CHEMISTRYQA: A COMPLEX QUESTION ANSWERING DATASET FROM CHEMISTRY

Anonymous authors

Paper under double-blind review

ABSTRACT

Many Question Answering (QA) tasks have been studied in NLP and employed to evaluate the progress of machine intelligence. One kind of QA tasks, such as Machine Reading Comprehension QA, is well solved by end-to-end neural networks; another kind of QA tasks, such as Knowledge Base QA, needs to be translated to a formatted representations and then solved by a well-designed solver. We notice that some real-world QA tasks are more complex, which cannot be solved by end-to-end neural networks or translated to any kind of formal representations. To further stimulate the research of QA and development of QA techniques, in this work, we create a new and complex QA dataset, ChemistryQA, based on real-world chemical calculation questions. To answer chemical questions, machines need to understand questions, apply chemistry and math knowledge, and do calculation and reasoning. To help researchers ramp up, we build two baselines: the first one is BERT-based sequence to sequence model, and the second one is an extraction system plus a graph search based solver. These two methods achieved 0.164 and 0.169 accuracy on the development set, respectively, which clearly demonstrates that new techniques are needed for complex QA tasks. ChemistryQA dataset will be available for public download once the paper is published.

1 INTRODUCTION

Recent years have witnessed huge advances for the question answering (QA) task, and some AI agents even beat human beings. For example, IBM Watson won Jeopardy for answering questions which requires a broad range of knowledge (Ferrucci, 2012). Transformer-based neural models, e.g. XLNet (Yang et al., 2019) and RoBERTa (Liu et al., 2019), beat human beings on both machine reading comprehension and conversational QA task. Ariso System (Clark et al., 2019) gets an 'Ace' for an eighth-grade science examination and is able to give 80 percent correct answers for 12th-grade science test.

Most solutions of the QA task fall into two categories, end-to-end solution and parsing plus execution. The former predicts answers with an end-to-end neural network, e.g., Reading comprehension QA (Rajpurkar et al., 2016; 2018; Lai et al., 2017) and Science Exam QA (Clark et al., 2019; 2018). The latter translates a question into a specific structural form which is executed to get the answer. For example, in knowledge-based question answering (KBQA) (Berant et al., 2013; Yih et al., 2016; Saha et al., 2018) questions are parsed into SPARQL-like queries consisting of predicates, entities and operators. In Math Word Problem (Huang et al., 2016; Amini et al., 2019) questions are translated to stacks of math operators and quantities.

However, in the real world, many QA tasks cannot be solved by end-to-end neural networks and it is also very difficult to translate questions into any kind of formal representation. Solving Chemical Calculation Problems is such an example. Chemical Calculation Problems cannot be solved by end-to-end neural networks since complex symbolic calculations are required. It is also difficult to translate such problems into formal representations, since not all operators in solving processes occur in question stems, which makes it difficult to annotate data and train models.

Table 1 shows a question in ChemistryQA. To answer the question in Table 1, machines need to: 1) understand the question and extract variable to be solved and conditions in the question; 2) retrieve and apply related chemistry knowledge, including calculating molarity by mole and volume, balancing a chemical equation and calculating the equilibrium constant K, although there is no explicit statement

Ouestion	At a particular temperature a 2.00 L flask at equilibrium contains 2.80×10^{-4}
C	mol N_2 , 2.50 × 10 ⁻⁵ mol O_2 , and 2.00 × 10 ⁻² mol N_2O . How would you
	calculate K at this temperature for the following reaction: $N_2(q) + O_2(q) \rightarrow$
	$N_2O(g)$? ¹
Variable to be	Equilibrium constant. K of this reaction
solved	
Conditions	Volume of the flask is 2.00L.
provided	Mole of N_2 is 2.80×10^{-4} mol.
	Mole of O_2 is 2.50×10^{-5} mol.
	Mole of N_2O is 2.00×10^{-2} mol.
	Reaction equation is $N_2(g) + O_2(g) \rightarrow N_2O(g)$.
Knowledge	$K = \frac{[N_2 O]^a}{[N_2]^b [O_2]^c}$, [*] is the molarity of *, and a,b,c are coefficients of matters.
required	Molarity $=$ Mole / Volume.
-	Balance the reaction equation following atomic conservation theory.
Solving	1. Balance the reaction equation to get a,b and c.
steps	2. Calculate molarities for N_2 , O_2 and N_2O
	3. Calculate K following K's formula
Answer	4.08×10^8 .

Table 1: An Example in ChemistryQA.

for "calculating molarity" and "balancing equations" in the question. The combination of these capabilities is scarcely evaluated well by existing QA datasets. In order to foster the research on this area, we create a dataset of chemical calculation problems, namely ChemstriyQA.

We collect about 4,500 chemical calculation problems from https://socratic.org/ chemistry, covering more than 200 topics in chemistry. Besides the correct answer, we also label the target variable and conditions provided in a question. Such additional labels facilitate potential data augmentation and inferring golden solving process for training.

To verify the dataset is consistent with the purpose of evaluating AI' comprehensive capability and help other researchers ramp up, we build two baselines as follows. a) We build a BERT based sequence to sequence model, which take the raw question as input and the answer as output. The first baseline achieves 0.164 precision on ChemistryQA. b) We create an extraction system which extracts the target variable and conditions from raw questions. The extracted structure information is fed into a graph searching based solver, which performs a sequence of calculating and reasoning to get the final answer. The second baseline achieves 0.169 precision on ChemistryQA.

In summary, our contribution of this paper is shown as follows.

- We propose a new QA task, ChemistryQA, which requires open knowledge and complex solving processes. ChemistryQA is different with other existing QA tasks, and cannot be solved by existing QA methods very well.
- We create a ChemistryQA dataset, which contains about 4,500 chemical calculation problems and covers more than 200 topics in chemistry. In this dataset, we provide a novel annotation for questions, which only labels the variable asked and conditions from question stem but not solving processes. This annotation is much easier and cost less effort, and it is flexible for researchers to explore various of solutions as a weakly supervised dataset.
- We build two baselines to prove: a) end-to-end neural networks cannot solve this task very well; b) the annotation we provided can be used to improve a simple graph search based solver.

