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Abstract

In a real-world dialogue system, generated text001
must satisfy several interlocking constraints:002
informativeness, truthfulness, and ease of con-003
trol. The two predominant paradigms in lan-004
guage generation—neural language modeling005
and rule-based generation—struggle to satisfy006
these constraints simultaneously. We describe007
a hybrid architecture for dialogue response008
generation that combines the strengths of both009
paradigms. The first component of this archi-010
tecture is a rule-based content selection model011
defined using a new formal framework called012
dataflow transduction, which uses declara-013
tive rules to transduce a dialogue agent’s ac-014
tions and their results (represented as dataflow015
graphs) into context-free grammars represent-016
ing the space of contextually acceptable re-017
sponses. The second component is a con-018
strained decoding procedure that uses these019
grammars to constrain the output of a neu-020
ral language model, which selects fluent utter-021
ances. Our experiments show that this system022
outperforms both rule-based and learned ap-023
proaches in human evaluations of fluency, rel-024
evance, and truthfulness.025

1 Introduction026

In a task-oriented dialogue system, response gen-027

eration is naturally posed as a conditional lan-028

guage modeling problem: dialogue agents must029

produce a contextually appropriate natural lan-030

guage string conditioned on the history of the user031

and agent interaction. But unlike many language032

generation problems, a good dialogue response033

generation model is not (just) a model of typical034

human utterances in context. Instead, effective di-035

alogue agents must balance fluent generation with036

a set of much stricter constraints.037

Consider the dialogue shown in Fig. 1. In the038

first turn of this dialogue, the user makes a re-039

quest, the dialogue agent correctly translates it into040

a computation—here represented as a dataflow041

User: How many events are on my calendar today?

size(findEventsOnDate(today()))

findEventsOnDate size

List([Event(…), …])

Agent: You have three events. ✘

(1)

5

User: Can you schedule a meeting with Sarah  
          Smith?
createEvent(
  attendee=queryPerson(name=“Tara Smith”))

Agent: OK, I’ve booked it. ✘
(2)

(b)

(c)Agent: OK, I’ve booked a meeting with Tara  
            Smith at 2pm today. ✔

(a)

Date(2022, 1, 3)

today

Agent: You have five events. ✔

Figure 1: Interaction between a user and a dialogue
agent. Once the user’s request is translated into an
agent action—expressible as a program or dataflow
graph (a)—the agent must generate a response. Agent
responses might simply state the result of the agent’s
action, but must do so truthfully (b). Often responses
should describe both the action and the result, e.g., to
help users identify when the agent has misunderstood
their request (c). These responses should be straight-
forward for system designers to inspect and modify.

graph (Fig. 1a)—then it needs to accurately de- 042

scribe this computation’s return value (Fig. 1b), 043

rather than using an arbitrary number (e.g., 3 in 044

the Date) on the dataflow graph. In the second 045

step, the agent may also make a mistake: perhaps 046

because of a speech recognition error, it creates a 047

meeting with Tara Smith rather than Sarah Smith. 048

Simply describing the result of its action might 049

cause a user to incorrectly conclude that their re- 050

quest was completed successfully. To avoid confu- 051

sion, a system designer might wish to ensure that 052

the agent instead echoes back to the user the de- 053

tails of the agent’s action (Fig. 1c). This example 054

highlights the challenges central to building real- 055

world dialogue response generation systems. 056
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First, response generation is not simply a prob-057

