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ABSTRACT

Many Question Answering (QA) tasks have been studied in NLP and employed
to evaluate the progress of machine intelligence. One kind of QA tasks, such
as Machine Reading Comprehension QA, is well solved by end-to-end neural
networks; another kind of QA tasks, such as Knowledge Base QA, needs to be
translated to a formatted representations and then solved by a well-designed solver.
We notice that some real-world QA tasks are more complex, which cannot be solved
by end-to-end neural networks or translated to any kind of formal representations.
To further stimulate the research of QA and development of QA techniques, in this
work, we create a new and complex QA dataset, ChemistryQA, based on real-world
chemical calculation questions. To answer chemical questions, machines need to
understand questions, apply chemistry and math knowledge, and do calculation
and reasoning. To help researchers ramp up, we build two baselines: the first one
is BERT-based sequence to sequence model, and the second one is an extraction
system plus a graph search based solver. These two methods achieved 0.164 and
0.169 accuracy on the development set, respectively, which clearly demonstrates
that new techniques are needed for complex QA tasks. ChemistryQA dataset will
be available for public download once the paper is published.

1 INTRODUCTION

Recent years have witnessed huge advances for the question answering (QA) task, and some AI
agents even beat human beings. For example, IBM Watson won Jeopardy for answering questions
which requires a broad range of knowledge (Ferrucci, 2012). Transformer-based neural models, e.g.
XLNet (Yang et al., 2019) and RoBERTa (Liu et al., 2019), beat human beings on both machine
reading comprehension and conversational QA task. Ariso System (Clark et al., 2019) gets an ’Ace’
for an eighth-grade science examination and is able to give 80 percent correct answers for 12th-grade
science test.

Most solutions of the QA task fall into two categories, end-to-end solution and parsing plus execution.
The former predicts answers with an end-to-end neural network, e.g., Reading comprehension QA
(Rajpurkar et al., 2016; 2018; Lai et al., 2017) and Science Exam QA (Clark et al., 2019; 2018). The
latter translates a question into a specific structural form which is executed to get the answer. For
example, in knowledge-based question answering (KBQA) (Berant et al., 2013; Yih et al., 2016; Saha
et al., 2018) questions are parsed into SPARQL-like queries consisting of predicates, entities and
operators. In Math Word Problem (Huang et al., 2016; Amini et al., 2019) questions are translated to
stacks of math operators and quantities.

However, in the real world, many QA tasks cannot be solved by end-to-end neural networks and it is
also very difficult to translate questions into any kind of formal representation. Solving Chemical
Calculation Problems is such an example. Chemical Calculation Problems cannot be solved by
end-to-end neural networks since complex symbolic calculations are required. It is also difficult to
translate such problems into formal representations, since not all operators in solving processes occur
in question stems, which makes it difficult to annotate data and train models.

Table 1 shows a question in ChemistryQA. To answer the question in Table 1, machines need to: 1)
understand the question and extract variable to be solved and conditions in the question; 2) retrieve and
apply related chemistry knowledge, including calculating molarity by mole and volume, balancing a
chemical equation and calculating the equilibrium constant K, although there is no explicit statement
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Table 1: An Example in ChemistryQA.
Question At a particular temperature a 2.00 L flask at equilibrium contains 2.80× 10−4

mol N2, 2.50 × 10−5 mol O2, and 2.00 × 10−2 mol N2O. How would you
calculate K at this temperature for the following reaction: N2(g) +O2(g)→
N2O(g) ? 1

Variable to be
solved

Equilibrium constant. K of this reaction

Conditions Volume of the flask is 2.00L.
provided Mole of N2 is 2.80× 10−4 mol.

Mole of O2 is 2.50× 10−5 mol.
Mole of N2O is 2.00× 10−2 mol.
Reaction equation is N2(g) +O2(g)→ N2O(g).

Knowledge K = [N2O]a

[N2]b[O2]c
, [∗] is the molarity of *, and a,b,c are coefficients of matters.

required Molarity = Mole / Volume.
Balance the reaction equation following atomic conservation theory.

Solving 1. Balance the reaction equation to get a,b and c.
steps 2. Calculate molarities for N2, O2 and N2O

3. Calculate K following K’s formula
Answer 4.08× 108.

for ”calculating molarity” and ”balancing equations” in the question. The combination of these
capabilities is scarcely evaluated well by existing QA datasets. In order to foster the research on this
area, we create a dataset of chemical calculation problems, namely ChemstriyQA.

We collect about 4,500 chemical calculation problems from https://socratic.org/
chemistry, covering more than 200 topics in chemistry. Besides the correct answer, we also
label the target variable and conditions provided in a question. Such additional labels facilitate
potential data augmentation and inferring golden solving process for training.

