other,

†eva02 large patch14 448.mim in22k ft in22k in1k
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Figure 4: DNNs trade-off between Adversarial Human Alignment and Perturbation Tolerance.
Left Each dot denotes a DNN’s average Spearman correlation between successful attacks and hu-
man feature importance maps from ClickMe vs. the ℓ2 distance between successfully attacked and
clean images. There is a pareto-front governing the trade-off between these ways of measuring
DNNs’ behavior under adversarial attacks. DNNs that are harmonized or adversarially trained are
able to break the trade-off. Right Images of a Chihuahua with perturbations from different models,
along with the human feature importance map from ClickMe and maps depicting the adversarial per-
turbations for a baseline, adversarially robust, and harmonized ResNet18. The Adversarial Human
Alignment (AA) and Perturbation Tolerance (PT) scores are also depicted.

T (65) = 7.85, p < 0.001). Additionally, data diet plays a key role because we observed that
models pre-trained on larger datasets and then finetuned on ImageNet are more tolerant to perturba-
tions compared to models solely trained on ImageNet (Fig. 2, Big Data vs. Other, T (32) = 5.65,
p < 0.001). Implying from the above results, the continued optimization of DNNs for performance
on ImageNet holds promise for building models that are as robust to image perturbations as any
approach designed specifically to build such tolerance.

As DNNs improve on ImageNet, their adversarial perturbations are becoming less aligned with
visual features that are diagnostic to humans. To measure the alignment between a DNN’s ad-
versarial perturbations and human perception, we turned to ClickMe, a large-scale dataset of human
feature importance maps for ImageNet. We then measured a DNN’s Adversarial Human Alignment
as the average Spearman correlation between ClickMe maps and successful adversarial perturba-
tions for every image in our stimulus set. As DNNs have improved on ImageNet, the alignment
of their attacks with human perception has dropped significantly (Fig. 3, ρs = −0.74, p < 0.001).
Again, we see that the regression line, fitted with a second-degree polynomial, follows a downward
trend, but fails to account for the sharp drop after reaching human-level ImageNet performance. The
most accurate model has a ρs = −0.03 Adversarial Human Alignment, whereas the least accurate
model† has a higher alignment of ρs = 0.22. In contrast to our findings with Perturbation Toler-
ance, CNNs are on average significantly more aligned with human visual features than ViTs (Fig. 3,
ViT vs. CNN, T (153) = −12.5, p < 0.001). Similarly, self-supervised models, which are widely
believed to learn more robust and generalizable representations, shows significantly lower Adversar-
ial Human Alignment than supervised models (Fig. 3, SSL vs. Other, T (98) = −7.49, p < 0.001).
However, increasing the amount of training data in the pre-training stage does not significantly affect
the spatial feature alignment (Fig. 3, Big Data vs. Other, T (40) = −2.54, p = 0.015, not significant
at the p < 0.001 threshold).

DNNs trade-off between Perturbation Tolerance and Adversarial Human Alignment. After plot-
ting the Perturbation Tolerance of each DNN in our zoo against its Adversarial Human Alignment,
we found a striking pattern: DNNs either have a strong tolerance to perturbations and misaligned
attacks or successful attacks are weak in strength but moderately aligned with human perception.
There is a pareto-front governing the trade-off between these two adversarial metrics in our study.
The existence of this pareto-front indicates a fundamental constraint with the development of DNNs:
improving robustness or alignment comes at the cost of the other.

†lcnet 050.ra2 in1k
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Human-aligned models and robustified models show surprising adversarial behavior. We rea-
soned that a potential approach for breaking the robustness-alignment trade-off is to turn to models
that are explicitly trained to be aligned with human perception. One successful strategy is harmo-
nization, which can improve the representational alignment of DNNs with human perception while
also maintaining or slightly improving model accuracy on ImageNet (Fel et al., 2022). Indeed, we
found that all harmonized DNNs show significantly higher Perturbation Tolerance and Adversarial
Human Alignment than their baselines (Appendix B).