2 CHEMISTRYQA DATASET

2.1 DATA COLLECTION

We collect chemical calculation problems from https://socratic.org/chemistry. It this website, there are more than 30,000 questions which cover about 225 chemistry related topics, e.g., Decomposition Reactions, Ideal Gas Law and The Periodic Table. There is an example of annotation page in Appendix A. Figure 2.A shows the original page in Socratic, which contains a raw question,

an answer and probably a description of solving process. We filter raw questions by a simple rule, and only keep questions with a numerical value, a chemical formula or a chemical equation as answers.

2.2 DATA ANNOTATION

Unlike similar tasks' annotation, we cannot collect all the atomic operations needed before starting annotation, since the set of chemical operators is not closed. Therefore, we propose a novel annotation method that only the target variable and all conditions will be labeled in a triple-like format. For instance in Figure 2, the target variable is labeled as (*subject = reaction, predicate = Equilibrium constant K, object = ?*), and one of conditions is labeled as (*subject = N*₂, *predicate = Mole, object = 2.80* × 10⁻⁴ *mol*).

Therefore, for a question in a link, parts to be annotated are question stems, correct answers, the target variable and all conditions. Figure 2.B shows our annotation page for a question link. For questions and answers, we ask annotators to copy them into corresponding forms. If there are typos or obvious mistakes, we also ask annotators to correct them. For the target variable and conditions, we break them down into several types: *physical unit, chemical formula, chemical equation, substance name* and *other*. We also design easy-to-understand annotation interfaces, e.g., *([BLANK (predicate)] OF [BLANK (subject)] IN [BLANK (unit or None)]*) and *([BLANK (predicate)] OF [BLANK (object or value)]*) for tagging the *physical unit* from the raw question as variables and conditions, respectively. More detail about other types' definitions and annotation interfaces are shown in Appendix A.

We employed crowdsourcing for this annotation work. The task was split into 6 batches and assigned to annotators sequentially. We applied some check-and-verify mechanism in first batch to ensure the annotation quality, also help annotators be more familiar with this task. Finally, we have collected 4418 annotated questions within around 336 hours.

During the annotating phase, we encourage annotators to use text phrase in original questions whenever possible for *chemical formula*, *chemical equation*, *substance name*, subject and value in *physical unit*, while for predicates and units, we do not make any restrictions. We maintain two dynamic mappings to convert mentions labeled to identified predicates or unites, which greatly reduces the difficulty of labeling and the total annotation time. For *other*, there is not any restrictions either, and we only consume identified ones, e.g., STP.

2.3 DATA ANALYSIS

We divide annotated questions into train, valid and test subsets, and their sizes are 3433, 485 and 500, respectively. We make some statistics on the annotated questions in different perspectives as follows.

1) According to the types of target variables, we divide questions into 3 classes, *physical unit*, *chemical formula*, *chemical equation*. Table 2 shows examples belonging to different question types, and Table 3 shows the distribution of question types.

Table 2: Examples under various question types				
Question	Answer	Question Type		
How many moles of ammonium nitrate	0.14 moles	Physical Unit		
are in 335 mL of 0.425 M NH4NO3?				
What is the empirical formula of mag-	MgCl2	Chemical Formula		
nesium chloride if 0.96 g of magnesium				
combines with 2.84 g of chlorine?				
How would you write a balanced equa-	$2C8H18 + 25O2 \rightarrow 16CO2 + 18H2O$	Chemical Equation		
tion for the combustion of octane,				
C8H18 with oxygen to obtain carbon				
dioxide and water?				

Table 2.	Examples	um dan		amostica	true
Tame 7	E x annues	Innaer	various	anesnon	TVDES

Table 3: Distribution of different question types				
Dataset	Physical Unit	Chemical For-	Chemical	Total
		mula	Equation	
Train	2,721	314	398	3,433
Valid	381	55	49	485
Test	392	55	53	500
Total	3,494	424	500	4,418

2) There are 172 unique predicates, 90 unique units and 25 identified other conditions. We conducted detailed statistics on them in Appendix B,

2.4 COMPARING WITH OTHER QA DATASETS

We pick a representative dataset from each type of task to compare with ChemistryQA, including WEBQUESTIONS(Berant et al., 2013), RACE(Lai et al., 2017), ARC(Clark et al., 2018) and MathQA(Amini et al., 2019). We compare these QA datasets in Answer Type, External Knowledge, Knowledge usage, Calculation and Annotation perspectives, and Table 4 shows the detail.

				~	
Dataset	Answer Type	Extenal	Knowledge us-	Calculation	Annotation
		Knowledge	age		
WEBQUESTION	SEntity, Entities	Open	Graph Search	SPARQL Oper-	SPARQL, An-
		_		ators	swer
RACE	Option	None	None	Language Un-	Only Answer
				derstanding	
ARC	Option	Open	Implicit Infer-	None	Only Answer
		_	ence		
MathQA	Option	Closed	Language Un-	Math Operators	Operator Stack,
			derstanding	_	Answer
ChemistryQA	Value, Formula,	Open	Graph Search,	Chemical Oper-	Variable, Condi-
	Equation	-	Language Un-	ators	tions, Answer
	-		derstanding and		
			Calculating		

Table 4: ChemistryQA Compares with existing related QA tasks.

Comparing ChemistryQA with existing QA datasets, ChemistryQA has the following advantages:

1) ChemistryQA contains more diverse answer types and excludes the influence of randomness by not providing options.

2) There are various knowledge required by ChemistryQA including a) triplet-like fact, e.g., substances' molar mass, colour and other physical properties, b) calculation methods between various physical quantities and c) domain specific skills, e.g., balancing chemical equations. The knowledge in ChemsitryQA is open and used in various ways, while other datasets use knowledge in single way.

3) ChemistryQA only provides triplet like extraction annotation which isolates language understanding and domain knowledge as much as possible. This setting makes annotation and model training easier.

