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Abstract

Hybrid modelling reduces the misspecification of expert models by combining them with
machine learning (ML) components learned from data. Similarly to many ML algorithms,
hybrid model performance guarantees are limited to the training distribution. Leveraging
the insight that the expert model is usually valid even outside the training domain, we
overcome this limitation by introducing a hybrid data augmentation strategy termed expert
augmentation. Based on a probabilistic formalization of hybrid modelling, we demonstrate
that expert augmentation, which can be incorporated into existing hybrid systems, improves
generalization. We empirically validate the expert augmentation on three controlled experi-
ments modelling dynamical systems with ordinary and partial di�erential equations. Finally,
we assess the potential real-world applicability of expert augmentation on a dataset of a real
double pendulum.

Figure 1: APHYNITY, an existing hybrid modelling strategy, is unable to predict accurately the dynamic of
a 2D di�usion reaction for a shifted test distribution, although it predicts well configurations that follow the
training distribution. APHYNITY+, the same model fine-tuned with our expert augmentation, generalizes to shifted
distributions as expected from the validity of the underlying physics.
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1 Introduction

Generalizing to unseen data is crucial to make a model applicable in the real world. When training and test
data are independently and identically distributed (IID), we assess the model generalization on a held-out
subset of the training data. Unfortunately, the training and test scenarios do not entirely overlap in practice.
This observation has motivated many recent research e�orts to focus on the robustness of ML models
(Gulrajani & Lopez-Paz, 2020; Geirhos et al., 2020; Koh et al., 2021). Common strategies can be broadly
grouped into two categories. The first class of methods aims to align properties of the model (e.g., invariance,
equivariance or monotonicity) with expertise in the problem of interest (Cubuk et al., 2019; Mahmood et al.,
2021; Keriven & Peyré, 2019; Silver et al., 2017). The second category is data-focused (Sagawa et al., 2019;
Arjovsky et al., 2019; Krueger et al., 2021; Creager et al., 2021), and leverages variations present in the
training data, e.g., some methods minimize the worst-case sub-group performance, to achieve robustness.

The data-oriented methods, which include Group-DRO (Sagawa et al., 2019) and Invariant Risk Minimiza-
tion (Arjovsky et al., 2019, IRM), present the advantage to specify the invariances implicitly via domains or
environments. However, these methods rely on variations in the training data, which may be insu�cient when
the problem is too complex, or the variations of interest are absent from the training set. On the other hand,
methods based on domain-specific expertise do not su�er from such limitations. Embedding expertise into a
model can be done via architectural inductive biases (LeCun et al., 1995; Xu et al., 2019), data augmentation
(Cubuk et al., 2019), or a learning objective that enforces established symmetries of the problem (Cranmer
et al., 2020). For example, simple data augmentation techniques combined with convolutions lead to excellent
performance on natural image problems (Cubuk et al., 2019). Another natural approach to embedding
expertise in ML models, and the one studied in this paper, is called hybrid learning, or sometimes gray-box
modelling (Willard et al., 2022). This framework combines an expert model (e.g., from first principle physics)
with a learned component that improves the expert model so that the combination better fits real-world
data. In hybrid learning, the expert model plays a central role and is supposed to provide a simple and
well-grounded (parametric) description of the process considered.

In recent works (Yin et al., 2021; Takeishi & Kalousis, 2021; Qian et al., 2021; Mehta et al., 2021; Lei
& Mirams, 2021; Reichstein et al., 2019), hybrid learning demonstrated success in complementing partial
physical models and improving the inference of the corresponding parameters. We observe that current hybrid
learning algorithms are sub-optimal in the amortized inference setting – when we aim to build hybrid models
that are valid for various test configurations. Contrary to the common belief that hybrid learning achieves
better generalization than black box ML models, we argue and demonstrate that hybrid learning algorithms
do not yet meet their promise regarding robustness in amortized settings. Although hybrid learning achieves
strong performance on IID test distributions by exploiting the inductive bias of the expert models, their
performance collapses when the test domain is not included in the training domain. This is unsatisfactory as
the expert model is typically well-defined far outside the training distribution.

We introduce expert augmentations for training augmented hybrid models (AHMs), a procedure that extends
the range of validity of hybrid models and improves generalization, as pictured by Figure 1. Our contribution
is to first formalise the hybrid learning problem as: 1) Learning a probabilistic model partially defined by the
expert model; 2) Performing inference over this probabilistic hybrid model. In this context, we show that
hybrid learning is vulnerable to distribution shifts for which the expert model is well defined (see Figure 1,
bottom row). Motivated by our analysis, we propose to fine-tune the hybrid model on an expert-augmented
dataset that includes distribution shifts (see results of augmentation in Figure 1, middle row). These expert
augmentations only rely on the hybrid model itself, leveraging that the expert model is also well-defined
outside of the training distribution. Our experiments on various controlled problems demonstrate that
AHMs improve the generalization capabilities of state-of-the-art hybrid learning algorithms on synthetic and
real-world data in the amortize setting.

2 Hybrid learning

We formalize hybrid learning with the probabilistic model depicted in Figure 2, and later rely on this
formalism to show the benefits of the proposed proposed expert augmentation. In this Bayesian network,
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capital letters denote random variables (e.g., Y ) and, we use calligraphic letters for the domain of the
corresponding realization (e.g., y œ Y). In our formalism, the expert model is a conditional density p(ye|x, ze)
that describes the distribution of the expert response Ye to an input x together with a parametric description
of the system ze, denoting expert parameters. We augment the expert model with the interaction model
which is a conditional distribution p(y|x, ye, za) that describes the distribution of the observation Y given the
input x, the expert model response ye, and a parametric description of the interaction model za.