Another strategy that has been used to align models with human perception is adversarial train-
ing Goodfellow et al. (2014). These models are also significantly more tolerant than other standard
models (Fig. 4, Robust vs. Other, T (41) = 6.41, p < 0.001), which can be explained by the fact
that they are trained on adversarial examples to withstand a certain level of perturbation. Besides,
we observed that they achieve significantly higher Adversarial Human Alignment than other models
(Fig. 4, Robust vs. Other, T (106) = 20.85, p < 0.001), which is consistent with the findings in
recent work Gaziv et al. (2023); Bartoldson et al. (2024). However, unlike harmonized models, the
adversarially robust models trade-off accuracy for their improvements in Tolerance and Adversarial
Human Alignment (Robust vs. Other, T (45) = −8, p < 0.001).

5 DISCUSSION

DNN scale provides valuable protection against the strength of adversarial attacks. Perhaps
the biggest breakthrough in artificial intelligence since the release of AlexNet (Krizhevsky et al.,
2012) is the finding that scaling the number of parameters in DNNs and the size of their datasets for
training can help them rival and outperform humans on challenging tasks (Kaplan et al., 2020; De-
hghani et al., 2023). Here, we show that scale also provides concomitant benefits to the Perturbation
Tolerance of DNNs: the size of an adversarial attack needed to affect today’s most largest-scale and
most-accurate DNNs is significantly greater than ever before. This trend also appears to be acceler-
ating, with ViTs growing tolerant at a faster rate than ever before. DNN scale may be sufficient for
“defanging” adversarial attacks by making them detectable to humans.

DNN scale worsens their adversarial alignment with human perception. As the Perturbation
Tolerance of DNNs has improved with ImageNet accuracy, adversarial attacks on accurate models
have begun to consistently affect parts of object images that humans find less important or com-
pletely irrelevant for recognition. Scaling up DNNs may improve robustness, but it does not neces-
sarily enhance alignment with human perception, which means there is a fundamental misalignment
of the training routines used for large-scale DNNs today. It is important for the field of vision
research to explore new approaches to alignment to ensure that adversarial attacks target features
humans rely on for perception and action. As this issue has broad implications for interpretability,
vision modeling, and the use of DNNs as a computational tool to study human vision.

Human-aligned models and robustified models as partial solutions to break the trade-off. Ro-
bustified DNNs achieve the best of both worlds of adversarial vulnerability. This is probably because
adversarial training enforces models to ignore perturbations on spurious features while focusing on
semantically meaningful features that more closely align with human object recognition. The ob-
servation can be further supported by recent findings in the literature (Etmann et al., 2019; Geirhos
et al., 2021; Gaziv et al., 2023). However, their performance on ImageNet is considerably com-
promised. Although harmonized DNNs demonstrate more effective adversarial behavior than their
baselines, they still fall behind models through adversarial training with larger perturbation strength.
We suspect that scaling the neural harmonizer to larger and more accurate DNNs, and expanding the
size of ClickMe (potentially with pseudo-labels on internet-scale datasets), will bring the field closer
to models that are sufficiently robust to adversarial attacks. Another promising approach is to train
visual models with auxiliary losses that integrate both harmonization and adversarial training, po-
tentially allowing models to enhance robustness and alignment while maintaining the performance.

Limitations. We relied on a ℓ2-norm attack for our experiments because it is fast, easy-to-optimize,
and widely used in the adversarial robustness community (Akhtar & Mian, 2018). Whether our
results translate to other ℓp-norm attacks remains for future research. While we have explored the
alignment between humans and machines in adversarial attacks, we have not conducted psychophys-
ical experiments to see if adversarial features can transfer across different entities (e.g., humans and
models). Our approach, instead, focuses on the behavioral patterns under spatial constraints, in-
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Figure 5: ℓ2 FMN adversarial attacks for DNNs. Plotted here are ImageNet images and adversarial
attacks for a variety of DNNs. The images and corresponding ClickMe maps are presented at the
leftmost column (snow leopard, bagel, American chameleon, cradle. zoom in to see attack details).
Perturbations are best viewed by zooming in.

