
From the Detection of Toxic Spans in Online Discussions to the Analysis of
Toxic-to-Civil Transfer

Anonymous ACL submission

Abstract

We study the task of toxic spans detection,001
which concerns the detection of the spans that002
make a text toxic, when detecting such spans is003
possible. We introduce a dataset for this task,004
TOXICSPANS, which we release publicly. By005
experimenting with several methods, we show006
that sequence labeling models perform best, but007
methods that add generic rationale extraction008
mechanisms on top of classifiers trained to pre-009
dict if a post is toxic or not are also surprisingly010
promising. Finally, we use TOXICSPANS and011
systems trained on it, to provide further analy-012
sis of state-of-the-art toxic to non-toxic transfer013
systems, as well as human performance on that014
latter task. Our work highlights challenges in015
finer toxicity detection and mitigation.016

1 Introduction017

In social media and online fora, toxic content can018

be defined as rude, disrespectful, or unreasonable019

posts that would make users want to leave the con-020

versation (Borkan et al., 2019). Although several021

toxicity detection datasets (Wulczyn et al., 2017;022

Borkan et al., 2019) and models (Schmidt and Wie-023

gand, 2017; Pavlopoulos et al., 2017c; Zampieri024

et al., 2019) exist, most of them classify whole025

posts, without identifying the specific spans that026

make a text toxic. But highlighting such toxic027

spans can assist human moderators (e.g., news por-028

tal moderators) who often deal with lengthy com-029

ments, and who prefer attribution instead of just030

a system-generated unexplained toxicity score per031

post. Locating toxic spans within a text is thus032

a crucial step towards successful semi-automated033

moderation and healthier online discussions.034

To promote research on this new task, we release035

the first dataset of English posts with annotations036

of toxic spans, called TOXICSPANS.1 We discuss037

1URL hidden to avoid revealing the identity of the authors.
Part of the dataset was used in a challenge with the permission
of the authors. We do not provide further information about

how it was created and we propose an evaluation 038

framework for toxic spans detection. We consider 039

methods that (i) perform sequence labeling (tag 040

words) or (ii) rely on an attentional binary classifier 041

to predict if a post is toxic or not, then invoke its 042

attention at inference time to obtain toxic spans as 043

in rationale extraction. The latter approach allows 044

leveraging larger existing training datasets, which 045

provide gold labels indicating which posts are toxic 046

or not, without providing gold toxic span annota- 047

tions. Although sequence labeling performed over- 048

all better, the binary attentional classifier performed 049

surprisingly well too, despite having been trained 050

on data without span annotations. 051

We then study some characteristics of supervised 052

and self-supervised toxic-to-civil transfer models 053

(Laugier et al., 2021) by comparing them on sev- 054

eral datasets, including a recently released parallel 055

toxic-to-civil dataset (Dementieva et al., 2021) and 056

the new TOXICSPANS dataset. Using the latter, 057

we introduce a measure to evaluate the elimina- 058

tion of explicit toxicity, and we use this measure 059

to compare the behavior and performance of toxic- 060

to-civil models. Lastly, by applying toxic span 061

detection systems, we assess the performance of 062

human crowdworkers on the toxic-to-civil task. 063

2 Related work 064

Toxicity detection systems (Schmidt and Wiegand, 065

2017; Pavlopoulos et al., 2017c; Zampieri et al., 066

2019) are typically trained on datasets annotated at 067

the post level (a text is annotated as toxic or not) 068

(Wulczyn et al., 2017; Borkan et al., 2019). Our 069

work differs from general toxicity detection in that 070

we detect toxic spans, instead of assigning toxicity 071

labels to entire texts. Toxic spans detection can be 072

seen as a case of attribution or rationale extraction 073

(Li et al., 2016; Ribeiro et al., 2016), but specif- 074

ically for toxic posts, a task that has never been 075

the challenge to preserve anonymity. The full dataset and the
code of this work will be released with a CC0 licence.
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Gold Spans (set of char offsets) Post
{55, 56, 57, 58, 59, 60} What if his opinion is that most other commenters are idiots? :-)
{80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
176, 177, 178, 179, 180}

Survival of the fittest would not have produced you. You are alive because your
weak blood is supported by welfare and food stamps. Please don’t reference
Darwin in your icon. Loser.

{ } So tired of all these Portlanders moving to California and ruining the culture.
When will it stop?!?

Table 1: Examples of toxic posts and their ground truth toxic spans (also shown in bold red). In the left column,
toxic spans are shown as sets of character offsets. No toxic spans are included in the ground truth of the last post.

