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Abstract

Despite huge progress in skeleton-based action recognition, its generalizability to
different domains remains a challenging issue. In this paper, to solve the skeleton
action generalization problem, we present a recover-and-resample augmentation
framework based on a novel complete action prior. We observe that human daily
actions are confronted with temporal mismatch across different datasets, as they
are usually partial observations of their complete action sequences. By recovering
complete actions and resampling from these full sequences, we can generate strong
augmentations for unseen domains. At the same time, we discover the nature
of general action completeness within large datasets, indicated by the per-frame
diversity over time. This allows us to exploit two assets of transferable knowledge
that can be shared across action samples and be helpful for action completion:
boundary poses for determining the action start, and linear temporal transforms
for capturing global action patterns. Therefore, we formulate the recovering
stage as a two-step stochastic action completion with boundary pose-conditioned
extrapolation followed by smooth linear transforms. Both the boundary poses and
linear transforms can be efficiently learned from the whole dataset via clustering.
We validate our approach on a cross-dataset setting with three skeleton action
datasets, outperforming other domain generalization approaches by a considerable
margin.

1 Introduction

Skeleton-based action recognition has recently achieved great success [57, 42, 6, 29]. The skeleton-
based action representation has the advantage of removed background changes and camera positions,
making it more robust compared to RGB representation. However, the generalizability to unseen
domains under such a representation is still affected by the inherent spatiotemporal difference of
3D coordinates of a same action across domains, which yet largely remains an under-explored issue.
In this paper, we study the single domain generalization problem [55] for skeleton-based action
recognition, in which we do not have knowledge about the target domain.

Essentially, both cross-subject and cross-view settings [41] fall under the category of cross-domain
settings, and they can be well addressed by designing more powerful backbones and applying
geometric transformations, achieving high accuracy in the test set [6, 29]. However, we find that in
the cross-dataset setting where source and target data come from different datasets, the performance
on accuracy degrades a lot (around or more than 20% in some cases [46]) and cannot be well remedied
by the above approaches. This indicates drastic domain gap in the inherent feature of human actions
across datasets, posing great challenges for real-life applications [40, 18] and calling for research on
domain generalization techniques for skeleton-based representation, which is the focus of this paper.
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Figure 1: (a) Cross-dataset skeleton action recognition. Taking action phone calling as an example,
temporal mismatch across datasets poses a challenging issue. (b) Complete action prior. Human
actions within large datasets exhibit statistical patterns from less feature diversity to more diversity,
implying the nature of action completeness (shown for NTU, PKU and ETRI dataset). (c) Recover
and Resample. After learning a stochastic action completion function from the training data, we
recover complete actions and resample from them to further augment the training set.

Investigating action samples across multiple datasets, our observation is that a notable source of
domain gap comes from the temporal mismatch of an action across different datasets (Fig. 1(a)),
which is usually caused by different definition or cropping criterion of human motions. Existing
methods cannot perfectly handle this problem. Warping-based temporal alignment approaches,
while being popular for few-shot recognition tasks [3, 53, 33, 45], are inefficient and not optimal
when given sufficient and diverse training data. Besides general domain generalization approaches
[35, 51], self-supervised skeleton representation learning methods [23, 47, 46, 59], while showing
good transferability of the learned feature, are still difficult to handle data with large gaps as the
generalizability largely comes from seeing handcrafted augmentations in either contrastive learning
[62] or auxiliary tasks [46]. Different from the above approaches, we aim to directly hallucinate
strong augmentations for unseen domains by exploring some sort of human action priors.

As in Fig. 1 (b), we train a skeleton auto-encoder and examine the per-frame latent feature diversity
of the whole dataset (measured by standard deviation) for several skeleton action datasets, i.e., NTU
[41], PKU [25], ETRI [15] (Details in Appendix A5). We observe that human action sequences start
with relatively low feature diversity, which is actually a form that humans perform generally complete
actions within large datasets, from rest poses that are less diverse (e.g. stand, sit) to rich-semantic
poses that are more diverse. We summarize this pattern as a novel temporal prior named complete
action prior. Although this prior can be detected by statistics in a general sense, in terms of individual
samples, some exhibit strong action completeness while some are segments of their complete actions.
This motivates us to learn an action completion function from the whole training data which can
transform incomplete actions into complete ones. In this way, we can recover the complete sequence
of an action from its partial observation, and resample from it to hallucinate data in unseen domains.

Going deeper into such a statistical pattern, we can further mine some class-agnostic knowledge from
the whole dataset that can be used for our action completion. First, the low diversity at beginning
frames implies the existence of a set of representative boundary poses, which can be used for
determining the start of an action. Second, the general completeness implies the existence of long
and nearly complete actions within a large dataset. By studying the relationships between their raw
and trimmed pairs, we can learn temporal patterns inherited in human actions.

Based on the above observations, we propose a novel recover-and-resample augmentation framework
for single domain generalization on skeleton action recognition. As in Fig. 1 (c), we recover complete
actions from training samples and resample from them to further augment the training set. Especially,
in the recovering stage, we adopt a two-step stochastic action completion, which first extrapolates
the raw sequence conditioning on the boundary pose and then applies temporal transforms. A set
of boundary poses are learned from the first frames of the training data. Altogether, a set of smooth
linear transforms (linearity means re-organizing existing frames) are learned from reconstructing
full sequence from its trimmed segment via a closed-form solution of context-aware frame similarity
aggregation. We find such a simplified form of transform suitable and expressive enough for modeling
common structural temporal patterns, e.g., shifting, scaling, symmetry, etc. The learning for both
boundary poses and linear transforms can be achieved via clustering, for example, k-means, which
makes our whole framework light and efficient. Also, we find a random cropping suffices for the
resampling stage.
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We simplify the problem in cross-domain settings by studying well-defined daily actions in indoor
settings. Specifically, we construct a new evaluation setting jointly with three large-scale datasets
including PKU-MMD [25], NTU-RGBD [41] and ETRI-Activity3D [15]. Our proposed augmentation
method well solves the temporal misalignment issue. We improve the average accuracy on unseen
datasets by 5%, outperforming other baseline methods by a large margin.

In summary, the contributions of this paper are as follows:

• We discover the complete action prior within large datasets by its statistical pattern, whose effect
has not been well studied before. Building on such a prior, we present a novel recover-and-
resample augmentation framework for domain generalization on skeleton-based action recogni-
tion.

• We propose an effective clustering-based approach to recover complete actions, which is achieved
by boundary pose conditioned extrapolation and context-aware smooth linear transforms.

• We demonstrate the superiority of our method over a wide range of methods by a large margin
and we conduct extensive experiments to show the effectiveness of each proposed module.

2 Related Work

2.1 Skeleton-based Action Recognition

As for skeleton action recognition, the graph neural network [57, 42, 6, 29] has become a prevailing
model due to its effectiveness to model spatiotemporal relations between joints. We use AGCN
(Adaptive GCN) [42] as our backbone as it can model flexible graph layouts. Recently, there is a
focus on studying skeleton action recognition with less labeled data. For self-supervised skeleton
representation learning, a number of pretext tasks are proposed based on invariant augmentations
[23, 47, 11, 59, 56]. These approaches improve the generalizability across datasets but are still
bounded by the specific augmentation designs. For few-shot skeleton action recognition, metric
learning approaches with different types of dynamic time warping [3, 53, 33, 45] are widely adopted.
However, they are not optimal for domain generalization given large amount of training data. Our
work especially explores the generalization problem for this field when data is not available in the
target domain.