3 Methods

We provide two completely different baselines: 1) an end-to-end neural based solver and 2) a solving pipeline composed of an extractor and a graph search based solver.

3.1 END TO END SOLVER

We build a sequence to sequence model, and both of its encoder and decoder are based on BERT model. Both encoder and decoder load from pretrained BERT and share the same vocabulary, more than 30,000 sub-tokens from BERT. To build the decoder, we change the encoder's structure as Vaswani et al. (2017) did: 1) the self-attention of decoder has a triangular mask matrix and 2) there is an extra layer of attention performing over outputs of the encoder and hidden states of the decoder. We also append a head of predicting next token to the decoder, which maps hidden states into the vocabulary size space R^v and follows a softmax layer behind it. The end-to-end solver takes the question as the input of encoder and takes the answer as the target of decoder. Questions are split into sub-tokens, and even real numbers also break into sub-tokens. We greedily choose the next token with maximum score after softmax. We append a special token, '[SEP]', as the end of the target sequence. During inference, the decoding process ends when the decoder outputs '[SEP]' token. This method represents a class of powerful neural networks, which achieved state-of-the-art performance on many QA tasks.

Figure 1: The structure of Extractor plus Graph Search Based Solver pipeline

3.2 EXTRACTOR PLUS GRAPH SEARCH BASED SOLVER

As the second baseline, we build an extractor plus solver pipeline. First, we employ the extractor to extract the target variable and conditions from the question text. The target variable and conditions are represented as triplets as described in the above Data Annotation Section. Second, we employ a graph search based solver to take triplets as input and execute pre-defined functions in chemistry domain to get the final answer. Figure 1 shows the structure of the extractor plus solver pipeline.

3.2.1 FSA BASED EXTRACTOR

We expect the extractor can take the raw question as input and output triplet like variable and conditions, so a sequence to sequence model is a good candidate. However, such straight forward method is hard to work, because triplets are structural and we also want to extract simple semantic information, i.e., whether a triplet is a target variable or a condition and types of triplets. Therefore, we design a Finite State Automata (FSA) to restrict the type of each output token. We define 12 separate vocabulary sets, and the Table in Appendix C shows the these vocabulary names, sizes and tokens belonging to them. To distinguish between vocabulary and token, we use upper cases to represent vocabulary names and lower cases to represent tokens. START, END, QC_END are control symbols. START and END represent the beginning and end of the decoding sequence, while QC_END represents the end of the target variable or a condition block. PHYSICAL_UNIT, CHEMICAL_EQUATION, CHEMICAL_FORMULA, SUBSTANCE, C_OTHER are types of target variables or conditions. POINTER contains all possible positions of token in question, which can be used to represent the start or end of a text span, e.g., subjects, chemical equations and values.

For the model, we employ a standard pretrained BERT based model as the encoder. We still use 6 layers transformers as the decoder model, and use a triangular mask matrix as the attention mask. We use state transitions to represent the relations between output tokens and build a FSA to model the state transition process. The decoder always outputs "start" as the first token, determines the current state and chooses the next vocabulary based on the current output and state. Figure 1 also shows an example of the output of FSA based Extractor.

In the training stage, we convert triplet-like annotations to the FSA based token sequence, and treat them as the target of the extractor. For example in Figure 1, the target variable, *<reaction*, equilibrium constant k, ?>, is translated to physical_unit 28 28 equilibrium_constant_k None qc_end, and one of conditions, *<reaction*, chemical equation, $N_2(g) + O_2(g) \rightarrow N_2O(g) >$ is translated to chemical_equation 30 34 qc_end. In the inference stage, we obtain the FSA based token sequence from the decoder, and then we convert it to triplets as the input of subsequent solver. Since there is no conflicts in FSA, both of directed conversions are determinate and lossless.

3.2.2 GRAPH SEARCH BASED SOLVER

We get the target variable and all kinds of conditions from the extractor, and then we want to call a sequence of functions to calculate the final answer step by step. However, we do not have such information, because the annotators only label target variables and conditions but not the solving processes. According to our observation, specific physical quantities only can be calculated by functions with specific chemistry knowledge. For example in Figure 1, the equilibrium constant k of the reaction can be calculated by $k = \frac{[N_2O]^2}{[N_2]^2[O_2]}$, where [] is the molarity of a substance. Therefore, we can implement a function, noted as *CalculateK*, which takes the molarity of the three substances and the balanced chemical equation as the input and calculates k. However, there is no molarity but only mole of substances extracted, and the chemical equation is not balanced. Therefore, We need to implement a function, *CalculateMolarity*, to obtain molarity of these substances and a function, *BalanceChemicalEquation*, to balance the chemical equation before calling *CalculateK*.

We model this process as a graph search in a hyper graph as follows: 1) We view triplets as nodes in this graph, e.g., *<reaction, chemical equation,* $N_2(g) + O_2(g) \rightarrow N_2O(g) >$. 2) We view pre-build functions as directed hyper edges, e.g., *CalculateK, CalculateMolarity* and *BalanceChemicalEquation.* A hyper edge directs from the input triplets to the output triplets, e.g., the hyper edge, *CalculateK*, starts from *<* N_2 , molarity,?>, *<* O_2 , molarity,?>, *<* N_2O , molarity,?>, *<* reaction, chemical equation, $N_2(g) + O_2(g) \rightarrow N_2O(g) >$ and directs to *<* reaction, k, ?>. 3) The solver maintains a set of triplets without unknown quantities, and uses conditions obtained from the extractor to initialize the set. 4) The solver starts searching from the target variable. If the inputs can be satisfied by the current triplets, then the solver executes the function and adds the result to the set. Otherwise, the solver performs deep searching to check whether the unsatisfied input can be calculated by any function. Table 5 shows the algorithm, where *S* is the set of triplets without unknown quantities, I_f and O_f are inputs and outputs of function f, I_u is a subset of I_f and $\forall i \in I_u : i \notin S$, and F_p is the set of functions with *p* as their output triplets' predicate.