To verify the dataset is consistent with the purpose of evaluating AI’ comprehensive capability and
help other researchers ramp up, we build two baselines as follows. a) We build a BERT based
sequence to sequence model, which take the raw question as input and the answer as output. The first
baseline achieves 0.164 precision on ChemistryQA. b) We create an extraction system which extracts
the target variable and conditions from raw questions. The extracted structure information is fed into
a graph searching based solver, which performs a sequence of calculating and reasoning to get the
final answer. The second baseline achieves 0.169 precision on ChemistryQA.

In summary, our contribution of this paper is shown as follows.

• We propose a new QA task, ChemistryQA, which requires open knowledge and complex
solving processes. ChemistryQA is different with other existing QA tasks, and cannot be
solved by existing QA methods very well.

• We create a ChemistryQA dataset, which contains about 4,500 chemical calculation prob-
lems and covers more than 200 topics in chemistry. In this dataset, we provide a novel
annotation for questions, which only labels the variable asked and conditions from question
stem but not solving processes. This annotation is much easier and cost less effort, and it is
flexible for researchers to explore various of solutions as a weakly supervised dataset.

• We build two baselines to prove: a) end-to-end neural networks cannot solve this task very
well; b) the annotation we provided can be used to improve a simple graph search based
solver.

2 CHEMISTRYQA DATASET

2.1 DATA COLLECTION

We collect chemical calculation problems from https://socratic.org/chemistry. It this
website, there are more than 30,000 questions which cover about 225 chemistry related topics, e.g.,
Decomposition Reactions, Ideal Gas Law and The Periodic Table. There is an example of annotation
page in Appendix A. Figure 2.A shows the original page in Socratic, which contains a raw question,
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an answer and probably a description of solving process. We filter raw questions by a simple rule, and
only keep questions with a numerical value, a chemical formula or a chemical equation as answers.

2.2 DATA ANNOTATION

Unlike similar tasks’ annotation, we cannot collect all the atomic operations needed before starting
annotation, since the set of chemical operators is not closed. Therefore, we propose a novel annotation
method that only the target variable and all conditions will be labeled in a triple-like format. For
instance in Figure 2, the target variable is labeled as (subject = reaction, predicate = Equilibrium
constant K, object = ?), and one of conditions is labeled as (subject = N2, predicate = Mole, object
= 2.80× 10−4 mol).

Therefore, for a question in a link, parts to be annotated are question stems, correct answers, the target
variable and all conditions. Figure 2.B shows our annotation page for a question link. For questions
and answers, we ask annotators to copy them into corresponding forms. If there are typos or obvious
mistakes, we also ask annotators to correct them. For the target variable and conditions, we break
them down into several types: physical unit, chemical formula, chemical equation, substance name
and other. We also design easy-to-understand annotation interfaces, e.g., ([BLANK (predicate)] OF
[BLANK (subject)] IN [BLANK (unit or None)]) and ([BLANK (predicate)] OF [BLANK (subject)]
= [BLANK (object or value)]) for tagging the physical unit from the raw question as variables and
conditions, respectively. More detail about other types’ definitions and annotation interfaces are
shown in Appendix A.

We employed crowdsourcing for this annotation work. The task was split into 6 batches and assigned
to annotators sequentially. We applied some check-and-verify mechanism in first batch to ensure the
annotation quality, also help annotators be more familiar with this task. Finally, we have collected
4418 annotated questions within around 336 hours.

During the annotating phase, we encourage annotators to use text phrase in original questions
whenever possible for chemical formula, chemical equation, substance name, subject and value in
physical unit, while for predicates and units, we do not make any restrictions. We maintain two
dynamic mappings to convert mentions labeled to identified predicates or unites, which greatly
reduces the difficulty of labeling and the total annotation time. For other, there is not any restrictions
either, and we only consume identified ones, e.g., STP.

2.3 DATA ANALYSIS

We divide annotated questions into train, valid and test subsets, and their sizes are 3433, 485 and 500,
respectively. We make some statistics on the annotated questions in different perspectives as follows.

1) According to the types of target variables, we divide questions into 3 classes, physical unit,
chemical formula, chemical equation. Table 2 shows examples belonging to different question types,
and Table 3 shows the distribution of question types.

Table 2: Examples under various question types
Question Answer Question Type
How many moles of ammonium nitrate
are in 335 mL of 0.425 M NH4NO3?

0.14 moles Physical Unit

What is the empirical formula of mag-
nesium chloride if 0.96 g of magnesium
combines with 2.84 g of chlorine?

MgCl2 Chemical Formula

How would you write a balanced equa-
tion for the combustion of octane,
C8H18 with oxygen to obtain carbon
dioxide and water?