2.2 Domain Generalization and Data Augmentation

General domain generalization approaches mainly rely on learning adversarial augmentation [51, 22,
55] and self-supervised auxiliary tasks [4]. They are not optimal for skeleton-based action recognition
tasks since they do not make full use of the skeleton representation. The recent ST-Cubism [46] is
most related to ours, which adapts learning jigsaw puzzles [46] to skeleton sequences to achieve
domain generalization. While there are many augmentation methods intended for non-semantic
related tasks like pose estimation [16, 2, 10, 9, 14] and human motion prediction [31], skeleton
augmentation for recognition tasks is essentially challenging as it is fragile to spoil the semantics
of skeletons formed by low-dimensional joints. SFN [34] combines Mixup [61] with VAE for
augmentation, but it still cannot deal with cross-domain settings. ModSelect [32] proposes a selection
mechanism for multi-modal input for cross-domain action generalization. In this work we focus on
the learnable temporal action augmentation for cross-domain settings.

2.3 Human Motion Priors

As human motions are constrained in the spatiotemporal space, many human motion priors are
proposed, such as manifolds of valid human poses [19, 7, 48] and motion [63, 27, 17], and other
properties such as periodical human motion pattern [43, 12, 44], body part interchangeability across
samples [26, 24] and alignment with other modalities [65, 1]. ACTOR [38] learns a CVAE and
samples data points conditioning on labels as an augmentation method for recognition tasks. However,
it is only useful when data is scarce. Rate-invariant prior [50] is related to ours, but changing rate
itself is not enough for cross-domain settings. In this paper, we explore the action completeness prior
for better performance in cross-domain settings. Although the notion of action completeness [30, 64]
appears in the temporal action localization (TAL) task [60], we are the first to incorporate it for the
skeleton-based domain generalization task.
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Figure 2: Overview of Recovering and Resampling. Given training set S, we learn boundary
poses {pi} and context-aware linear transforms {Wi} via clustering. For a sample x from S, we
first do extrapolation (FN ) conditioning on the boundary pose p′ with infilling length tp, and then
perform linear transform (FL) by sampling from {Wi}. The new data points x′ are resampled
from recovered complete actions as strong augmentations for unseen datasets. Skeletons in dark blue
rectangles are new frames generated by FN and FL. Both x and x′ are used for training the classifier.

3 Method

3.1 Problem Setting

In the skeleton-based action recognition, suppose we have source data from one single domain
S = {(xS , yS)}. Due to the unfixed length of input action sequences, the skeleton sequences xS are
all uniformly resized to xS ∈ RT×J×3 with sequence length T and joint number J [6, 15]. Our goal
is to train a model G using S and test on other unseen target domains {(xT 1, yT 1), (xT 2, yT 2), · · · }.
In particular yS and yT share the same action categories.

3.2 A Recover-and-Resample Framework

Motivated by the observations of temporal mismatch (Fig. 1(a)) and action completeness within a
dataset (Fig. 1(b)), we first introduce a generalized form of temporal augmentation, which we name
recover-and-resample augmentation. Given a training sample x, we first recover its complete action
with a transform Wrecover and then sample a segment of it using Wresample as an augmentation x′:

x′ = Wfull(x) = (Wresample ◦Wrecover)(x). (1)

Ideally Wfull can generate all kinds of temporal segments that may appear in the target domains. In
contrastive self-supervised learning, [23] uses temporal shift as a recovering process, while [47]
only uses resampling for constructing positive samples. We set the resample transform Wresample as a
common random sampling [47], and focus more on the recovering stage Wrecover that can construct
a complete action for the input motion x. Our contribution is that by exploiting the knowledge
from complete action prior, we further decompose Wrecover into a linear transform and a nonlinear
transform, i.e. Wrecover(x) = FL(FN (x)). The nonlinear transform FN extrapolates the motion to
generate new poses which do not exist in the original motion. The linear transform FL reorganizes
the motion sequence using existing frames. In this way we boost the expressive power of Wrecover for
generating complete actions. Fig. 2 gives an illustration on how we generate augmentations for a
partially observed action phone calling. Details for FL and FN are introduced in Sec. 3.3 and 3.4.

3.3 Boundary-conditioned Extrapolation

Boundary pose clustering. When recovering a complete action, we first determine its boundary
pose. Intuitively, boundary poses for common daily activities are more likely to be background
poses (or rest poses). They do not convey strong action semantics and can be distinguished from
meaningful foreground poses. On the other hand, the statistical finding that the initial poses of skeletal
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action sequences have low feature diversity (shown in Fig. 1 (b)) also validates our assumption: the
boundary poses are to some extent constrained. Therefore, we propose to cluster the first frames x0

of all the training samples in S to get a set of representative background (boundary) poses, which we
denote as {pi}. During clustering, all the first frames {x0|x0 ∈ RJ×3} are flattened to 1d vectors
and L2 norm is used as the distance measure.

Conditional generation. We use nearest neighbour search to assign the boundary pose p′ for x with
first frame x0:

p′ = argmin
{pi}
|x0 − pi|. (2)

Now we can extrapolate the original first frame x0 to the new boundary pose p′. This is basically
an infilling process conditioned on p′, and we control the length of extrapolation with parameter tp.
Supposing the sequence length is T , we set the first frame as p′, and squeeze the original motion x to
the segment from frame tp to the end frame T . We then infill the timestamps from the first frame to
frame tp with new motion. Considering a stochastic process, we sample tp from a Beta distribution
β(α, α)T/2 with high probability on the first frame and frame T/2. This means the conditional
generation process is more likely to retain the original motion or infill a segment with length T/2.

Motion infiller. The simplest form of the motion infiller F is linear interpolation since the skeleton
already has good joint correspondence. We also propose an alternative to train an infiller with a neural
network. We mask out some consecutive frames to get masked and full sequence pairs and train an
action completion network. We then use this motion infiller to perform extrapolation. The comparison
will be shown in the later experiments. Actually we find the parameter-free linear interpolation works
well enough for generating reasonable motions for the recognition task.

So formally our nonlinear transform can be represented as FN (x) = F(x, p′, tp). We first find the
boundary pose p′, sample tp to determine the sequence length to infill, and finally apply the motion
infiller F .

3.4 Learning Smooth Linear Transforms

Note that the above nonlinear transform is still unable to capture global and structural patterns
inherited in the human actions. Consequently, we further propose linear transforms FL to reorganize
frames for more powerful transformations. We have seen great progress in self-supervised learning
with very simple temporal linear transforms like crop & pad [23]. However they are manually
designed and are not learned from data so they are not flexible. Here we propose to construct partial
and full skeleton sequence pairs to learn a set of linear transforms in the form of FL(x) = Wx,W ∈
RT×T . Here x ∈ RT×J×3 is a skeleton sequence with length T .