Ze X Za

Ye Y

Expert model

Figure 2: A hybrid probabilistic model which describes
the relationship between a given input X and the output
Y for a configuration of the system as defined by the la-
tent variables Ze and Za. The prescribed expert model
defines the conditional density p(ye|ze, x), where Ye is an
approximation of Y . Hybrid learning aims at learning the
conditional distribution p(y|za, ye, x).

Our goal is to create a robust predictive model
p(y|x, (xo, yo)) of the random variable Y , given the in-
put x together with independent observations (xo, yo)
of the same system, where the subscript o denotes
an observed quantity. As a concrete example, we
consider predicting the evolution of a damped pen-
dulum (described in Section 4.1) given its initial
angle and speed (x =

#
◊, ◊̇

$
) and a sequence of ob-

servations of the same pendulum. The expert model
we assume is able to describe a frictionless pendu-
lum whose dynamic is only characterized by one
parameter ze := Ê0, denoting its fundamental fre-
quency. The expert model is misspecified; it does not
model the friction with a second parameter za := –,
the damping factor. In this problem, (xo, yo) and
(x, y) are IID realizations of the same pendulum
which corresponds, in general terms, to samples from
p(x, y|za, ze) for some fixed but unknown values of
za and ze. The expert variables ze (e.g., Ê0) together
with za (e.g., –) should accurately describe the system that produces Y (e.g., the evolution of the pendulum’s
angle and speed along time) from X (e.g., the initial pendulum’s state). In our setting we assume that we
are given a pair (xo, yo) (e.g., past observations) from which we can accurately infer the state of the system
(za, ze) as described by the interaction and expert models, and then predict the distribution of Y for a given
input x (e.g., forecasting future observations) to the same system. Provided all probability distributions in
Figure 2 are known, the Bayes optimal hybrid predictor pB is

pB(y|x, (xo, yo)) = Ep(za,ze|(xo,yo)) [p(y|x, za, ze)] , (1)

as shown in Appendix E.

In the amortized setting, we aim to learn a model of both the predictive model p(y|x, za, ze) and of the
posterior over the parameters p(za, ze|(xo, yo)). We will see that existing hybrid learning algorithms neglect
the importance of building a robust encoder p(za, ze|(xo, yo)) to make predictions in out-of-distribution (OOD)
settings. In particular, we note that the interaction between ze and y is essentially defined by the expert
model. Thus it should be possible, and preferable, to learn a predictive model of Y whose performance
guarantees are as independent as possible from the training distribution of the expert variables ze. Indeed,
the validity of the expert model often go beyond the seen training examples. However, we demonstrate below
that existing hybrid learning algorithms’ performance collapses when the distribution of ze shifts. The expert
augmentation introduced in this paper improves the robustness of hybrid models to such shifts.

2.1 Hybrid generative modelling

As common in the hybrid learning literature, we consider expert models that are deterministic although our
discussion clearly extends to stochastic expert models. The expert model describes the system as a function
fe : X ◊ Ze æ Ye that computes the response ye to an input x, parameterized by expert variables ze. The
goal of hybrid modelling is to augment the expert model with a component learned from data as depicted in
Figure 2. Formally, given a dataset D = {(x(i), y(i))}N

i=1 of N IID samples, we aim to learn the interaction
model p◊(y|x, ye, za) that fits the data well but is close to the expert model. Defining closeness is hard and is
an application-dependent modelling choice beyond the scope of this paper. However, common metrics include
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L2-distance between expert and hybrid outputs or Kullback-Leibler (KL) divergence between the marginal
distributions of Y and Ye.

Learning a model that is close to the expert model and fits the training data well is a hard problem. However,
the APHYNITY algorithm (Yin et al., 2021) and the Hybrid-VAE (Takeishi & Kalousis, 2021, HVAE) are
two recent approaches that o�er promising solutions to this problem. We now briefly describe how these
methods approximate the Bayes optimal predictor of Equation (1). Our augmentation strategy is compatible
(and e�ective) with both approaches.

APHYNITY. Yin et al. (2021) consider hybrid learning for augmenting expert models defined as ordinary
di�erential equation (ODE). They consider an additive hybrid model that should allow a perfect fitting
of the data. In probabilistic terms, this assumption is equivalent to assuming the conditional distribution
p◊(y|x, ye, za) is a Dirac distribution. Formally, they solve the following optimization problem

min
ze,Fa

||Fa|| s.t. ’(x, y) œ D, ’t,
dyt

dt
= Fe(yt, ze) + Fa(yt)

with y0 := x, (2)

where || · || is a norm operator on the function space, Fa : Yt æ Yt is a learned function, Fe : Yt ◊ Ze æ Yt

defines the expert model and D is a dataset of initial states x := y0 and sequences y œ Y := (Yt)k, where k
is the number of observed timesteps. APHYNITY solves this problem with Lagrangian optimization and
Neural ODEs (Chen et al., 2018) to compute derivatives. In the context of ODEs, the random variable X is
the initial state of the system at t0 and Y is the observed sequence of k states between t0 and t1.

This formulation only considers learning a missing dynamic for one realization of the system described by
Figure 2, for a single ze (and za). However, we are interested in learning a hybrid model that works for
the full set of systems described by Figure 2. As suggested in Yin et al. (2021), we use an encoder network
gÂ(·, ·) : X ◊Y æ Za ◊Ze that corresponds to a Dirac distribution located at gÂ as the approximate posterior
qÂ(za, ze|x, y). The interaction model is a product of Dirac distributions whose locations correspond to the
solution of the ODE

dyt

dt
= Fe(yt, ze) + Fa(yt, za; ◊), y0 := x. (3)

Hence the corresponding approximate Bayes predictor replaces the parameters (za, ze) in Equation (3) with
the prediction of gÂ and predicts a product of Dirac distributions.

