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Abstract

In areal-world dialogue system, generated text
must satisfy several interlocking constraints:
informativeness, truthfulness, and ease of con-
trol. The two predominant paradigms in lan-
guage generation—neural language modeling
and rule-based generation—struggle to satisfy
these constraints simultaneously. We describe
a hybrid architecture for dialogue response
generation that combines the strengths of both
paradigms. The first component of this archi-
tecture is a rule-based content selection model
defined using a new formal framework called
dataflow transduction, which uses declara-
tive rules to transduce a dialogue agent’s ac-
tions and their results (represented as dataflow
graphs) into context-free grammars represent-
ing the space of contextually acceptable re-
sponses. The second component is a con-
strained decoding procedure that uses these
grammars to constrain the output of a neu-
ral language model, which selects fluent utter-
ances. Our experiments show that this system
outperforms both rule-based and learned ap-
proaches in human evaluations of fluency, rel-
evance, and truthfulness.

1 Introduction

In a task-oriented dialogue system, response gen-
eration is naturally posed as a conditional lan-
guage modeling problem: dialogue agents must
produce a contextually appropriate natural lan-
guage string conditioned on the history of the user
and agent interaction. But unlike many language
generation problems, a good dialogue response
generation model is not (just) a model of typical
human utterances in context. Instead, effective di-
alogue agents must balance fluent generation with
a set of much stricter constraints.

Consider the dialogue shown in Fig. 1. In the
first turn of this dialogue, the user makes a re-
quest, the dialogue agent correctly translates it into
a computation—here represented as a dataflow

User: How many events are on my calendar today?

size(findEventsOnDate(today())) (a)
(1) today —— findEventsOnDate
Date(2022, 1, 3) List([Event(...), ...]) 5

Agent: You have three events. X ®)
Agent: You have five events. v/

User: Can you schedule a meeting with Sarah
Smith?

createEvent(
attendee=queryPerson(name="Tara Smith”))

@
Agent: OK, I've booked it. X

Agent: OK, I've booked a meeting with Tara ©
Smith at 2pm today. v/

Figure 1: Interaction between a user and a dialogue
agent. Once the user’s request is translated into an
agent action—expressible as a program or dataflow
graph (a)—the agent must generate a response. Agent
responses might simply state the result of the agent’s
action, but must do so truthfully (b). Often responses
should describe both the action and the result, e.g., to
help users identify when the agent has misunderstood
their request (c). These responses should be straight-
forward for system designers to inspect and modify.

graph (Fig. la)—then it needs to accurately de-
scribe this computation’s return value (Fig. 1b),
rather than using an arbitrary number (e.g., 3 in
the Date) on the dataflow graph. In the second
step, the agent may also make a mistake: perhaps
because of a speech recognition error, it creates a
meeting with Tara Smith rather than Sarah Smith.
Simply describing the result of its action might
cause a user to incorrectly conclude that their re-
quest was completed successfully. To avoid confu-
sion, a system designer might wish to ensure that
the agent instead echoes back to the user the de-
tails of the agent’s action (Fig. 1c). This example
highlights the challenges central to building real-
world dialogue response generation systems.



First, response generation is not simply a prob-
lem of describing the result of a computation in
natural language. In some cases, response gener-
ators may also usefully describe the provenance
of that result—the computation itself and its in-
termediate values. In many human-to-human con-
versations, a response as detailed as Fig. 1¢ would
be over-informative, violating Grice’s maxim of
quantity (1975). But for a speaker that is prone
to mistakes, such as an Al agent, describing its
own understanding can increase user trust when
the understanding is accurate and provides an op-
portunity for correction when it is not.

Second, dialogue response generation systems
must guarantee truthfulness: as typically the pri-
mary source of information about the action that a
dialogue agent took, a response generator that de-
scribes even a small fraction of these computations
incorrectly can produce disastrous results. Impor-
tantly, truthful utterances might be low-probability
under a domain-general language model (LM),
particularly when they reflect errors in language
understanding (as in Fig. 1b).

Finally, response generation systems must sup-
port declarative specification of agent behavior.
When confusing or infelicitious responses are dis-
covered, it should be possible to easily and pre-
cisely modify them without changing the dialogue
agent’s behavior in other contexts.

In recent years, the main focus of academic di-
alogue research has been on “end-to-end” learned
models for response generation, especially neural
sequence models (Vinyals and Le, 2015; Zhang
etal., 2020b). But while such models excel at pro-
ducing fluent and coherent output, research con-
tinues to find that they struggle in maintaining
faithfulness (Wiseman et al., 2017; Maynez et al.,
2020). Perhaps more fundamentally, because the
behavior of such systems is encoded implicitly in
their training data, designing a dialogue system
requires system builders to write and edit a large
number of training examples whose final effect
may be difficult to predict.

As a result, many dialogue systems in the real
world remain rule-based: system builders hand-
write rules (e.g., in the form of a synchronous
grammar) for transforming dialogue states into
text, and these rules are applied directly during de-
ployment. But such rule-based systems are also
notoriously difficult to build and maintain (Walker
et al., 2002; Reiter, 2022). They require designers

to anticipate every low-level question about sur-
face realization, and to encode these in the same
grammar that is responsible for enforcing high-
level properties like truthfulness.