Context-aware smooth linear transforms. Given partial sequence u and full sequence v (see Fig.
2) which are then both resized to length T , we hope to find a linear transform that minimizes the L2

norm |Wu− v|, where W has only one nonzero element for each row. The straightforward solution
is to do it frame-wise, i.e. for each frame vi in v we find the index of its closest frame uj in u.
However, such an operation cannot ensure that W is smooth and consistent with good transferability.
Inspired by the context-aware alignment [20], we propose context-aware smooth linear transform
that aggregates information from semantically adjacent frames.

Specifically, we first find the context-aware frame-wise similarity matrix of u and v. For example,
the similarity score sij between i-th frame of v and j-th frame of u can be obtained as following:

sij =
exp(−|vi − uj |/λT )∑T

m=1 exp(−|vi − um|/λT )
, (3)

where | · | denotes L2 distance between two flattened skeletons (root translation already removed).
Larger λT means stronger context-aware smoothing. We then calculate the index by:

ki =

T∑
j=1

j · sij . (4)

The transform matrix W is then obtained by setting W [i, round(ki)] = 1. This is to say, when
deciding the most similar frame for vi, all frames in u are considered by their similarity weights. In
this way the transform W becomes smooth and more resilient to noise frames.
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Clustering linear transforms. Again we utilize clustering algorithm to extract all the possible
transform patterns that map partial sequences to full sequences. Since the original number of
transforms for W obtained from randomly sampled trimmed and full pairs may be too large, with
clustering we avoid the inefficient sampling of W . Meanwhile, during the clustering, some important
transform patterns, e.g. mirroring, can stand out as they may originally only account for a small
percentage in the whole pool of transforms.

In details, we first randomly generate training pairs, i.e. partial motion sequences and full motion
sequences {(uk, vk)} from S. We then use Eq. (3) to get similarity matrix M (k) for motion uk

and vk. Instead of clustering directly on W , we perform clustering on all the similarity matrices
{M (k)} to get representative cluster centers {Mi}. We normalize each row for Mi, and then calculate
the index according to Eq. (4) and obtain the corresponding transform matrix Wi. Again, during
clustering, each M (k) ∈ RT×T is flattened to 1d vector and we use L2 norm as the distance measure.

Once we obtain a set of {Wi}, we can randomly sample W from {Wi} and apply it to x. So the
linear transform can be formally represented as FL(x) = Wx,W ∼ {Wi|Wi ∈ RT×T }.

3.5 Training

We follow the standard pipeline for training a recognition model. For input x with its action label y,
we generate augmentations x′ (refer to Algorithm 1 in Appendix A1), and train the model with the
loss function:

Ltotal = L(G(x), y) + L(G(x′), y), (5)

where L is the standard cross-entropy loss. In practice, in a batch, we augment the training samples
with a ratio of maug, and the rest of the samples remains unchanged.

4 Experiments

4.1 Datasets and Settings

Datasets. We use four large-scale datasets, i.e, NTU60-RGBD [41], PKU-MMD [25], ETRI-
Activity3D [15] and Kinetics [5]. The first three datasets are captured in indoor laboratory and
household environments while the last one is collected from online videos.

A new cross-dataset setting. We construct a new multi-domain cross-dataset setting, mainly
comprising actions in indoor environment. We gather shared 18 actions (see Appendix A2) using
the first three datasets described above and each dataset is treated as one domain. We train on one
domain and test on the rest two domains. Specifically, we define four domain transfer sub-settings,
i.e. N −→ E, N −→ P , EA −→ N , EA −→ P (each dataset is denoted with its first letter). Especially
we use the adult split EA for training because in this way we keep the number of training samples
for NTU and ETRI relatively the same. We do not include P for training since P majorly contains
long and complete actions due to its annotation and it is relatively easy to perform sampling directly.
We also reserve a subset P̄ with mutually exclusive labels with P as a prior dataset to evaluate in an
“Oracle” case when we have certain knowledge about how complete actions look like.

Evaluation Metric. We use the average accuracy of the above four cross-dataset sub-settings to
measure the performance of single domain generalization. Especially we use balanced accuracy
[32, 39] to eliminate the influence of class bias. We train the model with ten different random seeds
and report the mean accuracy.

For fair comparison with ST-Cubism [46], we also include P51←→ N51 with 51 action classes paired
between NTU and PKU dataset, and N12−→K12 with 12 action classes paired between NTU and
Kinetics. We also follow their evaluation protocols when reporting results.

4.2 Implementation Details

Data preparation. We resize motion sequences from different domains to a fixed length T = 64.
Following [42], we remove camera rotation and trajectory movement in the pre-processing stage and
we further apply random 3D rotation as spatial augmentation for all methods.

6



Table 1: Comparison with other methods in our cross-dataset settings. The best result is in bold and
the second best is with underlines.

Method N −→ E N −→ P EA −→ N EA −→ P Avg.

ERM 54.9 70.5 42.4 49.7 54.4
CCSA [35] 56.0 72.2 43.6 51.7 55.9
ADA [52] 55.2 69.2 43.8 50.7 54.7
ST-Cubism [46] 59.1 71.7 45.4 52.4 57.1
Skeleton-MAE [28] 56.1 72.7 44.5 52.4 56.4
HICLR [62] 54.0 70.6 46.7 53.8 56.3
Uniform sampling [8] 56.7 69.4 45.3 51.3 55.7
Mixup [61] 55.0 69.9 44.5 52.2 55.4
CropPad [23] 56.8 70.1 44.0 50.9 55.4
CropResize [47] 57.5 70.3 45.5 50.6 56.0
TSN [54] 54.3 68.6 43.0 50.0 54.0
Multiple-crop testing 54.4 76.5 40.8 52.6 56.1
OTAM+kNN [3] 54.2 72.7 42.9 50.8 55.2

Ours 58.4 75.8 48.4 57.8 60.1

Table 2: Comparison with other meth-
ods in NTU −→ PKU setting with 51
actions.

Method N51−→P51

ERM 66.3
CCSA [35] 67.3
ST-Cubism [46] 70.5
Skeleton-MAE [28] 70.3
HICLR [62] 66.5
CropPad [23] 69.0
CropResize [47] 67.0

Ours 72.2

Table 3: Comparison with ST-Cubism in multiple cross-
dataset settings with HCN backbone.

Method Backbone N51−→P51 P51−→N51

ERM HCN 57.6 50.5
ST-Cubism (Tem) [46] HCN 60.0 52.7
ST-Cubism (Spa) [46] HCN 59.6 50.8
ST-Cubism [46] HCN 61.3 53.8
Ours HCN 62.8 53.3

Method Backbone N12−→K12

ERM HCN 14.4
ST-Cubism [46] HCN 15.6
Ours HCN 15.9

Backbone models. For our backbone model, we adopt a slightly modified version [26] of Adaptive
GCN (AGCN) [42] with fewer blocks and only use the joint stream for speed and simplicity. We
reduce the number of blocks from 10 to 4. The output channels for each block are 64, 64, 128
and 256. The kernel strides for each block are 1, 1, 2 and 2. We find that such a design improves
the base generalizability partially because it better fits the reduced length of motion sequences and
avoids overfitting. Besides our AGCN backbone, we also test on ST-GCN [57] and CTR-GCN
[6], two representative GCN backbones. ST-GCN is a simple GCN that aggregates spatiotemporal
information without elaborate design. CTR-GCN adopts a multi-level feature design and has much
more parameters than our AGCN. HCN is a two-stream convolutional network used by [46]. We use
it for fair comparison in P51←→ N51 and N12−→K12 settings.