Hybrid-VAE (HVAE). In contrast to APHYNITY, the hybrid-VAE proposed by Takeishi & Kalousis
(2021) is not limited to additive interactions between the expert model and the ML model, nor to ODEs.
Instead, their goal is to learn the generative model described by Figure 2. They achieve this with a variational
auto-encoder (VAE) where the decoder specifically follows Figure 2. Similarly to the amortized APHYNITY
model, the encoder gÂ(x, y) predicts a posterior distribution over za and ze, and the model is trained with
the classical Evidence Lower Bound on the likelihood (ELBO). Takeishi & Kalousis (2021) observe that
relying only on an architectural inductive bias and maximum likelihood training is not enough to ground the
generative model to the expert equations. They propose to add three regularizers RP P C , RDA,1, and RDA,2
that encourage the generative model to rely on the expert model. The final objective is

max
◊,Â

ED [ELBO((x, y); Â, ◊)] + –RP P C + —RDA,1 + “RDA,2. (4)

The first regularizer, RP P C , encourages the marginal distribution of samples generated by the complete
model to be close to the marginal distribution that would be only generated by the physical model. The two
other regularizers specifically require the encoder network for ze to be made of two sub-networks. The first
network filters the observations to keep only what can be generated by the expert model alone; it predicts
za and remove its e�ect from y to predict a filtered version of it. The second network maps the filtered
observations to the posterior distribution over ze. RDA,1 penalizes the objective if the observations generated
by the expert model are not close to the filtered observations. Finally, RDA,2 relies on data augmentation
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with the expert model to enforce that the second sub-network correctly identifies the expert variables ze if
the observations were correctly filtered by the first encoder. We refer the reader to Appendix B and Takeishi
& Kalousis (2021) for more details on HVAE. For HVAE, the approximate predictor takes the form described
by Equation (1) where p(za, ze|(xo, yo)) is approximated by the encoder qÂ(za, ze|x, y) and p(y|x, za, ze) by
the learned hybrid generative model.

Ze

Z̃e

+
Ze

+
��̃

� Za

ú
Za

p(ze|x, y) ¥ qÂ(ze|x, y)
¸ ˚˙ ˝

˙ ˝¸ ˚
p(x, y|ze) = Ep(za)p(ye|x,ze)[p(x)p(y|x, ye, za)]

¥ Ep(za)p(ye|x,ze)[p(x)p◊(y|x, ye, za)]
Figure 3: Visualization of the distribution shifts considered in this work. The train support � of (x, y) results from
(za, ze) œ Za ◊ Ze. The test supports (in red) are denoted with a tilde symbols as Z̃e for ze and �̃ for (x, y). The
augmented support

+
� (in green) includes both train and test scenarios and corresponds to (za, ze) œ Za ◊

+
Ze. The

outer violet domain that includes
+
� depicts one of our experiment in which the domain of za is also shifted. Hybrid

modelling algorithms alone may learn a mapping p◊ :
+
Ze æ

+
� but augmentation is necessary to learn the inverse

mapping qÂ :
+
� æ

+
Ze.

3 Robust hybrid learning

We now formalize our definition of out of distribution (OOD) and robustness. In general, a test scenario is
OOD if the joint test distribution p̃(x, y) is di�erent from the training distribution p(x, y), that is d(p̃, p) > 0
for any properly defined divergence or distance d between distributions. In the following, we reduce our
discussion to a sub-class of distribution shifts for which the marginal train and test distributions over ze

may be di�erent, d(p(ze), p̃(ze)) > 0, but the marginals of za and x are constant. As a consequence, the
joint distribution of (x, y) pairs is also shifted. Formally, the training and test distributions are respectively
defined as

p(x, y) := Ep(ze)p(za)p(ye|x,ze) [p(x)p(y|x, ye, za)] ,

p̃(x, y) := Ep̃(ze)p(za)p(ye|x,ze) [p(x)p(y|x, ye, za)] .

In this context, we demonstrate, theoretically and empirically, that classical hybrid models fail. To address
this failure, we introduce augmented hybrid models and show that, under some assumptions, they achieve
optimal performance on both the train and test distributions.

Our goal is to learn a predictive model

p◊,Â(y|x, (xo, yo)) = EqÂ(za,ze|xo,yo)
p(ye|x,ze)

[p◊(y|x, ye, za)]

that is exact on both the train and test domains when they follow the aforementioned training and testing
distribution shifts. We say that a learned predictive model p̂(a|b) is E-exact, or exact on the sample space E ,
if p̂(a|b) = p(a|b) ’(a, b) œ E . Here we qualify a predictive model as robust to a test scenario if its exactness
on the training domain is su�cient to ensure exactness on the test domain.

We now define an augmented distribution +
p(ze) over the expert variables whose support

+
Ze includes the

joint support Ze fi Z̃e between the train and test distribution of the physical parameters. As depicted in
Figure 3, we denote the corresponding support over the observation space X ◊ Y as

+
� for the augmented

distribution, � for the training distribution, and �̃ for the test distribution. In this context, and with A1, we
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may demonstrate that even under perfect learning, classical hybrid learning algorithms do not produce an
�̃-exact predictor while our augmentation strategy does.

Assumption 1 (A1): Hybrid modelling learns an interaction model p◊(y|ye, x, za) that is
+
�-exact.