Given the many strengths of modern LMs, is
there a way to leverage them while satisfying the
numerous other demands on dialogue response
generation systems? In this paper, we describe a
hybrid approach that combines the advantages of
end-to-end and rule-based approaches. This ap-
proach has two components:

* A dataflow transduction procedure, based on
anew formalism that uses declarative rules to
map a computation (represented as a dataflow
graph) into a context-free grammar (CFG)
that defines the space of all responses al-
lowed for the given computation. This formal
framework makes it possible to write rules
to precisely and truthfully describe both data
and its provenance, while performing supple-
mentary computation where needed to pro-
duce informative responses.

* A constrained decoding procedure that inter-
sects a CFG with a neural LM, making it pos-
sible to decompose language generation into
a content selection model (implemented by
the grammar) and a separate fluency model
(implemented by an LM).

Together, dataflow transduction and constrained
decoding make it possible to build a faithful gen-
eration system capable of describing a complex,
open-ended, space of tasks. Using a subset of
SMCalFlow dialogues (Semantic Machines et al.,
2020) and only 187 declarative rules, our hybrid
system is consistently rated as more truthful, rele-
vant, and fluent than either a rule-based or end-to-
end neural system. Similar results are observed on
MultiWOZ dialogues (Budzianowski et al., 2018;
Eric et al., 2020). Code, data, and trained models
used in our experiments will be released.

2 Problem Formulation

We study the problem of response generation for
task-oriented dialogue. A dialogue, like the one in
Fig. 1, consists of a sequence of turns, each con-
sisting of a user utterance x;, one or more actions
a;, and an agent response y;. The job of a dia-
logue agent is to predict an appropriate action and
response from a dialogue history, i.e., mapping
from (z1,a1,y1,x2,a2,Y2,...,%n) — (an, Yn)-



A common approach to building dialogue
agents decomposes this prediction process into
several steps. First, a language understanding
module maps from a user utterance (and possi-
bly other components of the dialogue history) to
a meaning representation (e.g., a structured user
intent, API request or executable program). This
meaning representation is evaluated, producing
actions a, which are passed to a response genera-
tion module that produces an agent utterance y.

The focus of this paper is the response genera-
tor. We assume that we have a pre-specified lan-
guage understanding module that maps from con-
versation histories to computations, in the form
of short programs, which are then executed to
produce actions a. As described by Semantic
Machines et al. (2020), these computations may
equivalently be viewed as dataflow graphs in
which each node is labeled with a function, con-
structor, or primitive value, as well as a return
value once the node is executed. We additionally
assume access to a dataset of dialogues containing
gold-standard user and agent utterances. Given a
language understanding module and a dataset of
dialogues, we aim to implement a response gen-
erator that, when applied to a dataflow graph, sat-
isfies the three properties outlined in §1: descrip-
tion of data and its provenance, guaranteed truth-
fulness, and declarative specification.

Our response generation system is built from
two pieces: (1) a procedure for transducing
dataflow graphs into CFGs (§3), and (2) a con-
strained decoding procedure for intersecting a
CFG with a neural LM (§4). Hybrid generation
systems of this kind have a long history in NLP
(Langkilde and Knight, 1998). Our aim in this
paper is to show the benefits of a new generation
paradigm based on dataflow transduction, and of-
fer new rule-writing formalisms and decoding al-
gorithms tailored to modern language models.

3 Dataflow Transduction

Given a dataflow graph G (e.g., Fig. 1a) rooted at
a node vrot (the return value of the program rep-
resented by the dataflow graph), our task is to gen-
erate a string that describes vrqot and its prove-
nance. To achieve this, we propose a new for-
mal framework for generation based on dataflow
transduction. At a high level, the formalism
uses declarative rules that describe how to trans-
form a dataflow graph into a graph-specific gram-

Head: S
Body:
match computation:
case findEventsOnDate(date):
num = size(computation)
event = head(computation)
return {"num”: num, "event”: event, "date”: date}

Response Template:

1 found {LEX <num>} event {PP <date>}. [t’s {EVENT <event>}.

Figure 2: A dataflow transduction rule with head S, a
body (expressed in Python), and a response template
(which queries the dictionary returned by the body).

mar (specifically a quasi-synchronous context-
free grammar, or QCFG) that defines the space
of allowed responses. These rules walk along the
graph, introduce new computations (dataflow sub-
graphs) as needed, and add rules to the grammar.

Formally, a dataflow transducer S is defined
by a 4-tuple (7,%,R,tstart) Where T is a set
of nonterminal types,! ¥ is the set of terminals
(word types), R is a set of dataflow transduc-
tion rules (see §3.1), and ts¢art 1S the nonterminal
type of the start symbol. When applied to G the
dataflow transducer expands the graph, yielding a
new graph G, and produces a QCFG.

A QCFG (Smith and Eisner, 2006) is a spe-
cialized CFG whose nonterminals include align-
ments to the nodes V' (G) of G. Where an ordinary
CFG might specify ways to generate an NP (noun
phrase) or a DATE, a QCFG would specify ways
to generate an NP or DATE that describes the result
and provenance of v, for each appropriately typed

node v € V(G). A QCFG resulting from dataflow
transduction is a 4-tuple (7" x V(G), X, P, tstart)
where 7 x V(G) is the QCFG’s set of nonter-
minals and P is its set of productions. A QCFG
production has the form o« — (3132 - - - S where
the left-hand-side o = (t,v) € T x V(G) is a
QCFG nonterminal, and each (3; can be either a
nonterminal (¢;,v;) or a terminal in 3. The v; of a
right-hand-side nonterminal ; may have appeared
in the original G, or may have been added to G by
the dataflow transducer. These production rules

then derive a set of strings as in an ordinary CFG.