lem of describing the result of a computation in058

natural language. In some cases, response gener-059

ators may also usefully describe the provenance060

of that result—the computation itself and its in-061

termediate values. In many human-to-human con-062

versations, a response as detailed as Fig. 1c would063

be over-informative, violating Grice’s maxim of064

quantity (1975). But for a speaker that is prone065

to mistakes, such as an AI agent, describing its066

own understanding can increase user trust when067

the understanding is accurate and provides an op-068

portunity for correction when it is not.069

Second, dialogue response generation systems070

must guarantee truthfulness: as typically the pri-071

mary source of information about the action that a072

dialogue agent took, a response generator that de-073

scribes even a small fraction of these computations074

incorrectly can produce disastrous results. Impor-075

tantly, truthful utterances might be low-probability076

under a domain-general language model (LM),077

particularly when they reflect errors in language078

understanding (as in Fig. 1b).079

Finally, response generation systems must sup-080

port declarative specification of agent behavior.081

When confusing or infelicitious responses are dis-082

covered, it should be possible to easily and pre-083

cisely modify them without changing the dialogue084

agent’s behavior in other contexts.085

In recent years, the main focus of academic di-086

alogue research has been on “end-to-end” learned087

models for response generation, especially neural088

sequence models (Vinyals and Le, 2015; Zhang089

et al., 2020b). But while such models excel at pro-090

ducing fluent and coherent output, research con-091

tinues to find that they struggle in maintaining092

faithfulness (Wiseman et al., 2017; Maynez et al.,093

2020). Perhaps more fundamentally, because the094

behavior of such systems is encoded implicitly in095

their training data, designing a dialogue system096

requires system builders to write and edit a large097

number of training examples whose final effect098

may be difficult to predict.099

As a result, many dialogue systems in the real100

world remain rule-based: system builders hand-101

write rules (e.g., in the form of a synchronous102

grammar) for transforming dialogue states into103

text, and these rules are applied directly during de-104

ployment. But such rule-based systems are also105

notoriously difficult to build and maintain (Walker106

et al., 2002; Reiter, 2022). They require designers107

to anticipate every low-level question about sur- 108

face realization, and to encode these in the same 109

grammar that is responsible for enforcing high- 110

level properties like truthfulness. 111

Given the many strengths of modern LMs, is 112

there a way to leverage them while satisfying the 113

numerous other demands on dialogue response 114

generation systems? In this paper, we describe a 115

hybrid approach that combines the advantages of 116

end-to-end and rule-based approaches. This ap- 117

proach has two components: 118

• A dataflow transduction procedure, based on 119

a new formalism that uses declarative rules to 120

map a computation (represented as a dataflow 121

graph) into a context-free grammar (CFG) 122

that defines the space of all responses al- 123

lowed for the given computation. This formal 124

framework makes it possible to write rules 125

to precisely and truthfully describe both data 126

and its provenance, while performing supple- 127

mentary computation where needed to pro- 128

duce informative responses. 129

• A constrained decoding procedure that inter- 130

sects a CFG with a neural LM, making it pos- 131

sible to decompose language generation into 132

a content selection model (implemented by 133

the grammar) and a separate fluency model 134

(implemented by an LM). 135

Together, dataflow transduction and constrained 136

decoding make it possible to build a faithful gen- 137

eration system capable of describing a complex, 138

open-ended, space of tasks. Using a subset of 139

SMCalFlow dialogues (Semantic Machines et al., 140

2020) and only 187 declarative rules, our hybrid 141

system is consistently rated as more truthful, rele- 142

vant, and fluent than either a rule-based or end-to- 143

end neural system. Similar results are observed on 144

MultiWOZ dialogues (Budzianowski et al., 2018; 145

Eric et al., 2020). Code, data, and trained models 146

used in our experiments will be released. 147

2 Problem Formulation 148

We study the problem of response generation for 149

task-oriented dialogue. A dialogue, like the one in 150

Fig. 1, consists of a sequence of turns, each con- 151

sisting of a user utterance xi, one or more actions 152

ai, and an agent response yi. The job of a dia- 153

logue agent is to predict an appropriate action and 154

response from a dialogue history, i.e., mapping 155

from (x1, a1, y1, x2, a2, y2, . . . , xn) 7→ (an, yn). 156
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A common approach to building dialogue157

agents decomposes this prediction process into158

several steps. First, a language understanding159

module maps from a user utterance (and possi-160

bly other components of the dialogue history) to161

a meaning representation (e.g., a structured user162

intent, API request or executable program). This163

meaning representation is evaluated, producing164

actions a, which are passed to a response genera-165

tion module that produces an agent utterance y.166

The focus of this paper is the response genera-167

tor. We assume that we have a pre-specified lan-168

guage understanding module that maps from con-169

versation histories to computations, in the form170

of short programs, which are then executed to171

produce actions a. As described by Semantic172

Machines et al. (2020), these computations may173

equivalently be viewed as dataflow graphs in174

which each node is labeled with a function, con-175

structor, or primitive value, as well as a return176

value once the node is executed. We additionally177

assume access to a dataset of dialogues containing178

gold-standard user and agent utterances. Given a179

language understanding module and a dataset of180

dialogues, we aim to implement a response gen-181

erator that, when applied to a dataflow graph, sat-182

isfies the three properties outlined in §1: descrip-183

tion of data and its provenance, guaranteed truth-184

fulness, and declarative specification.185

Our response generation system is built from186

two pieces: (1) a procedure for transducing187

dataflow graphs into CFGs (§3), and (2) a con-188

strained decoding procedure for intersecting a189

CFG with a neural LM (§4). Hybrid generation190

systems of this kind have a long history in NLP191

(Langkilde and Knight, 1998). Our aim in this192

paper is to show the benefits of a new generation193

paradigm based on dataflow transduction, and of-194

fer new rule-writing formalisms and decoding al-195

gorithms tailored to modern language models.196

3 Dataflow Transduction197

Given a dataflow graph G (e.g., Fig. 1a) rooted at198

a node vroot (the return value of the program rep-199

resented by the dataflow graph), our task is to gen-200

erate a string that describes vroot and its prove-201

nance. To achieve this, we propose a new for-202

mal framework for generation based on dataflow203

transduction. At a high level, the formalism204

uses declarative rules that describe how to trans-205

form a dataflow graph into a graph-specific gram-206

Response Template:

Head: S

 match computation: 
   case findEventsOnDate(date): 
     num = size(computation) 
     event = head(computation) 
     return {"num": num, "event": event, "date": date}

I found {LEX <num>} event {PP <date>}. It’s {EVENT <event>}.

