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ABSTRACT

A recently uncovered pitfall in learning generative models with amortised vari-
ational inference, the conditioning gap, questions common practices in model-
based reinforcement learning. Withholding a part of the quantities that the true
posterior depends on from the inference network leads to a biased generative
model and an approximate posterior that underestimates uncertainty. We exam-
ine the effect of the conditioning gap on model-based reinforcement learning with
variational world models. We study the effect in three settings with known dy-
namics, which enables us to compare to a near-optimal policy. Our finding is that
the impact of the conditioning gap becomes severe in systems where the state is
hard to estimate.

1 INTRODUCTION

smoother-based filter-based

Figure 1: Effect of the conditioning gap
on variational world models in the Dark
Room environment, where the agent has
to reach the circle in the middle. The
agent is blind in the center square and
can reason about its location only close
to the walls. A filter-based variational
posterior leads to a degenerate world
model which yields policies unable to
solve the problem. The smoother-based
one recovers the true model and deduces
an optimal policy.

Variational state-space models (VSSMs) based on deep
neural networks (Karl et al., 2017a; Fraccaro et al., 2016)
have become a practical choice for learning world models
for control. Their flexibility allows scaling to real-world
scenarios and aids solving a broad variety of challenging
problems such as robotic control, computer games and
meta reinforcement learning (Becker-Ehmck et al., 2020;
Hafner et al., 2020a; Zhao et al., 2020).

Moreover, VSSMs are a natural fit for problems in-
volving imperfect state information, commonly for-
malised as partially-observable Markov decision pro-
cesses (POMDPs, Åström (1965)). Here, the agent per-
ceives the world only in parts and has to estimate the sys-
tem state. Still, the recent literature mostly deals with
problems where the state of an agent is only observable
through images or noisy measurements. In such set-
tings, a concatenation of observations is often sufficient
to transform the partially-observed problem into a fully-
observed one, as shown by Srinivas et al. (2020). Stud-
ies on problems involving more difficult state estimation
tasks such as the “Heaven and Hell” system described by
Thrun (1999) are missing. In such “hard” imperfect state information problems the agent has to
actively reason about its uncertainty in the state and incorporate it into its decision making. Whether
VSSMs are up to the task remains an open question.

VSSMs rely on an approximation to the true posterior of the latent variables given the observed ones.
Successful learning of model parameters hinges on minimising the KL-divergence to the approxi-
mate posterior from the true one. Part of this divergence is the conditioning gap, a suboptimality
present when the approximate posterior does not depend on the same conditions as the true poste-
rior (Bayer et al., 2021). This case is quite common in VSSMs. For example, if the approximate
posterior over a system state zt is predicted by a neural net that only looks at the past and present
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observations, while the true posterior also depends on the future. This is often done to use the
approximate posterior as a state estimator in model-based control.

We hypothesise that this approach is a fallacy: applying VSSMs to optimal control in imperfect state
problems requires addressing the conditioning gap. Our contributions are:

• We identify two common instances of the conditioning gap in the context of POMDPs.

• We introduce two new continuous POMDPs, Dark Room and Meta Pendulum, which re-
quire more challenging state estimation.

• We demonstrate the negative effect of the conditioning gap in three low-dimensional con-
tinuous POMDPs, which we implement in a fully-differentiable fashion. This allows com-
paring model-based policies with near-optimal policies trained on the real system.

Related Work Using variational inference for state-space models in conjunction with an optimal
control objective was first done by Raiko & Tornio (2009). It was not until the advent of amor-
tised inference (Kingma & Welling, 2014; Rezende et al., 2014) however, that variational sequence
models scaled to high-dimensional data (Bayer & Osendorfer, 2014; Chung et al., 2015; Fabius
& van Amersfoort, 2015; Archer et al., 2015; Krishnan et al., 2015; Fraccaro et al., 2016; 2017;
Becker-Ehmck et al., 2019; Karl et al., 2017a; Doerr et al., 2018). Henceforth, many authors have
applied VSSMs to decision-making problems (Karl et al., 2017b; Hafner et al., 2019; 2020a;b; Lee
et al., 2019; Becker-Ehmck et al., 2020; Buesing et al., 2018; Zhao et al., 2020). POMDPs have
been focused on by Igl et al. (2018); Han et al. (2020). We are not aware of any work using a
fully-conditioned variational posterior in learning variational models for control.