considered in general toxicity detection before.076

Detecting spans, instead of entire posts, was077

recently also considered in propaganda (Martino078

et al., 2020) and hate speech detection (Mathew079

et al., 2021). Although the ground truth type is080

similar (spans), propaganda detection is a different081

task from ours. Hate speech is a particular type of082

toxicity (Borkan et al., 2019), which can be tackled083

by more general toxicity detectors (Van Aken et al.,084

2018), but not the other way round; i.e., we address085

a broader problem. This probably explains why086

a pattern-matching baseline, based on the data of087

Mathew et al. (2021), achieved only slightly better088

results than a random baseline on our dataset.089

Suggesting civil rephrases of posts found to be090

toxic (Nogueira dos Santos et al., 2018; Laugier091

et al., 2021) is the next step towards healthier online092

discussions, and can be viewed as a form of style093

transfer (Shen et al., 2017; Fu et al., 2018; Lample094

et al., 2019). We show how toxic spans detection095

can also contribute in the assessment of toxic-to-096

civil transfer, linking the two tasks together for the097

first time.098

3 The new TOXICSPANS dataset099

We used posts (comments) from the publicly avail-100

able Civil Comments dataset (Borkan et al., 2019),101

which already provides whole-post toxicity anno-102

tations. We followed the toxicity definition that103

was used in Civil Comments, i.e., we use ‘toxic’104

as an umbrella term that covers abusive language105

phenomena, such as insults, hate speech, identity106

attack, or profanity. This definition of toxicity has107

been used extensively in previous work (Hosseini108

et al., 2017; Van Aken et al., 2018; Karan and Šna-109

jder, 2019; Han and Tsvetkov, 2020; Pavlopou-110

los et al., 2020). We asked crowd annotators to111

highlight the spans that constitute “anything that112

is rude, disrespectful, or unreasonable that would113

make someone want to leave a conversation”. Be-114

sides toxicity our annotators were also asked to115

select a subtype for each highlighted span, choos-116

ing between insult, threat, identity-based attack,117

profane/obscene, or other toxicity. Asking the an- 118

notators to also select a category was intended as a 119

priming exercise to increase their engagement, but 120

it may have also helped them align their notions 121

of toxicity further, increasing inter-annotator agree- 122

ment. For the purposes of our experiments, we 123

collapsed all the subtypes into a single toxic class, 124

and we did not study them further; but the subtypes 125

are included in the new dataset we release. 126

Annotation From the original Civil Comments 127

dataset (1.2M posts), we retained only posts that 128

had been found toxic by at least half of the crowd- 129

raters. This left approximately 30k toxic posts. 130

We selected a random 11k subset of the 30k posts 131

for toxic spans annotation. We used the crowd- 132

annotation platform of Appen.2 We employed three 133

crowd-raters per post, all of whom were warned 134

for explicit content. Raters were selected from 135

the smallest group of the most experienced and 136

accurate contributors. The raters were asked to 137

mark the toxic word sequences (spans) of each post 138

by highlighting each toxic span on their screen. If 139

they believed a post was not actually toxic, or that 140

the entire post would have to be annotated, they 141

were instructed to select the appropriate tick-boxes 142

in the interface, without highlighting any span. 143

It is not possible to annotate toxic spans for every 144

toxic post. For example, in some posts the core 145

message being conveyed may be inherently toxic 146

(e.g., a sarcastic post indirectly claiming that people 147

of a particular origin are inferior) and, hence, it may 148

be difficult to attribute the toxicity of those posts 149

to particular spans. In such cases, the posts may 150

end up having no toxic span annotations, according 151

to the guidelines given to the annotators; see the 152

last post of Table 1 for an example. In other cases, 153

however, it is easier to identify particular spans 154

(possibly multiple per post) that make a post toxic, 155

and these toxic spans often cover only a small part 156

of the post (see Table 1 for examples). 157

2https://appen.com/

2

https://appen.com/


Agreement We measured inter-annotator agree-158

ment on 87 randomly selected posts of our dataset,159

using 5 crowd-annotators per post in this case. We160

calculated the mean pairwise (for a pair of annota-161

tors) Cohen’s kappa per post, using character off-162

sets as instances being classified as toxic (included163

in a toxic span) or non-toxic; we then averaged164

over the posts. Although our dataset contains only165

posts found toxic by at least half of the original166

crowd-raters, only 31 of the 87 posts were found167

toxic by all five of our annotators, and 51 were168

found toxic by the majority of our annotators; this169

is an indicator of the well-known subjectivity of170

toxicity detection. On the 31, 51, and 87 posts,171

the average kappa score was 65%, 55%, 48%, re-172

spectively, indicating that when the raters agree (at173

least by majority) about the toxicity of the post,174

there is also reasonable agreement regarding the175

toxic spans. Note that the toxic spans are typically176

short. This leads to class imbalance (most offsets177

are marked as non-toxic), increases agreement by178

chance (on the non-toxic offsets), and leads to low179

kappa scores (kappa adjusts for chance agreement).180

Another reason behind this modest (compared to181

other tasks) inter-annotator agreement is the inher-182

ent subjectivity of deciding if a post is toxic or183

not. Our kappa score is in fact slightly higher than184

in previous work on toxicity detection, classifying185

posts as toxic or not (Sap et al., 2020; Pavlopoulos186

et al., 2017a), and in that sense our inter-annotator187

agreement can be seen as an improvement.188

Ground truth To obtain the ground truth of our189

dataset, we averaged the labels per character of the190

annotators per post. We used the following process:191

for each post t, first we mapped each annotated192

span of each rater to its character offsets. We then193

assigned a toxicity score to each character offset of194

t, computed as the fraction of raters who annotated195

that character offset as toxic (included it in their196

toxic spans). We retained only character offsets197

with toxicity scores higher than 50%; i.e., at least198

two raters must have included each character offset199

in their spans. Table 1 shows examples.200

The dataset TOXICSPANS contains the 11,035201

posts we annotated for toxic spans. The unique202

posts are actually 11,006, since a few were dupli-203

cates and were removed; a few other posts were204

used as quiz questions to check the reliability of205

candidate annotators and have also been removed.206

Exploratory analysis Although we instructed 207

the crowd-raters to click the appropriate tick-box 208

and not highlight any span when the whole post 209

would have to be highlighted, the ground truth of 34 210

out of the 11k posts covers the entire post. However, 211

14 out of the 34 posts are single-word texts, while 212

the other posts are very short (Appendix A shows 213

more details); it seems that in very short posts the 214

raters sometimes did not realize they ended up high- 215

lighting the entire post. Furthermore, about 5k of 216

the 11k posts have an empty ground truth set of 217

toxic character offsets (as in the last post of Ta- 218

ble 1), even though all the posts of our dataset had 219

been found toxic by the original raters. This is 220

partly due to the fact that we include in the ground 221

truth only character offsets that were included in 222

the toxic spans of the majority of our annotators. It 223

also confirms it is not always possible to attribute 224

(at least not by consensus) the toxicity of a post 225

to particular toxic spans. In almost all posts, the 226

ground truth covers less than half of the post; and 227

in the vast majority, less than 20% of the post. A 228

dense toxic span of a post is a maximal sequence of 229

contiguous toxic characters. There exist posts with 230

more than one dense toxic span, but most posts in- 231

clude only one. Table 2 provides further statistics. 232

4 Evaluation framework for toxic spans 233

For the newly introduced toxic spans detection task, 234

we evaluate systems in terms of F1 score, as in the 235

work of Da San Martino et al. (2019). Given a test 236

post t, let system Ai return a set St
Ai

of character 237

offsets, for parts of the post found to be toxic. Let 238

St
G be the character offsets of the ground truth an- 239

notations of t. We compute the F1 score of system 240

Ai with respect to the ground truth G for post t: 241

F t
1(Ai, G) =

2 · P t(Ai, G) ·Rt(Ai, G)