Body:

Figure 2: A dataflow transduction rule with head S, a
body (expressed in Python), and a response template
(which queries the dictionary returned by the body).

mar (specifically a quasi-synchronous context- 207

free grammar, or QCFG) that defines the space 208

of allowed responses. These rules walk along the 209

graph, introduce new computations (dataflow sub- 210

graphs) as needed, and add rules to the grammar. 211

Formally, a dataflow transducer S is defined 212

by a 4-tuple (T ,Σ,R, tstart) where T is a set 213

of nonterminal types,1 Σ is the set of terminals 214

(word types), R is a set of dataflow transduc- 215

tion rules (see §3.1), and tstart is the nonterminal 216

type of the start symbol. When applied to G the 217

dataflow transducer expands the graph, yielding a 218

new graph Ḡ, and produces a QCFG. 219

A QCFG (Smith and Eisner, 2006) is a spe- 220

cialized CFG whose nonterminals include align- 221

ments to the nodes V (Ḡ) of Ḡ. Where an ordinary 222

CFG might specify ways to generate an NP (noun 223

phrase) or a DATE, a QCFG would specify ways 224

to generate an NP or DATE that describes the result 225

and provenance of v, for each appropriately typed 226

node v ∈ V (Ḡ). A QCFG resulting from dataflow 227

transduction is a 4-tuple (T × V (Ḡ),Σ,P, tstart) 228

where T × V (Ḡ) is the QCFG’s set of nonter- 229

minals and P is its set of productions. A QCFG 230

production has the form α → β1β2 · · ·βN where 231

the left-hand-side α = (t, v) ∈ T × V (Ḡ) is a 232

QCFG nonterminal, and each βi can be either a 233

nonterminal (ti, vi) or a terminal in Σ. The vi of a 234

right-hand-side nonterminal βi may have appeared 235

in the original G, or may have been added to Ḡ by 236

the dataflow transducer. These production rules 237

then derive a set of strings as in an ordinary CFG. 238

3.1 Dataflow Transduction Rules 239

A dataflow transduction rule is applied to a node 240

v ∈ Ḡ (if v has appropriate properties) to create a 241

1In practice, nonterminal types might correspond to di-
alogue acts, syntactic categories, semantic categories, etc.
This is up to the designer.
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single QCFG production (t, v) → · · · that could242

be used to describe v. An example rule is shown in243

Fig. 2. A rule has three components: (1) a head,244

namely the nonterminal type t ∈ T ; (2) a body,245

which is a piece of code that determines whether246

the rule can apply to v, and which may look up247

or create nodes that are related to v; and (3) a re-248

sponse template, which specifies the right-hand249

side of the QCFG production in terms of the re-250

lated nodes that identified in the body.251

Rule Head. This nonterminal type character-252

izes the type of node that the transduction rule is253

able to describe and the type of description that it254

will produce.1 When a rule with head t is success-255

fully applied to the node v, the resulting QCFG256

production has left-hand-side (t, v).257

Rule Body. A rule body declares the condition258

when the rule can be applied by examining the259

dataflow graph Ḡv rooted at v. It can contain ex-260

ecutable logic that identifies additional computa-261

tion nodes that will be recursively described.2 For262

example, the rule body in Fig. 2 checks whether263

Ḡv has the form findEventsOnDate(date). If264

so, it binds the variable date accordingly, and265

introduces new nodes into Ḡ, bound to the vari-266

ables num and event, which compute the number267

of events and the first event. All three of these vari-268

ables will be referenced in the response template.269

Response Template. The response template270

says how to create the right-hand side of the271

QCFG rule—a sequence β1 · · ·βN of terminals272

and nonterminals. Each QCFG nonterminal βi =273

(ti, vi) specifies a related node vi ∈ V (Ḡ) to de-274

scribe, along with a dataflow nonterminal ti that275

says how to describe it. The possible descriptions276

of vi will thus emerge from applying transducer277

rules with head ti to node vi. In our template syn-278

tax, the notation {EVENT <event>} would con-279

struct the QCFG nonterminal (EVENT, v), if the280

rule body has bound the variable event to the node281

v. This syntax is illustrated in Fig. 2; e.g., the re-282

sponse template will construct three QCFG non-283

terminals, with types LEX, PP, and EVENT.284

3.2 Dataflow Transduction Procedure285

Given a dataflow transducer S and a dataflow286

graph G rooted at node vroot, we can transduce287

the graph into a QCFG as follows. The system288

starts out by creating QCFG productions that can289

2Note that the nodes added by the body may represent fur-
ther computations on existing nodes of Ḡv or may be com-
pletely disjoint from the existing nodes.