2C8H18 + 25O2→ 16CO2 + 18H2O Chemical Equation

Table 3: Distribution of different question types
Dataset Physical Unit Chemical For-

mula
Chemical
Equation

Total

Train 2,721 314 398 3,433
Valid 381 55 49 485
Test 392 55 53 500
Total 3,494 424 500 4,418
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2) There are 172 unique predicates, 90 unique units and 25 identified other conditions. We conducted
detailed statistics on them in Appendix B,

2.4 COMPARING WITH OTHER QA DATASETS

We pick a representative dataset from each type of task to compare with ChemistryQA, including
WEBQUESTIONS(Berant et al., 2013), RACE(Lai et al., 2017), ARC(Clark et al., 2018) and
MathQA(Amini et al., 2019). We compare these QA datasets in Answer Type, External Knowledge,
Knowledge usage, Calculation and Annotation perspectives, and Table 4 shows the detail.

Table 4: ChemistryQA Compares with existing related QA tasks.

Dataset Answer Type Extenal
Knowledge

Knowledge us-
age

Calculation Annotation

WEBQUESTIONSEntity, Entities Open Graph Search SPARQL Oper-
ators

SPARQL, An-
swer

RACE Option None None Language Un-
derstanding

Only Answer

ARC Option Open Implicit Infer-
ence

None Only Answer

MathQA Option Closed Language Un-
derstanding

Math Operators Operator Stack,
Answer

ChemistryQA Value, Formula,
Equation

Open Graph Search,
Language Un-
derstanding and
Calculating

Chemical Oper-
ators

Variable, Condi-
tions, Answer

Comparing ChemistryQA with existing QA datasets, ChemistryQA has the following advantages:

1) ChemistryQA contains more diverse answer types and excludes the influence of randomness by
not providing options.

2) There are various knowledge required by ChemistryQA including a) triplet-like fact, e.g., sub-
stances’ molar mass, colour and other physical properties, b) calculation methods between various
physical quantities and c) domain specific skills, e.g., balancing chemical equations. The knowledge
in ChemsitryQA is open and used in various ways, while other datasets use knowledge in single way.

3) ChemistryQA only provides triplet like extraction annotation which isolates language understand-
ing and domain knowledge as much as possible. This setting makes annotation and model training
easier.

3 METHODS

We provide two completely different baselines: 1) an end-to-end neural based solver and 2) a solving
pipeline composed of an extractor and a graph search based solver.

3.1 END TO END SOLVER

We build a sequence to sequence model, and both of its encoder and decoder are based on BERT
model. Both encoder and decoder load from pretrained BERT and share the same vocabulary, more
than 30,000 sub-tokens from BERT. To build the decoder, we change the encoder’s structure as
Vaswani et al. (2017) did: 1) the self-attention of decoder has a triangular mask matrix and 2) there is
an extra layer of attention performing over outputs of the encoder and hidden states of the decoder.
We also append a head of predicting next token to the decoder, which maps hidden states into the
vocabulary size space Rv and follows a softmax layer behind it. The end-to-end solver takes the
question as the input of encoder and takes the answer as the target of decoder. Questions are split into
sub-tokens, and even real numbers also break into sub-tokens. We greedily choose the next token
with maximum score after softmax. We append a special token, ’[SEP]’, as the end of the target
sequence. During inference, the decoding process ends when the decoder outputs ’[SEP]’ token.This
method represents a class of powerful neural networks, which achieved state-of-the-art performance
on many QA tasks.
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At a particular temperature a 2.00 L flask at equilibrium contains 2.80 × 10−4 mol 𝑁2, … calculate 
K at this temperature for the following reaction : 𝑁2 𝑔 + 𝑂2 𝑔 → 𝑁2𝑂(𝑔)

Question <reaction, equilibrium constant k , ?> 

Conditions

<flask, volume, 2.00 L> 

<𝑁2 , mole, 2.80 × 10−4 mol>

…

<reaction, chemical equation, 𝑁2 𝑔 +
𝑂2 𝑔 → 𝑁2𝑂(𝑔)

start physical_unit 28 28 equilibrium_constant_k None qc_end … physical_unit 
13 13 11 12 mole qc_end … chemical_equation 30 34 qc_end end

Train Infer

12 Transformers
Encoder

6 Transformers
Decoder

Finite State 
Automata

Restrain

DFS Solving Engine

Functions
In Domain
(Chemistry)

Answer:
<reaction, equilibrium constant k , 
4.08 × 108 > 

FSA
based
Extractor

Graph Search 
Based Solver

①

②

Figure 1: The structure of Extractor plus Graph Search Based Solver pipeline

3.2 EXTRACTOR PLUS GRAPH SEARCH BASED SOLVER

As the second baseline, we build an extractor plus solver pipeline. First, we employ the extractor to
extract the target variable and conditions from the question text. The target variable and conditions
are represented as triplets as described in the above Data Annotation Section. Second, we employ
a graph search based solver to take triplets as input and execute pre-defined functions in chemistry
domain to get the final answer. Figure 1 shows the structure of the extractor plus solver pipeline.