Training details. We set training hyper-parameters the same as [42]. Furthermore, we set λT = 0.1,
the number of linear transforms Ntr = 20, the number of background poses Nbkg = 10, and
maug = 0.75. We set α = 0.1 for sampling tp. We fix the resampling method by randomly sampling
a segment with length ratio r between 0.7 and 1.0. We use k-means for clustering boundary poses
and linear transforms. Parameter settings for P51←→N51 and N12−→K12 are provided in Appendix
A3.

4.3 Results

Baselines. Besides ST-Cubism [46] which is by far the only method that reports result for cross-
dataset settings, we compare with a wide range of baseline methods. (1) General domain gen-
eralization approaches: latent feature alignment CCSA [35] and adversarial augmentation ADA
[51, 52]. (2) Self-supervised learning approaches: ST-Cubism [46] that solves jigsaw puzzles in
spatial (Spa) and temporal (Tem) dimensions, Skeleton-MAE (partially borrowed from [28]) that
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Table 4: Effect of each component and the effect of using different prior datasets for our method. All
ablation experiments in this table have the resampling step.

Method N −→ E N −→ P EA −→ N EA −→ P Avg.

ERM 54.9 70.5 42.4 49.7 54.4
CropPad [23] 58.0 67.9 45.2 51.7 55.7
Nonlinear FN 57.7 70.8 48.3 54.5 57.8
Linear FL 58.6 72.8 45.3 52.2 57.2
Linear(Self)+Nonlinear(Self) 58.4 75.8 48.4 57.8 60.1
Linear(P̄ ) +Nonlinear(Self) 58.2 76.2 48.5 57.7 60.2
Linear(Self)+Nonlinear(P̄ ) 58.7 76.4 48.4 58.4 60.5
Linear(P̄ ) +Nonlinear(P̄ ) 57.9 76.3 49.2 58.6 60.5

Figure 3: Visualization for selected linear transform matrices {Wi} via clustering using training sets
N and EA.

learns skeleton representation in the fashion of masked auto-encoder, and HICLR [62] which is a
representative pre-training method via contrastive learning. (3) Augmentation-based approaches:
mixed sample data augmentation Mixup [61], Crop and reflective padding (CropPad) [23], crop and
resizing (CropResize) [47] and uniform sampling [8]. (4) Alignment-based approaches: OTAM
[3] +kNN which uses nearest neighbour classifier [53] with a variant OTAM [3] as the dynamic time
warping distance. (5) Aggregation-based approaches: Temporal segment network design [54] and
multiple-crop testing (5-crop) which samples clips from a test sequence and average the output scores.
Moreover, Empirical Risk Minimization (ERM) uses standard cross-entropy loss and serves as a
performance lower bound. More implementation details are provided in Appendix A3.

The result is shown in Table 1. Our method, by explicitly exploring the action prior, improves ERM
by 5.7% and outperforms the second best (ST-Cubism) by 3.0% in terms of average accuracy. All
the self-supervised and augmentation-based methods improve the domain generalizability while
the former perform better than the latter. However, neither of them can significantly improve the
generalizability to deal with unseen data with large gaps. By learning transforms from training data,
we are more flexible than handcrafted augmentations and perform especially better in recognizing
long sequences (P domain). Test-time aggregation only improves on one specific setting and warping-
based matching with kNN is not as competitive as directly learning a deep classifier when given
sufficient and diverse training data (See more discussion in Appendix A6). While sharing the same
spirit that temporal alignment is important, we provide an alternative solution which combines raw
training data and augmented “aligned” data from recovering and resampling complete actions.

We further transfer boundary poses and linear transforms learned from the 18-class subset to
N51←→P51 settings. In Table 3, we compare to ST-Cubism [46] following their protocol using
HCN [21] backbone. For N51−→P51, as in Table 2 and 3, our method outperforms ST-Cubism,
showing the effectiveness when there are more action classes. For P51−→N51, ours is better than the
temporal part of ST-Cubism but slightly worse than the whole ST-Cubism, which can be explained
that P51 generally already consists of complete actions. For the challenging 2D setting N12−→K12,
we use linear transform module only and also obtain slightly better performance than ST-Cubism.

4.4 Analysis and Discussion

Effect of each component. We examine the effect of the non-linear transform FN , i.e. the boundary
conditioned extrapolation, and the linear transform FL. As shown in Table 4, both FN and FL

improve the ERM baseline in terms of the average accuracy, showing they are crucial to construct
complete actions and validating our two-step design. As a comparison, we see that recovering with
handcrafted CropPad only leads to limited improvement (1.3%). Moreover, in cases when the action
completeness is less significant in the target domain (e.g. N−→E), FL itself may be sufficient.
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Table 5: Effect of linear transforms.
Ntr N−→E N−→P EA −→N EA −→P Avg.

ERM 54.9 70.5 42.4 49.7 54.4
3 57.8 69.8 49.2 58.7 58.9
5 58.2 72.4 48.9 57.2 59.2

10 58.2 73.7 48.2 56.9 59.3
20 58.4 75.8 48.4 57.8 60.1

Table 6: Effect of background poses.
Nbkg N−→E N−→P EA −→N EA −→P Avg.

ERM 54.9 70.5 42.4 49.7 54.4
None 58.6 73.7 47.6 55.3 58.8

5 58.1 76.3 48.1 57.2 59.9
10 58.4 75.8 48.4 57.8 60.1
20 58.4 75.7 48.5 57.4 60.0

Table 7: Comparison with other learning variants
in our method.

Method N−→E N−→P EA −→N EA −→P Avg.

ERM 54.9 70.5 42.4 49.7 54.4
FNN,extrap(·) 58.6 74.3 46.3 56.1 58.8
FNN,infill(·) 58.6 73.8 46.7 55.6 58.7

Ours 58.4 75.8 48.4 57.8 60.1

Table 8: Per-class accuracy improvement of our
proposed method compared to ERM.

Action Avg. acc. across four settings

Phone calling 38.8(+25.3)
Hand waving 71.3(+22.1)
Clapping 54.7(+15.0)
Pointing finger 92.5(+9.7)
Taking off clothes 88.0(+3.1)

Figure 4: Visualization for the boundary pose
clustering result {pi} when Nbkg = 5. (a) Pose
clusters for training set N and (b) Pose clusters
for training set EA.

Figure 5: Examples of some recovered complete
actions. The skeletons in blue are raw inputs
and the skeletons in sky blue are new frames
generated by our method.

Since FL and FN learned from different datasets are transferable, we can also use P̄ as a high quality
prior dataset to replace the original training data (denoted as Self in Table 4) to learn FL and FN .
In this way we can investigate the performance upper bound of our method. By utilizing P̄ we can
further improve the average accuracy from 60.1 to 60.5. This shows that it would be more beneficial
to directly learn from nearly complete actions since it is our aim to reconstruct complete actions from
partial observations. On the other hand, the marginal improvement of 0.4% also indicates that even
from the training data we already learn transforms and boundary poses in a quite decent manner.