expand the start nonterminal (tstart, vroot). For 290

each transduction rule in R whose head is tstart, 291

it executes the body, which checks any additional 292

conditions for whether the rule can be applied to 293

vroot, binds variables, and uses the response tem- 294

plate to create a QCFG production. If these pro- 295

ductions mention new nonterminals, the system 296

recursively creates further QCFG productions, in 297

the same way, that can expand those nonterminals. 298

As a special case, to expand a nonterminal of the 299

form (LEX, v), the system creates a QCFG produc- 300

tion whose right-hand side gives the value of v, as 301

rendered into natural language using a lexicaliza- 302

tion function rather than a template; e.g., a value 303

Long(1) would be rendered as “1”. 304

The recursive process continues until produc- 305

tions have been created for every nonterminal that 306

appears in the QCFG. The resulting QCFG com- 307

pactly represents a combinatorial space of possible 308

responses. It will generally include multiple pro- 309

ductions aligned to the same node v, created by 310

different dataflow transduction rules. 311

This mechanism can be used to copy simple val- 312

ues like strings and numbers from the dataflow 313

graph, as well as to create more complex recur- 314

sive descriptions. Note that (1) transduction rules 315

are selected via their head but also condition on 316

the dataflow graph through their body, and (2) all 317

QCFG nonterminals are grounded in the dataflow 318

graph. Together, this provides a means to ensure 319

truthfulness when generating responses. 320

4 Constrained Decoding 321

In this section, we describe how to integrate the 322

formal framework above with a general LM to per- 323

form response generation, as illustrated in Fig. 3. 324

Given a derived QCFG of the kind described in 325

§3.2, we perform constrained decoding as in (Shin 326

et al., 2021; Roy et al., 2022), generating response 327

candidates from a pretrained LM. 328

The QCFG resulting from dataflow transduction 329

implicitly represents a set of possible derivation 330

trees and the agent responses they yield. As long 331

as transduction rules faithfully describe the nodes 332

they apply to, every derivation in this set will cor- 333

respond to a truthful agent utterance. But these 334

utterances may not always be grammatical or nat- 335

ural. For example, the response template in Fig. 2 336

may be realized as “I found 2 event on Monday” 337

since the rule body does not check whether the 338

value of num is 1. Similarly, the response template 339
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tomorrow findEventsOnDate nonEmpty

head getSubjectsize

v0v2 v1

v5v3

EXPANDED DATAFLOW GRAPH G

(S,  v0)  (UH, v0) , (S, v1) 
(UH, v0)  Yes
(S,  v1)  I found (LEX, v3) event (PP, v2) . It’s  
                        (EVENT, v4) .
...

→
→
→

QCFG PRODUCTIONS

DATAFLOW 
TRANSDUCTION

OUTPUTS WITH CONSTRAINED DECODING

Yes, I found one event on Sept 14, 2022. It’s 
“Show and Tell”.

Yes, I found one event on Thursday. It's "Show 
and Tell" from 11:00 am to 11:30 am.

LANGUAGE 
MODEL

1 “Show and Tell”

DATAFLOW GRAPH G

tomorrow findEventsOnDate nonEmpty

v0v2 v1

DATAFLOW TRANSDUCER

Body:
S

S

. . .

UH

Template:

Head:
...
{UH <answer>}, {S <query>}

CONSTRAINED 
DECODING

Do I have any 
meetings tomorrow ?

UTTERANCE

Body:
Template:

Head:
...
Yes

Body:

Template:

Head:
match computation: 
  case findEventsOnDate(date):   
    num = size(computation) 
    event = head(computation) 
    return {...}
I found {LEX <num>} event {PP <date>}.  
It’s {EVENT <event>}.

Event(…) v4

Figure 3: The hybrid response generation approach using dataflow transduction and constrained decoding. Given
a computation nonEmpty(findEventsOnDate(tomorrow())) for the user utterance “Do I have any meetings
tomorrow”, we first derive QCFG productions by applying the dataflow transducer to the dataflow graph G using
the procedure described in §3.2. This procedure also expands the dataflow graph into Ḡ: for example, the nodes
v3 and v4 were added by the third transducer rule. Then we extract candidate responses from a LM, constrained
by the QCFG. The varying descriptions of the date v2 and the event v4 are permitted because the QCFG offers a
choice of productions that can be used to expand the (PP, v2) and (EVENT, v4) nonterminals. (Those productions
and the transducer rules that created them are not shown in the figure. The nodes added by those transducer rules
and used by those productions are also not shown, except for v5.)

{
EVENT ⟨event⟩

}
starts on

{
DATE ⟨date⟩

}
.340

may be realized as The product meeting on Mon-341

day starts on Monday, if the grammar permits342

identifying events by their dates. With carefully343

engineered and highly specialized rules (e.g., us-344

ing extremely fine-grained nonterminal types), it345

would be possible to ensure that the responses are346

always fluent and even that there is always a single347

possible outcome from the top-down search proce-348

dure. However, this would usually require much a349

more complicated set of rules, which creates a bur-350

den for system development and maintenance.351

Our proposed approach instead uses a large-352

scale pretrained LM (preferably fine-tuned) to se-353

lect among truthful utterances produced by the354

QCFG.3 One option is to use the LM to re-rank355

all strings that can be produced by the QCFG, but356

that would be very computationally expensive. In-357

stead, we follow Shin et al. (2021) and Roy et al.358

3Of course, decisions deferred to the LM could be en-
coded in the grammar instead. While this is rarely necessary
to ensure grammaticality or fluency, system designers might
choose to encode some pragmatic decisions, like how much
detail to provide, in the grammar rather than in the LM.