Although strong, A1 is consistent with the recent literature on hybrid modelling, which assumes that the
expert model p(ye|x, ze) is an accurate description of the system, thereby the interaction model p◊(y|ye, x, za)
should not be overly complex. As an example, we consider an additive interaction model in our experiments
for which extrapolation to unseen ye holds if the additive assumption is correct. That said, we still notice
that the exactness of the interaction model p◊ on the augmented support

+
� is insu�cient to prove that the

predictive model p◊,Â is
+
�-exact. Indeed, the encoder qÂ is only trained on the training data and cannot rely

on a strong inductive bias in contrast to p◊. Thus, even if the encoder is exact on the training distribution,
the corresponding predictive model is not

+
�-exact. While the decoder’s performance are not limited to the

training scenarios thanks to the broader validity of the expert model, the encoder does not generalize to
unseen settings as it is purely data-driven.

3.1 Expert augmentation

Algorithm 1 Expert augmented hybrid learning
1: D := {(x(i), y(i))}N

i=1 œ (X ◊ Y)N Û A training set
2: qÂ(za, ze|x, y) Û A parametric encoder
3: p(ye|x, ze) Û An expert model
4: p◊(y|x, ye, za) Û A parametric interaction model
5: l(x, y, ◊, Â) Û A hybrid learning objective function
6: p+(ze) Û A prior distribution on ze that covers both

train and test scenarios
7: procedure Training
8: Âı, ◊ı Ω arg minÂ,◊ E(x,y)≥D [l(x, y, ◊, Â)]
9: ◊ı is frozen.

10:
+
D Ω GenerateAugmentedSet

11: D Ω
+
D fi D

12: Finetuning the encoder on the augmented training set:
13: Âı Ω arg min

Â
ED [l(x, y, ◊ı, Â)]

≠ E+
D

[log qÂ(ze|x, y)]
14: return Âı, ◊ı

15: end procedure

16: procedure GenerateAugmentedSet
17:

+
D Ω {}

18: for each (xo, yo) œ D do

19: za ≥ qÂı(za, ze|xo, yo)
20: ze ≥ p+(ze)
21: ye ≥ p(ye|x, ze)
22: y ≥ p◊ı(y|x, ye, za)
23:

+
D Ω

+
D fi {(xo, y, ze)}

24: end for

25: return

+
D

26: end procedure

We propose a data augmentation strategy to improve
the robustness of hybrid models to unseen test sce-
narios. Once trained, the hybrid model is composed
of an encoder qÂ and an interaction model p◊ that
are respectively �- and

+
�-exact. We may create a

new training distribution with a support over
+
� by

sampling physical parameters ze from a distribution
that covers

+
Ze. Then, we train the encoder qÂ on

the augmented domain
+
�, under perfect training the

predictive model p◊,Â(y|x, (xo, yo)) is
+
�-exact, hence

exact on both train and test domains. The expert
augmentation is formally described in Algorithm 1,
for further details see Appendix A.

Our learning strategy is grounded in existing hy-
brid modelling algorithms, and here, we focus on
APHYNITY and HVAE. We first train an encoder
qÂ and a decoder p◊ with a hybrid learning algo-
rithm. Together with experts we then decide on a
realistic distribution +

p(ze) and create a new dataset
+
D := {(ze, xi, yi)}

+
N
i=1 by sampling from the hybrid

generative model defined by Figure 2 and the inter-
action model p◊. A notable di�erence between the
augmented training set

+
D and the original training

set D is that the former contains ground truth values
for the expert’s variables ze. As we assume that the
interaction model is

+
�-exact, we freeze it and only

fine-tune the encoder qÂ on D fi
+
D. We use a combi-

nation of the loss function ¸ of the original algorithm
(e.g., Equation (4) for HVAE, and the Lagrangian
of Equation (2) for APHYNITY) and a supervision
on the latent variable objective to learn a decoder
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that solves

Âı = arg min
Â

E+
p(ze)p(za)p(x)p(y|x,ze,za) [¸(x, y; ◊, Â) ≠ log qÂ(ze|x, y)] ,

(5)

¥ arg min
Â

1

N +
+

N

ÿ

(x,y)œDfi
+
D

¸(x, y; ◊, Â) ≠ 1
+

N

ÿ

(ze,x,y)œ
+
D

log qÂ(ze|x, y).

In our experiments we use a Gaussian distribution for the posterior, which is equivalent to a mean squared
error (MSE) loss on the physical parameters. We provide a detailed description of the expert augmentation
scheme in Appendix A. In principle, the regularizers (the norm of fa for APHYNITY and RP P C , RDA,1,
and RDA,2 for the Hybrid-VAE) are not necessary as Equation (5) only aims to improve the encoder whereas
these terms aim to regularize the interaction model. However, in practice, we have observed that this does
not matter and makes the implementation even more straightforward.

As a side note, we would like to emphasize the di�erence between the data augmentation proposed in this
paper and the one from Takeishi & Kalousis (2021). While HVAE also requires to sample new physical
parameters ze, it is only to ensure that a sub-part of the encoder is able to infer correctly ze given ye. This
augmentation does not contribute robustness to distribution shifts on y in contrast to ours.

4 Experiments

We assess the benefits of expert augmentation on three synthetic problems and one real-world experiment
that are described by the ODE

dyt

dt
= Fe(yt; ze) + Fa(yt; za), (6)

where Fe : Yt ◊ Ze æ Yt is the expert model and Fa : Yt ◊ Za æ Yt complements it. In our notation X is
the initial state y0 and the response Y is the sequence of states y1:t1 := [yi�t]t1/�t

i=1 . For all experiments we
train the models to maximize p◊,Â(y = y1:t1 |x = y0) on the training data. We validate and test the models on
the predictive distribution p(y = y1:t2 |x = y0, xo = y0, yo = y1:t1), where t2 > t1 assesses the generalization
over time. A brief description of the di�erent problems is provided below.