3.2.1 FSA BASED EXTRACTOR

We expect the extractor can take the raw question as input and output triplet like variable and
conditions, so a sequence to sequence model is a good candidate. However, such straight forward
method is hard to work, because triplets are structural and we also want to extract simple semantic
information, i.e., whether a triplet is a target variable or a condition and types of triplets. Therefore,
we design a Finite State Automata (FSA) to restrict the type of each output token. We define 12
separate vocabulary sets, and the Table in Appendix C shows the these vocabulary names, sizes
and tokens belonging to them. To distinguish between vocabulary and token, we use upper cases
to represent vocabulary names and lower cases to represent tokens. START, END, QC END are
control symbols. START and END represent the beginning and end of the decoding sequence,
while QC END represents the end of the target variable or a condition block. PHYSICAL UNIT,
CHEMICAL EQUATION, CHEMICAL FORMULA, SUBSTANCE, C OTHER are types of target
variables or conditions. POINTER contains all possible positions of token in question, which can be
used to represent the start or end of a text span, e.g., subjects, chemical equations and values.

For the model, we employ a standard pretrained BERT based model as the encoder. We still use 6
layers transformers as the decoder model, and use a triangular mask matrix as the attention mask. We
use state transitions to represent the relations between output tokens and build a FSA to model the
state transition process. The decoder always outputs ”start” as the first token, determines the current
state and chooses the next vocabulary based on the current output and state. Figure 1 also shows an
example of the output of FSA based Extractor.

In the training stage, we convert triplet-like annotations to the FSA based token sequence, and
treat them as the target of the extractor. For example in Figure 1, the target variable, <reaction,
equilibrium constant k , ?>, is translated to physical unit 28 28 equilibrium constant k None qc end,
and one of conditions, <reaction, chemical equation, N2(g) +O2(g)→ N2O(g) > is translated to
chemical equation 30 34 qc end. In the inference stage, we obtain the FSA based token sequence
from the decoder, and then we convert it to triplets as the input of subsequent solver. Since there is no
conflicts in FSA, both of directed conversions are determinate and lossless.
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3.2.2 GRAPH SEARCH BASED SOLVER

We get the target variable and all kinds of conditions from the extractor, and then we want to call
a sequence of functions to calculate the final answer step by step. However, we do not have such
information, because the annotators only label target variables and conditions but not the solving
processes. According to our observation, specific physical quantities only can be calculated by
functions with specific chemistry knowledge. For example in Figure 1, the equilibrium constant k of
the reaction can be calculated by k = [N2O]2

[N2]2[O2]
, where [] is the molarity of a substance. Therefore,

we can implement a function, noted as CalculateK, which takes the molarity of the three substances
and the balanced chemical equation as the input and calculates k. However, there is no molarity but
only mole of substances extracted, and the chemical equation is not balanced. Therefore, We need
to implement a function, CalculateMolarity, to obtain molarity of these substances and a function,
BalanceChemicalEquation, to balance the chemical equation before calling CalculateK.

We model this process as a graph search in a hyper graph as follows: 1) We view triplets as nodes in
this graph, e.g., <reaction, chemical equation, N2(g) +O2(g)→ N2O(g) >. 2) We view pre-build
functions as directed hyper edges, e.g., CalculateK, CalculateMolarity and BalanceChemicalEqua-
tion. A hyper edge directs from the input triplets to the output triplets, e.g., the hyper edge, Calcu-
lateK, starts from < N2,molarity,?>, < O2,molarity,?>, < N2O,molarity,?>,<reaction,chemical
equation,N2(g)+O2(g)→ N2O(g)> and directs to <reaction, k, ?>. 3) The solver maintains a set
of triplets without unknown quantities, and uses conditions obtained from the extractor to initialize
the set. 4) The solver starts searching from the target variable. If the inputs can be satisfied by
the current triplets, then the solver executes the function and adds the result to the set. Otherwise,
the solver performs deep searching to check whether the unsatisfied input can be calculated by any
function. Table 5 shows the algorithm, where S is the set of triplets without unknown quantities, If
and Of are inputs and outputs of function f , Iu is a subset of If and ∀i ∈ Iu : i /∈ S, and Fp is the
set of functions with p as their output triplets’ predicate.

Table 5: Graph based search solving algorithm
Input: The target variable q, Condition set C, Function set F
Output: Answer A
1: FUNC GraphSearch(Target q= < s, p, t =? >, Triplet set S):
2: Fp = {f |f ∈ F and the predicate of Of is p}
3: for f in Fp:
4: Iu = {i|i ∈ If and i /∈ S}
5: for i in Iu:
6: i=GraphSearch(i,S)
7: if i =< si, pi, ti > is satisfied:
8: S = S∪ < si, pi, ti >
9: if ∀i ∈ If is satisfied:
10: execute t=f(S)
11: return < s, p, t >
12: return None
13:Call A=GraphSearch(q,C)

In Appendix D, we show several functions with inputs and outputs as examples. A triplet with
specific predicate can be calculated by different more than one functions with different inputs, e.g.,
CalculateMoleFromMass and CalculateMoleFromNumber take mass and the number of atoms(or
molecules) as input, respectively. We do not need to implement all functions for all predicate
combinations, since there may a combination of functions can represent the relationship among
predicates. For example, we can call CalculateMoleFromMass and CalculateMolarity sequentially
to calculate a substance’s molarity given its mass. We implemented 78 functions which covers
61 predicates in training set, and the coverage is 35.5%. We list all functions we implemented in
Appendix D and will publish them once the paper is published.