(2022), who decode sentences from a given LM 359

under the constraint that they must be valid under 360

a given CFG. This constrained decoding method 361

uses Earley’s algorithm (1970) to incrementally 362

parse the sentence as it is generated and determine 363

the set of words that could grammatically serve as 364

the next token. In contrast to these prior papers, 365

which used a static CFG, we derive a new CFG 366

each time the dialogue agent needs to generate a 367

response, by applying the dataflow transducer to 368

the current dataflow graph. 369

5 Experiments 370

To evaluate this approach, we conducted a set of 371

detailed experiments on the SMCalFlow dataset 372

(Semantic Machines et al., 2020) (§5.1–§5.3), and 373

a brief study on applying our approach to the Mul- 374

tiWOZ dataset (Budzianowski et al., 2018) (§5.4). 375

5.1 Data and Evaluation Metrics 376

SMCalFlow is a large-scale task-oriented dialogue 377

dataset, in which each user utterance is annotated 378

with a correct dataflow program (i.e., computa- 379
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System Automatic Metrics Human Evaluation (%)

BLEU ROUGE BERTSc. R@1 R@5 Grammatical Relevant Truthful

QCFG Random Sampling .35 .58 .50 .02 .06 62.3† 90.9† 92.3
Unconstrained Decoding .77 .86 .87 .47 .66 98.7 93.3 82.2†

QCFG-Constrained Decoding .80 .87 .86 .56 .78 99.0 96.6 91.6

Gold 1.0 1.0 1.0 1.0 1.0 99.0 98.0 92.3

Table 1: Evaluation results on SMCalFlow. Automatic metrics are calculated against the gold responses on the
full validation set. Human evaluation is conducted on 297 randomly sampled validation examples. †: Results are
significantly worse than the “Gold” system (p < 10−4, McNemar’s test).

tion) and a “gold” response that would be desirable380

for the agent to produce.4 We use the v2.0 release381

processed by Platanios et al. (2021). We focus on382

a subset of SMCalFlow involving calendar event383

queries. This subset contains 8938 training exam-384

ples and 1041 validation examples. We found that385

187 transduction rules, written by some of us in a386

matter of hours, were sufficient to cover all gold387

system responses in these examples.5388

Automatic Metrics. For automatic evaluation,389

we use several reference-based metrics , including390

BLEU-4 (Papineni et al., 2002), ROUGE-L (Lin,391

2004), and BERTScore-F1 (Zhang et al., 2020a),392

computed using the GEM-metrics tool.6 Follow-393

ing the recommendation in Zhang et al. (2020a),394

we use the re-scaled version of BERTScore which395

is easier to interpret. We additionally consider396

exact match scores, i.e., R@K, which measure397

whether one of the top K response candidates ex-398

actly matches the reference. Both R@1 and R@5399

scores are reported. We lowercase all the strings400

and remove any extra spaces while computing the401

exact match between two strings.402

Human Evaluation. It is well-known that pop-403

ular automatic evaluation metrics may not always404

reflect the true quality of the generated responses405

(Celikyilmaz et al., 2021). Thus, we further carry406

out human evaluation on 297 examples randomly407

sampled from the validation data. Specifically,408

for each generated response, we collect human409

judgments on three questions: grammaticality410

(“has the virtual assistant made any grammar er-411

rors?”), relevance (“has the virtual assistant mis-412

4The “gold” responses are generated from a production
system that includes rule-based constraints and manually val-
idated by human experts, according to the dataset authors.

5Some of our rule bodies chose to expand the dataflow
graph by calling functions, so we also had to implement those
functions. In an end-to-end dialogue system, most of those
functions would already have been implemented to support
agent actions, not just natural language responses.

6https://github.com/GEM-benchmark/GEM-metrics

understood the user’s request?”), and truthful- 413

ness (“has the virtual assistant provided any in- 414

correct information as judged using the database 415

and timestamp?”). Three judgments are collected 416

for each question, and we report the percentage 417

of examples where “no” is the majority-voted an- 418

swer. Higher percentages are better. Crowdwork- 419

ers are recruited from Amazon Mechanical Turk 420

with qualification requirements such as having a 421

work approval rate higher than 80% and having 422

performed a minimum of 100 annotations. They 423

are paid at the rate of $0.15 per judgment. For 424

responses generated by the constrained decoding 425

approach, the inter-annotator agreements for the 426

three questions are around 90%, 78% and 76%, 427

respectively, as measured by the percentage of ex- 428

amples where all three workers choose the same 429

answer. More details are provided in Appendix A. 430

5.2 Main Results 431

Our main evaluation results on SMCalFlow are 432

shown in Table 1. The first baseline we considered 433

is to randomly sample responses from the gener- 434

ated QCFG. The other baseline is unconstrained 435

LM decoding without using dataflow transduction. 436

Model outputs are compared to human-authored 437

agent utterances. For both unconstrained and con- 438

strained decoding, we prompt the LM with a string 439

representation of the computation graph (i.e., the 440

format released in SMCalFlow v2.0), followed by 441

its execution result rendered as a JSON string. We 442

use beam search with a beam size K = 5. The 443

LM is initialized from CodeT5-base (Wang et al., 444

2021) and fine-tuned on all training examples. See 445

Appendix B for more details. 446

As expected, the QCFG random sampling base- 447

line struggles on all the automatic metrics, since 448

dataflow transduction rules are written with an em- 449

phasis on truthfulness rather than fluency. This 450

is reflected in the grammaticality score from the 451
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human evaluation as well. However, the truthful-452