2 BACKGROUND AND METHODS

2.1 LEARNING VARIATIONAL STATE-SPACE MODELS

We define state-space models as a latent Markov chain over latent states z1:T = (z1, z2, . . . , zT ),
observations x1:T = (x1,x2, . . . ,xT ) and controls u1:T−1 = (u1,u2, . . . ,uT−1):

p(x1:T , z1:T | u1:T−1) = p(z1)

T∏
t=1

p(zt+1 | zt,ut)p(xt | zt).

We refer to p(z1), p(zt+1 | zt,ut) and p(xt | zt) as the initial state, transition and emission distribu-
tions. Given appropriate approximation architectures for each we can represent any model through
a set of parameters θ. Maximum likelihood learning from data can be done through the gradient-
based maximisation of the ELBO w. r. t. both the model parameters θ, as well as a helper distribution
qφ(z1:T | x1:T ,u1:T−1) ≈ p(z1:T | x1:T ), which is parameterised by the neural network parameters
φ:

L(θ, φ) = Ez1:T∼q

[
log

pθ(x1:T , z1:T | u1:T−1)

q(z1:T | x1:T ,u1:T−1)

]
.

Monte Carlo estimates in conjunction with the reparameterisation trick and amortised infer-
ence (Kingma & Welling, 2014; Rezende et al., 2014) yield an efficient learning algorithm.
Here, the parameters of a distribution given the conditions are e. g. qφ(z1:T | x1:T ,u1:T−1) =

N
(
z1:T | µφ(x1:T ,u1:T−1), σ2

φ(x1:T ,u1:T−1)
)

, where both µφ and σ2
φ are neural networks.

2.1.1 THE CONDITIONING GAP

As noted by Bayer et al. (2021), amortised inference gives way to a previously unknown subopti-
mality. For a thorough explanation we refer the reader to that paper, however we will re-state the
most important results here.

If the conditions of the true posterior p
(
z
∣∣∣ C̃) are partitioned into two disjoint sets C̃ := C

∐
C̄,

where the amortised variational posterior is only conditioned on C and has no access to C̄, then:
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1. The optimal amortised variational posterior matches neither p(z | C) nor p
(
z
∣∣ C, C̄),

2. The ELBO-optimal generative model pθ under the optimal amortised variational posterior
does not match the maximum-likelihood model,

as long as p
(
z
∣∣ C, C̄) 6= p(z | C).

2.2 LEARNING POMDPS

We define a partially-observable Markov decision process (POMDP) as a state-space model (cf.
section 2.1), where the emissions are partitioned into observations o1:T and instantaneous costs
c1:T , i. e. xt := [ot, ct]. Solving a POMDP refers to minimising the total cost w. r. t. the control
sequence u1:T . For example, an infinite discounted sum

∑∞
t=1 γ

tct or a finite sum
∑T
t=1 ct. In this

work, we focus exclusively on the latter.

A trend we observe in most VSSM-based approaches to learning POMDPs is to use approxi-
mate posteriors of the form q(z1:T | x1:T ) =

∏
t q(zt+1 | zt,ot+1) (Karl et al., 2017a; Hafner

et al., 2019; 2020b; Lee et al., 2019; Zhao et al., 2020), which differ from the true posterior
p(zt+1 | zt,ot+1:T , c1:T ) by not considering future observations and past and future costs. This is a
design choice made for practicality, because the inference network is often used as a state estimator
at test time, approximating the filtering distribution p(zt | x1:t). Due to Section 2.1.1, however, this
is not the case. Borrowing notation from Section 2.1.1, the approximate posterior is given access to
the conditions Ct = [zt,ot+1] and does not consider the set C̄t := [ot+2:T , c1:T ].

We examine the effect of omitting ot+2:T and c1:T by treating the condition set of the inference
network as a hyper-parameter. Thus our inference networks vary in two ways, either by looking
or not looking at future observations ot+2:T and by looking or not looking at the instantaneous
costs c1:T . We work around the need for an explicit state estimator by training policies represented
through recurrent networks that internalise the state estimation problem. The inference network is
hence discarded during policy optimisation.

Our implementation of VSSMs follows that of Bayer et al. (2021) and we omit details here.