Parameter analysis. We examine three important parameters: number of clustered boundary poses
Nbkg, number of clustered linear transforms Ntr, and context-aware coefficient λT . The results are in
Table 5 and 6. As for Ntr, a too small number of clusters will hurt the overall performance by around
1.2%, which shows that too few linear transforms cannot fully represent the various global motion
patterns. As for Nbkg, we empirically find that the number is not a very important issue probably
because the variety of boundary poses does not significantly affect the semantics. However, directly
extending with the raw first frame (shown as “None”) will hurt the performance by 1.3%, indicating
the importance of boundary pose clustering. We also investigate the parameter sensitivity of λT . We
find that λT = 0.1 works well and generally it is not very sensitive (see result in Appendix A4).

What is learned for augmentation? In order to better understand what is learned in FL and FN ,
we visualize the clustering results. Fig. 4 visualizes the clustered background poses. We find that
the background poses mainly include common rest poses such as standing and sitting with different
rotations. These poses do not always appear in all action sequences, so clustering from the whole
dataset is reasonable. Fig. 3 visualizes the clustered linear transform matrices. We find that FL

mainly learns temporal shifting and reflection operation from the training data, which indicates the
presence of approximate symmetric pattern of many complete actions (see matrices in “>” and “<”
shapes). We can also interestingly conclude that the CropPad transform [23] actually fits our complete
action prior well as it appears in the set of FL transforms (such as the second matrix in Fig. 3). Ours
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ERM ST-Cubism (Spa) ST-Cubism (Tem) Ours

Figure 6: The t-SNE [49] visualization of the feature embedding for the test set in N51−→P51
setting with HCN backbone. The color indicates the groundtruth label. Our method learns a more
discriminative feature embedding.

Table 9: Performance of our method on different backbones.
Backbone N −→ E N −→ P EA −→ N EA −→ P Avg.

ST-GCN [57] 51.7 67.7 37.8 44.5 50.4
ST-GCN+Ours 56.7 69.7 46.1 49.0 55.4

CTR-GCN [6] 54.7 72.9 46.6 50.9 56.3
CTR-GCN+Ours 63.6 81.4 53.9 58.3 64.3

is more flexible as we can learn a set of possible transforms. Fig. 5 provides examples of recovered
complete actions from partial observations. In Fig. 6, we show that with our augmentation we learn a
more discriminative feature embedding compared to some other baselines.

Comparison with other learning variants. Note that it is also possible to perform infilling and
extrapolation for skeleton sequences by training an action completion network. In Table 7 we
investigate the performance when learning by neural networks. We compare to the design of learning
to extrapolate without conditioning on boundary poses, as well as the design of learning to infill
instead of performing linear interpolation. For both variants we adopt the network design in [28]
and more details are provided in Appendix A3. We find that in terms of average accuracy, both
learning to extrapolate (FNN,extrap) and learning to infill (FNN,infill) are not as effective as our proposed
learning-free interpolation, which shows that (1) assigning boundary pose via clustering is necessary
as the network itself is difficult to learn automatically; (2) infilling by linear extrapolation is actually
a simple but effective design as the infilling quality is good and robust for domain generalization.

Per-class results. Table 8 shows the performance improvement for selected action categories. Our
method can significantly improve the accuracy on several hand-related actions such as phone calling,
hand waving and clapping. In the case of temporal mismatch, these actions are easily confused with
other similar actions if only trained from partial observations. If an action can be well recognized by
partial segments, the improvement may be small (e.g. taking off clothes).

Generalizability for different backbones. We further apply our method on ST-GCN [57] and
CTR-GCN [6] to see whether various backbones can benefit from the observed complete action prior.
Note that CTR-GCN extracts temporal feature in a multi-scale fashion, which is more advanced than
AGCN [42]. We observe consistent improvement over ERM, from 50.4 to 55.4 for ST-GCN and
from 56.3 to 64.3 for CTR-GCN, as is shown in Table 9. This shows that the domain gap caused by
temporal mismatch is difficult to be mitigated by only designing network architecture itself.

5 Conclusion

In this paper we present a recover-and-resample augmentation approach to deal with the single
domain generalization problem for skeleton action recognition. By exploring the complete action
prior, we recover complete actions with learned boundary poses and global linear transforms via
clustering. Experiments on a cross-domain setting with three datasets validate our framework. In
the future, we plan to investigate more effective resampling approaches, e.g. positional encoding, to
further incorporate temporal resampling information into our whole framework.
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6 Appendix

A1. Algorithm

The algorithmic description of our recover-and-resample augmentation framework is provided in
Algorithm 1.

Algorithm 1 Recover and Resample

input: a sample x ∈ RT×J×3 with length T and joint number J , dataset S, resampling function Wresample,
coefficient α.

output: an augmented sample x′ ∈ RT×J×3.
Cluster background poses {pi} from S. (Sec. 3.3)
Cluster linear transforms {Wi} from S. (Sec. 3.4)
Define a motion infiller F(·).
Assign p′ as the boundary pose for x from {pi} using Eq. (2).
Sample tp ∼ β(α, α)T/2 and perform extrapolation x = F(x, p′, tp).
Sample W from {Wi}, apply x = Wx.
x′ = Wresample(x).

A2. Description on Datasets and Evaluation Settings

Cross-dataset settings. Here we provide more details for our cross-dataset settings. The shared
18 action classes for NTU60-RGBD [41], PKU-MMD [25] and ETRI-Activity3D [15] are listed
in Table 10. We evaluate on four cross-dataset sub-settings, i.e. N −→ E, N −→ P , EA −→ N and
EA −→ P . We use cross-subject protocol for dividing training and test splits, and the number of
training and test samples for each domain is shown in Table 11. For each domain, we use training set
for model training and test set for evaluation. For term of use, NTU60-RGBD [41] is free for research
and non-commercial use. We submitted a license agreement to ETRI-Activity3D [15] website for
downloading the dataset. License for PKU-MMD [25] is not stated on its official homepage.

Table 10: Action labels used in our cross-dataset settings.
Action label

eat drink brush teeth brush hair
wear clothes take off clothes put on/take off glasses read
write phone call play with phone clap
bow handshake hug hand wave
point finger fall down

Table 11: Number of training and test samples for each dataset split.
Domain # samples in training set # samples in test set

N 12651 5212
EA 13568 7008
P 6823 968
E 26930 13350
P̄ 12017 1736

Evaluation details. For skeleton action recognition, most works [42, 6] report best results on the test
set since there is no official validation set. We also follow this evaluation protocol for our domain
generalization task. We train and evaluate for each sub-setting separately, and use average accuracy
for evaluating the overall performance. Moreover, we run each experiment ten times with different
random seeds and report mean accuracy to reduce performance oscillation. As the training sets for N
and EA (the adult split) are approximately of the same sizes, we choose to use EA for training, which
offers a fair basis and gives us a better understanding of the task difficulty for different sub-settings.
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A3. Additional Implementation Details

Linear transform clustering. In order to cluster a set of linear transforms, we construct a set of
training pairs, i.e. partial action sequences and full action sequences {(uk, vk)} from training data
S. Although it is possible to randomly sample starting and end points for a sequence v to generate
u, we propose to sample from some fixed interval timestamps for simplicity and regularity. Those
timestamps are 0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0. For each training sample v, we
sample u according to the below pairs of starting and end points.