ness score is as high as 92.3%, indicating the gen-453

erated responses are rarely incorrect. Generated454

responses are sometimes generic or omit relevant455

information for the user request, which partially456

contributes to the high truthfulness score, but is re-457

flected in the relevance score, which is the lowest458

among all compared approaches.459

In contrast, unconstrained decoding without460

dataflow transduction achieves impressive scores461

on automatic evaluation. Human evaluation also462

suggests that the generated responses are gram-463

matically correct and relevant to the user’s re-464

quest in most cases. However, unconstrained de-465

coding scores low on truthfulness, making false466

statements in about one-fifth of the generated re-467

sponses. This high rate of factual errors from neu-468

ral LMs is consistent with findings in prior work469

(Wiseman et al., 2017; Maynez et al., 2020). It is470

usually unacceptable in real-world applications.471

Compared with unconstrained decoding, our472

proposed QCFG-constrained decoding achieves473

significantly better scores on exact match, truthful-474

ness, and even relevance, while maintaining sim-475

ilar scores on BLEU, ROUGE, BERTScore and476

grammaticality. In particular, human evaluation477

results indicate that the quality of generated re-478

sponses is very close to that of the gold responses.479

We share some qualitative analysis in Appendix C.480

Since even the gold responses did not achieve481

100% on human evaluation scores, we manually482

inspected those problematic examples. There are483

4 examples for which the majority-voted answer to484

the ungrammaticality question is “yes but under-485

standable”, and others are all rated as not contain-486

ing any grammar errors. For the relevance ques-487

tion, 4 examples are due to arguably bad data and488

2 examples receive tied votes. For the truthfulness489

question, 9 examples are due to arguably bad data,490

8 examples are due to to crowd worker mistakes,491

and 6 examples receive tied votes.492

5.3 Ablation Study493

We next analyze how the amount of fine-tuning494

data and the context used in the input sequence495

impact the quality of generated responses. Results496

are summarized in Table 2.497

Impact of fine-tuning: Without fine-tuning the498

LM, neither unconstrained nor constrained decod-499

ing works well. This is likely due to the mis-500

match between the pre-training tasks and the re-501

BLEU ROUGE BERTSc. R@1 R@5

1. LM without fine-tuning

✗ .45 .03 −.29 .00 .00
✓ .38 .22 .07 .02 .02

2. LM fine-tuned on 3% training data

✗ .68 .82 .80 .26 .40
✓ .73 .83 .81 .39 .61

3. LM fine-tuned on full training data

✗ .77 .86 .87 .47 .66
✓ .80 .87 .86 .56 .78

4. LM input without execution results

✗ .58 .70 .72 .27 .42
✓ .78 .86 .84 .54 .77

5. LM input with user utterance

✗ .76 .88 .87 .45 .65
✓ .77 .85 .85 .54 .78

Table 2: SMCalFlow ablation results, varying the
amount of fine-tuning data (groups 1–3) and the con-
text used in the input sequence (groups 4–5). ✗ and
✓ on the first column use unconstrained and QCFG-
constrained decoding, respectively.

sponse generation task. However, after fine-tuning 502

on only a random 3% of the training data, both ap- 503

proaches achieve significantly better scores, with 504

larger gains on QCFG-constrained decoding. This 505

suggests that QCFG-constrained decoding is much 506

more data-efficient in the low-data regime. Indeed, 507

using 3% of the training data, QCFG-constrained 508

decoding is on par with the unconstrained decod- 509

ing with 100% of the training data, indicating that 510

several expert hours spent on creating dataflow 511

transduction rules can dramatically reduce the cost 512

of collecting training data. While gaps between 513

unconstrained and QCFG-constrained decoding 514

on automated metrics are small in the full-data set- 515

ting (Table 1), unconstrained decoding still per- 516

forms poorly on the truthfulness evaluation. Thus, 517

truthfulness failures from unconstrained decod- 518

ing are not straightforwardly solved by scaling up 519

training data; QCFG-constrained decoding offers 520

an easier path to faithful response generation. 521

Impact of context: Results in groups 3–5 in Ta- 522

ble 2 all use the full training data to fine-tune the 523

LM. The difference is in the context used in the 524

input sequence to the LM. For group 3, the in- 525

put sequence is the computation concatenated with 526

the execution result, which is the same setup used 527

in §5.2. For group 4, we omit the execution re- 528

sults from the LM input (but not from the decoder 529
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constraints), whereas for group 5, we add the user530