Table 5: Graph based search solving algorithm **Input**: The target variable q, Condition set C, Function set F Output: Answer A 1: **FUNC** GraphSearch(Target $q = \langle s, p, t = ? \rangle$, Triplet set S): 2: $F_p = \{f | f \in F \text{ and the predicate of } O_f \text{ is } p\}$ 3: for f in F_p : 4: $I_u = \{i | i \in I_f \text{ and } i \notin S\}$ 5: for i in I_u : 6: *i*=GraphSearch(i,S) 7: if $i = \langle s_i, p_i, t_i \rangle$ is satisfied: 8: $S = S \cup \langle s_i, p_i, t_i \rangle$ 9: if $\forall i \in I_f$ is satisfied: 10: execute t=f(S) 11: return $\langle s, p, t \rangle$ 12. return None 13:Call A=GraphSearch(q,C)

In Appendix D, we show several functions with inputs and outputs as examples. A triplet with specific predicate can be calculated by different more than one functions with different inputs, e.g., *CalculateMoleFromMass* and *CalculateMoleFromNumber* take mass and the number of atoms(or molecules) as input, respectively. We do not need to implement all functions for all predicate combinations, since there may a combination of functions can represent the relationship among predicates. For example, we can call *CalculateMoleFromMass* and *CalculateMoleFromMass* and *CalculateMolerity* sequentially to calculate a substance's molarity given its mass. We implemented 78 functions which covers 61 predicates in training set, and the coverage is 35.5%. We list all functions we implemented in Appendix D and will publish them once the paper is published.

4 EXPERIMENTS

4.1 Setting

For the end-to-end solver, we use the pretrained uncased BERT base model to initialize its encoder, and use the first 6 layers of BERT to initialize its decoder. We also reuse the tokenizer from BERT for this model, and both encoder and decoder share the sub-token embedding matrix from BERT base.

We tuned the hyper parameters as follows: learning rate $\in \{1 \times 10^{-5}, 5 \times 10^{-5}, 1 \times 10^{-4}, 5 \times 10^{-5}\}$, epoch $\in \{100, 200, 300, 500\}$ and fix batch size as 8.

For the FSA based extractor, we use the same model structure as the end-to-end solver. However, we replace BERT based decoder's vocabulary to 12 customized FSA based vocabularies. We initialize parameters of the extractor by pretrained uncased BERT base model, except the embeddings of tokens from decoder's vocabularies. We randomly initialize the embeddings of tokens from decoder's vocabularies. We randomly initialize the embeddings of tokens from decoder's vocabularies. We randomly initialize the embeddings of tokens from decoder's vocabularies. We randomly initialize the embeddings of tokens from decoder's vocabularies. We randomly initialize the embeddings of tokens from decoder's vocabularies. We randomly initialize the embeddings of tokens from decoder's vocabularies. We randomly initialize the embeddings of tokens from decoder's vocabularies. We randomly initialize the embeddings of tokens from decoder's vocabularies. We randomly initialize the embeddings of tokens from decoder's vocabularies. We randomly initialize the embeddings of tokens from decoder's vocabularies. We also tuned hyper parameters in extractor as exactly same as we did for the end-to-end solver. For the graph search based solver, we restrain the maximum depth as 5 when perform searching. We train both the end-to-end solver and the extractor on a single P40 GPU.

4.2 EVALUATION AND RESULT

To evaluate the methods, we design different criterion for different types of questions, i.e., physical unit, chemical formula, chemical equation questions. For physical unit questions, if $\frac{|A-\hat{A}|}{A} < 0.05$, we treat the answer is correct. For both chemical formula and chemical equation, we remove spaces in both A and \hat{A} and perform string matching between them. A is the ground true answer and \hat{A} is the predicted answer.

For graph search based solver, we also evaluate the accuracy of the extractor beside the final answer. We evaluate token-level and question-level accuracy for the output sequence from the decoder, respectively calculated by $A_t = \frac{1}{N_q} \sum_{i}^{N_q} \frac{\sum_{j}^{N_t} (t_j = = \hat{t}_j)?1:0}{Nt_i}$ and $A_q = \frac{\sum_{i}^{N_q} (s_i = =\hat{s}_i)?1:0}{N_q}$, where t and \hat{t} are respectively ground true and predicted tokens, s and \hat{s} are ground true and predicted output sequences, N_q is the number of questions, and Nt is the number of tokens in s. $(s == \hat{s})$ is true if and only if $(t == \hat{t})$ is true at all position in s.

Table 6: Performances of methods on ChemsitryQA Development Set

Method	Token-level Accuracy	Seq-level Accuracy	Answer Accuracy
End to End Solver	-	-	0.164
Extractor + GraphSolver	0.713	0.303	0.169

Table 6 shows the performances of these two methods. We can obtain the following observations:

a) End-to-end solver achieves 0.164 answer accuracy, which surprises us but also implies that the powerful neural network can learn some pattern of questions, including calculating physical quantities, inferring chemical formulas and equations.

b) The FSA based extractor plus graph search based solver achieves 0.169 answer accuracy even only with 35.5% functions implemented, which implies this framework is effective, and the larger coverage of functions implemented will likely increase the accuracy.

c) For the extractor, the token-level accuracy is 0.713, but the sequence level accuracy drops to only 0.303. This implies the issue of cascading error is serious, but to improve sequence-level accuracy is very difficult. Thus, the more robust subsequent solver is probably needed.

4.3 ANALYSIS

We want to analyze reasons from wrong cases and get ratios of them. First, we know there are about 69.7% wrong cases come from the wrong extraction results, and then we sample 100 wrong cases which have the correct extraction results from the development set for analyzing reasons. Table 7 shows the ratios of reasons.

From the analysis, we can observe that most of wrong cases are caused by lacking some chemical knowledge in other forms which cannot be handled by the current solver.

5 RELATED WORK

We introduce related work of this paper from two perspectives: 1) There are kinds of examinations employed as benchmark to evaluate machine intelligence. 2) There are some NLP/CV tasks or datasets solved by both end-to-end neural networks and parsing plus execution method.