vestigating whether models and humans share similar perceptual biases in terms of which image
regions are most susceptible to perturbations. Prior work (Elsayed et al., 2018; Veerabadran et al.,
2023) suggests that human perception can still be influenced by subtle changes in images, although
humans exhibit greater robustness to such perturbations compared to neural networks. We leave
further exploration of these aspects for future work.
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Broader impacts. Adversarial attacks reveal the fundamental limitations in modeling biological
vision with DNNs. Our findings highlight that the scaling trends that are driving progress in com-
puter vision today exhibit a misalignment in adversarial behavior between humans and machines. To
address this, new approaches for inducing representational alignment between DNNs and humans
are needed to close the gap, ultimately improving both interpretability and real-world reliability of
data-driven vision modeling.
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Sébastien Bubeck and Mark Sellke. A universal law of robustness via isoperimetry. Journal of the
ACM, 70(2):1–18, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Herv’e J’egou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 9630–9640, 2021. URL https:
//api.semanticscholar.org/CorpusID:233444273.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International Conference on Machine
Learning, pp. 854–863. PMLR, 2017.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In international conference on machine learning, pp. 1310–1320. PMLR, 2019.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton,
Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Min-
derer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F Elsayed,
Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick
Collier, Alexey Gritsenko, Vighnesh Birodkar, Cristina Vasconcelos, Yi Tay, Thomas Mensink,
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Marin Dujmović, Gaurav Malhotra, and Jeffrey S Bowers. What do adversarial images tell us about
human vision? Elife, 9, September 2020.

10

http://dx.doi.org/10.1109/ACCESS.2018.2807385
https://api.semanticscholar.org/CorpusID:233444273
https://api.semanticscholar.org/CorpusID:233444273


To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

Mohammad K Ebrahimpour, J Ben Falandays, Samuel Spevack, and David C Noelle. Do humans
look where deep convolutional neural networks “attend”? In Advances in Visual Computing, pp.
53–65. Springer International Publishing, 2019.

Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey Kurakin, Ian Good-
fellow, and Jascha Sohl-Dickstein. Adversarial examples that fool both computer vision and
Time-Limited humans. In S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi,
and R Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dimitris Tsipras. Robustness
(python library), 2019. URL https://github.com/MadryLab/robustness.

Christian Etmann, Sebastian Lunz, Peter Maass, and Carola Schoenlieb. On the connection between
adversarial robustness and saliency map interpretability. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 1823–1832. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/v97/etmann19a.html.

Thomas Fel, Ivan Felipe, Drew Linsley, and Thomas Serre. Harmonizing the object recognition
strategies of deep neural networks with humans. Adv. Neural Inf. Process. Syst., 2022.

J Funke, F D Tschopp, W Grisaitis, A Sheridan, C Singh, S Saalfeld, and S C Turaga. Large
scale image segmentation with structured loss based deep learning for connectome reconstruction.
IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–1, 2018.

Guy Gaziv, Michael J. Lee, and James J. DiCarlo. Strong and precise modulation of human percepts
via robustified anns. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Robert Geirhos, Kantharaju Narayanappa, Benjamin Mitzkus, Tizian Thieringer, Matthias Bethge,
Felix A Wichmann, and Wieland Brendel. Partial success in closing the gap between human and
machine vision. June 2021.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Chong Guo, Michael Lee, Guillaume Leclerc, Joel Dapello, Yug Rao, Aleksander Madry, and James
Dicarlo. Adversarially trained neural representations are already as robust as biological neural
representations. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 8072–8081. PMLR, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Computer Vision and Pattern Recognition, 2016.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. Curran Associates Inc., Red Hook,
NY, USA, 2019.

Ming Jiang, Shengsheng Huang, Juanyong Duan, and Qi Zhao. SALICON: Saliency in context.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1072–1080,
June 2015.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. January 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Proceedings of the 26th International Conference on Neural In-
formation Processing Systems - Volume 1, NIPS’12, pp. 1097–1105, Red Hook, NY, USA, 2012.
Curran Associates Inc.