P t(Ai, G) +Rt(Ai, G)
(1) 242

243

P t(Ai, G) =
|St

Ai
∩ St

G|
|St

Ai
| , Rt(Ai, G) =

|St
Ai

∩ St
G|

|St
G|

(2) 244

If St
G is empty for some post t (no gold spans 245

are given for t), we set F t
1(Ai, G) = 1 if St

Ai
is 246

also empty, and F t
1(Ai, G) = 0 otherwise. We 247

average F t
1(Ai, G) over all test posts t to obtain a 248

single score for system Ai. We use F1 as the main 249

evaluation measure in experiments reported below. 250

5 Methods for toxic spans detection 251

TRAIN-MATCH, classifies as toxic any tokens en- 252

countered inside toxic spans of the training data. 253

3



Mean Min Max
Post length 208.14 4 1,000

Dense toxic span length 7.01 3 87
# Dense toxic spans 0.58 0 8

Table 2: TOXICSPANS statistics. Lengths in characters.

HATE-MATCH operates similarly but the lookup254

is within the hateful/offensive spans of the data of255

Mathew et al. (2021). A naive baseline, RAND-SEQ,256

randomly classifies tokens as toxic or not.257

5.1 Supervised sequence labelling258

Toxic spans detection can be seen as sequence la-259

beling (tagging words). As a baseline of this kind,260

we employ SPACY’S Convolutional Neural Net-261

work, which is pre-trained for tagging, parsing,262

entity recognition (Honnibal and Montani, 2017).263

We call this model CNN-SEQ and fine-tune it on264

dense toxic spans, treated as ‘entities’. We also265

train a bidirectional LSTM (BILSTM-SEQ),3 and266

fine-tune BERT (Devlin et al., 2019) and SPAN-267

BERT (Joshi et al., 2020) for toxic spans (BERT-268

SEQ, SPAN-BERT-SEQ).4 These methods require269

training data manually annotated with toxic spans.270

5.2 Weakly supervised learning271

We trained binary classifiers to predict the toxicity272

label of each post, and we employed attention as273

a rationale extraction mechanism at inference to274

obtain toxic spans, an approach Pavlopoulos et al.275

(2017b) found to work reasonably well in toxicity276

detection.5 We experimented with two classifiers:277

a BILSTM with deep self-attention as in the work278

of Pavlopoulos et al. (2017b), but training with a279

regression objective and probabilistic labels follow-280

ing D’Sa et al. (2020) and Wulczyn et al. (2017);281

and BERT with a dense layer and sigmoid on the282

[CLS] embedding. To detect toxic spans, we used283

the attention scores of the BILSTM and the attention284

scores from the heads of BERT’s last layer averaged285

over the heads, respectively. In both cases, we286

obtain a sequence of binary decisions (toxic, non-287

toxic) for the tokens of the post (inherited by their288

character offsets) by using a probability threshold289

(tuned on development data) applied to the atten-290

tion scores. We refer to these two attention-based291

3We used the probabilistic ground truth for training and
mean square error as the loss function of BILSTM-SEQ, which
yielded best results in preliminary experiments.

4More details can be found in the Appendix A.3.
5See Wiegreffe and Pinter (2019); Kobayashi et al. (2020);

Ferrando and Costa-jussà (2021) for a broader discussion of
attention as an explainability mechanism.

F1 (%) P (%) R (%)
BILSTM-SEQ 58.9 59.8 58.9
CNN-SEQ 59.3 60.7 59.0
BERT-SEQ 59.7 60.7 60.0
SPAN-BERT-SEQ 63.0 63.8 62.8
BILSTM+ARE 57.7 58.4 57.3
BERT+ARE 49.1 49.4 49.5
RAND 7.3 5.3 25.4
TRAIN-MATCH 41.0 39.1 48.7
HATE-MATCH 10.6 7.1 43.7

Table 3: F1, Precision (P ), Recall (R) of sequence label-
ing (1st zone), attentional (2nd), and look-up methods
(3rd) in toxic spans detection. Average scores of a 5-fold
Monte Carlo C-V shown. The standard error of mean
is always lower than a percentage point. The ROC AUC
scores of BILSTM and BERT (of ARE-based methods) in
toxic/non-toxic text classification are 90.9% and 96.1%.

rationale extraction methods as BILSTM+ARE and 292

BERT+ARE, respectively. These methods require 293

training posts annotated only with toxicity labels 294

per post (no toxic span annotations). 295

6 Experimental results for toxic spans 296

We used a 5-fold Monte Carlo cross-validation (5 297

random training/development/test splits) on the 11k 298

posts of TOXICSPANS. In each fold, we use 10% of 299

the data for testing, 10% for development, and 80% 300

for training. In ARE-based methods, which rely on 301

an underlying classifier to predict if a post is toxic 302

or not, the classifier is trained on the training part of 303

the fold (which contains only toxic posts, ignoring 304

the toxic span annotations) and a randomly selected 305

equal number of non-toxic posts from Civil Com- 306

ments that are not included in our dataset. When 307

measuring the (binary) classification performance 308

of the underlying classifier, the classifier is evalu- 309

ated on a new equally balanced test set of 3k ran- 310

domly sampled unseen posts from Civil Comments. 311

Both look-up methods (TRAIN-MATCH, HATE- 312

MATCH) outperform the random baseline (Table 3). 313

However, TRAIN-MATCH performs much better, 314

which agrees with our hypothesis that toxicity de- 315

tection is a broader problem than hate speech de- 316

tection. Both look-up methods are outperformed 317

by the sequence labeling models (-SEQ), especially 318

SPAN-BERT-SEQ, which is pre-trained to predict 319

spans. These results show that the tokens of toxic 320

spans are context-dependent and their meaning is 321

not captured well by context-unaware look-up lex- 322

icons. An error analysis of the best-performing 323
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You can stick your dick up anyone’s butt. Why have any laws at all?
Not sure if "people are dumb" is the best descriptor, but you are correct that we tend to seek out and grasp at anything that
supports our beliefs and hopes. Hence the proliferation of "fake news", which feeds those wants.
They can shuffle the cabinet seven ways from Sunday and it’s still a cabal of losers.