Reason	Ratio	Examples and Explanation
Infer Chemical Equation or Formula	46%	For question "What mass of oxygen is needed for the
		complete combustion of 8.90×10^{-3} g of methane?", the
		current solver cannot write the correct chemical equation
		for the combustion reaction.
Multiple States	23%	For questions "How much energy is required to raise the
		temperature of 3 g of silver from 15 °C to 20 °C?", the
		current solver cannot tell and maintain more than one
		different states in the question.
Lack of Knowledge	6%	For question "How many O_2 molecules will be con-
		sumed when one gram of propane combust completely
		in the air?", it lacks knowledge about what propane's
		chemical formula is.
Wrong Label	7%	-
Other Reason	18%	-

 Table 7: Reasons of wrong cases and some examples

From the perspective of examinations, so far, there have been several tasks proposed based on some question types in specific subjects: 1) Math word problem (Huang et al., 2016; Wang et al., 2017; Amini et al., 2019) can be viewed as a semantic parsing task. Most of them require models translating question texts to equations or sequences of mathematical operations and then performing simple calculations to get the final answer. However, these datasets do not involve domain knowledge and usually provide strong supervision for the parser, i.e., equations or sequences of operations. 2) Newtonian physics datasets (Sachan & Xing, 2018; Sachan et al., 2018) involves physical knowledge, but its knowledge is narrow and limited to Newtonian physics. This dataset is not public. 3) Elementary and middle school science examination (Clark, 2015; Clark et al., 2018) contains multiple choice questions involving open knowledge crossing various subjects. However, many questions in the dataset can be solved by retrieval and text matching. Although ARC(Clark et al., 2018) separates a subset of hard questions, the state-of-the-art on ARC is retrieval plus a powerful transformer based model. 3) Biological processes problem dataset (Berant et al., 2014) provides passages to describe biological processes and asks questions about the passages. Different from ours, this dataset focuses more on evaluating machine reading comprehension, as English reading comprehension data (Lai et al., 2017) does.

From the perspective of solving methods, besides examinations, there are several datasets can be solved by both end-to-end models and parsing plus execution method. For example, WEBQUES-TIONS(Berant et al., 2013) is a famous KBQA dataset, and there are both end-to-end models (Bordes et al., 2014; Hao et al., 2017) and semantic parser (Yih et al., 2014; Berant & Liang, 2014) working on it. For WEBQUESTIONS, the solving process (i.e., executing SPARQL on Freebase) is fix after obtaining the parsing result, and the correct parsing result must lead to the correct answer. However, for ChemistryQA, there is more than one paths from extraction result to the correct answer, and it requires searching on the graph. Another example is Knowledge Base Completion (KBC) task. KBC task can be solved by both end-to-end knowledge graph embedding models (Bordes et al., 2013) and logical inference based method, e.g., Markov Logic Network (Wei et al., 2015). However, the input of KBC is not natural language.

6 CONCLUSION

Real world question answering is more complex than existing QA tasks, since it requires not only understanding questions well but also interleaving complex reasoning with knowledge retrieval, which is scarcely represented by existing QA datasets. To foster the research on this area, we create ChemstriyQA dataset which contains chemical calculation problems. We implemented two baselines, a sequence to sequence model and a FSA based extractor plus a graph search based solver, which stands for two types of methods, the end to end neural network and the extractor plus solver, respectively. The experiment result shows the extractor-plus-solver baseline can achieve a better performance with only 35.5% functions in domain implemented. Therefore, there is still room for improving in the extractor-plus-solver method, but it is hard to improve performance for the end to end models.

REFERENCES

- Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based formalisms. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 2357–2367, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1245. URL https://www.aclweb.org/anthology/N19-1245.
- Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1415–1425, 2014.
- Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from question-answer pairs. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*, pp. 1533–1544, 2013.
- Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany Harding, Brad Huang, Peter Clark, and Christopher D Manning. Modeling biological processes for reading comprehension. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1499–1510, 2014.
- Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances in neural information processing systems, pp. 2787–2795, 2013.
- Antoine Bordes, Sumit Chopra, and Jason Weston. Question answering with subgraph embeddings. *arXiv preprint arXiv:1406.3676*, 2014.
- Peter Clark. Elementary school science and math tests as a driver for ai: take the aristo challenge! In *AAAI*, pp. 4019–4021. Citeseer, 2015.
- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint arXiv:1803.05457*, 2018.
- Peter Clark, Oren Etzioni, Tushar Khot, Bhavana Dalvi Mishra, Kyle Richardson, Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord, Niket Tandon, Sumithra Bhakthavatsalam, et al. From'f'to'a'on the ny regents science exams: An overview of the aristo project. *arXiv preprint arXiv:1909.01958*, 2019.
- David A Ferrucci. Introduction to "this is watson". *IBM Journal of Research and Development*, 56 (3.4):1–1, 2012.
- Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua Wu, and Jun Zhao. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 221–231, 2017.
- Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin, and Wei-Ying Ma. How well do computers solve math word problems? large-scale dataset construction and evaluation. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 887–896, 2016.
- Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading comprehension dataset from examinations. *arXiv preprint arXiv:1704.04683*, 2017.
- Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for machine comprehension of text. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pp. 2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://www.aclweb.org/anthology/D16-1264.
- Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don't know: Unanswerable questions for SQuAD. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp. 784–789, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2124. URL https://www.aclweb.org/anthology/P18-2124.
- Mrinmaya Sachan and Eric P Xing. Parsing to programs: A framework for situated qa. In *Proceedings* of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2140–2149, 2018.
- Mrinmaya Sachan, Kumar Avinava Dubey, Tom M Mitchell, Dan Roth, and Eric P Xing. Learning pipelines with limited data and domain knowledge: A study in parsing physics problems. In *Advances in Neural Information Processing Systems*, pp. 140–151, 2018.
- Amrita Saha, Vardaan Pahuja, Mitesh M Khapra, Karthik Sankaranarayanan, and Sarath Chandar. Complex sequential question answering: Towards learning to converse over linked question answer pairs with a knowledge graph. In *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information processing systems*, pp. 5998–6008, 2017.
- Yan Wang, Xiaojiang Liu, and Shuming Shi. Deep neural solver for math word problems. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 845–854, 2017.
- Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya Sun, and Guanhua Tian. Large-scale knowledge base completion: Inferring via grounding network sampling over selected instances. In *Proceedings of the 24th ACM International on Conference on Information and Knowledge Management*, pp. 1331–1340, 2015.
- Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding. *arXiv preprint arXiv:1906.08237*, 2019.
- Wen-tau Yih, Xiaodong He, and Christopher Meek. Semantic parsing for single-relation question answering. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 643–648, 2014.
- Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value of semantic parse labeling for knowledge base question answering. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp. 201–206, 2016.