utterance (prefixed to the computation). Compar-531

ing group 3 and group 4, omitting execution re-532

sults significantly harms the performance of un-533

constrained decoding. In contrast, dataflow trans-534

duction rules can execute the computation inter-535

nally, and do not require the LM to condition on536

it. Comparing group 3 and group 5, adding user ut-537

terances to prompts does not bring any additional538

benefits to both approaches.539

5.4 Experiments with MultiWOZ Dataset540

To demonstrate the general applicability of our541

approach for response generation, we carry out542

a brief study on the widely used MultiWOZ 2.1543

dataset (Budzianowski et al., 2018; Eric et al.,544

2020). We automatically convert the system act545

annotations to dataflow computations and write546

14 transduction rules. For generating responses,547

we use the predicted system acts from the MT-548

TOD system (Lee, 2021). Similar to our experi-549

ments on SMCalFlow, we fine-tune CodeT5-base550

on all training examples, using the ground-truth551

belief state and predicted system act as the input552

sequence. For evaluation, we randomly sample553

100 examples from the test split, and two authors554

manually rate the generated responses from our555

QCFG-constrained decoding system and the MT-556

TOD system. The agreement is 100%. Almost557

all generated responses are grammatically correct558

and relevant to the user utterance. To rate truthful-559

ness, we use the predicted system acts as the refer-560

ences. Our QCFG-constrained decoding approach561

produce truthful responses for all 100 examples,562

whereas only 89 responses from the MTTOD sys-563

tem are truthful with respect to its predicted sys-564

tem act. Among the 11 remaining examples, 7 of565

them are due to imperfect delexicalization and 4566

are due to hallucination.567

6 Related Work568

One line of response generation research focuses569

on generating fluent and coherent responses di-570

rectly from user utterances without any interme-571

diate structured representation. This paradigm is572

mostly used for chatbots, as in early rule-based573

systems (Weizenbaum, 1966; Wallace, 2009), neu-574

ral conversation models (Vinyals and Le, 2015;575

Shang et al., 2015; Sordoni et al., 2015; Li et al.,576

2016; Serban et al., 2016), and recent large-577

scale pretrained LMs like DialoGPT (Zhang et al.,578

2020b) and GPT-3 (Brown et al., 2020).579

Another line focuses on generating text from 580

structured data, with applications beyond dia- 581

logue response generation. For example, the 582

WebNLG challenge (Gardent et al., 2017) gen- 583

erates natural language descriptions from relation 584

tuples, and Lebret et al. (2016) generate a biog- 585

raphy from a structured “infobox” record. Many 586

recent dialogue response generation tasks adopt 587

dialogue-act-based meaning representations, in- 588

cluding the MultiWOZ dataset (Budzianowski 589

et al., 2018), the Schema-Guided dialogue dataset 590

(Rastogi et al., 2020), and the E2E NLG challenge 591

(Dusek et al., 2020). In contrast, our response gen- 592

eration task uses computations as the input, which 593

do not directly encode the dialogue acts of the re- 594

sponses. This is a more challenging task, as the 595

system needs to perform extra reasoning to obtain 596

the derived information. In this sense, our task is 597

similar to the one in CoSQL (Yu et al., 2019) and 598

Logic2Text (Chen et al., 2020). 599

Constrained decoding techniques for neural 600

LMs have been developed for text generation with 601

different types of constraints (Balakrishnan et al., 602

2019; Dathathri et al., 2020; Lu et al., 2021, 2022). 603

Shin et al. (2021) develop a constrained decoding 604

approach for semantic parsing by restricting the 605

LM output at each step according to a given gram- 606

mar. Differently, the grammar productions in our 607

case are derived dynamically for each input. 608

7 Conclusion 609

We have described a hybrid approach for build- 610

ing dialogue response generation systems. Our 611

approach introduces a new formalism for trans- 612

ducing a dataflow graph into a QCFG, which is 613

then used in a constrained decoder that intersects 614

the QCFG with a neural LM. (In future work, the 615

QCFG could be weighted to express its own pref- 616

erences.) This formal framework makes it possible 617

to write rules to precisely and truthfully describe 618

data and its provenance while deferring surface re- 619

alization decisions to a flexible language model. 620

This new approach outperforms unconstrained 621

conditional language modeling in both automatic 622

and human evaluations, especially on truthfulness. 623

Moreover, using 3% of the training data, the con- 624

strained decoding approach is on par with the un- 625

constrained decoding approach when it uses 100% 626

of the training data, indicating that several expert 627

hours spent on authoring rules can dramatically re- 628

duce the cost of data annotation. 629
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A Human Evaluation Details912