4.1 Synthetic experiments

The damped pendulum is often used as an example in the hybrid modelling literature (Yin et al., 2021;
Takeishi & Kalousis, 2021). The system’s state at time t is yt =

#
◊t ◊̇t

$T , where ◊t is the angle of the
pendulum at time t and ◊̇t its angular speed. The evolution of the state over time is described by Equation (6),
where ze := Ê, za = – and

Fe :=
#
◊̇t ≠Ê2

0 sin ◊t

$T and Fa :=
#
0 ≠–◊̇t

$T
. (7)

The corresponding systems are defined by the damping factor – and Ê0, the fundamental frequency of the
pendulum.

The RLC series circuits are electrical circuits made of 3 electrical components that may model a large range
of transfer functions. A schematic of such circuit is shown in Figure 10. These models are often used in biology
(e.g., the Hodgkin-Huxley class of models (Hodgkin & Huxley, 1952), in photoplethysmography (Crabtree &
Smith, 2003)) and in electrical engineering to model the dynamics of various systems. The system’s state at
time t is yt =

#
Ut It

$T , where Ut is the voltage over the capacitor and It the current in the circuit. The
evolution of the state over time is described by Equation (6), where ze := {L, C}, za = {R} and

Fe :=
5

It
C1

L (Vt ≠ Ut)

6
and Fa :=

5
0

≠ R
C It

6
. (8)
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(a)

◊1

◊2

l1

l2

m1

m2

(b) (c)

Figure 4: The double pendulum setup. (a) A photograph of the double pendulum at rest, reproduced from Asseman
et al. (2018). (b) A simplified sketch of the setup. (c) An example of the time series extracted from the videos of the
double pendulum.

The dynamics described by the RLC circuit is more diverse than for the pendulum and the system can be
hard to identify. This system is characterised by the resistance R, capacitance C, and inductance L, provided
Vt is known.

The 2D reaction di�usion was used by Yin et al. (2021) to assess the quality of APHYNITY. It is a 2D
FitzHugh-Nagumo on a 32 ◊ 32 grid. The system’s state at time t is a 2 ◊ 32 ◊ 32 array yt =

#
ut vt

$T . The
evolution of the state over time is described by Equation (6), where ze := {a, b}, za = {k} and

Fe :=
5
a�ut

b�vt

6
and Fa :=

5
Ru(ut, vt; k)
Rv(ut, vt)

6
, (9)

where � is the Laplace operator, the local reaction terms are Ru(u, v; k) = u≠u3 ≠k ≠v and Rv(u, v) = u≠v.
This model is interesting to study as it considers a state space for which neural architectures may have a
real advantage compared to other ML models. In particular, convolutional neural networks are e�ective for
processing signals with spacial and/or temporal correlation.

In these experiments we analyze the e�ect of our data augmentation strategy on APHYNITY and HVAE.
All models explicitly use the assumption that the interaction model follows the structure of Equation (6).
For each problem the validation and test sets are respectively IID and OOD with respect to the training
distribution. The best models are always selected based on validation performance, that is with samples
from �. We provide additional details on the di�erent expert models, dataset creation, and neural networks
architectures in Appendix C.

4.2 A real world dataset - the double pendulum

We next validate the benefit of the expert augmentation in a controlled real-world setting. The dataset
of a double pendulum introduced by Asseman et al. (2018) contains 21 videos of the pendulum shown in
Figure 4a. Each run lasts approximately 40 seconds and is recorded at 400Hz. We can extract the position
of the pendulum limbs from each frame with elementary computer-vision tools. Each recording starts from
di�erent initial conditions, leading to many states of this chaotic system. For illustration, we showcase the
evolution of the arms’ angles over time in Figure 4c.

We sketch a simplified representation of the double pendulum in Figure 4b. Its state is a four-dimensional
vector yt =

#
◊1(t) ◊2(t) ◊̇1(t) ◊̇2(t)

$T , containing the position and speed of both masses. We can derive

8



Published in Transactions on Machine Learning Research (02/2023)

(e.g., (Stachowiak & Okada, 2006)) the kinetics of the frictionless pendulum from first-principle physics,

◊̈1 = ≠g(2m1 + m2) sin ◊1 ≠ m2g sin(◊1 ≠ 2◊2) ≠ 2 sin(◊1 ≠ ◊2)m2(◊̇2
2
l2 + ◊̇1

2
l1 cos(◊1 ≠ ◊2))

l1(2m1 + m2 ≠ m2 cos(2◊1 ≠ 2◊2)) , (10)

◊̈2 = 2 sin(◊1 ≠ ◊2)(◊̇1
2
l1(m1 + m2) + g(m1 + m2) cos ◊1 + ◊̇2

2
l2m2 cos(◊1 ≠ ◊2))

l2(2m1 + m2 ≠ m2 cos(2◊1 ≠ 2◊2)) . (11)

This ODE is a suitable expert model candidate for a real-world double pendulum.

We assume that m1 = m2. Therefore the e�ect of masses reduces to constant values in the expert ODE.
The length of the two arms are known, l1 = 91mm and l2 = 70mm. The total energy of the double
pendulum decreases over time in all videos, which lets us speculate about frictions, not explained by the
expert model. In addition, the expert model does not consider potential vibrations or errors in extracting
the arms’ positions. Hybrid learning has the potential to correct these mispecifications automatically. In
comparison, the characterisation of the frictions from first-principle physics is challenging and is still a research
subject (Aghili, 2020).

Similarly to the damped pendulum, we consider the initial angular positions, ◊1(t = 0) and ◊2(t = 0), known.
The encoder must predict the initial angular speeds ze := {◊̇1(t = 0), ◊̇2(t = 0)} which are the only free
parameters of the expert model. The encoder only observes ◊1 between t = 0ms to t = 100ms and ◊2 between
t = 50ms to t = 100ms which makes the estimation of ze complicated. Then, we predict the angular positions
between t = 0 and t = 200ms given ◊1(t = 0) and ◊2(t = 0) and the estimation of ze := {◊̇1(t = 0), ◊̇2(t = 0)}
via the hybrid decoder.