4 EXPERIMENTS

4.1 SETTING

For the end-to-end solver, we use the pretrained uncased BERT base model to initialize its encoder,
and use the first 6 layers of BERT to initialize its decoder. We also reuse the tokenizer from BERT for
this model, and both encoder and decoder share the sub-token embedding matrix from BERT base.
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We tuned the hyper parameters as follows: learning rate ∈ {1×10−5, 5×10−5, 1×10−4, 5×10−5},
epoch ∈ {100, 200, 300, 500} and fix batch size as 8.

For the FSA based extractor, we use the same model structure as the end-to-end solver. However, we
replace BERT based decoder’s vocabulary to 12 customized FSA based vocabularies. We initialize
parameters of the extractor by pretrained uncased BERT base model, except the embeddings of
tokens from decoder’s vocabularies. We randomly initialize the embeddings of tokens from decoder’s
vocabularies. We also tuned hyper parameters in extractor as exactly same as we did for the end-to-
end solver. For the graph search based solver, we restrain the maximum depth as 5 when perform
searching. We train both the end-to-end solver and the extractor on a single P40 GPU.

4.2 EVALUATION AND RESULT

To evaluate the methods, we design different criterion for different types of questions, i.e., physical
unit, chemical formula, chemical equation questions. For physical unit questions, if |A−Â|A < 0.05,
we treat the answer is correct. For both chemical formula and chemical equation, we remove spaces
in both A and Â and perform string matching between them. A is the ground true answer and Â is
the predicted answer.

For graph search based solver, we also evaluate the accuracy of the extractor beside the final answer.
We evaluate token-level and question-level accuracy for the output sequence from the decoder,

respectively calculated by At =
1
Nq

∑Nq

i

∑Nti
j (tj==t̂j)?1:0

Nti
and Aq =

∑Nq
i (si==ŝi)?1:0

Nq
, where t and

t̂ are respectively ground true and predicted tokens, s and ŝ are ground true and predicted output
sequences, Nq is the number of questions, and Nt is the number of tokens in s. (s == ŝ) is true if
and only if (t == t̂) is true at all position in s.

Table 6: Performances of methods on ChemsitryQA Development Set
Method Token-level Accuracy Seq-level Accuracy Answer Accuracy
End to End Solver - - 0.164
Extractor + GraphSolver 0.713 0.303 0.169

Table 6 shows the performances of these two methods. We can obtain the following observations:

a) End-to-end solver achieves 0.164 answer accuracy, which surprises us but also implies that the
powerful neural network can learn some pattern of questions, including calculating physical quantities,
inferring chemical formulas and equations.

b) The FSA based extractor plus graph search based solver achieves 0.169 answer accuracy even
only with 35.5% functions implemented, which implies this framework is effective, and the larger
coverage of functions implemented will likely increase the accuracy.

c) For the extractor, the token-level accuracy is 0.713, but the sequence level accuracy drops to only
0.303. This implies the issue of cascading error is serious, but to improve sequence-level accuracy is
very difficult. Thus, the more robust subsequent solver is probably needed.

4.3 ANALYSIS

We want to analyze reasons from wrong cases and get ratios of them. First, we know there are about
69.7% wrong cases come from the wrong extraction results, and then we sample 100 wrong cases
which have the correct extraction results from the development set for analyzing reasons. Table 7
shows the ratios of reasons.

From the analysis, we can observe that most of wrong cases are caused by lacking some chemical
knowledge in other forms which cannot be handled by the current solver.

5 RELATED WORK

We introduce related work of this paper from two perspectives: 1) There are kinds of examinations
employed as benchmark to evaluate machine intelligence. 2) There are some NLP/CV tasks or
datasets solved by both end-to-end neural networks and parsing plus execution method.
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Table 7: Reasons of wrong cases and some examples
Reason Ratio Examples and Explanation
Infer Chemical Equation or Formula 46% For question ”What mass of oxygen is needed for the

complete combustion of 8.90×10−3 g of methane?”, the
current solver cannot write the correct chemical equation
for the combustion reaction.

Multiple States 23% For questions ”How much energy is required to raise the
temperature of 3 g of silver from 15 ◦C to 20 ◦C?”, the
current solver cannot tell and maintain more than one
different states in the question.

Lack of Knowledge 6% For question ”How many O2 molecules will be con-
sumed when one gram of propane combust completely
in the air?”, it lacks knowledge about what propane’s
chemical formula is.