A ANNOTATION EXAMPLES, INTERFACES AND PROCESSES

A.1 AN EXAMPLE OF ANNOTATION PAGE

Figure 2 shows a page of annotation, the left part is the original web page in socratic.org and the right part is the annotation area.

Socratic Q&A		a.1. Question Text	
Chemistry - Topics	Q Search	At a particular temperature a 2.00 L flask at equilibrium contains 2.80 × 10 ⁴ (-4) mg/kg; 2.50 × 10 ⁴ (-5) mg/kg; and 2.00 × 10 ⁴ (-2) mg/kg; How would you calculate K at this temperature for the following reaction: 2 kg(g) + 2 kg(g) - 2 kg(g) = 2 kg(g) + 2 kg(g)	
At a particular temperature a 2.00-L flask at equ 4 mol N2, 2.50 10-5 mol O2, and 2.00 10-2 mol calculate K at this temperature for the following r -> 2 N2O(g)? Chematry - Chemical Equilibrium -> Dynamic Equilibrium 1 Answer	lilbrium contains 2.80 10- N2O. How would you reaction: 2 N2(g) + O2(g) -	a.2. Question Variable What at this chemical equations for 0 I. It can ask for the chemical equation or formula. If any ask for the chemical equation or formula. If proposely for substanceprocess is in junit type K C C C C C C C C C C C C C C C C C C	
mason m 0.6 × 10.3 4.08 × 10 ⁴	Related questions How does temperature affect dynamic equilibrium?	Orchemical Equation (of) Orchemical Formal (of) Orcher type	
Explanation: $K = \frac{[N_2 Q]^2}{[N_2]^2 [O_2]}$ In an equilibrium reaction, the equilibrium constant K is found through taking the	Why is gynamic equilibrium important for living organisms? What is dynamic equilibrium? What are some common mistakes students make with dynamic	b. Conditions from Question	
concentrations of the products over the concentrations of the reactants. (If you don't know why, ask.) The stoichiometric coefficients in the equation are used as exponents on the	equilibrium? Can dynamic equilibrium be disrupted?	Add: @Physical Unit O'Chemical Equation/Chemical Formula O'Substance Name O'Enumerations FPL condition (e.g. mass of carbon dicoxie = 100g) work in the second	
concentrations. (See how the equilibrium equation references $2N_2$, hence $[N_2]^*$ in the equilibrium constant expression.) To find the concentrations (molarity), divide the mole amounts by the volume.	dynamic equilibrium? How is dynamic equilibrium related to vapor pressure?	Physical Unit O Chemical Equation/Chemical Formula/Substance Name O Substance Name O Enumerations PU condition (e.g. mass of carbon dioxide = 100g)	
$[N_{2}O] = \frac{2.00 \times 10^{-2} mol}{2.00 L} = 1.00 \times 10^{-2} M$ $2.80 \times 10^{-4} mol$	Is homeostasis a type of dynamic equilibrium? Is the concentration of reactants equal to the concentration of	Mote of Rz = 280 × 10/14) mot @Physical Unit Ochemical Equation/Chemical Formula/Substance Name Osubstance Name OEnumerations PU condition (e.g. mass of cathod inoided = 100)	
$\begin{split} V_2 &= \frac{2.00L}{2.00L} = 1.40 \times 10^{-8} \mathrm{M} \\ [O_2] &= \frac{2.50 \times 10^{-8} \mathrm{mol}}{2.00L} = 1.25 \times 10^{-8} \mathrm{M} \end{split}$	products in a dynamic equilibrium? Once dynamic equilibrium is established, will it shift if additional reactants are added?	Mode of [02] = (2.50 × 10 ^o (-5) mot @Physical Unit: Chemical Equation/Chemical Tormula/Substance Name Substance Name Enumerations % Physical Unit: Chemical Equation/Chemical Tormula/Substance Name Substance Name Enumerations	
$\mathrm{K} = \frac{\left(1.00 \times 10^{-2}\right)^2}{\left(1.40 \times 10^{-4}\right)^2 \left(1.25 \times 10^{-5}\right)} = 4.08 \times 10^8$	see all questions in Dynamic Equilibrium		
The equilibrium constant is unitless. An equilibrium constant is will also tells us that the reaction is heavily product-favored.	Impact of this question 10116 views around the world	c. Correct Answer	
Answer link	OD IT NC SA You can reuse this answer Creative Commons License	Physical Unit Ochemical formula/Equation PU answer (eg. 100g) Log x 100	
(A)		(В)	

Figure 2: An example of the annotation page

A.2 ANNOTATION TYPES

The annotation area contains two parts: one for labeling the target variable and the other one for labeling conditions. For a chemical calculation problem, there is only one target variable but probably more than one conditions. Thus, annotators are free to add condition block. Usually, the interface for question variables and conditions are different even for the same type of annotations. For a variable or condition block will be first ask to choose a type of annotation, and then the page will show the interface of it. Table 8 shows interfaces for all types of annotations.