We create a dataset with many initial conditions by splitting the videos into consecutive chunks of 20 frames
sub-sampled at 100Hz, i.e., 200ms of video. We construct a distribution shift, as shown in Figure 11 from
Appendix C.5, over the expert variables ze by splitting each 40 seconds sequence into three parts. The
training set only contains chunks from the last 16 seconds of each run. It corresponds to configurations with
smaller energy and, thus, slower angular speeds than the test set, which only contains frames from the first
12 seconds. The validation set contains the remaining 12 seconds of frames in the middle.

4.3 Results

Performance gain from augmentation. This experiment demonstrates that HVAE and APHYNITY are
not robust to OOD test scenarios in opposition to the corresponding AHMs, as shown in Figure 1 for the 2D
di�usion problem and in Appendix D for the two other problems. We emphasize that our intention is not
to declare a winner between HVAE and APHYNITY. Indeed, both algorithms have already demonstrated
performance superior to black box ML models. Hence, we only report a very simple baseline that is the mean
value of the signals. We want to compare performance in OOD settings and empirically validate the benefit
of AHMs. We compare the predictive performance in Figure 5 (see Table 1 for the raw numbers). Although
classical hybrid learning strategies do very well on the IID validation set, they exhibit poor generalization on
OOD test sets for all three problems. We also observe some disparity between APHYNITY and HVAE. In
addition to di�erent learning strategies, this is probably due to di�erences in the networks’ architectures as
they were respectively inspired from the corresponding pendulum experiment in each paper. However, even if
one method may outperform the other for some problems, they both benefit from our augmentation strategy
(APHYNITY+, HVAE+). Overall, the e�ect of augmentation goes up to dividing the test error by a factor
of e4.6 ¥ 100 in some cases.

Stability for non-exact models. The empirical results from Figure 5 are very important as they show that
even when the decoder is not �-exact (and hence not

+
�-exact), augmentation may still work. In particular,

Figure 6 shows that the encoder does not predict the physical parameters perfectly. This indicates that
the encoder is not �-exact and neither should be the decoder. This plot shows the relative error on the
physical parameters computed as

qk
i=1

1
k

--- zi
e≠µi

◊
zi

e

---, where µi
◊ is the estimated most likely value of the ith

component of the physical parameters. We first notice that APHYNITY and HVAE perform di�erently and
their performance depends on the specific problem. While APHYNITY accurately estimates the physical

9



Published in Transactions on Machine Learning Research (02/2023)

Figure 5: The average log-MSEs over 10 runs for three synthetic problems on the validation and test sets. We
compare HVAE (in red) and APHYNITY (in green), in light colours, to their expert augmented versions HVAE+
and APHYNITY+, in darker colours. On the test sets, AHMs outperform the original models, and by a large margin
on the pendulum and di�usion problems. Moreover, augmentation conserves the relatively good performance on the
validation set (IID w.r.t. the training set).

Figure 6: Comparison of mean relative precision (in %, ± indicates one standard deviation) over 10 runs of predicted
physical parameters of di�erent hybrid modelling strategies in validation and OOD test settings. Augmented versions
are denoted with a +. While the accuracy of APHYNITY and HVAE is good on the validation set, it collapses on the
OOD test set. On the opposite, the augmented versions perform well on both validation and test sets.

parameters on the IID validation set for the 3 problems, HVAE’s performance are mixed on the RLC problem
as it makes prediction that are around 120% away from the nominal parameter value on average whereas
APHYNITY reduces this error to 6%. Interestingly, we observe that the proposed augmentation strategies
improve the encoder such that it accurately estimates the physical parameters also on the OOD test set
even for HVAE on the RLC problem. This confirms that the augmentation strategy is helpful even when
the hybrid model is not �-exact. As a conclusion, augmented hybrid learning outperforms classical hybrid
learning both on the predictive accuracy and at inferring the expert variables.

E�ect of out of expertise shift. This experiment supports that our augmentation strategy may remain
beneficial even when the train and test supports of za are not identical. This scenario corresponds to samples
(x, y) generated by (za, ze) œ (

ú
Za \ Za) ◊ Z̃e depicted by the violet domains in Figure 3. In Figure 7 we

observe the log-MSE of augmented and non-augmented hybrid models trained for (za, ze) œ Za ◊ Ze on test
data that are generated with (za, ze) œ Z̃a ◊ Z̃e. For the pendulum, the support over za = – is [0, 0.3] in train
and [0.3, 0.6] in test; For the 2D reaction di�usion, za = k is [0.003, 0.005] in train and [0.005, 0.008] in test.
We observe that augmented models outperform the original models by a large margin. These results suggest
that augmentation is valuable even when the distribution shift is not caused by the expert variables. However,
if the shift on za becomes the dominant e�ect, augmented models also eventually becomes vulnerable to
shifts on ze as demonstrated by supplementary experiments in Appendix C.

Real-world double pendulum. This experiment demonstrates the potential e�ectiveness of expert aug-
mentation for real-world applications In Figure 9, we compare the empirical performance of APHYNITY(+)
and HVAE(+) with two baselines: 1) Expert only: the ODE of a friction-less double pendulum, 2) ML
only: an agnostic neural ODE. We observe in Figure 9a that the augmentation improves the validation and
test predictive performance by a non-negligible margin, as confirmed visually by Figure 8. In addition, the
augmentation improves the estimation of the expert parameters by up to a factor of two for APHYNITY in
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the OOD test scenarios, as shown in Figure 9b. In order to achieve these results, we finetune the encoder on
expert augmentations with ◊̇1 ≥ U [≠15, 15] and ◊̇2 ≥ U [≠30, 30].