11

https://github.com/MadryLab/robustness
https://proceedings.mlr.press/v97/etmann19a.html


To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

Manoj Kumar, Neil Houlsby, Nal Kalchbrenner, and Ekin Dogus Cubuk. Do better ImageNet clas-
sifiers assess perceptual similarity better? September 2022.

Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao, Ming Liang, Tianyu
Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, et al. Adversarial attacks and defences competition. In
The NIPS’17 Competition: Building Intelligent Systems, pp. 195–231. Springer, 2018.

Qiuxia Lai, Salman Khan, Yongwei Nie, Jianbing Shen, Hanqiu Sun, and Ling Shao. Understanding
more about human and machine attention in deep neural networks. June 2019.

Thomas Langlois, Haicheng Zhao, Erin Grant, Ishita Dasgupta, Tom Griffiths, and Nori Jacoby.
Passive attention in artificial neural networks predicts human visual selectivity. In M Ranzato,
A Beygelzimer, Y Dauphin, P S Liang, and J Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 27094–27106. Curran Associates, Inc., 2021.

D Linsley, S Eberhardt, T Sharma, P Gupta, and T Serre. What are the visual features underlying
human versus machine vision? In 2017 IEEE International Conference on Computer Vision
Workshops (ICCVW), pp. 2706–2714, October 2017.

Drew Linsley, Dan Shiebler, S Eberhardt, and Thomas Serre. Learning what and where to attend.
International Conference on Learning Representations (ICLR), 2019a.

Drew Linsley, Dan Shiebler, Sven Eberhardt, and Thomas Serre. Learning what and where to attend
with humans in the loop. In International Conference on Learning Representations, 2019b.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Gaurav Malhotra, Benjamin D Evans, and Jeffrey S Bowers. Hiding a plane with a pixel: examining
shape-bias in CNNs and the benefit of building in biological constraints. Vision Res., 174:57–68,
September 2020.
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A APPENDIX

A.1 EXPERIMENTAL STIMULI

We used the robustness package (Engstrom et al., 2019) to build a customized ImageNet validation
dataset, grouping semantically similar classes into 12 representative superclasses based on the Word-
Net hierarchy (Miller, 1995). Since ImageNet categories are imbalanced (e.g., more dog than bird
classes), this grouping ensured a more balanced distribution. We then evenly sampled 960 images
to prevent specific subcategories (e.g., certain dog breeds) from biasing evaluation. Customizing
ImageNet dataset is widely used in the adversarial attack context (Ilyas et al., 2019; Santurkar et al.,
2019; 2021; Gaziv et al., 2023). It provides a balanced trade-off, preserving the diversity and com-
plexity of natural images while significantly reducing the label space. Also, using a constrained
subset helps ensure more reliable and interpretable adversarial analysis by mitigating label ambigu-
ities that arise in fine-grained classification.

Images were preprocessed and normalized using the standard TIMM routine. Additionally, to adapt
ImageNet models for use with our customized dataset, we introduced a class-mapping layer that ag-
gregates predictions from fine-grained ImageNet classes into animate/inanimate classes (Ilyas et al.,
2019; Santurkar et al., 2019; 2021; Gaziv et al., 2023). This is achieved by constructing a mapping
between the new labels and the corresponding ImageNet labels, which ensures that the model out-
puts are compatible with the customized dataset while maintaining the pre-trained ImageNet model’s
capabilities.

A.2 DNN MODEL ZOO

We comprehensively evaluated the adversarial robustness of DNNs on a large sample of mod-
els from the TIMM toolbox (Wightman, 2019). These DNNs, available under the Apache 2.0
license, are intended for non-commercial research purposes. The complete list of DNNs we
evaluated on can be viewed at https://anonymous.4open.science/r/Adversarial_
Alignment-CF28.