Wrong Label 7% -
Other Reason 18% -

From the perspective of examinations, so far, there have been several tasks proposed based on some
question types in specific subjects: 1) Math word problem (Huang et al., 2016; Wang et al., 2017;
Amini et al., 2019) can be viewed as a semantic parsing task. Most of them require models translating
question texts to equations or sequences of mathematical operations and then performing simple
calculations to get the final answer. However, these datasets do not involve domain knowledge
and usually provide strong supervision for the parser, i.e., equations or sequences of operations. 2)
Newtonian physics datasets (Sachan & Xing, 2018; Sachan et al., 2018) involves physical knowledge,
but its knowledge is narrow and limited to Newtonian physics. This dataset is not public. 3)
Elementary and middle school science examination (Clark, 2015; Clark et al., 2018) contains multiple
choice questions involving open knowledge crossing various subjects. However, many questions in
the dataset can be solved by retrieval and text matching. Although ARC(Clark et al., 2018) separates
a subset of hard questions, the state-of-the-art on ARC is retrieval plus a powerful transformer based
model. 3) Biological processes problem dataset (Berant et al., 2014) provides passages to describe
biological processes and asks questions about the passages. Different from ours, this dataset focuses
more on evaluating machine reading comprehension, as English reading comprehension data (Lai
et al., 2017) does.

From the perspective of solving methods, besides examinations, there are several datasets can be
solved by both end-to-end models and parsing plus execution method. For example, WEBQUES-
TIONS(Berant et al., 2013) is a famous KBQA dataset, and there are both end-to-end models (Bordes
et al., 2014; Hao et al., 2017) and semantic parser (Yih et al., 2014; Berant & Liang, 2014) working
on it. For WEBQUESTIONS, the solving process (i.e., executing SPARQL on Freebase) is fix after
obtaining the parsing result, and the correct parsing result must lead to the correct answer. However,
for ChemistryQA, there is more than one paths from extraction result to the correct answer, and it
requires searching on the graph. Another example is Knowledge Base Completion (KBC) task. KBC
task can be solved by both end-to-end knowledge graph embedding models (Bordes et al., 2013) and
logical inference based method, e.g., Markov Logic Network (Wei et al., 2015). However, the input
of KBC is not natural language.

6 CONCLUSION

Real world question answering is more complex than existing QA tasks, since it requires not only
understanding questions well but also interleaving complex reasoning with knowledge retrieval,
which is scarcely represented by existing QA datasets. To foster the research on this area, we
create ChemstriyQA dataset which contains chemical calculation problems. We implemented two
baselines, a sequence to sequence model and a FSA based extractor plus a graph search based solver,
which stands for two types of methods, the end to end neural network and the extractor plus solver,
respectively. The experiment result shows the extractor-plus-solver baseline can achieve a better
performance with only 35.5% functions in domain implemented. Therefore, there is still room for
improving in the extractor-plus-solver method, but it is hard to improve performance for the end to
end models.
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A ANNOTATION EXAMPLES, INTERFACES AND PROCESSES

A.1 AN EXAMPLE OF ANNOTATION PAGE

Figure 2 shows a page of annotation, the left part is the original web page in socratic.org and
the right part is the annotation area.

(A) (B)

Figure 2: An example of the annotation page

A.2 ANNOTATION TYPES

The annotation area contains two parts: one for labeling the target variable and the other one for
labeling conditions. For a chemical calculation problem, there is only one target variable but probably
more than one conditions. Thus, annotators are free to add condition block. Usually, the interface for
question variables and conditions are different even for the same type of annotations. For a variable
or condition block will be first ask to choose a type of annotation, and then the page will show the
interface of it. Table 8 shows interfaces for all types of annotations.

Table 8: Annotation Interfaces
Annotation
Type

As a Question Variable As a Condition

physical unit [BLANK (predicate)] OF [BLANK (sub-
ject)] IN [BLANK (unit or None)]

[BLANK (predicate)] OF [BLANK (sub-
ject)] = [BLANK (object or value)]

chemical
formula

Chemical Formula OF [BLANK (sub-
ject)] IN NONE

Chemical Formula OF [BLANK (sub-
ject)] IS [BLANK (value)]

chemical equa-
tion

Chemical Equation OF reaction Chemical Equation OF reaction IS
[BLANK (value)]

substance - Substance IS [BLANK (value)]
other - Other Condition IS [BLANK (value)]
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A.3 CROWD SOURCING ANNOTATION DETAILS

First, we estimated the annotation time by recording time spent on annotators label a small scale
experimental set, and got the average time spent on labeling and verifying are 4.65 minutes and 3.25
minutes, respectively. In earlier stage, we performed both labeling and verifying on each question.
After we got the verified rate is high enough, we only keep the labeling process, which leads to
the annotation time of a question is 4.4 minutes. Finally, we obtain 4418 annotated questions with
spending about 336 hours.