We have observed that optimizing the HVAE on the double pendulum data eventually becomes numerically
unstable along training. It is why we did not manage to obtain HVAE’s performance on par with APHYNITY
and the ML only baseline. In consequence, the expert augmentation is also unstable if it relies on the best
model. We circumvent these numerical issues by applying the expert augmentation to an earlier version of
the HVAE model. The expert augmented model HVAE+ outperforms the best HVAE model on predicting
the trajectory as seen in Figure 9a. Finally, we study the e�ect of applying the expert augmentation at
various stages during training for APHYNITY in Appendix D.4. We observe that expert augmentation
may reduce the gap between the train/validation/test performance on the double pendulum even when the
interaction model is not fully trained. This result hints again that expert augmentation can help even when
the interaction model is not learned perfectly.

Figure 7: The average log-MSEs over 10 runs for the
damped pendulum and 2D reaction di�usion problems on
a test distribution for which za, in addition to ze, is also
shifted. AHM achieves better peformance than standard
algorithms even when the test distribution support za di�ers
from the training.

Figure 8: A cherry-picked example of the predicted
angular positions of the double pendulum. We ob-
serve that the proposed expert augmentation allows
the hybrid model to predict more accurately the state
of the double pendulum in the future than the non-
augmented hybrid model.

(a) (b)

Figure 9: The results of the double pendulum experiment. (a) The average log-MSEs over three experiments.
The baselines rely either only on the expert ODE or a neural ODE to predict the pendulum’s state. The proposed
expert augmentation slightly reduces the predictive performance on the training set for APHYNITY but increases the
generalisation capabilities of both APHYNITY and the HVAE. APHYNITY+ outperforms the baselines on all sets. (b)
The average relative errors on the initial angular speeds over three runs. The proposed expert augmentation improves
the accuracy of the physical parameters estimation both in the IID and OOD settings for APHYNITY.
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5 Related work

5.1 Hybrid modelling

Hybrid Learning, or gray box modelling as called in its early days in the 90’s (Psichogios & Ungar, 1992;
Rico-Martinez et al., 1994; Thompson & Kramer, 1994; Rivera-Sampayo & Vélez-Reyes, 2001; Braun &
Chaturvedi, 2002), has been a popular method to learn models that are both expressive and interpretable,
while also allowing them to be learnt on fewer data. The interest for hybrid learning (Mehta et al., 2021; Lei
& Mirams, 2021; Reichstein et al., 2019; Saha et al., 2021; Guen & Thome, 2020; Levine & Stuart, 2022;
Espeholt et al., 2022) has greatly increased since the outbreak of recent neural network architectures that
simplify the combination of physical equations within ML models. As an example, Neural ODEs (Chen et al.,
2018) and convolutional neural networks (LeCun et al., 1995, CNN) are privileged architectures to work
with dynamical systems described by ODEs or PDEs. While most of the literature focus on the predictive
performance of hybrid models, recent work have also shown that this framework helps to infer the physical
parameters accurately (Yin et al., 2021; Takeishi & Kalousis, 2021). This is aligned with Zyla et al. (2020)
(see Section 40.2.2.2) which observe that inference on incomplete models results in a systematic bias. Similar
to hybrid learning, they extend the model with nuisance parameters in order to improve its fidelity, and to
reduce the systematic bias.

In this work, we decided to study Yin et al. (2021) and Takeishi & Kalousis (2021) for two reasons that
distinguish them from the rest of the literature. First, these are notable examples of algorithms that can
be applied to a broad class of problems in contrast to papers that focus on specific applications (Lei &
Mirams, 2021; Reichstein et al., 2019). Second, those methods also learn a reliable inference model for the
physical parameters, suggesting that the expert model is used properly in the generative model, which is a
key assumption for our augmentation. While Takeishi & Kalousis (2021) claim to achieve robustness, we
argue that this statement is incomplete as HVAE fails in OOD settings. In particular, their approach is
only able to generalize with respect to unseen time or initial state if the model correctly identifies the latent
variables za, ze. HVAE cannot generalize to new physical parameters because the encoder’s validity is bound
to the training set for the physical parameters.

5.2 Combining hybrid modelling and data augmentation

Close to our idea is the one proposed in Shrivastava et al. (2017) where they train a GAN model that improves
the realism of a simulated image while conserving its semantic content (e.g., eyes colour) as modeled by the
simulation parameters. The generated data with their annotations may then be used for a downstream task,
such as inferring the properties of real images that corresponds to simulation parameters. The GAN objective
from Shrivastava et al. (2017) requires that the two distributions induced by the semantic content of real
and simulated data are identical. On the opposite, we consider training data that corresponds to expert
parameters with limited diversity, and overcome this scarcity with expert augmentation. Another line of
work similar to ours is Sim2Real, which considers the task of transferring a model trained on simulated data
to real world (Doersch & Zisserman, 2019; Sadeghi et al., 2018a;b). Robust hybrid learning, as a way to
enhance simulations, could be used for Sim2Real.

5.3 Robust ML and invariant learning

Various statistical methods have been introduced to ensure models generalize under distribution shift. Domain-
adversarial objectives aimed at learning (conditionally) invariant predictors (Ganin et al., 2016; Zhang et al.,
2017; Li et al., 2018), GroupDRO (Sagawa et al., 2019) optimizing for worst-case loss over multiple domains
and IRM (Arjovsky et al., 2019) as well as sub-group calibration (Wald et al., 2021) aiming to satisfy
calibration or su�ciency constraints to learn features invariant across domains. Extensions, able to infer
domain labels from training data have been proposed as well (Lahoti et al., 2020; Creager et al., 2021),
partially inspired by fairness objectives (Hébert-Johnson et al., 2018; Kim et al., 2019). In contrast to AHM,
all of these methods rely on the variation of interest being present in the training data.
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6 Discussion

We now discuss the potential limitations of our method and its underlying assumptions.