2.3 POLICY OPTIMISATION

We consider finite-time stochastic optimal control problems with imperfect state informa-
tion. The state of the system can only be estimated through the information vector It =
(o1,u1,o2,u2, . . . ,ot), and the optimal control signal is hence a function thereof. We implement a
policy ut = πν(It) with parameters ν using recurrent networks. Given a fixed set of model parame-
ters θ, an optimal policy can be found by minimization of the expected total cost w. r. t. the policy’s
parameters ν:

L(ν) = E ot,ct∼pθ
ut=πν (It)

[
T∑
t=1

ct

]
.

Many methods for approximately doing so exist (Bertsekas, 2005). We employ gradient-based opti-
misation using Monte-Carlo rollouts.

2.4 MODEL-BASED REINFORCEMENT LEARNING

We use an alternating scheme of data acquisition, system identification (see section 2.2) and policy
optimisation (see section 2.3). For the first iteration, we acquire Ninit episodes of length T using
random actions. For each later iteration, N episodes are collected by the current policy. All data
gathered so far is used to learn the parameters θ for a fixed number of updates Lθ. The parameters
of the policy ν are then optimised on the most recent model for a fixed number of updates Lν . This
approach has been shown to work well in deep reinforcement learning settings (Kaiser et al., 2020).

3 EXPERIMENTS

We conduct a series of studies that illustrate the suboptimality of variational filtering posteriors with
and without access to the instantaneous cost compared to fully-conditioned variational smoothers.
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Figure 2: Top row: Cumulative distribution function of the total cost averaged over the final ten
episodes. Bottom row: Average regret curves of the best-performing hyper-parameter configura-
tions. Left to right: Dark Room, Mountain Hike and Meta Pendulum. For Dark Room, the average
regret is not sublinear on average, yet, for individual smoothing experiments it is (not shown).

While most works in model-based reinforcement learning concentrate on domains such as computer
games or simulators of complex dynamics, we explicitly choose settings that are simple in their
dynamics, but where inference is challenging and the conditioning gap therefore plays a role.

Further, our environments are fully differentiable w. r. t. the control inputs. This allows us to train
near-optimal policies using the true POMDP during policy optimisation for evaluation purposes.
More specifically, this allows us to calculate the regret of each method, which is the total cost some
policy achieves minus the total cost of executing an optimal policy.

We first introduce the Dark Room environment. An agent is placed in an empty unit square that
it can traverse up to its surrounding walls. Its state is its location only, i. e. zt ∈ R2. The agent
can sense the walls only with its distance sensors that have a maximum range of 0.2 facing north,
east, south and west (xt ∈ R4); out of range, the sensor yields the maximum value. The cost is
1 everywhere, except at the goal, where it is 0. The goal is a circle of radius 0.5 in the center of
the room. The agent’s controls ut ∈ [−0.2, 0.2]2 are added to its current location, after which it is
projected back into the unit square: zt+1 = ρ (zt + ut). For optimising the near-optimal policy, we
use straight-through estimation of ρ and the cost.

The Mountain Hike environment has been introduced by Igl et al. (2018) and features a two-
dimensional linear Gaussian system with a non-linear cost function. We use the medium variant
that has a moderate amount of observation and transition noise.

We further introduce a version of the classic pendulum swingup task where the mass of the pendulum
is randomised at the beginning of each episode, Meta Pendulum. It is distributed uniformly in the
range [0.8, 1.2].

For each experiment, we conducted a study of 300 different hyper-parameter configurations per
each conditioning set. We used Ninit = 25 and N = 5 with varying lengths of T = 50 for Dark
Room, T = 75 for Mountain Hike and T = 50 for Meta Pendulum. The algorithm did a total of
100 iterations in each case.

In all studies, the smoothing posterior with access to the instantaneous costs achieves the smallest re-
gret w. r. t. the near-optimal policy on average. The picture is clearest in the dark room environment,
where the agent has to actively localise itself before going to the goal. In the other environments,
the uncertainty about the state diminishes even if the agent does not perform a strategy of active
uncertainty reduction. Consequently, the smoothing posterior variant is not as dominant, but still
clearly superior. For more details, see the illustrations in fig. 2.

4 CONCLUSION

We have presented simple settings where under-conditioning inference networks leads to inferior
model-based reinforcement learning. In all cases we see that world models learned from smoothing

4



Published as a conference paper at ICLR 2021

posteriors lead to superior performance. Our findings suggest that scaling up VSSM-based rein-
forcement learning to hard imperfect state information problems will require careful consideration
of the true posterior’s condition set.
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