A.3 NEURAL HARMONIZERS

Training DNNs for ImageNet with the neural harmonizer involves adding an another loss to cross-
entropy for object recognition optimization. The additional loss forces a model’s gradients to be
as similar as possible to feature importance maps collected from humans. Distances between DNN
and human feature imporance maps are computed at multiple scales by a function Pi(.), which
downsamples each map p to N levels of a pyramid using a Gaussian kernel, with i ∈ {1, ..., N}.
To train a DNN with the neural harmonizer we seek to minimize

∑N
i ||Pi(g(fθ,x)) − Pi(ϕ)||2

and align DNN feature importance maps with humans at every level of the pyramid. To facilitate
learning, feature importance maps from DNNs and humans are normalized and rectified before
distances are computed using z(.), a preprocessing function that takes a feature importance map
ϕ and transforms it to have 0 mean and unit standard deviation. Putting these pieces together, the
completed neural harmonizer loss involves computing the following:

LHarmonization =λ1

N∑
i

||(z ◦ Pi ◦ g(fθ,x))
+ − (z ◦ Pi(ϕ))

+||2 (1)

+ LCCE(fθ,x,y) + λ2

∑
i

θ2i (2)

We follow the original neural harmonizer training recipe to optimize 9 DNNs for object recog-
nition on ImageNet while relying on category-diagnostic features captured by ClickMe (Fel
et al., 2022): resnet18, resnet34, resnet50, resnetv2 50, resnet101, resnet152,
vit tiny patch16 224, convnext tiny, mobilenetv3 small 050. Each was trained
with different settings of λ1 and λ2, which controlled the relative strength of losses for object recog-
nition and alignment, respectively.
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Neural Harmonizer Perturbation Tolerance (PT) Adversarial Human Alignment (AA)

resnetv2 50 2.9369± 0.0785 36.62%± 1.44%

vit tiny patch16 224 2.4101± 0.0563 30.51%± 1.40%

convnext tiny 2.5164± 0.0605 25.97%± 1.38%

mobilenetv3 small 050 1.5694± 0.0328 26.14%± 1.13%

resnet18 1.6884± 0.0156 40.11%± 1.56%

resnet34 2.1633± 0.0430 40.26%± 1.56%

resnet50 1.6827± 0.0313 39.22%± 1.48%

resnet101 1.7925± 0.0413 33.35%± 1.49%

resnet152 1.9059± 0.0365 37.29%± 1.40%

Table 1: Perturbation Tolerance (PT) and Adversarial Human Alignment (AA) for various harmo-
nized models. The values represent the mean PT and AA for each model, with standard error of the
mean (SEM) shown as ±.

A.4 ADVERSARIALLY-TRAINED MODELS

Adversarial training is a robust optimization technique aimed at improving the resilience of deep
neural networks (DNNs) against adversarial attacks. These attacks introduce small, often impercep-
tible perturbations to input images, causing significant misclassification. Given a neural network
parameterized by θ, trained on a dataset D = {(xi, yi)}Ni=1, standard training optimizes the empiri-
cal risk:

min
θ

E(x,y)∼D[L(fθ(x), y)], (3)

where L is the loss function, typically cross-entropy for classification tasks.

An adversarial example x′ is generated by applying a perturbation δ to the input x such that the
classifier is fooled while maintaining perceptual similarity:

x′ = x+ δ, s.t. ∥δ∥p ≤ ϵ, (4)

where ∥ · ∥p denotes the p-norm constraint, and ϵ is a small perturbation budget.

Adversarial training improves model robustness by explicitly incorporating adversarial examples
into the training process. Instead of minimizing the loss on clean samples, the model is trained to
minimize the worst-case loss within a perturbation budget:

min
θ

E(x,y)∼D

[
max

∥δ∥p≤ϵ
L(fθ(x+ δ), y)

]
. (5)

This min-max formulation seeks to find adversarial perturbations δ that maximize the loss while
simultaneously updating θ to minimize the worst-case loss.