Erroneous interaction model. The exactness of the hybrid component p◊(y|x, ye, za) is a critical as-
sumption underlying our expert-based augmentation strategy. Unfortunately, this component is learned
from training data only. Hence, we cannot prove its exactness on the test domain in the general case as
the input domain over Ye may be di�erent from the training. However, we argue that assumptions on the
class of interaction model may alleviate this problem. As an example, we might consider to chose the best
interaction model over a fixed set of potential interaction. If the correct interaction is present in this set
we should eventually select it from data. A less extreme example is when we consider an additive hybrid
model and embed this hypothesis into the interaction model, generalization to unseen ye follows as long as
the range of values is the same as in the training set. If this assumption is too strong, we could still expect
that p◊(y|x, ye, za) generalizes to unseen ye because hybrid learning drives y samples from p◊ to be close to
ye. It implies that the corresponding function approximator is stable, which helps generalizing to unseen
scenarios. However, we must acknowledge that we cannot guarantee the stability of the interaction model in
the general case. In practice, finding a good inductive bias for the interaction model is important. Moreover,
it is usually easier to embed an e�ective inductive bias in the interaction model rather than in the encoder.
Indeed, the parameter identification (the encoder qÂ) is often less-well understood or more complex than the
generative model itself.

Diagnostic. While crucial, we cannot guarantee the exactness of the decoder p◊ in general because we only
evaluate the encoder and the decoder jointly on data points (x, y, xo, yo). However, in some cases we can
detect model misspecification by observing that the predictive model p◊,Â(y|x, xo, yo) is imperfect. Making
this observation is not always simple as it requires prior knowledge on the expected accuracy of an exact
model. However, when the system is identifiable, we may argue that the accuracy should be only limited by
the intrinsic measurement noise on y.

Relaxing exactness. Even with a solid inductive bias on the decoder, achieving exactness is hard in
practical settings. However, our experiments demonstrate that expert-augmentation works in practice. We
can explain this by looking at Figure 3. If the generative model that maps x and (za, ze) is incorrect, the
mapping from Za and Ze could be slightly o� from

+
�. However, this does not preclude the set of augmented

samples from being closer to
+
� than � and from inducing a better predictive model on

+
� than the original

model trained only on �. Another argument is the e�ectiveness of data augmentation for training classical
deep learning models, which works well even when some augmentations do not generate realistic samples. In
addition, Zhang et al. (2022) have observed that the dominant cause of overfitting in classical variational
autoencoders is usually coming from the encoder, similarly to what happens with amortized hybrid learning.
In this regard, an unexpected advantage of expert augmentation would be to reduce this source of overfitting
in addition to the OOD robustness gain.

Limitations. We have considered expert models that are parameterized by a small number of parameters
and are covered densely via sampling. For higher dimensional parameter space the augmentation strategy
might become inapplicable. Hence, a more ingenious sampling strategy, such as worst-case sampling, would
be required. Another di�culty is choosing a plausible range of parameters that contains both the train and
the test support; this will often need a human expert in the loop. If the chosen distribution does not cover
some test configurations the robustness guarantees for these configurations collapse. On the opposite, a
distribution that is too broad may also impact negatively the quality of the model. For instance, learning the
right encoding behaviour for those unnecessary configurations consumes representation capacity that is then
unavailable for IID configurations. In this case the model might perform worse than before augmentation on
the training distribution. Indeed, some of our results have shown that the training error may slightly increase
while the test error decreases.

In addition, we assume that the train distribution of za is representative of the test distribution. We
empirically observed that a softer version of this assumption could be enough. However, performance will
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eventually decline as the support of the test distribution for za is far from the training domain. Finally, we
have only validated our expert augmentation for amortized inference settings. Nevertheless, online inference
algorithms, such as Markov-chain Monte Carlo, also rely on hyperparameters (Campbell et al., 2021) or learnt
distributions (Brofos et al., 2022) which must be tuned to the specific problem of interest. They could also
benefit from expert augmentation if those actionable components are contextually predicted by a ML model.

7 Conclusion

We have described hybrid learning within a probabilistic model in which one component of the latent process,
denoted the expert model, is known. In this context, we have established that state-of-the-art algorithms are
vulnerable to distribution shifts. Grounded in this formalisation, we have derived that expert augmentations
induce robustness to OOD settings. We have shown on a set of synthetic settings and on a real-world
system the favorable e�ect of expert augmentation on the OOD performance where standard hybrid learning
algorithm fails. Finally, we have discussed how our assumptions transfer to real-world settings and have
described potential shortcomings.

Our augmentation should benefit from future progress in hybrid learning as it shall apply to any amortized
hybrid modelling algorithms. Providing more substantial constraints on the targeted hybrid model is an
essential direction for further improving the robustness of hybrid models. For instance, the minimal description
length principle (Grünwald, 2007) could be an excellent resource for investigating the balance between the
model’s capacity and robustness. In parallel, empirical and theoretical investigations of the learnt interaction
model’s properties in various practical settings would unlock new understandings of the capabilities and
limitations of hybrid learning algorithms. In the context of expert augmentation, it should enable to do more
realistic assumptions for its applicability and to derive more precisely the expected robustness gain. Future
work is also needed to show how hybrid learning and expert augmentation translate into performance gain
over classical ML on challenging real-world applications.
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