Table 4: Examples of posts with toxic posts (ground truth in red) which SPAN-BERT-SEQ predicted (in bold)
incorrectly. The ground truth is empty (no toxic spans) in the two last posts.

SPAN-BERT-SEQ showed that its most common324

mistakes are false negatives (e.g., incorrectly re-325

turning an empty span, 1st row of Table 4) and326

false positives (2nd and 3rd row). BERT+ARE per-327

forms worse than BILSTM+ARE, despite the fact328

that the underlying BERT classifier is much better329

(ROC AUC 96.1%) at separating toxic from non-330

toxic posts than the underlying BILSTM (90.9%).331

Interestingly, the BILSTM binary toxicity classi-332

fier with the attention-based toxic span detection333

mechanism (Pavlopoulos et al., 2017b) is close in334

performance with BILSTM-SEQ, despite the fact335

that the latter is directly trained on toxic span anno-336

tations, whereas the former is trained with binary337

post-level annotations only (toxic, non-toxic post).338

Several large datasets with post-level toxicity an-339

notations are publicly available (Pavlopoulos et al.,340

2019). Therefore, attribution-based toxic span de-341

tectors, such as BILSTM+ARE, can in principle per-342

form even better if the underlying binary classifier343

is trained on a larger existing dataset. To investigate344

this, we increased the training set of the underlying345

BILSTM classifier of BILSTM+ARE. We added to346

the training set of each cross-validation fold 80k347

further toxic and non-toxic posts (still equally bal-348

anced, without toxic spans) from the dataset of349

Borkan et al. (2019), excluding posts used in TOX-350

ICSPANS. The ROC AUC score of the underlying351

BILSTM (in the task of separating toxic from non-352

toxic posts) improved from 90.9% to 94.2%, and353

the F1 score of BILSTM+ARE (in toxic spans de-354

tection) improved from 57.7% to 58.8%, almost355

reaching the performance of BILSTM-SEQ.6356

7 Toxic spans in toxic-to-civil transfer357

As shown in Section 6, a toxic span detection358

method can be used to highlight toxic parts of a359

post, to assist, for instance, human moderators. The360

new TOXICSPANS dataset and toxic span detection361

methods, however, can assist in more ways. This362

section describes how we combined the new dataset363

and the best-performing toxic span detector (SPAN-364

BERT-SEQ) to show how they can be useful in toxic-365

6Appendix A reports results for less added data.

Dataset Parallel (P) Non-Parallel (NP)
Attribute Toxic-to-Civil pairs Toxic Civil
Train 2,222 90,293 5,653,785
Dev 278 4,825 308,130
Test 278 4,878 305,267
Av. len. 19.8 (toxic) 19.4 21.9

Table 5: Statistics for the parallel (P) and non-parallel (NP)
datasets, used to train the SED-T5 and CAE-T5 toxic-to-civil
models, respectively. Average lengths are reported by counting
SentencePiece (Kudo and Richardson, 2018) tokens.

to-civil text transfer (Nogueira dos Santos et al., 366

2018; Laugier et al., 2021). In the context of detox- 367

ifying comments to nudge healthier conversations 368

online, this task aims at suggesting civil rephras- 369

ings of toxic posts. More specifically, we study the 370

following research question: “Can TOXICSPANS 371

data and toxic span detectors be used to assess the 372

mitigation of explicit toxicity in toxic-to-civil trans- 373

fer?” To answer this question, we proceeded in 374

two ways: (i) evaluating the transfer of toxic spans 375

in system-detoxified posts, and (ii) studying any 376

remaining toxic spans in human-detoxified posts. 377

7.1 System-detoxified posts 378

We first compare the performance of two toxic-to- 379

civil transfer models, CAE-T5 and SED-T5, both 380

based on the T5 transformer encoder-decoder ar- 381

chitecture (Raffel et al., 2019); they both fine-tune 382

the weights of the same pre-trained model, namely 383

T5-large. CAE-T5 (Laugier et al., 2021) is a self- 384

supervised Conditional Auto-Encoder, fine-tuned 385

on a large non-parallel (NP) dataset based on pre- 386

processed posts from the Civil Comments (CC) 387

dataset, the dataset (with post level annotations) 388

that TOXICSPANS was also based on. SED-T5 is a 389

Supervised Encoder-Decoder. We fine-tuned it on a 390

smaller parallel (P) dataset created by Dementieva 391

et al. (2021), consisting of pairs of comments: a 392

toxic comment and a detoxified paraphrase written 393

by a crowd-worker. 394

Table 5 summarizes statistics of the two datasets 395

(P, NP) and highlights a trade-off between the level 396

of supervision and number of samples: there is 397

a 1:40 ratio between toxic comments in P (direct 398

supervision, parallel data) and NP (indirect super- 399

vision, no parallel data). Table 6 shows our exper- 400
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imental results. Following Laugier et al. (2021),401