[(0.0, 1.0), (0.0, 0.5), (0.5, 1.0), (0.25, 0.75), (0.125, 0.625), (0.375, 0.875), (0.0, 0.75), (0.25, 1.0)]

Resampling stage. We mainly follow the CropResize [47] operation for our resampling stage, which
first samples sequence length from uniform distribution U(r1, r2) and then randomly samples a
temporal segment with this length. Since effective resampling approach is not the primary goal of our
paper, we fix it in our framework.

Training details. For training AGCN, we follow [42] and use SGD optimizer with an initial learning
rate of 0.1 and weight decay of 0.0001. We train the model for 50 epochs. The learning rate is
reduced at 30th and 40th epoch with a decay of 0.1. For HCN we use the same training configuration
as [46]. Parameter settings for other experiments are listed below. For N12−→K12 and N51←→P51,
we set Ntr = 10. For N51−→P51, Nbkg = 10 and for P51−→N51, Nbkg = 5. The boundary poses
and linear transforms learned from the corresponding 18-class subset are transferred to N51←→P51
settings for efficiency. Also for N12−→K12, we set maug to a smaller value of 0.5 and omit FN due
to very high level of noise and missing joints in K12 dataset. We implement our method and other
baselines using PyTorch [36] and conduct experiments on a single NVIDIA RTX 2080Ti. We will
also release code in Jittor [13] implementation which supports faster training and inference.

Design of learning variants for comparison. As in Table 7, for learning to extrapolate (FNN,extrap),
we train a completion network using masked and full sequences, and during augmentation, we
squeeze the original sequence to half of its original size and let the network extrapolate on both
sides. We also compare with the design of learning to infill (FNN,infill) instead of performing linear
interpolation. Again we mask out a segment in the center of a motion sequence and use paired
sequences to train an infilling network.

Other baseline methods. Here we provide brief descriptions and more implementation details for
other baseline methods.

(1) General domain generalization approaches. CCSA [35] improves generalizability by aligning
samples of the same label in the feature space via contrastive loss. For CCSA, the weight for
contrastive loss is set to 0.1, and the margin for contrastive loss is set to 1.0. ADA [51] improves
generalizability by augmenting with adversarial samples. ADA uses image-based perturbation in
the original paper. We adapt it to the adversarial skeleton perturbation [52] as we find it yields
better results. The training set is expanded with adversarial samples at 15th and 30th epoches. For
adversarial augmentation we set the semantic regularizer to 1.0, learning rate to 1.0 and optimization
steps to 5.

(2) Self-supervised learning approaches. ST-Cubism [46] improves generalizability by solving
auxiliary jigsaw puzzles. The spatial stream (Spa) and temporal stream (Tem) solves jigsaw puzzles in
spatial and temporal dimensions respectively and the final prediction ensembles scores from the two
streams. For ST-Cubism, the loss weight for jigsaw puzzle term is set to 0.1. Skeleton-MAE improves
generalizability by learning to reconstruct the input skeletal motion sequence. For Skeleton-MAE, we
borrow the masked auto-encoder module and reconstruction loss from [28], and change the backbone
to AGCN. During training, we randomly mask out a clip with a length ratio of 0.3 and let the model
to reconstruct it. The weight for the reconstruction loss is set to 1.0. HICLR [62] is a skeleton
representation learning method, which improves generalizability by pre-training a feature encoder
via contrastive learning. For HICLR, we follow their supervised evaluation by first pre-training the
encoder and then performing standard training using the training set. We adapt the backbone to
AGCN as well.

(3) Augmentation-based approaches. Mixup [61] generates augmentations by linearly interpolating
between a pair of samples as well as their labels. For Mixup, training samples are augmented with
Mixup with a probability of p = 0.5. CropPad [23] randomly crops a segment from the motion
sequence and performs reflective padding on both sides. For CropPad, we use the crop ratio γ = 6.
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CropResize [47] randomly crops a segment from the motion sequence and resizes it to its original
length. For CropResize, we randomly sample a segment with a length ratio between 0.7 and 1.0,
which we find works the best. We also set the resampling process in our method the same as this
baseline. For CropPad, CropResize, and spatial augmentations, we set maug = 0.75 which is the same
as ours. Uniform sampling [8] resizes a sequence by first uniformly dividing the input sequence into
segments and then randomly sampling one frame within each segment. Such a sampling method can
make full use of all frames in the raw motion sequence and therefore generate strong augmentations.

(4) Alignment-based approaches. We use the feature encoder from the model trained with standard
cross-entropy loss (ERM), and transform raw skeleton sequences into downsampled feature sequences
(16 frames for each sample). We then use a kNN (k = 5) classifier [53] with warping-based
distance OTAM [3] which is a representative warping-based distance measure used in few-shot
video classification that deals with temporal mismatch. The final result comes from the ensemble of
OTAM+kNN and the ERM model. We find that using distance in the raw joint space is inferior than
in the feature space. Note that we implement temporal alignment method without further pre-training
the feature encoder. Please refer to self-supervised learning for feature pre-training approaches.

(5) Aggregation-based approaches. We build TSN [54] upon the AGCN backbone. The input
sequence is uniformly divided into 3 clips before feeding to the backbone and we aggregate their
features using average pooling. We implement multiple-crop testing as a post-processing method.
Given a test sequence we sample 5 clips with length ratios of 0.5 and 0.75 and average the prediction
for these clips altogether with the original sequence. The starting and end point pairs of the sampled
clips are [0, 0.5], [0.25, 0.75], [0.5, 1.0], [0, 0.75], [0.25, 1.0] in our experiments.

A4. Additional Experimental Results

Detailed results for ablation study. Table 12 presents results for the experiment of parameter
analysis in the main paper. We find that λT is generally not very sensitive, as choosing λT over a
large range (0.001 to 1) does not significantly affect the average accuracy. Table 13 provides detailed
results for the per-class performance.

Table 12: Effect of coefficient λT in context-aware linear transforms.
λT N −→ E N −→ P EA −→ N EA −→ P Avg.

ERM 54.9 70.5 42.4 49.7 54.4
1 58.0 73.5 48.0 58.3 59.4

0.1 58.4 75.8 48.4 57.8 60.1
0.01 58.0 73.3 48.5 58.4 59.5

0.001 58.1 73.7 47.9 57.4 59.3

Table 13: Per-class results of our proposed method compared to ERM.
Actions N −→ E N −→ P EA −→ N EA −→ P Avg.