15



To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

Below are results from a list of adversarially-trained models:

Model Perturbation Tolerance (PT) Adversarial Human Alignment (AA)

resnet18 l2 eps0.01 1.4511± 0.026775 26.12%± 1.26%

resnet18 l2 eps0.03 1.7228± 0.035167 27.25%± 1.26%

resnet18 l2 eps0.05 1.8900± 0.041815 27.13%± 1.30%

resnet18 l2 eps0.1 2.2793± 0.054803 28.78%± 1.29%

resnet18 l2 eps0.25 3.0940± 0.085464 29.41%± 1.27%

resnet18 l2 eps0.5 4.1068± 0.126492 30.48%± 1.32%

resnet50 l2 eps0.01 1.7186± 0.031991 23.63%± 1.23%

resnet50 l2 eps0.03 1.9581± 0.040712 25.20%± 1.15%

resnet50 l2 eps0.05 2.2171± 0.052840 27.07%± 1.21%

resnet50 l2 eps0.1 2.6884± 0.065770 26.70%± 1.29%

resnet50 l2 eps0.25 3.5240± 0.098367 28.06%± 1.27%

resnet50 l2 eps0.5 4.6717± 0.139479 28.87%± 1.28%

wide resnet50 2 l2 eps0.01 1.8233± 0.034353 23.27%± 1.21%

wide resnet50 2 l2 eps0.03 2.0990± 0.044210 24.25%± 1.18%

wide resnet50 2 l2 eps0.05 2.3147± 0.050032 26.29%± 1.11%

wide resnet50 2 l2 eps0.1 2.8313± 0.067706 27.27%± 1.15%

wide resnet50 2 l2 eps0.25 3.8358± 0.100168 27.33%± 1.15%

wide resnet50 2 l2 eps0.5 4.8839± 0.132979 27.82%± 1.24%

resnet18 linf eps0.5 255 3.5849± 0.106339 35.41%± 1.50%

resnet18 linf eps1.0 255 4.5922± 0.151595 35.08%± 1.50%

resnet18 linf eps2.0 255 4.3452± 0.148342 23.48%± 1.11%

resnet18 linf eps4.0 255 3.5693± 0.126666 18.49%± 0.85%

resnet18 linf eps8.0 255 3.6703± 0.146257 18.86%± 0.89%

resnet50 linf eps0.5 255 4.0640± 0.122031 35.00%± 1.39%

resnet50 linf eps1.0 255 4.2507± 0.132856 33.98%± 1.40%

resnet50 linf eps2.0 255 4.0732± 0.140176 21.49%± 1.01%

resnet50 linf eps4.0 255 4.0304± 0.143759 19.13%± 0.92%

resnet50 linf eps8.0 255 4.5225± 0.184825 15.29%± 0.79%

wide resnet50 2 linf eps0.5 255 4.2642± 0.122851 35.65%± 1.42%

wide resnet50 2 linf eps1.0 255 4.5811± 0.142719 35.69%± 1.43%

wide resnet50 2 linf eps2.0 255 4.7295± 0.163614 34.46%± 1.39%

wide resnet50 2 linf eps4.0 255 4.7939± 0.169146 26.01%± 1.20%

wide resnet50 2 linf eps8.0 255 4.2206± 0.149968 20.46%± 0.86%

Table 2: Perturbation Tolerance (PT) and Adversarial Human Alignment (AA) for Robustified Mod-
els.
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Figure 6: Perturbation Tolerance of neural harmonizers and their baseline models. Among them,
one harmonized model mobilenetv3 small 050.lamb in1k harmonized shows a Per-
turbation Tolerance increase that does not reach significance at the strict p < 0.001 threshold but
is still statistically significant at p < 0.01.
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C APPENDIX

Images CNN ViT Hybrid RobustSSL Harmonized

Figure 8: Visualization of stimuli overlaid by visual feature importance maps and ad-
versarial perturbations generated from efficientnet b0, vit tiny, maxvit tiny, convnextv2 base,
wide resnet50 2 linf eps1.0, resnet34 harmonized (from left to right).
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Figure 9: Visualization of stimuli overlaid by visual feature importance maps and ad-
versarial perturbations generated from efficientnet b0, vit tiny, maxvit tiny, convnextv2 base,
wide resnet50 2 linf eps1.0, resnet34 harmonized (from left to right).
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