B PREDICATES, UNITS AND OTHERS IN CHEMISTRYQA

Table 9 shows top predicates and units.

Table 9: Statistics on top predicates and units
Predicate Count Unit Count
mass 2,013 gram 1,911
volume 1,851 mol/l 1,098
temperature 1,099 mol 1,033
mole 1,056 liter 899
molarity 731 °C 872
pressure 709 mliter 832
concentration 323 atm 398
ph 226 kelvin 222
number 226 mmhg 168
heat energy 146 kpa 164

We list all predicates in Table 10, list all units in Table 11 and list all other conditions in Table 12.
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Table 10: All predicates in ChemsitryQA

[ch3cooh] [h+] [h2so4] [h3o+] [nh3]
[nh4+] [oh-] absorbance absorbance reading absorptivity
acid concentration activation barrier actual yield altitude angle of the re-

flected beam
area atomic mass average oxidation

number
avogadro constant barometric pressure

boiling point tem-
perature

cell potential changed factor charge coefficient

completion percent composition by
mass

concentration constant r coordination num-
ber

cp degree of dissocia-
tion

delta vaph deltag deltag0

deltagf deltah deltah(rxn) deltah0 deltah0f
deltahf0 deltas density depth diameter
dilution factor distance ecell electric current electron configura-

tion
energy energy transfer rate enthalpy enthalpy of combus-

tion
enthalpy of forma-
tion

enthalpy of fusion enthalpy of sublima-
tion

enthalpy of vapor-
ization

entropy equilibrium concen-
tration

equilibrium con-
stant k

equilibrium con-
stant ktant

equivalent weight first ionisation en-
ergy

formula weight

freezing point tem-
perature

gauge pressure half-life hardness heat capacity

heat capacity ratio heat energy height initial temperature ionic product
ionization energy ka kb kbp kf
kh kinetic energy kp kw longest wavelength
mass mass/volume

percent
mass concentration mass percent maximum amount

maximum possible
yield

melted time melting point tem-
perature

molal solubility molality

molar enthalpy of
dissolution

molar enthalpy of
vaporization

molar heat molar mass molar ratio

molar solubility molar volume molarity molarity percent mole
mole fraction molecular weight multiplier normality number
o.n osmolarity osmotic pressure oxidation number oxidation state
partial pressure path length percent percent composi-

tion
percent ionization

percent yield ph pka pkb poh
power pre-exponential fac-

tor
pressure quantity radius

rate law ratio reaction enthalpy reaction quotient q reaction rate con-
stant

relative molecular
weight

rms speed size solubility solubility product

specific heat specific heat capac-
ity

standard atmo-
spheric pressure

standard emf standard enthalpy

standard enthalpy
change

standard enthalpy
formation

standard free energy state n steric number

strength surface tension temperature theoretical yield thermal energy
thermochemical
equation

threshold odor num-
ber

time times total pressure

trasmittance value van t hoff factor vapor pressure vapour density
velocity voltage volume volume percent w/w
wavelength
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Table 11: All units in ChemsitryQA

(M * min)( − 1) amperes amu atm bar
cal cal/(g · °c) cal/mol cm/s cm3

dm( − 3) dm3 eq/l fluid ounces g
g/100 ml g/cm3 g/dm3 g/eq g/l
g/ml g/mol gallon hour in( − 2)
in2 j j/(g · k) j/(g · °c) j/(g · °c
j/(kg · k) j/(kg · °c) j/(mol · k) j/(mol · °c) j/(°c · g)
j/g j/mol k kcal kcal/g
kcal/mol kg kj kj/(kg · °c) kj/min
kj/mol kpa l l/(mol · s) m
m/s m3 meq/l mg mg/l
mg/ml milliequivalents min mj ml
mm mmhg mmol mol mol/(l · s)
mol/dm3 mol/g mol/kg mol/l mpa
n ng nm none osmol
osmol/l oz pa particles/s pounds
ppm psi s s( − 1) t
torr v years( − 1) °c °c/(kg · mol)
l

Table 12: All other conditions in ChemsitryQA

Avogadro constant Combusted Conjugate base vaporize Equilibrium
Equivalence Freezing Henderson-

Hasselbalch
Incomplete combus-
tion

NTP

Neutralization OTHER Photosynthesis SATP STP
Stoichiometrically burn combustion complete combus-

tion
constant tempera-
ture

decomposes ionizing melt neutralize reaction
ConstantTemperaturePressue
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C FSA VOCABULARIES AND STATE TRANSITIONS

Table 13 shows the vocabularies used in Finite State Automata of Extractor and some tokens in them.