3.1 Dataflow Transduction Rules

A dataflow transduction rule is applied to a node
v € G (if v has appropriate properties) to create a

'In practice, nonterminal types might correspond to di-
alogue acts, syntactic categories, semantic categories, etc.
This is up to the designer.



single QCFG production (¢,v) — --- that could
be used to describe v. An example rule is shown in
Fig. 2. A rule has three components: (1) a head,
namely the nonterminal type ¢ € T; (2) a body,
which is a piece of code that determines whether
the rule can apply to v, and which may look up
or create nodes that are related to v; and (3) a re-
sponse template, which specifies the right-hand
side of the QCFG production in terms of the re-
lated nodes that identified in the body.

Rule Head. This nonterminal type character-
izes the type of node that the transduction rule is
able to describe and the type of description that it
will produce.! When a rule with head # is success-
fully applied to the node v, the resulting QCFG
production has left-hand-side (¢, v).

Rule Body. A rule body declares the condition
when the rule can be applied by examining the
dataflow graph G, rooted at v. It can contain ex-
ecutable logic that identifies additional computa-
tion nodes that will be recursively described.” For
example, the rule body in Fig. 2 checks whether
G, has the form findEventsOnDate(date). If
so, it binds the variable date accordingly, and
introduces new nodes into &, bound to the vari-
ables num and event, which compute the number
of events and the first event. All three of these vari-
ables will be referenced in the response template.

Response Template. The response template
says how to create the right-hand side of the
QCFG rule—a sequence 3 --- [y of terminals
and nonterminals. Each QCFG nonterminal 3; =
(t;,v;) specifies a related node v; € V(G) to de-
scribe, along with a dataflow nonterminal ¢; that
says how to describe it. The possible descriptions
of v; will thus emerge from applying transducer
rules with head ¢; to node v;. In our template syn-
tax, the notation {EVENT <event>} would con-
struct the QCFG nonterminal (EVENT,v), if the
rule body has bound the variable event to the node
v. This syntax is illustrated in Fig. 2; e.g., the re-
sponse template will construct three QCFG non-
terminals, with types LEX, PP, and EVENT.

3.2 Dataflow Transduction Procedure

Given a dataflow transducer S and a dataflow
graph G rooted at node vreot, We can transduce
the graph into a QCFG as follows. The system
starts out by creating QCFG productions that can

Note that the nodes added by the body may represent fur-
ther computations on existing nodes of G, or may be com-
pletely disjoint from the existing nodes.

expand the start nonterminal (fstart, Uroot). FOr
each transduction rule in R whose head is tstart,
it executes the body, which checks any additional
conditions for whether the rule can be applied to
Vroot, binds variables, and uses the response tem-
plate to create a QCFG production. If these pro-
ductions mention new nonterminals, the system
recursively creates further QCFG productions, in
the same way, that can expand those nonterminals.
As a special case, to expand a nonterminal of the
form (LEX, v), the system creates a QCFG produc-
tion whose right-hand side gives the value of v, as
rendered into natural language using a lexicaliza-
tion function rather than a template; e.g., a value
Long(1) would be rendered as “1”.

The recursive process continues until produc-
tions have been created for every nonterminal that
appears in the QCFG. The resulting QCFG com-
pactly represents a combinatorial space of possible
responses. It will generally include multiple pro-
ductions aligned to the same node v, created by
different dataflow transduction rules.

This mechanism can be used to copy simple val-
ues like strings and numbers from the dataflow
graph, as well as to create more complex recur-
sive descriptions. Note that (1) transduction rules
are selected via their head but also condition on
the dataflow graph through their body, and (2) all
QCFG nonterminals are grounded in the dataflow
graph. Together, this provides a means to ensure
truthfulness when generating responses.

4 Constrained Decoding

In this section, we describe how to integrate the
formal framework above with a general LM to per-
form response generation, as illustrated in Fig. 3.
Given a derived QCFG of the kind described in
§3.2, we perform constrained decoding as in (Shin
etal., 2021; Roy et al., 2022), generating response
candidates from a pretrained LM.

The QCFG resulting from dataflow transduction
implicitly represents a set of possible derivation
trees and the agent responses they yield. As long
as transduction rules faithfully describe the nodes
they apply to, every derivation in this set will cor-
respond to a truthful agent utterance. But these
utterances may not always be grammatical or nat-
ural. For example, the response template in Fig. 2
may be realized as “I found 2 event on Monday”
since the rule body does not check whether the
value of numis 1. Similarly, the response template



UTTERANCE
Do | have any
meetings tomorrow ? >

DATAFLOW GRAPH G

tomorrow — findEventsOnDate nonEmpty 1 Event(...) vé “Show and Tell”
v DATAFLOW - /
vl v0
TRANSDUCTION
QCFG PRODUCTIONS
DATAFLOW TRANSDUCER ((SY ve) — (UH, v@) , (S, v1) )

Head: S
Body: ...
Template: {UH <answer>}, {S <query>}

Head: UH
Body: ...
Template: Yes

Head: S
Body: match computation:
case findEventsOnDate(date):
num = size(computation)
event = head(computation)
return {...}
I found {LEX <num>} event {PP <date>}.
It’s {EVENT <event>}.