we report accuracy (ACC), perplexity (PPL), simi-402

larity (SIM) and the geometric mean (GM) of ACC,403

1/PPL, SIM. Accuracy measures the rate of success-404

ful transfers from toxic to civil, and computes the405

fraction of posts whose civil version is classified as406

non-toxic by a BERT toxicity classifier.7 Perplexity407

is used here as a measure of fluency and it is com-408

puted with GPT-2 (Radford et al., 2019). Similarity409

measures content preservation between the original410

toxic text and its system-rephrased civil version411

(self-SIM) or between the original toxic text and412

its gold (human) civil rephrasing (ref-SIM, only for413

P); in both cases, it is computed as the cosine simi-414

larity between the single-vector representations of415

the two texts, produced by the universal sentence416

encoder (Cer et al., 2018).417

As can be seen in Table 6, CAE-T5 has better ag-418

gregated results (higher GM) than SED-T5 in all419

three datasets, which are due to lower perplex-420

ity and (in NP and TOXICSPANS) higher accuracy.421

However, SED-T5 learned to preserve content bet-422

ter (higher SIM in all three datasets), because of the423

parallel data (P, with gold rephrases) it was trained424

on. By contrast, CAE-T5 was trained without paral-425

lel data (NP) using a cycle-consistency loss, which426

leads to more frequent hallucinations of content427

that was not present in the original post (Laugier428

et al., 2021). These hallucinations may also help429

CAE-T5 obtain better perplexity scores, by gener-430

ating fluent civil ‘rephrases’ that do not preserve,431

however, the original semantics. Also, although432

the general trends are similar in all three datasets433

(SED-T5 preserves content better, CAE-T5 is better434

in perplexity and GM), there are several differences435

too across the three datasets. For example, CAE-436

T5 is much better than SED-T5 in accuracy (posts437

detoxified) on NP and TOXICSPANS, but both sys-438

tems have the same accuracy on P; and the scores439

of the systems vary a lot across the three datasets.440

These considerations motivated us to seek ways441

to further analyse the behavior of toxic-to-civil442

transfer models. TOXICSPANS and toxic span de-443

tectors are an opportunity to move towards this di-444

rection, by studying how well transfer models cope445

with explicit toxicity, i.e., spans that can be explic-446

itly pointed to as sources of toxicity. We leave for447

future work the flip side of this study, i.e., studying448

cases where transfer models rephrase spans not ex-449

plicitly marked (by toxic span detectors or human450

7We reused the BERT model of Laugier et al. (2021).

Evaluation Dataset Metric CAE-T5 SED-T5

Non-Parallel (NP)

ACC ↑ 75.0% 52.2%
ACC2 ↑ 83.4% 67.3%
PPL ↓ 5.2 11.8

self-SIM ↑ 70.0% 87.9%
GM (self) ↑ 0.466 0.338

ACC3 ↑ 86.7% 64.1%
ACC4 ↑ 83.2% 59.5%

Parallel (P)

ACC ↑ 94.3% 94.3%
ACC2 ↑ 94.7% 94.3%
PPL ↓ 9.1 38.3

ref-SIM ↑ 27.6 % 65.3%
self-SIM ↑ 32.6 % 65.6%
GM (ref) ↑ 0.306 0.252
GM (self) ↑ 0.323 0.252

ACC3 ↑ 98.8% 94.3%
ACC4 ↑ 94.7% 91.9%

TOXICSPANS

ACC ↑ 92.9% 65.6%
ACC2 ↑ 92.5% 63.7%
PPL ↓ 7.2 24.9

self-SIM ↑ 34.5% 82.1%
GM (self) ↑ 0.355 0.279

ACC3 ↑ 96.9% 62.0%
ACC4 ↑ 92.0% 54.7%

Table 6: Automatic evaluation scores of CAE-T5 (trained
on NP’s training subset) and SED-T5 (trained on P’s training
subset), when the test sets are from NP, P, and TOXICSPANS.
ACC2, ACC3, ACC4 also consider toxic spans (Section 7.2).

annotators) as explicitly toxic. 451

7.2 Explicit Toxicity Removal Accuracy 452

Recall that the accuracy (ACC) scores of Table 6 453

measure the percentage of toxic posts that the trans- 454

fer models (CAE-T5, SED-T5) rephrased to forms 455

that a (BERT-based) toxicity classifier considered 456

non-toxic. One could question, however, if it is pos- 457

sible (even for humans) to produce a civil rephrase 458

of a toxic post when it is impossible to point to 459

particular spans of the post that cause its toxicity 460

(as in the last post of Table 1). Detoxifying posts of 461

this kind may constitute a mission impossible for 462

most models (possibly even for humans); the only 463

way to produce a non-toxic ‘rephrase’ may be to 464

change the original post beyond recognition, which 465

may be rewarding systems like CAE-T5 that often 466

hallucinate in their rephrases, as already discussed. 467

Hence, it makes sense to focus on posts that con- 468

tain explicit toxic spans, marked by human annota- 469

tors (for TOXICSPANS) or our best toxic span detec- 470

tor (SPAN-BERT-SEQ). Using these toxic spans, we 471

define three additional variants of accuracy: ACC2 472

is the same as ACC, but ignores (in its denominator) 473

posts that do not contain at least one toxic span; 474

ACC3 also considers (in its denominator) only posts 475

that contained at least one toxic span, but computes 476

the fraction of these posts that had all of their toxic 477

spans rephrased (even partly) by the transfer model; 478
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ACC4 is a stricter version of ACC3 that requires the479