	Table 8: Annotation Interfaces			
Annotation	As a Question Variable	As a Condition		
Туре				
physical unit	[BLANK (predicate)] OF [BLANK (sub-	[BLANK (predicate)] OF [BLANK (sub-		
	ject)] IN [BLANK (unit or None)]	ject)] = [BLANK (object or value)]		
chemical	Chemical Formula OF [BLANK (sub-	Chemical Formula OF [BLANK (sub-		
formula	ject)] IN NONE	ject)] IS [BLANK (value)]		
chemical equa-	Chemical Equation OF reaction	Chemical Equation OF reaction IS		
tion		[BLANK (value)]		
substance	-	Substance IS [BLANK (value)]		
other	-	Other Condition IS [BLANK (value)]		

A.3 CROWD SOURCING ANNOTATION DETAILS

First, we estimated the annotation time by recording time spent on annotators label a small scale experimental set, and got the average time spent on labeling and verifying are 4.65 minutes and 3.25 minutes, respectively. In earlier stage, we performed both labeling and verifying on each question. After we got the verified rate is high enough, we only keep the labeling process, which leads to the annotation time of a question is 4.4 minutes. Finally, we obtain 4418 annotated questions with spending about 336 hours.

B PREDICATES, UNITS AND OTHERS IN CHEMISTRYQA

Table 9 shows top predicates and units.

Table 9: Statistics on top predicates and units				
Predicate	Count	Unit	Count	
mass	2,013	gram	1,911	
volume	1,851	mol/l	1,098	
temperature	1,099	mol	1,033	
mole	1,056	liter	899	
molarity	731	°C	872	
pressure	709	mliter	832	
concentration	323	atm	398	
ph	226	kelvin	222	
number	226	mmhg	168	
heat energy	146	kpa	164	

We list all predicates in Table 10, list all units in Table 11 and list all other conditions in Table 12.

F10 11		[1.2, 4]	[1.2]	F 1 01
[ch3cooh]	[h+]	[h2so4]	[h3o+]	[nh3]
[nh4+]	[oh-]	absorbance	absorbance reading	absorptivity
acid concentration	activation barrier	actual yield	altitude	angle of the re- flected beam
area	atomic mass	average oxidation number	avogadro constant	barometric pressure
boiling point tem-	cell potential	changed factor	charge	coefficient
perature	F		8-	
completion percent	composition by	concentration	constant r	coordination num-
tompication percent	mass	Concentration	• • • • • • • • • • • • • • • • • • •	ber
cn	degree of dissocia-	delta vanh	deltag	deltag ⁰
Cp	tion	uena vapn	uentag	ucitag
deltaaf	deltab	deltah(ryn)	deltab ⁰	deltab ⁰ f
doltabf ⁰	deltas	density	denth	diamatar
	distance			
	distance	ecen	electric current	tion
energy	energy transfer rate	enthalpy	enthalpy of combus- tion	enthalpy of forma- tion
enthalpy of fusion	enthalpy of sublima-	enthalpy of vapor-	entropy	equilibrium concen-
15	tion	ization	1.5	tration
equilibrium con-	equilibrium con-	equivalent weight	first ionisation en-	formula weight
stant k	stant ktant	1 0	ergy	C C
freezing point tem-	gauge pressure	half-life	hardness	heat capacity
perature				1 5
heat capacity ratio	heat energy	height	initial temperature	ionic product
ionization energy	ka	kb	kbp	kf
kh	kinetic energy	kp	kw	longest wavelength
mass	mass/volume	mass concentration	mass percent	maximum amount
	percent		F	
maximum possible	melted time	melting point tem-	molal solubility	molality
vield		perature		
molar enthalpy of	molar enthalpy of	molar heat	molar mass	molar ratio
dissolution	vaporization			
molar solubility	molar volume	molarity	molarity percent	mole
mole fraction	molecular weight	multiplier	normality	number
0.1	osmolarity	osmotic pressure	oxidation number	oxidation state
partial pressure	nath length	percent	percent composi-	percent ionization
purum pressure	put ingu	percent	tion	percent formination
percent vield	ph	pka	pkb	poh
power	pre-exponential fac-	pressure	quantity	radius
power	tor	pressure	quality	iuuius
rate law	ratio	reaction enthalpy	reaction quotient q	reaction rate con-
Tuto Ium	Tutto	reaction entituipy	reaction quotient q	stant
relative molecular	rms speed	size	solubility	solubility product
weight	inis speca	5120	solucinty	solucinty product
specific heat	specific heat capac-	standard atmo-	standard emf	standard enthalny
specific field	ity	spheric pressure	Stundard Chin	standard entitupy
standard enthalpy	standard enthalpy	standard free energy	state n	steric number
change	formation			
strength	surface tension	temperature	theoretical vield	thermal energy
thermochemical	threshold odor num-	time	times	total pressure
equation	ber			Pressure
trasmittance	value	van t hoff factor	vapor pressure	vapour density
velocity	voltage	volume	volume percent	w/w
wavelength			r room	
0	1	1	1	1

Table 10: All predicates in Che	msitryQA
---------------------------------	----------

$(M * min)^{(-1)}$	amperes	amu	atm	bar
cal	cal/(g · °c)	cal/mol	cm/s	cm ³
$dm^{(}-3)$	dm ³	eq/l	fluid ounces	g
g/100 ml	g/cm ³	g/dm ³	g/eq	g/l
g/ml	g/mol	gallon	hour	$in^{(-2)}$
in ²	j	$j/(g \cdot k)$	j/(g · °c)	j/(g · °c
$j/(kg \cdot k)$	$j/(kg \cdot c)$	$j/(mol \cdot k)$	$j/(mol \cdot °c)$	$j/(^{\circ}c \cdot g)$
j/g	j/mol	k	kcal	kcal/g
kcal/mol	kg	kj	kj/(kg · °c)	kj/min
kj/mol	kpa	1	$l/(mol \cdot s)$	m
m/s	m ³	meq/l	mg	mg/l
mg/ml	milliequivalents	min	mj	ml
mm	mmhg	mmol	mol	$mol/(l \cdot s)$
mol/dm ³	mol/g	mol/kg	mol/l	mpa
n	ng	nm	none	osmol
osmol/l	OZ	pa	particles/s	pounds
ppm	psi	s	$s^{(-1)}$	t
torr	V	years (-1)	°c	$^{\circ}c/(kg \cdot mol)$
1				

Table 11: All units in ChemsitryQA

Table 12: All other conditions in ChemsitryQA

Avogadro constant	Combusted	Conjugate base	vaporize	Equilibrium
Equivalence	Freezing	Henderson-	Incomplete combus-	NTP
		Hasselbalch	tion	
Neutralization	OTHER	Photosynthesis	SATP	STP
Stoichiometrically	burn	combustion	complete combus-	constant tempera-
			tion	ture
decomposes	ionizing	melt	neutralize	reaction
ConstantTemperature	Pressue			

C FSA VOCABULARIES AND STATE TRANSITIONS

Table 13 shows the vocabularies used in Finite State Automata of Extractor and some tokens in them.