Phone calling 20.8(+5.7) 49.6(+49.1) 32.7(+24.5) 51.8(+22.0) 38.8(+25.3)
Hand waving 80.8(+21.5) 96.8(+7.7) 41.8(+21.1) 65.9(+41.7) 71.3(+22.1)
Clapping 58.8(+23.1) 90.0(+5.4) 26.9(+14.4) 43.2(+17.2) 54.7(+15.0)
Pointing finger 94.0(+2.7) 100.0(+0.0) 77.6(+22.9) 98.2(+13.1) 92.5(+9.7)
Taking off clothes 98.5(+1.3) 93.1(+2.9) 70.9(+5.3) 89.6(+2.7) 88.0(+3.1)

Feature representations. We measure the similarity of two skeletons using L2 norm in the joint
coordinate space. However, it is also possible that we measure it in the latent space. Here we
investigate the performance difference between these two feature representations. Specifically, we
train a skeleton auto-encoder with MLP using training data and use it to obtain latent feature for the
skeleton in each frame. For FN we perform boundary pose clustering in the latent feature space,
and for FL we calculate similarity matrices using latent feature. As in Table 14, we observe a lower
but very close performance if using latent feature. This shows that our method does not depend on
specific skeleton representations.
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Table 14: Comparison between different skeleton representations for our method.
Representation N −→ E N −→ P EA −→ N EA −→ P Avg.

ERM 54.9 70.5 42.4 49.7 54.4
Ours (joint space) 58.4 75.8 48.4 57.8 60.1
Ours (latent space) 58.4 74.9 48.3 57.6 59.8

Table 15: Comparison between different clustering algorithms.
Method N−→E N−→P EA−→N EA−→P Avg.

Ours (k-means) 58.4 75.8 48.4 57.8 60.1
Ours (agglomerative) 58.5 74.7 48.0 56.7 59.5

Table 16: Comparison between different resizing strategies and segment lengths in the resampling
stage. r denotes the range of length for sampled segments.

Resizing range r N−→E N−→P EA−→N EA−→P Avg.

linear [0.3,1.0] 57.4 71.5 47.9 56.2 58.2
linear [0.5,1.0] 58.4 74.7 48.1 56.3 59.4
linear [0.7,1.0] 58.4 75.8 48.4 57.8 60.1
random [0.7,1.0] 57.9 75.6 48.3 57.1 59.7

Evaluation on different clustering algorithms. We investigate whether our method is compatible
with different clustering algorithms. We conduct experiments using agglomerative clustering [37],
which is another type of clustering algorithm different from k-means. The result is in Table 15.
We see that the average accuracy is lower but still close and outperforms other baseline methods,
which shows that our method is generally not sensitive to the choice of clustering algorithm. In the
experiment, we keep hyper-parameters (e.g. number of clusters) the same as k-means. The result
may be further improved by tuning more suitable parameters.

Evaluation on resampling methods. For our experiments CropResize is used for the resampling
stage. In Table 16, we investigate the length of segments r as a key parameter. We find that sampling
too short segments may introduce many noisy augmentations and hampers the overall performance.
To resize the sampled segment to a fixed length sequence, linear and random frame sampling are also
investigated. The results are shown to be generally comparable.

Evaluation on standard in-domain action recognition. Although the proposed method mainly
deals with cross-dataset settings, we find it can also work as an augmentation strategy for standard
in-domain skeleton action recognition with training and testing within the same dataset. In Table 17,
we evaluate on the in-domain recognition on NTU-18 subset and ETRI Adult-18 subset from our
constructed cross-dataset settings, as well as on the standard full NTU-60 dataset [41]. We adopt full
AGCN backbone for N-18 and EA-18, and use full 2s-AGCN [42] for NTU-60. We set a smaller
weight for augmentation maug = 0.25. The performance improvement of our method is comparable
to uniform sampling [8], which is considered as an effective temporal augmentation. Note that for
cross-dataset settings we surpass uniform sampling by 4.4% (see Table 1) since uniform sampling
only samples the observed sequence. On the other hand, the fact that our improvement on N-18 and
EA-18 is much smaller than in cross-dataset settings indicates that the training and test split of a
dataset are generally well aligned. Our cross-dataset setting magnifies the issue of temporal mismatch
and presents a more practical setting as in real-world applications.

Table 17: Result of our method for standard skeleton action recognition.
Method N-18 EA-18 NTU-60

ERM 86.0 89.2 88.7
Uniform Sampling [8] 86.5 90.3 89.4
Ours 86.8 90.1 89.5
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Table 18: Comparison between spatial and temporal augmentations.
Method N −→ E N −→ P EA −→ N EA −→ P Avg.

ERM 54.9 70.5 42.4 49.7 54.4
Shear [23] 54.9 69.7 42.6 49.2 54.1
Bone scaling [58] 54.6 68.7 42.6 50.0 54.0
Translation [11] 55.2 68.8 43.3 50.3 54.4

Ours (temporal) 58.4 75.8 48.4 57.8 60.1

Table 19: Standard deviation of our cross-domain action recognition.
Method Avg. accuracy Std

ERM 54.4 0.8
Ours 60.1 0.6

Spatial augmentation v.s. temporal augmentation. In Table 18, we examine how spatial augmen-
tation and temporal augmentation contribute to the improvement of generalizability, as they both
prove to be effective in the self-supervised skeleton representation learning [23]. We choose typical
spatial augmentations including shear transform [23], bone length scaling [58] and Gaussian noise
addition on joints [11]. To compare with spatial augmentations, we set shear ratio [23] β = 0.1, and
set the translational noise with a normal distribution N(0, 0.01). For bone scaling, we randomly scale
each bone with a length ratio between 0.9 and 1.1. We demonstrate that our method, in the form of
temporal augmentation, is more effective than direct spatial augmentation. This shows that direct
spatial transformation is more likely to change the semantics, especially for hand parts. Domain
differences in human actions are easier to be handled in the temporal dimension than in the spatial
dimension.

More visualizations for FL. In Fig. 8 we visualize the clustered linear transforms when Ntr = 20
and Ntr = 5 using training set N . We find that a small number of Ntr (e.g. Ntr = 5) will hurt the
diversity of linear transforms. In such a case, it is difficult to extract some important temporal action
patterns (e.g. temporal shift and symmetry) via clustering.

Error bars. The domain generalization task normally brings the issue of performance oscillation. In
Table 19 we report 10-run standard deviation for the average accuracy in our cross-dataset settings.
We show that our improvement is statistically significant.

Qualitative results. In Fig. 9 we provide some qualitative examples showing our improvement over
the baseline (ERM). With our proposed augmentation by action completion, we enable more accurate
action recognition for long and full sequences when observing from partial action sequences.

A5. Additional Analysis on Complete Action Prior

Experimental details for discovering complete action prior. Each input skeleton is flattened to
a vector with a dimension of 75 (joint number J = 25). We design a simple skeleton auto-encoder
consisting of six fully-connected layers and ReLU activation. The output dimensions for the fully-
connected layers are 128, 64, 32, 64, 128, 75, respectively. The L2 norm loss is adopted to train
the auto-encoder in order to reconstruct the original input skeleton. During training, we sample
frames from processed skeletal data (uniformly resized to 64 frames and the first frame is aligned to
coordinate) as training data.

We train the auto-encoder separately for each dataset (PKU-MMD [25], NTU60-RGBD [41] and
ETRI-Activity3D [15]) using data in our 18-class cross-dataset settings. We then use the trained
model to transform all skeleton frames into latent features (extracted from the third layer with a
dimension of 32). The feature diversity of dataset S at a certain timestamp t is the standard deviation
of the obtained latent features z(·) averaged over all feature dimensions c ∈ C and all skeleton
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Beginning frames (NTU)

Central frames (NTU)

Figure 7: Visualization of beginning and central frames that are sampled from NTU split in our
18-class cross-dataset setting. The beginning frames which are usually rest poses have less diversity,
while the central frames which contain rich action semantics usually have more diversity.

sequence samples x ∈ S.