Template:

]/

LANGUAGE

EXPANDED DATAFLOW GRAPH G

tomorrow — findEventsOnDate — nonEmpty
v2 vl vO0
AL S L
v3 size ] head :—>E getSubject:v5
____________ Vol

(UH, v@) — Yes
v1) — Ifound (LEX, v3) event (PP, v2).lIt5
(EVENT, v4) .

e J

CONSTRAINED
DECODING

—~—

OUTPUTS WITH CONSTRAINED DECODING

Yes, I found one event on Thursday. It's "Show
and Tell" from 11:00 am to 11:30 am.

MODEL

Yes, I found one event on Sept 14, 2022. It'’s
“Show and Tell”.

Figure 3: The hybrid response generation approach using dataflow transduction and constrained decoding. Given
a computation nonEmpty (findEventsOnDate(tomorrow())) for the user utterance “Do I have any meetings
tomorrow”, we first derive QCFG productions by applying the dataflow transducer to the dataflow graph G using
the procedure described in §3.2. This procedure also expands the dataflow graph into G: for example, the nodes
v3 and v4 were added by the third transducer rule. Then we extract candidate responses from a LM, constrained
by the QCFG. The varying descriptions of the date v2 and the event v4 are permitted because the QCFG offers a
choice of productions that can be used to expand the (PP, v2) and (EVENT, v4) nonterminals. (Those productions
and the transducer rules that created them are not shown in the figure. The nodes added by those transducer rules
and used by those productions are also not shown, except for v5.)

{EVENT (event) } starts on {DATE (date) }.

may be realized as The product meeting on Mon-
day starts on Monday, if the grammar permits
identifying events by their dates. With carefully
engineered and highly specialized rules (e.g., us-
ing extremely fine-grained nonterminal types), it
would be possible to ensure that the responses are
always fluent and even that there is always a single
possible outcome from the top-down search proce-
dure. However, this would usually require much a
more complicated set of rules, which creates a bur-
den for system development and maintenance.
Our proposed approach instead uses a large-
scale pretrained LM (preferably fine-tuned) to se-
lect among truthful utterances produced by the
QCFG.? One option is to use the LM to re-rank
all strings that can be produced by the QCFG, but
that would be very computationally expensive. In-
stead, we follow Shin et al. (2021) and Roy et al.
30f course, decisions deferred to the LM could be en-
coded in the grammar instead. While this is rarely necessary
to ensure grammaticality or fluency, system designers might

choose to encode some pragmatic decisions, like how much
detail to provide, in the grammar rather than in the LM.

(2022), who decode sentences from a given LM
under the constraint that they must be valid under
a given CFG. This constrained decoding method
uses Earley’s algorithm (1970) to incrementally
parse the sentence as it is generated and determine
the set of words that could grammatically serve as
the next token. In contrast to these prior papers,
which used a static CFG, we derive a new CFG
each time the dialogue agent needs to generate a
response, by applying the dataflow transducer to
the current dataflow graph.

5 Experiments

To evaluate this approach, we conducted a set of
detailed experiments on the SMCalFlow dataset
(Semantic Machines et al., 2020) (§5.1-§5.3), and
a brief study on applying our approach to the Mul-
tiWOZ dataset (Budzianowski et al., 2018) (§5.4).

5.1 Data and Evaluation Metrics

SMCalFlow is a large-scale task-oriented dialogue
dataset, in which each user utterance is annotated
with a correct dataflow program (i.e., computa-



Automatic Metrics

Human Evaluation (%)

System

BLEU ROUGE BERTSc. R@1 R@5 Grammatical Relevant Truthful
QCFG Random Sampling .35 58 .50 .02 .06 62.37 90.97 92.3
Unconstrained Decoding 77 .86 .87 A7 .66 98.7 93.3 82.2
QCFG-Constrained Decoding .80 .87 .86 .56 .78 99.0 96.6 91.6
Gold 1.0 1.0 1.0 1.0 1.0 99.0 98.0 92.3

Table 1: Evaluation results on SMCalFlow. Automatic metrics are calculated against the gold responses on the
full validation set. Human evaluation is conducted on 297 randomly sampled validation examples. {: Results are
significantly worse than the “Gold” system (p < 10~%, McNemar’s test).

tion) and a “gold” response that would be desirable
for the agent to produce.* We use the v2.0 release
processed by Platanios et al. (2021). We focus on
a subset of SMCalFlow involving calendar event
queries. This subset contains 8938 training exam-
ples and 1041 validation examples. We found that
187 transduction rules, written by some of us in a
matter of hours, were sufficient to cover all gold
system responses in these examples.’

Automatic Metrics. For automatic evaluation,
we use several reference-based metrics , including
BLEU-4 (Papineni et al., 2002), ROUGE-L (Lin,
2004), and BERTScore-F1 (Zhang et al., 2020a),
computed using the GEM-metrics tool.® Follow-
ing the recommendation in Zhang et al. (2020a),
we use the re-scaled version of BERTScore which
is easier to interpret. We additionally consider
exact match scores, i.e., R@K, which measure
whether one of the top K response candidates ex-
actly matches the reference. Both R@1 and R@5
scores are reported. We lowercase all the strings
and remove any extra spaces while computing the
exact match between two strings.