posts to also be judged non-toxic by the (BERT-480

based) toxicity classifier.481

Table 6 shows that restricting ACC to consider482

only posts with at least one toxic post (ACC2) sub-483

stantially improves the performance of both models484

on the NP dataset, indicating that it contains many485

‘mission impossible’ instances (posts with no toxic486

spans) that the original ACC considers. By contrast,487

switching from ACC to ACC2 leads to mostly negli-488

gible changes on the P and TOXICSPANS datasets,489

which is in accordance with the fact that they con-490

tain fewer posts with no toxic spans (11.5% and491

48.7%, respectively, compared to 67.4% for NP).492

Another interesting observation is that ACC4 is al-493

ways substantially lower than ACC3 (for both sys-494

tems, on all three datasets), indicating that the mod-495

els often successfully detect toxic spans and try to496

rephrase them, but the rephrases are still toxic, at497

least according to the toxicity classifier.498

7.3 Human-detoxified posts499

In this experiment, we wished to study the extent to500

which humans rephrase known toxic spans, when501

asked to produce civil rephrases of toxic posts. We502

used the P dataset, the only one of the three consid-503

ered that contains human rephrases.8 Since P does504

not contain gold toxic spans, we again employed505

SPAN-BERT-SEQ to add toxic spans to the source506

posts and retained only the 1,354 (out of 2,778 in507

total) source-target pairs of posts with at least one508

toxic span in their source post.9 In all but 6 of the509

1,354 posts, the humans have rephrased (in the gold510

target post they provided) all the toxic spans of the511

source post. The 6 posts were mainly cases where512

the human changed the context to mitigate toxicity,513

while retaining the original toxic span. For exam-514

ple, “he’s not that stupid” became “he’s not stupid”515

(original toxic span shown in bold); in this case re-516

moving the ‘that’ from the context arguably makes517

the post less offensive. Overall, we conclude that518

humans did rephrase almost all cases of explicit519

toxicity in the toxic posts they were given.520

We also applied SPAN-BERT-SEQ to the gold tar-521

get (rephrased) posts that the humans provided to522

check if any explicit toxicity remained or was in-523

troduced by the rephrases. This flagged 93 gold524

target posts as comprising at least one toxic span. A525

manual inspection of the 93 posts revealed that they526

8We used all the P data, since no training was involved.
9The most frequent spans were ‘sh*t’, ‘st*p*d’, ‘f*ck’.