Diversity(S, t) =
√

1

NSNC

∑
x∈S

∑
c∈C

(z(xt)c − z̄(xt)c)2 (6)

where z̄(xt) is the mean of all latent features z(xt) for x ∈ S, NS is the size of dataset S and NC is
the number of latent feature dimensions.

More analysis on the statistical pattern. We provide more analysis for curve patterns in Fig. 1 (b).
For PKU and NTU, as they are captured in labs and are generally clean with less occlusion and noise,
they are of relatively low diversity and exhibit stronger level of complete action prior. For ETRI, as it
is captured in home environment and is more challenging with larger noise, the frame-wise diversity
would be higher. And as it is captured in real life with action boundaries that are hard to determine
when collecting the dataset, the complete action prior is not as significant as NTU and PKU dataset.
Fig. 7 shows examples of beginning frames and central frames for the NTU split in our cross-dataset
settings, which is consistent with the statistical finding in Fig. 1 (b).

Also, we see that the global pattern differs across different datasets, for example, in the starting and
end point diversity. For PKU and ETRI, they exhibit an overall temporal pattern of being symmetric.
In contrast, the NTU dataset does not have such a symmetric pattern. There is also a shift for the peak
diversity across datasets. The above differences are majorly caused by different definition of when
an action starts and ends in different datasets, as can also be visualized in the Fig. 1 (a) example.
These findings suggest that the domain gap between datasets, represented as temporal mismatch,
may involve temporal shift, scaling and even symmetry/non-symmetry properties arising from the
partial/full bias of human actions.

Note that the two observations presented in the main paper that many human actions are partial
observations and that human actions generally exhibit completeness within a large group of samples
are not contradictory. This can be best explained by that (1) within a large dataset, some action
categories or samples are nearly complete while some other action categories or samples are partial
segments of complete actions, and (2) even if the actions are not exactly complete, e.g. only
comprising central segments, many of them obey a similar statistical pattern which is only less
significant. Here the “completeness” is the opposite of having uniform diversity over time. Also
keep in mind that the curves in Fig. 1 (b) only reflect the statistical pattern for a group of actions
in a dataset. For example, although the curve for NTU seems non-symmetric, we can still have
approximate symmetry operations in the clustered linear transforms (see Fig. 8). This can be best
explained by that there exist action samples/categories that are symmetric in the NTU split, but they
only account for a small portion.

Other implications on the proposed method. (1) The complete action prior generally relies on
the assumption of clean skeleton data and daily routine pattern of human activities. Relying on this
prior, our method is unable to work well when the source data is very noisy and contains very long
motions with multiple stages, for example, taking K12 as source data. We find that K12 does not
exhibit such strong prior as is observed in Fig. 1(b). (2) When the target domain does not show strong
action completeness or contains high level of noise, the extrapolation module FN may not have a
very strong effect. This is partially shown in N−→E and N12−→K12 settings. This also explains our
finding that using linear transform FL is generally sufficient for N12−→K12.
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A6. Discussion

Discussion for other baseline methods. We discuss some possible reasons that the alignment-based
method is not as competitive as ours in the cross-dataset settings: (1) Given sufficient training data, the
nearest neighbour classifier only memorizes training samples compared to network classifier and this
in turn hampers its generalizability. Contrastive pre-training for the feature encoder with DTW-based
loss may lead to better performance, but at a cost of much more computation. (2) Direct matching
via kNN cannot fully take advantage of various types of augmentations, such as random rotation.
(3) A better design of dynamic time warping is needed since there is domain shift across training
and test datasets for either raw joint features or latent features. In widely-studied few-shot scenarios
[3, 53], the training and test data normally come from the same distribution. For aggregation-based
method, clips sampled without action completion cannot well handle the partial/full bias. However,
these methods and our proposed method are not contradictory and can be combined for further
improvement.

Stochastic action completion. In this paper we actually propose a stochastic action completion
method that can be used to augment the training data. This stochastic action completion is more
suitable for augmentation than a deterministic one. Note that FN has the probability to retain its
original motion due to our sampling strategy for length of extrapolation tp. FL also learns identical
mapping as is shown in the learned transform matrices (diagonal matrix). In this way, even for
the input of a complete action, our approach is still able to output a reasonable complete action
by sampling an identical mapping. A supporting evidence is that for P51−→N51 (P51 consists of
generally complete actions), our method still improves the baseline ERM and even outperforms the
temporal module of ST-Cubism [46].

Number of new parameters. During model training, the newly added parameters are two matrices,
i.e., the boundary pose clusters of shape (Nbkg, J, 3) and the linear transform clusters of shape
(Ntr, T, T ). Here Nbkg = 10, J = 25, Ntr = 20, T = 64. So the number of new parameters of these
two matrices is∼ 90000, which is less than two FC layers (suppose each layer is nn.Linear(256,256)).
For other baseline methods, universal domain generalization methods CCSA [35], ADA [51] and
handcrafted augmentation methods such as uniform sampling [8], Mixup [61], CropPad [23] and
CropResize [47] do not introduce new parameters. Self-supervised learning methods often have a
new branch along with the original network for learning auxiliary tasks, therefore introducing new
parameters (usually several FC layers). So generally, our method and those self-supervised methods
have a similar magnitude of new parameters.

Limitations. The limitations arising from the complete action prior are discussed in Appendix
A5. Other implications on the proposed method. Moreover, we note that direct resampling from a
complete action sequence might introduce ambiguity for some actions. For example, standing up
and sitting down are two different actions, but both of them can be obtained by sampling from a
complete action sequence in which a human stands up from sitting pose and then sits down. However,
one should note that this problem also exists when constructing positive samples in contrastive
self-supervised learning [11, 47], as resampling or reversing an action may change the semantics for
some action categories. To deal with this problem, we plan to add positional encoding and temporal
masks in the resampling stage to further encode temporal information about how the sequence is
sampled. We leave it for future work.

Broader societal impact. Generally we don’t find that our method has negative societal impacts.
However, users should be careful about the result if action recognition along with our method is
applied to critical human-related applications such as health monitoring and elderly fall detection.
Current deep learning-based models cannot guarantee absolutely accurate action recognition.
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(a) Ntr = 20

(b) Ntr = 5

Figure 8: Visualization for the clustered linear transform matrices {Wi} using training set N when
Ntr = 20 and Ntr = 5.

Baseline: write   Ours: clap

Baseline: put on/take off glasses   Ours: clap

Baseline: put on/take off glasses   Ours: phone call

Baseline: brush teeth   Ours: point finger

Baseline: brush hair   Ours: hand wave

Figure 9: Qualitative examples showing improvement of our method over the baseline (ERM).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix A6. Discussion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 3, Section 4 and Appendix A.3 for method, experiment settings
and implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code link is available on the first page.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4 and Appendix A.3 for experiment settings and implementation
details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Appendix A4. Additional Experimental Results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix A3. Additional Implementation Details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix A6. Discussion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Appendix A2 and A3.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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