A screenshot of the MTurk interface for human913

evaluation is shown in Fig. 4. The inter-annotator914

agreements for different systems are provided in915

Table 3. It can be observed that the gold re-916

sponses receive the highest agreements on all three917

questions. The QCFG-constrained decoding has918

slightly higher agreements than the unconstrained919

dcoding. The QCFG random sampling receives920

a significantly lower agreement on “Grammaiti-921

cal”, which is likely because this approach may922

produce ungrammatical responses but people may923

not agree on whether these are understandable.924

B Model Configurations925

For SMCalFlow, we fine-tune the CodeT5 model926

for a fixed number of epochs (=10). For Mul-927

tiWOZ, we fine-tune the model for at most 10928

epochs and do early stopping based on the on the929

loss on the development set.We use the AdamW930

optimizer (Loshchilov and Hutter, 2019) with931

β1 = 0.9 and β2 = 0.999, using a linear learn-932

ing rate scheduler with an initial learning rate of933

5 × 10−5. For decoding, we always use a fixed934

beam size of 5.935

The CodeT5-base models used in our experi-936

ments have 220 million parameters. We used ma-937

chines with 32GB V100 GPUs for model fine-938

tuning while the decoding experiments were car-939

ried out on CPU-only machines.940

For SMCalFlow experiments, the input se-941

quence to the LM is the string representation of942

the computation in the lispress format followed943

by its the execution result is rendered as a JSON944

string, e.g., “Plan: (Yield (Event.start ( . . . ))) Re-945

sult: {“type”: “DateTime”, “value”: . . . } <s>”,946

where the last token is a special token to separate947

the input and the output. For the ablative study948

(group 5) in §5.3, the user utterance is prefixed to949

the sequence, e.g., “User: When do I have thee oil950

change on my car scheduled for? Plan: . . . Result:951

. . . <s>”.952

For MultiWOZ experiments, the computation is953

rendered as a raw JSON string which encodes the954

ground-truth belief state and the predicted system955

act. There is no execution result for these compu-956

tations.957

C Qualitative Analysis958

We looked at 100 randomly selected examples959

from the experiments on SMCalFlow from §5.2,960

and compare the generated responses from both 961

unconstrained decoding and QCFG-constrained 962

decoding with the human-annotated gold re- 963

sponses provided by the dataset. We summarize 964

the differences between the generated and gold re- 965

sponses in Table 4, using the following categories: 966

Untruth The system reports incorrect informa- 967

tion. 968

Omission The system fails to mention informa- 969

tion mentioned in the gold response. 970

Addition The system mentions additional (cor- 971

rect) information that is not mentioned in the 972

gold response. 973

Minor Difference The system uses a different 974

phrasing than the gold response that nonethe- 975

less has the same information and fluency. 976

Disfluency The system output is disfluent. 977

Annotation Error The system output is accept- 978

able but the gold annotation contains a flu- 979

ency or factuality error. 980

For unconstrained decoding, 57 out of 100 re- 981

sponses differ from the gold responses, whereas 982

for QCFG-constrained decoding, only 51 of 100 983

responses differ. This result is consistent with the 984

R@1 column of Table 1 (mismatch rates of 53% 985

and 44% respectively on the full validation set). 986

As expected, the most noticeable difference is 987

the number of Untruths reported by the uncon- 988

strained system – 19%, close to the 18% rate 989

found in the human evaluations in Table 1. We 990

show some examples of Untruths in Fig. 5. The 991

QCFG-consrained system produed no Untruths. 992

Conversely, the QCFG-constrained system pro- 993

duces substantially more Omissions than the un- 994

constrained system. Of the 11 omissions produced 995

by the constrained system, 3 are are identical to 996

the unconstrained output while 7 are on inputs for 997

which the unconstrained output produce an Un- 998

truth. In other words, our system successfully re- 999

moved the 19 Untruths by the system, but in 7 of 1000

those cases, it produced a shorter (but still fac- 1001

tually correct) input than the preferred gold an- 1002

notation for that example. We also note that the 1003

gold dataset is not consistent in how much infor- 1004

mation is included in the responses – short an- 1005

swers like “Looks like it” in Example C from 1006

Fig. 5 are present in the gold annotations on ex- 1007

amples similar to Example C. Furthermore, both 1008
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Figure 4: A screenshot of the MTurk interface for human evaluation.

systems produce more Additions than Omissions,1009

indicating that there is not a systematic bias to-1010

wards shorter answers overall. In future work, the1011

model could be made to select more descriptive re-1012

sponses by adding a brevity penalty in the decoder1013

or by weighting the QCFG productions, so that re-1014

sponses are scored not only by the LM but also by1015

the QCFG.1016

D Limitations and Future Direction1017

Authoring transduction rules is relatively easy but1018

may be still labor intensive for complex domains.1019

Future work might explore (semi-)automatically1020

deriving transduction rules from data or learning1021

to synthesize them from domain specifications, or1022

curating a collection of domain-general transduc-1023

tion rules which can be directly used in new do-1024

mains.1025

Another direction would be to extend the 1026

dataflow transduction rules so they can encode 1027

pragmatic knowledge and context-dependent poli- 1028

cies. For example, a dataflow transduction rule 1029

could call a neural network to assess the suitability 1030

of applying the rule to a given node in the dataflow 1031

graph, and weight the resulting QCFG production 1032

accordingly. 1033

E Dataset License 1034

The SMCalFlow dataset is distributed under the 1035

CC BY-SA 4.0 license. To the best of the authors 1036

knowledge, the MultiWOZ datasets were released 1037

under MIT license as shown in https://github. 1038

com/budzianowski/multiwoz. Our experiments 1039

follow the intended use of these datasets, which is 1040

to advance research in dialogue systems. 1041
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System Grammatical Relevant Truthful

QCFG Random Sampling .58 .75 .71
Unconstrained Decoding .86 .71 .71
QCFG-Constrained Decoding .90 .78 .76
Gold .95 .81 .80

Table 3: The inter-annotator agreements for different systems.

Unconstrained Constrained

Untruth 19 0
Omission 3 11
Addition 17 18
Minor Difference 10 13
Disfluency 1 1
Annotation Error 7 8

Total 57 51

Table 4: Classification of differences between generated responses and human-annotated gold responses on 100
randomly sampled examples from the SMCalFlow dataset. Details are provided in Appendix C.

Figure 5: Example predictions from fine-tuned CodeT5 model with QCFG-constrained decoding and with unconstrained
decoding. In all the examples shown, outputs from unconstrained decoding are untruthful to the database due to content
hallucination even though the model has access to the correct execution results as part of the input. We observe that in a few
cases, the constrained model prefers truthful but pragmatically unhelpful omissions like such as “Looks like it” (in Example C)
compared to a more specific response.
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