Vocabulary	Size	Example Tokens
START	1	["start"]
END	1	["end"]
QC_END	1	["qc_end"]
POINTER	512	["0","1","2","3","4","5","6","7","8","9","10",,"509","510","511"]
PHYSICAL_UNIT	1	["physical_unit"]
CHEMICAL_EQUATION	1	["chemical_equation"]
CHEMICAL_FORMULA	1	["chemical_formula"]
SUBSTANCE	1	["substance"]
C_OTHER	1	["c_other"]
PREDICATE	172	["atomic_mass","boiling_point_temperature","energy",
		"concentration","heat_capacity", "molarity",]
UNIT	91	["atm","bar","cal/(g°c)","j/(gk)","min","mol","ppm","psi",]
OTHER	26	["Avogadro_constant","Combusted","Conjugate_base",]

Table 13: The vocabularies' names and tokens belonging to them.

We define 26 states for FSA. Table 14 shows all states and Figure 3 shows the state transitions.

Table 14: States of FSA

s_start	s_q_pu	s_q_pu_subject_start	s_q_pu_subject_end	s_q_pu_predicate
s_q_pu_unit	s_c_pu	s_c_pu_subject_start	s_c_pu_subject_end	s_c_pu_value_start
s_c_pu_value_end	s_c_pu_property	s_q_ce	s_q_cf	s_q_end
s_c_ce	s_c_cf	s_c_sub	s_c_other	s_c_ce_start
s_c_ce_end	s_c_cf_start	s_c_cf_end	s_c_sub_start	s_c_sub_end
s_c_other_type				

Figure 3: The state transition graph for the FSA

D FUNCTIONS

Table 15 shows several functions' inputs and outputs for example.

Function Name	Input Predicates	Output Predicates
CalculateK	balanced chemical equation, mo-	equilibrium constant k
	larity (for all substance in equa-	
	tion)	
CalculateMolarity	mole, volume	molarity
CalculateMoleFromMass	mass, molar mass	mole
CalulcateMoleFromNumber	number of atoms or molecules	mole
BalanceChemicalEquation	chemical equation	chemical equation
ParseChemicalEquation	text span	chemical equation

Table 15: Function examples implemented for ChemistryQA

We also list all functions we implemented as follows:

FFunc_Name2CE

Func_Formula2CE

Func_Equation2CE

Func_BalanceChemicalEquation

Func_Mole2Atom

Func_CE2MolarMass

Func_Mass2Mole

Func_Ph2Kw

Func_Number2Mole

Func_Mole2Number

Func_MassMolar_mass2Mole

Func_MoleMolar_mass2Mass

Func_VolumeMolarity2Mole

Func_VolumeMoleTemperature2Pressure

Func_VolumeTemperaturePressure2Mole

Func_PressureMolar_massTemperature2Density

Func_PressureDensityTemperature2Molar_mass

Func_MoleMass2Molar_mass

Func_MoleVolumePressure2Temperature

Func_MoleTemperaturePressure2Volume

Func_MoleVolume2Molarity

Func_MoleVolume2Concentration

Func_MolarityVolume2Mole

Func_MoleMolarity2Volume

Func_Ph2Acid_concentration

Func_Acid_concentration2Ph

Func_Ph2Poh

Func_Poh2Ph

Func_Ka2Pka

Func_Mass_concentrationMolar_mass2Molarity Func_MassVolume2Density Func_DensityVolume2Mass Func_MassDensity2Volume Func_MolarityMolar_mass2Molality Func_MolalityMolar_mass2Molarity Func_MolarityTemperature2Osmolarity Func_Theoretical_yieldPercent_yield2Actual_yield Func_Actual_yieldPercent_yield2Theoretical_yield Func_Theoretical_yieldActual_yield2Percent_yield Func_Ka2Degree_of_dissociation Func_2Freezing_point_temperature Func_Gauge_pressure2Pressure Func_MassVelocity2Kinetic_energy Func_KaMolarity2Percent_ionization Func_2Standard_atmospheric_pressure Func_MolalityMolar_mass2Ww Func_WwMolar_mass2Molality Func_MassMass2Mass_percent Func_MoleMole2Mole_percent Func_MolarityMolarity2Molarity_percent Func_Poh2Alkali_concentration Func_AtomMoleculeMole2Mole Func_MassSpecific_heat_capacityTemperature2Heat_energy Func_Heat_energySpecific_heat_capacityTemperature2Mass Func_Heat_energyTemperatureMass2Specific_heat_capacity Func_Heat_energySpecific_heat_capacityMass2Temperature Func_MassVolume2Mass_concentration Func_MassVolume2Density Func_BptHvapPressurePressure2Bpt Func_Molarity3_2Ka Func_Molarity3_2Kb Func_MolarityDepthAbsorbance2Absorptivity Func_AbsorbanceMolarityAbsorptivity2Depth Func_MolarityDepthAbsorptivity2Absorbance Func_Absorbance2Transmittance Func_Volume2_2Dilution_factor Func_ResistanceVoltage2Electric_current

Func_Electric_currentVoltage2Resistance

Func_Electric_currentResistance2Voltage

Func_DensityHeight2Gauge_pressure

Func_Mass2_Time2HalfLife

 $Func_Heat_of_fusionMolePower2Melted_time$

 $Func_ShcMolar_mass2Molar_heat$

 $Func_MoleculeMolarity2Ph$

Func_Chemistry_Equation2K

Func_GetCoefficient

Func_Chemistry_Equation2K

Func_Chemistry_Formula2Oxidation_number