Human Evaluation. It is well-known that pop-
ular automatic evaluation metrics may not always
reflect the true quality of the generated responses
(Celikyilmaz et al., 2021). Thus, we further carry
out human evaluation on 297 examples randomly
sampled from the validation data. Specifically,
for each generated response, we collect human
judgments on three questions: grammaticality
(“has the virtual assistant made any grammar er-
rors?”), relevance ( “has the virtual assistant mis-

*The “gold” responses are generated from a production
system that includes rule-based constraints and manually val-
idated by human experts, according to the dataset authors.

Some of our rule bodies chose to expand the dataflow
graph by calling functions, so we also had to implement those
functions. In an end-to-end dialogue system, most of those
functions would already have been implemented to support
agent actions, not just natural language responses.

6https://gi'chub.com/GEM—benchmar‘k/GEM—metr‘ics

understood the user’s request?”), and truthful-
ness (“has the virtual assistant provided any in-
correct information as judged using the database
and timestamp?”). Three judgments are collected
for each question, and we report the percentage
of examples where “no” is the majority-voted an-
swer. Higher percentages are better. Crowdwork-
ers are recruited from Amazon Mechanical Turk
with qualification requirements such as having a
work approval rate higher than 80% and having
performed a minimum of 100 annotations. They
are paid at the rate of $0.15 per judgment. For
responses generated by the constrained decoding
approach, the inter-annotator agreements for the
three questions are around 90%, 78% and 76%,
respectively, as measured by the percentage of ex-
amples where all three workers choose the same
answer. More details are provided in Appendix A.

5.2 Main Results

Our main evaluation results on SMCalFlow are
shown in Table 1. The first baseline we considered
is to randomly sample responses from the gener-
ated QCFG. The other baseline is unconstrained
LM decoding without using dataflow transduction.
Model outputs are compared to human-authored
agent utterances. For both unconstrained and con-
strained decoding, we prompt the LM with a string
representation of the computation graph (i.e., the
format released in SMCalFlow v2.0), followed by
its execution result rendered as a JSON string. We
use beam search with a beam size K = 5. The
LM is initialized from CodeT5-base (Wang et al.,
2021) and fine-tuned on all training examples. See
Appendix B for more details.

As expected, the QCFG random sampling base-
line struggles on all the automatic metrics, since
dataflow transduction rules are written with an em-
phasis on truthfulness rather than fluency. This
is reflected in the grammaticality score from the


https://github.com/GEM-benchmark/GEM-metrics

human evaluation as well. However, the truthful-
ness score is as high as 92.3%, indicating the gen-
erated responses are rarely incorrect. Generated
responses are sometimes generic or omit relevant
information for the user request, which partially
contributes to the high truthfulness score, but is re-
flected in the relevance score, which is the lowest
among all compared approaches.

In contrast, unconstrained decoding without
dataflow transduction achieves impressive scores
on automatic evaluation. Human evaluation also
suggests that the generated responses are gram-
matically correct and relevant to the user’s re-
quest in most cases. However, unconstrained de-
coding scores low on truthfulness, making false
statements in about one-fifth of the generated re-
sponses. This high rate of factual errors from neu-
ral LMs is consistent with findings in prior work
(Wiseman et al., 2017; Maynez et al., 2020). It is
usually unacceptable in real-world applications.

Compared with unconstrained decoding, our
proposed QCFG-constrained decoding achieves
significantly better scores on exact match, truthful-
ness, and even relevance, while maintaining sim-
ilar scores on BLEU, ROUGE, BERTScore and
grammaticality. In particular, human evaluation
results indicate that the quality of generated re-
sponses is very close to that of the gold responses.
We share some qualitative analysis in Appendix C.

Since even the gold responses did not achieve
100% on human evaluation scores, we manually
inspected those problematic examples. There are
4 examples for which the majority-voted answer to
the ungrammaticality question is “yes but under-
standable”, and others are all rated as not contain-
ing any grammar errors. For the relevance ques-
tion, 4 examples are due to arguably bad data and
2 examples receive tied votes. For the truthfulness
question, 9 examples are due to arguably bad data,
8 examples are due to to crowd worker mistakes,
and 6 examples receive tied votes.

5.3 Ablation Study

We next analyze how the amount of fine-tuning
data and the context used in the input sequence
impact the quality of generated responses. Results
are summarized in Table 2.