fall in two main categories. The first category com- 527

prises cases where a toxic span of the source post 528

was rephrased, but the rephrase might not be consid- 529

ered totally civil; e.g., “how freaking narcissistic 530

do you have to be?” became “how narcissistic do 531

you have to be?”, where SPAN-BERT-SEQ marked 532

the ‘narcissistic’ of the rephrase as a toxic span. 533

The second category comprises cases where SPAN- 534

BERT-SEQ produced false positives; e.g., the source 535

post “most of the information is total garbage” be- 536

came “most of the information is totally useless”, 537

but SPAN-BERT-SEQ marked (arguably incorrectly) 538

‘useless’ as a toxic span. 539

8 Discussion 540

The posts we annotated for toxic spans were ex- 541

tracted from an already heavily studied public do- 542

main benchmark dataset (Civil Comments) that has 543

been examined by thousands of teams in a Kag- 544

gle competition,10 and that has been cited in over 545

50 academic publications. The Civil Comments 546

dataset was filtered to remove any potential per- 547

sonally identifiable information before it was re- 548

leased. Our annotation cost was $21,089 for 59,486 549

judgements, paying $0.30 per item. All raters were 550

warned for the explicit content of the job and only 551

high accuracy raters were selected (70+%), based 552

on performance on quiz questions. The most com- 553

mon countries of origin of our crowd-annotators 554

were Venezuela and USA (Fig. 6 in Appendix A.1). 555

In the contributor satisfaction survey, 51 partici- 556

pants gave an overall task rating of 3.6/5.0, with 557

pay and test question fairness rated slightly higher 558

than ease of job and clarity of instructions. 559

We note that it is more difficult and costly (ap- 560

proximately 3 times more) to manually annotate 561

toxic spans, instead of just labeling entire posts as 562

toxic or not. This is why we also explored adding 563

rationale extraction components on top of toxicity 564

classifiers trained on existing much larger datasets. 565

We showed that BILSTM+ARE has the potential to 566

reach the performance of BILSTM-SEQ, which is 567

important for future work aiming to build toxic 568

span detectors without any toxic span annotations 569

in the training data. This may be particularly useful 570

in low-resourced languages with limited resources 571

for text toxicity (Zampieri et al., 2020). 572

Having two separate systems, one for toxicity 573

detection and one for toxic spans identification, is 574

more easily compatible with existing deployed toxi- 575

10shorturl.at/hqEJ3

7

shorturl.at/hqEJ3


city detectors. One can simply add a component for576

toxic spans at the end of a pipeline for toxicity de-577

tection, and the new component would be invoked578

only when toxicity would be detected, leaving the579

rest of the existing pipeline unchanged. Since the580

vast majority of posts in real-world applications is581

non-toxic (Borkan et al., 2019), this pipeline ap-582

proach would only increase the computational load583

for the relatively few posts classified as toxic. Us-584

ing only toxic posts in this study was also a way to585

simplify this first approach to toxic spans detection,586

assuming an oracle system achieved the first step587

(deciding which posts are toxic). However, we note588

that future work could study adding non-toxic posts589

to our dataset and requiring systems to first detect590

toxic posts, then extract toxic spans for toxic posts.591

A direct comparison (in terms of size) of TOXIC-592

SPANS with other existing toxicity datasets is only593

possible if one focuses on the toxic class, typically594

the minority one, since our dataset contains only595

toxic posts. By adding non-toxic posts, much larger596

versions of our dataset can be compiled, of sizes597

similar to those of existing previous datasets (that598

provide post-level annotations only). Hence, our599

TOXICSPANS dataset will be accessible with the600

following versions. First, only toxic posts included601

(11,006 posts), which is the version we discuss in602

this work. Second, the previous version will be aug-603

mented with the same number of randomly selected604

non-toxic Civil Comments posts. Third, a version605

similar to the previous one, but where the ratio of606

toxic to non-toxic posts will be 1:40 to be closer to607

that of real-world datasets (325,499 posts).608

As shown in Section 7, the TOXICSPANS dataset609

and toxic span detectors can also help study and610

evaluate explicit toxicity removal when rephrasing611

toxic posts to be civil. In this case, toxic spans612

can be used to get a better understanding of how613

toxic-to-civil models operate, by showing the toxic614

spans and their context, along with their rephrases.615

9 Intended use and misuse potential616

The toxic span detection systems we consider are617

trained (the sequence-labeling ones) and tested (all618

systems) on posts with binary ground-truth charac-619

ter offset labels (toxic or not), reflecting the major-620

ity opinion of the annotators (Section 3). This runs621

the risk of ignoring the opinions of minorities, who622

may also be minorities among crowd-annotators.623

To address this issue, we also release the toxic624

spans of all the annotators and the pseudonymous625

rater identities, not just the spans that reflect the ma- 626

jority opinion, to allow different label binarisation 627

strategies and further studies. 628

Toxic span detection systems are intended to 629

assist the decision making of moderators, not to re- 630

place moderators. When they operate correctly, sys- 631

tems of this kind are expected to ease decision mak- 632

ing (reject/accept a post). Incorrect results could be 633

of two types; toxic spans that were not highlighted 634

and non-toxic spans that were highlighted. Mis- 635

takes of both types, especially of the first one, may 636

mislead a moderator working under pressure. 637

As with other content filtering systems (e.g., 638

spam filters, phishing detectors), toxic span de- 639

tectors may trigger an adversarial reaction of ma- 640

licious users, who may study which types of toxic 641

expressions evade the detectors (esp. publicly avail- 642

able ones) and may gradually start using more 643

implicit toxic language (e.g., irony, false claims), 644

which may be more difficult to detect. However, 645

this is a danger that concerns any toxicity detection 646

system, including systems that classify user content 647

at the post level (without detecting toxic spans). 648

10 Conclusions and future work 649

We studied toxicity detection, which aims to iden- 650

tify the spans of a user post that make it toxic. Our 651

work is the first of this kind in general toxicity de- 652

tection. We constructed and release a dataset for the 653

new task, along with baselines and models. Fine- 654

tuning the SPAN-BERT sequence labelling model 655

of Joshi et al. (2020), yielded the best results. A 656

post-level BILSTM toxicity classifier that was com- 657

bined with an attention-based attribution method, 658

not trained on annotations at the span level, per- 659

formed well for the task. By leveraging the dataset 660

of posts annotated as toxic or non-toxic (without 661

spans), we showed that this method can reach the 662

performance of a BILSTM sequence labelling ap- 663

proach that was trained on the more costly toxic 664

spans annotations. This result is particularly in- 665

teresting for future work aiming to perform toxic 666

spans detection by using only datasets with whole- 667

post toxicity annotations. In a final experiment, we 668

examined toxic-to-civil transfer, showing how toxic 669

spans can help shed more light on this task too, by 670

helping assess how well systems and humans ad- 671

dress explicit toxicity. All our code and data will 672

be publicly available. In future work we plan to 673

study toxic span detection in multiple languages 674

and in context-dependent toxic posts. 675
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A Appendix872

A.1 Exploratory analysis of TOXICSPANS873

Figure 1: Distribution of the percentage of characters of
each post that are covered by the ground truth spans.

Figure 1 shows the distribution of the percentage874

of character offsets of each post that are included875

in toxic spans. Figure 2 illustrates the distribution876

of dense toxic spans per post. Figure 3 shows the877

most frequent toxic spans in the dataset (after lower-878

casing each post) and their frequencies. Figure 4879

shows the most frequent multi-word toxic spans880

(again after lower-casing). Figure 5 illustrates the881

distribution of the size (in words) of those posts882

whose ground truth covers the whole post. Figure 6883

shows the frequencies of the countries of origin of884

the TOXICSPANS crowd-annotators.885

A.2 Error analysis of SPAN-BERT-SEQ886

We performed an error analysis on our best toxic887

spans detector (SPAN-BERT-SEQ). We analyzed its888

predictions on the first fold of the Monte Carlo889

Cross-Validation, which comprises 10% of the890

dataset or 1001 posts. We identified three main891

types of errors. The first, which is the most frequent892

one occurring in 235 out of 1001 posts (23.5%),893

comprises posts for which SPAN-BERT-SEQ failed894

to find all toxic spans. This type of error can be895

Figure 2: Distribution of the number of dense ground
truth toxic spans per post in TOXICSPANS.

Figure 3: Most frequent toxic spans in TOXICSPANS.

Figure 4: Most frequent multi-word toxic spans.

Figure 5: Distribution of size (in words) of posts whose
ground truth covers the whole post.

Figure 6: Frequency of annotations based on the country
of origin of the crowd-annotators.
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You can stick your d**k up anyone’s butt.
Of course they do. Stupid people really have to meet
everyone else half way if they don’t want to be called
stupid, starting with not saying stupid things.

Table 7: Examples posts where SPAN-BERT-SEQ incor-
rectly predicted no spans. Ground truth in red.

Play stupid games, win stupid prizes.
I always smile when I’ve been called stupid by a fool.

Table 8: Examples posts where SPAN-BERT-SEQ pre-
dicted some, but not all of the gold spans. Ground truth
in red. Predictions of SPAN-BERT-SEQ in bold.