Table 13: The vocabularies’ names and tokens belonging to them.
Vocabulary Size Example Tokens
START 1 [”start”]
END 1 [”end”]
QC END 1 [”qc end”]
POINTER 512 [”0”,”1”,”2”,”3”,”4”,”5”,”6”,”7”,”8”,”9”,”10”,...,”509”,”510”,”511”]
PHYSICAL UNIT 1 [”physical unit”]
CHEMICAL EQUATION 1 [”chemical equation”]
CHEMICAL FORMULA 1 [”chemical formula”]
SUBSTANCE 1 [”substance”]
C OTHER 1 [”c other”]
PREDICATE 172 [”atomic mass”,”boiling point temperature”,”energy”,

”concentration”,”heat capacity”, ”molarity”, ...]
UNIT 91 [”atm”,”bar”,”cal/(g · °c)”,”j/(g · k)”,”min”,”mol”,”ppm”,”psi”,...]
OTHER 26 [”Avogadro constant”,”Combusted”,”Conjugate base”,...]

We define 26 states for FSA. Table 14 shows all states and Figure 3 shows the state transitions.

Table 14: States of FSA

s start s q pu s q pu subject start s q pu subject end s q pu predicate
s q pu unit s c pu s c pu subject start s c pu subject end s c pu value start
s c pu value end s c pu property s q ce s q cf s q end
s c ce s c cf s c sub s c other s c ce start
s c ce end s c cf start s c cf end s c sub start s c sub end
s c other type

Figure 3: The state transition graph for the FSA

D FUNCTIONS

Table 15 shows several functions’ inputs and outputs for example.
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Table 15: Function examples implemented for ChemistryQA
Function Name Input Predicates Output Predicates
CalculateK balanced chemical equation, mo-

larity (for all substance in equa-
tion)

equilibrium constant k

CalculateMolarity mole, volume molarity
CalculateMoleFromMass mass, molar mass mole
CalulcateMoleFromNumber number of atoms or molecules mole
BalanceChemicalEquation chemical equation chemical equation
ParseChemicalEquation text span chemical equation

We also list all functions we implemented as follows:

FFunc Name2CE

Func Formula2CE

Func Equation2CE

Func BalanceChemicalEquation

Func Mole2Atom

Func CE2MolarMass

Func Mass2Mole

Func Ph2Kw

Func Number2Mole

Func Mole2Number

Func MassMolar mass2Mole

Func MoleMolar mass2Mass

Func VolumeMolarity2Mole

Func VolumeMoleTemperature2Pressure

Func VolumeTemperaturePressure2Mole

Func PressureMolar massTemperature2Density

Func PressureDensityTemperature2Molar mass

Func MoleMass2Molar mass

Func MoleVolumePressure2Temperature

Func MoleTemperaturePressure2Volume

Func MoleVolume2Molarity

Func MoleVolume2Concentration

Func MolarityVolume2Mole

Func MoleMolarity2Volume

Func Ph2Acid concentration

Func Acid concentration2Ph

Func Ph2Poh

Func Poh2Ph

Func Ka2Pka

16



Under review as a conference paper at ICLR 2021

Func Mass concentrationMolar mass2Molarity

Func MassVolume2Density

Func DensityVolume2Mass

Func MassDensity2Volume

Func MolarityMolar mass2Molality

Func MolalityMolar mass2Molarity

Func MolarityTemperature2Osmolarity

Func Theoretical yieldPercent yield2Actual yield

Func Actual yieldPercent yield2Theoretical yield

Func Theoretical yieldActual yield2Percent yield

Func Ka2Degree of dissociation

Func 2Freezing point temperature

Func Gauge pressure2Pressure

Func MassVelocity2Kinetic energy

Func KaMolarity2Percent ionization

Func 2Standard atmospheric pressure

Func MolalityMolar mass2Ww

Func WwMolar mass2Molality

Func MassMass2Mass percent

Func MoleMole2Mole percent

Func MolarityMolarity2Molarity percent

Func Poh2Alkali concentration

Func AtomMoleculeMole2Mole

Func MassSpecific heat capacityTemperature2Heat energy

Func Heat energySpecific heat capacityTemperature2Mass

Func Heat energyTemperatureMass2Specific heat capacity

Func Heat energySpecific heat capacityMass2Temperature

Func MassVolume2Mass concentration

Func MassVolume2Density

Func BptHvapPressurePressure2Bpt

Func Molarity3 2Ka

Func Molarity3 2Kb

Func MolarityDepthAbsorbance2Absorptivity

Func AbsorbanceMolarityAbsorptivity2Depth

Func MolarityDepthAbsorptivity2Absorbance

Func Absorbance2Transmittance

Func Volume2 2Dilution factor

Func ResistanceVoltage2Electric current
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Func Electric currentVoltage2Resistance

Func Electric currentResistance2Voltage

Func DensityHeight2Gauge pressure

Func Mass2 Time2HalfLife

Func Heat of fusionMolePower2Melted time

Func ShcMolar mass2Molar heat

Func MoleculeMolarity2Ph

Func Chemistry Equation2K

Func GetCoefficient

Func Chemistry Equation2K

Func Chemistry Formula2Oxidation number
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