Impact of fine-tuning: Without fine-tuning the
LM, neither unconstrained nor constrained decod-
ing works well. This is likely due to the mis-
match between the pre-training tasks and the re-

BLEU ROUGE BERTSc. R@1 R@5
1. LM without fine-tuning
X .45 .03 -.29 .00 .00
v .38 .22 .07 .02 .02
2. LM fine-tuned on 3% training data
X .68 .82 .80 .26 .40
v .73 .83 .81 .39 .61
3. LM fine-tuned on full training data
X 17 .86 .87 A7 .66
v .80 .87 .86 .56 .78
4. LM input without execution results
X .58 .70 .72 27 42
v .78 .86 .84 .54 77
5. LM input with user utterance
X .76 .88 .87 .45 .65
v 7 .85 .85 .54 .78

Table 2: SMCalFlow ablation results, varying the
amount of fine-tuning data (groups 1-3) and the con-
text used in the input sequence (groups 4-5). X and
v on the first column use unconstrained and QCFG-
constrained decoding, respectively.

sponse generation task. However, after fine-tuning
on only a random 3% of the training data, both ap-
proaches achieve significantly better scores, with
larger gains on QCFG-constrained decoding. This
suggests that QCFG-constrained decoding is much
more data-efficient in the low-data regime. Indeed,
using 3% of the training data, QCFG-constrained
decoding is on par with the unconstrained decod-
ing with 100% of the training data, indicating that
several expert hours spent on creating dataflow
transduction rules can dramatically reduce the cost
of collecting training data. While gaps between
unconstrained and QCFG-constrained decoding
on automated metrics are small in the full-data set-
ting (Table 1), unconstrained decoding still per-
forms poorly on the truthfulness evaluation. Thus,
truthfulness failures from unconstrained decod-
ing are not straightforwardly solved by scaling up
training data; QCFG-constrained decoding offers
an easier path to faithful response generation.

Impact of context: Results in groups 3-5 in Ta-
ble 2 all use the full training data to fine-tune the
LM. The difference is in the context used in the
input sequence to the LM. For group 3, the in-
put sequence is the computation concatenated with
the execution result, which is the same setup used
in §5.2. For group 4, we omit the execution re-
sults from the LM input (but not from the decoder



constraints), whereas for group 5, we add the user
utterance (prefixed to the computation). Compar-
ing group 3 and group 4, omitting execution re-
sults significantly harms the performance of un-
constrained decoding. In contrast, dataflow trans-
duction rules can execute the computation inter-
nally, and do not require the LM to condition on
it. Comparing group 3 and group 5, adding user ut-
terances to prompts does not bring any additional
benefits to both approaches.

5.4 Experiments with MultiWOZ Dataset

To demonstrate the general applicability of our
approach for response generation, we carry out
a brief study on the widely used MultiwOZ 2.1
dataset (Budzianowski et al., 2018; Eric et al.,
2020). We automatically convert the system act
annotations to dataflow computations and write
14 transduction rules. For generating responses,
we use the predicted system acts from the MT-
TOD system (Lee, 2021). Similar to our experi-
ments on SMCalFlow, we fine-tune CodeT5-base
on all training examples, using the ground-truth
belief state and predicted system act as the input
sequence. For evaluation, we randomly sample
100 examples from the test split, and two authors
manually rate the generated responses from our
QCFG-constrained decoding system and the MT-
TOD system. The agreement is 100%. Almost
all generated responses are grammatically correct
and relevant to the user utterance. To rate truthful-
ness, we use the predicted system acts as the refer-
ences. Our QCFG-constrained decoding approach
produce truthful responses for all 100 examples,
whereas only 89 responses from the MTTOD sys-
tem are truthful with respect to its predicted sys-
tem act. Among the 11 remaining examples, 7 of
them are due to imperfect delexicalization and 4
are due to hallucination.

6 Related Work

One line of response generation research focuses
on generating fluent and coherent responses di-
rectly from user utterances without any interme-
diate structured representation. This paradigm is
mostly used for chatbots, as in early rule-based
systems (Weizenbaum, 1966; Wallace, 2009), neu-
ral conversation models (Vinyals and Le, 2015;
Shang et al., 2015; Sordoni et al., 2015; Li et al.,
2016; Serban et al.,, 2016), and recent large-
scale pretrained LMs like DialoGPT (Zhang et al.,
2020b) and GPT-3 (Brown et al., 2020).

Another line focuses on generating text from
structured data, with applications beyond dia-
logue response generation. For example, the
WebNLG challenge (Gardent et al., 2017) gen-
erates natural language descriptions from relation
tuples, and Lebret et al. (2016) generate a biog-
raphy from a structured “infobox” record. Many
recent dialogue response generation tasks adopt
dialogue-act-based meaning representations, in-
cluding the MultiwOZ dataset (Budzianowski
et al., 2018), the Schema-Guided dialogue dataset
(Rastogi et al., 2020), and the E2E NLG challenge
(Dusek et al., 2020). In contrast, our response gen-
eration task uses computations as the input, which
do not directly encode the dialogue acts of the re-
sponses. This is a more challenging task, as the
system needs to perform extra reasoning to obtain
the derived information. In this sense, our task is
similar to the one in CoSQL (Yu et al., 2019) and
Logic2Text (Chen et al., 2020).

Constrained decoding techniques for neural
LMs have been developed for text generation with
different types of constraints (Balakrishnan et al.,
2019; Dathathri et al., 2020; Lu et al., 2021, 2022).
Shin et al. (2021) develop a constrained decoding
approach for semantic parsing by restricting the
LM output at each step according to a given gram-
mar. Differently, the grammar productions in our
case are derived dynamically for each input.

7 Conclusion

We have described a hybrid approach for build-
ing dialogue response generation systems. Our
approach introduces a new formalism for trans-
ducing a dataflow graph into a QCFG, which is
then used in a constrained decoder that intersects
the QCFG with a neural LM. (In future work, the
QCFG could be weighted to express its own pref-
erences.) This formal framework makes it possible
to write rules to precisely and truthfully describe
data and its provenance while deferring surface re-
alization decisions to a flexible language model.