divided in two sub-types: the first sub-type com-896

prises posts for which SPAN-BERT-SEQ predicted897

no spans at all (Table 7), while the second sub-type898

comprises posts for which SPAN-BERT-SEQ pre-899

dicted some, but not all of the gold spans (Table 8).900

The first sub-type occurs more often, with 217 out901

of the 235 total occurrences of the first error type,902

while the second sub-type occurs only a few times903

(18 out of 235). The second type of error, which904

is the second most frequent one, occurred in 173905

out of the 1001 posts (17.3%). It occurs when the906

ground truth of a post is empty, but SPAN-BERT-907

SEQ predicts at least one toxic span (Table 9). The908

last type of error occurs rarely (only 10 out of 1001909

posts) when the ground truth of a post is not empty,910

and SPAN-BERT-SEQ predicts more (or larger) toxic911

spans than it should (Table 10).912

A.3 Experimental Settings913

Sequence labelling914

BILSTM-SEQ was implemented in KEARS, version915

2.7.0.11 We used word embeddings of size 200916

and hidden states of size 128; mean squared er-917

ror (MSE) loss; the Adam optimiser; learning rate918

0.001; post padding; maxlen and batch size 128;919

training for max. 100 epochs. We used early stop-920

ping with 5 epoch patience, monitoring the vali-921

dation loss. The classification threshold was set922

to 0.5. CNN-SEQ was trained for 30 epochs; we923

used 0.5 recurrent dropout; progressively increas-924

ing batch size from 4 to 32 with step 1. All the other925

hyper-parameters were set to their default values.926

BERT-SEQ was implemented using the huggingface927

transformers library.12 We used the bert-base-cased928

model, binary cross entropy loss; the Adam opti-929

miser; learning rate 2 · 10−5; maxlen 128; batch930

size 32; training for max. 100 epochs; early stop-931

11https://keras.io/
12https://huggingface.co/transformers/

This outlet should hire some editors. Nobody I’ve crossed
paths with would green light this crap.
Actually, Seaton is a wealthy man and can do without his
day job quite easily. If he would just get rid of that friggin’
stupid cap....
In other word, blah, blah, blah, blah. It’s bullshit. Deal
with it. No proof=doesn’t exist.
Or maybe we should place a tax on stupid ideas like yours

Table 9: Examples posts where the ground truth was
empty, but SPAN-BERT-SEQ incorrectly predicted at
least one span. Predictions of SPAN-BERT-SEQ in bold.

People don’t normally take it to heart when an idiot calls
someone stupid.
$10B a GW avg compared to $2.5B a GW for a 2nd Candu
nuke at LePreau. Stupid is as stupid does I guess.
All useless piles of crap.
oh no, this isn’t even in the top 10 moronic statements
by this babbling fool.

Table 10: Examples posts where the ground truth was
not empty, and SPAN-BERT-SEQ incorrectly predicted
more (or larger) toxic spans. Ground truth in red. Pre-
dictions of SPAN-BERT-SEQ in bold.

ping with 5 epoch patience, monitoring validation 932

loss. The classification threshold was 0.5. 933

SPAN-BERT base (cased) was fine-tuned in the 934

same way that Joshi et al. (2020) fine-tunes it on 935

SQUAD 2.0 (Rajpurkar et al., 2018) with the format 936

mapping presented in Table 11. At training time, 937

we ignore posts with more than one dense toxic 938

span, since the SQUAD 2.0 format allows for only 939

one dense answer span in the context. We trained 940

with a learning rate 2 · 10−5, for 4 epochs with 941

training batches of size 32. 942

Post-level classifiers with attribution 943

BILSTM+ARE was implemented in KERAS, like 944

BILSTM-SEQ. We used maxlen of 128; post 945

padding; early stopping with patience 5 epoch, 946

monitoring the validation loss; Adam optimizer 947

with 0.001 learning rate; MSE loss. The text clas- 948

sification threshold was 0.5. BERT+ARE was im- 949

plemented with Huggingface Transformers simi- 950

larly to BERT-SEQ. We used maxlen of 128; post 951

padding; early stopping with patience 5 epoch, 952

SQUAD 2.0 TOXICSPANS
Context Post
Question Empty string

is_impossible boolean toxic_spans_is_empty boolean
Answer Toxic span

Table 11: Mapping between the SQUAD 2.0 format and
TOXICSPANS examples.
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monitoring the validation loss; Adam optimizer953

with 2 · 10−5 learning rate; binary cross-entropy954

loss. The text classification threshold was 0.5. In955

both models, the attention threshold (above which956

a token is considered toxic) was fine-tuned on the957

development set of each Monte Carlo C-V fold.958

Further implementation details can be found in959

our code repository, which will be made publicly960

available in the camera-ready version of this paper.961

A.4 Improving BILSTM+ARE with more962

training of the underlying BILSTM963

Figure 7 shows the improvement in the F1 score964

of BILSTM+ARE when increasing the training set965

of the underlying BILSTM with 5k, 10k, 20k, 40k,966

80k more posts (always balanced toxic and non-967

toxic) with post-level annotations only (no toxic968

span annotations). The dashed lines represent the969

sequence labeling methods, which cannot benefit970

directly from training data without toxic span anno-971

tations. Similarly, Fig. 8 shows the corresponding972

improvement in the ROC AUC score of the underly-973

ing BILSTM in the toxic/non-toxic text classifica-974

tion task.975

Figure 7: Improvement in the F1 of BILSTM+ARE when
increasing the training set of its underlying BILSTM with
posts tagged at the post-level (toxic/non-toxic, no toxic
spans). Standard error of mean shown as error bars.

A.5 Toxicity scores of posts with and without976

explicit toxicity977

We applied the BERT-based text toxicity classifier978

(Laugier et al., 2021), which we also used in Sec-979

tion 7, to the 2,778 posts of the P dataset, dividing980

them in two sets: posts that comprised at least981

Figure 8: Improvement in the ROC AUC of BIL-
STM+ARE in the toxic spans detection task, when in-
creasing the training set of its underlying BILSTM with
posts tagged at the post-level (no toxic spans).

one toxic span detected by SPAN-BERT-SEQ (1,354 982

posts with explicit toxicity) and the rest (implicit 983

toxicity). The BERT-based toxicity classifier con- 984

sidered more toxic (higher average toxicity score) 985

the 1,354 posts of the first set compared to the 986

second one, i.e., it was more confident that the 987

posts of the first set (explicit toxicity) were toxic, 988

as one might expect. By resampling 1,000 sub- 989

sets (of 50 posts each) from the two sets, we con- 990

firmed that this is a statistically significant differ- 991

ence (P = 0.001). The difference of the average 992

predicted toxicity score between the two sets is 993

14% (from 0.94 down to 0.80). 994
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