This new approach outperforms unconstrained
conditional language modeling in both automatic
and human evaluations, especially on truthfulness.
Moreover, using 3% of the training data, the con-
strained decoding approach is on par with the un-
constrained decoding approach when it uses 100%
of the training data, indicating that several expert
hours spent on authoring rules can dramatically re-
duce the cost of data annotation.
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A  Human Evaluation Details

A screenshot of the MTurk interface for human
evaluation is shown in Fig. 4. The inter-annotator
agreements for different systems are provided in
Table 3. It can be observed that the gold re-
sponses receive the highest agreements on all three
questions. The QCFG-constrained decoding has
slightly higher agreements than the unconstrained
dcoding. The QCFG random sampling receives
a significantly lower agreement on “Grammaiti-
cal”, which is likely because this approach may
produce ungrammatical responses but people may
not agree on whether these are understandable.

B Model Configurations

For SMCalFlow, we fine-tune the CodeT5 model
for a fixed number of epochs (=10). For Mul-
tiwOZ, we fine-tune the model for at most 10
epochs and do early stopping based on the on the
loss on the development set.We use the AdamW
optimizer (Loshchilov and Hutter, 2019) with
B1 = 0.9 and By = 0.999, using a linear learn-
ing rate scheduler with an initial learning rate of
5 x 1075, For decoding, we always use a fixed
beam size of 5.

The CodeT5-base models used in our experi-
ments have 220 million parameters. We used ma-
chines with 32GB V100 GPUs for model fine-
tuning while the decoding experiments were car-
ried out on CPU-only machines.

For SMCalFlow experiments, the input se-
quence to the LM is the string representation of
the computation in the lispress format followed
by its the execution result is rendered as a JSON
string, e.g., “Plan: (Yield (Event.start ( ... ))) Re-
sult: {“type”: “DateTime”, “value”: ...} <s>”,
where the last token is a special token to separate
the input and the output. For the ablative study
(group 5) in §5.3, the user utterance is prefixed to
the sequence, e.g., “User: When do I have thee oil
change on my car scheduled for? Plan: ... Result:

L <85>,

For MultiWOZ experiments, the computation is
rendered as a raw JSON string which encodes the
ground-truth belief state and the predicted system
act. There is no execution result for these compu-
tations.

C Qualitative Analysis

We looked at 100 randomly selected examples
from the experiments on SMCalFlow from §5.2,
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and compare the generated responses from both
unconstrained decoding and QCFG-constrained
decoding with the human-annotated gold re-
sponses provided by the dataset. We summarize
the differences between the generated and gold re-
sponses in Table 4, using the following categories:

Untruth The system reports incorrect informa-
tion.

Omission The system fails to mention informa-
tion mentioned in the gold response.

Addition The system mentions additional (cor-
rect) information that is not mentioned in the
gold response.

Minor Difference The system uses a different
phrasing than the gold response that nonethe-
less has the same information and fluency.

Disfluency The system output is disfluent.

Annotation Error The system output is accept-
able but the gold annotation contains a flu-
ency or factuality error.

For unconstrained decoding, 57 out of 100 re-
sponses differ from the gold responses, whereas
for QCFG-constrained decoding, only 51 of 100
responses differ. This result is consistent with the
R@1 column of Table 1 (mismatch rates of 53%
and 44% respectively on the full validation set).

As expected, the most noticeable difference is
the number of Untruths reported by the uncon-
strained system — 19%, close to the 18% rate
found in the human evaluations in Table 1. We
show some examples of Untruths in Fig. 5. The
QCFG-consrained system produed no Untruths.
Conversely, the QCFG-constrained system pro-
duces substantially more Omissions than the un-
constrained system. Of the 11 omissions produced
by the constrained system, 3 are are identical to
the unconstrained output while 7 are on inputs for
which the unconstrained output produce an Un-
truth. In other words, our system successfully re-
moved the 19 Untruths by the system, but in 7 of
those cases, it produced a shorter (but still fac-
tually correct) input than the preferred gold an-
notation for that example. We also note that the
gold dataset is not consistent in how much infor-
mation is included in the responses — short an-
swers like “Looks like it” in Example C from
Fig. 5 are present in the gold annotations on ex-
amples similar to Example C. Furthermore, both



Instructions

X
Person Database

In this task, you are asked to rate the quality
of a vitual assistant's response o a user's

request about their calendar. -
Please carefully read the instructions below. Name Email M
‘fou are also strongly encouraged to read an Damon Straeter|[dstraetor@thenextunicorn.com|| David Lax
example by clicking the "Maore = =
Instructions” link at the end of this page David Lax dlax@thenextunicorn.com |[Dan Schoffel|
“You need to read a dialogue exchange
between a user and a virtual assistant, and Event Database
you are provided with all events in the
user's calendar and the time when the user Sh
made the request. Start End ||Duration ow |
Then you need to answer three questions. ID| Time Time ||(minutes) As |L ganizer| (Aceepted)||(Te -~ A 1) (Declined)
(@1, Q2, Q3) about the quality of the virtual S Pt U =ty Mo
assistant's response.
If you have feedback about the task, please The Fall||'Ved Aug||Wed Aug
enter your response in Q4. 1l of 30 30 30 Busy | N/A Thel Damon Straeter
Reach 16:00:00|| 16:30:00 ‘Vadamee [Required]
In the section Person Database, you wil eac 2552 2552
see a table containing information about
people in the organization.
We only show a subset of people for Times‘amp
conciseness.
In the section Event Database, you will see Wed Aug 14 15:09:22 2019
atable containing all events in the user's
calendar. .
‘Sometimes the table can be empty, Dlalogue
meaning there is no event in the calendar.
Tha soctian Tkmastamp provides the date Damon Straeter: Tell me who organized the fall of Reach.
and time when the user makes the request
This information Is often useful for . R ) B
answering Q3 Virtual Assistant: Vadamee is the organizer of "Fall of Reach".
The dialogue exchange is provided in the
section Dialogue. .
The user s always Damon Siraster. Questions
Note sometimes the organizer of an event in
the calandar may be somean ofher ifian Q1: Has the virtual assistant made any grammar errors?
Damon Stragter.
The section Questions has three required ONo®
questions (@1, G2, Q3) about the quality of - =
the virtual assistant's response. O Yes but still understandable @
For Q2 and Q3, if for some reason it Is O Yes and not even understandable (D
impossible to judge (8.0., when the virtual -
assistant's response is uninterpretable), you
can chaose the option “Unable to decide. Q2: Has the virtual assistant misunderstood the user's request?
If you have any feedback about this task,
please enter your response in Q4.
O No@
O Yes @
) Unable to decide (1)
Q3: Has the virtual assistant provided any incorrect information as judged using the database and timestamp?
O No®
O Yes @
O Unable to decide (D
Q4 (Optional): Do you have any feedback on this task?
Figure 4: A screenshot of the MTurk interface for human evaluation.
systems produce more Additions than Omissions, Another direction would be to extend the

indicating that there is not a systematic bias to-
wards shorter answers overall. In future work, the
model could be made to select more descriptive re-
sponses by adding a brevity penalty in the decoder
or by weighting the QCFG productions, so that re-
sponses are scored not only by the LM but also by
the QCFG.

D Limitations and Future Direction

Authoring transduction rules is relatively easy but
may be still labor intensive for complex domains.
Future work might explore (semi-)automatically
deriving transduction rules from data or learning
to synthesize them from domain specifications, or
curating a collection of domain-general transduc-
tion rules which can be directly used in new do-
mains.
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dataflow transduction rules so they can encode
pragmatic knowledge and context-dependent poli-
cies. For example, a dataflow transduction rule
could call a neural network to assess the suitability
of applying the rule to a given node in the dataflow
graph, and weight the resulting QCFG production
accordingly.

E Dataset License

The SMCalFlow dataset is distributed under the
CC BY-SA 4.0 license. To the best of the authors
knowledge, the MultiWOZ datasets were released
under MIT license as shown in https://github.
com/budzianowski/multiwoz. Our experiments
follow the intended use of these datasets, which is
to advance research in dialogue systems.


https://github.com/budzianowski/multiwoz
https://github.com/budzianowski/multiwoz
https://github.com/budzianowski/multiwoz

System ‘ Grammatical Relevant Truthful
QCFG Random Sampling .58 .75 .71
Unconstrained Decoding .86 .71 .71
QCFG-Constrained Decoding 90 .78 .76
Gold .95 .81 .80

Table 3: The inter-annotator agreements for different systems.

Unconstrained Constrained

Untruth 19 0
Omission 3 11
Addition 17 18
Minor Difference 10 13
Disfluency 1 1
Annotation Error

Total 57 51

Table 4: Classification of differences between generated responses and human-annotated gold responses on 100
randomly sampled examples from the SMCalFlow dataset. Details are provided in Appendix C.

User Utterance Reference Agent Utterance

Do | have any events
A. scheduled on Sunday

the 3rd? srd.

Does Pikachu fly in

B.
?
tomorrow from 4:00 to 4:30 PM.
Can you find me any Yes, | found one event last March. It
C. events during last was "Dancing in Athenry" on March

March? 17, 2019 from 4:00 to 4:30 PM.

QCFG-Constrained decoding

March 3rd.

from 4:00 to 4:30 PM.

Looks like it.

No, | didn't find any events on March No, | didn't find any events on

Yes, | found one event matching "fly Yes, | found one event matching
in" with Pikachu tomorrow. It's "fly in" "fly in" with Pikachu tomorrow. It's

Unconstrained decoding

No, | didn't find any events on May
3rd.

Yes, | found one event matching "fly
in" with Pikachu tomorrow. It's "Fly In"
from 5:00 to 5:30 PM.

Yes, | found one event last March. It

was "Erin Go Bragh" on March 17,
2019 from 5:00 to 5:30 PM.

Figure 5: Example predictions from fine-tuned CodeT5 model with QCFG-constrained decoding and with unconstrained
decoding. In all the examples shown, outputs from unconstrained decoding are untruthful to the database due to content
hallucination even though the model has access to the correct execution results as part of the input. We observe that in a few
cases, the constrained model prefers truthful but pragmatically unhelpful omissions like such as “Looks like it” (in Example C)

compared to a more specific response.
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