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Abstract

Recently, physics-informed learning, a class of deep learning framework that in-
corporates the physics priors and the observational noise-perturbed data into the
neural network models, has shown outstanding performances in learning physical
principles with higher accuracy, faster training speed, and better generalization abil-
ity. Here, for the Hamiltonian mechanics and using the Koopman operator theory,
we propose a typical physics-informed learning framework, named as Hamiltonian
Neural Koopman Operator (HNKO) to learn the corresponding Koopman operator
automatically satisfying the conservation laws. We analytically investigate the
dimension of the manifold induced by the orthogonal transformation, and use a
modified auto-encoder to identify the nonlinear coordinate transformation that is
required for approximating the Koopman operator. Taking the Kepler problem
as an example, we demonstrate that the proposed HNKO in robustly learning the
Hamiltonian dynamics outperforms the representative methods developed in the
literature. Our results suggest that feeding the prior knowledge of the underlying
system and the mathematical theory appropriately to the learning framework can
reinforce the capability of the deep learning.

1 Introduction

Reconstructing nonlinear dynamical systems solely using the observational noise-perturbed data is
a focal challenge in various fields. The neural networks embedded with the induced biases have
remarkable abilities in learning and generalizing the intrinsic kinetics of the underlying systems
from the noisy data, such as the Hamiltonian neural networks [7, 8], the Lagrangian neural networks
[5], and the physics-informed neural networks [13, 9, 6]. These methods are successfully applied
to a variety of tasks, such as the generative tasks [17] and the dynamics reconstruction [20, 15],
sharing the similar design idea where utilisation of an appropriate loss function enforces the model
to nearly obey the physical principles. Progress has been achieved; however, these methods have
poor generalization abilities, either enlarging the network complexity or over-fitting the noisy data
during the training stage for decreasing the loss. To overcome these drawbacks, endowing the neural
networks with natural physical priors becomes one of the mainstream approaches to improving the
sample efficiency, the robustness, and the generalization ability [11, 10].
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Recent advances in the Koopman operator theory provide a new way to identify intrinsic kinetics
using linear representations for strongly nonlinear systems [3, 12, 14]. There are several algorithms
for approximating such an infinite-dimensional operator in a data-driven manner, including the
dynamic mode decomposition (DMD) [16, 18, 14] and the extending dynamic mode decomposition
(EDMD) [19, 2]. In these works, they all try to obtain parsimonious models, while maintaining an
accurate reconstruction of the unknown system in a data-driven manner.

In this article, inspired by the advances of physics-informed learning and the Koopman operator
theory, we aim to develop a typical framework to efficiently and robustly learn the Hamiltonian
dynamics solely using the observational noisy data. Specifically, based on the fact that the Koopman
operator of the Hamiltonian dynamics is unitary, we use an orthogonal neural network to learn
the approximated Koopman operator that naturally keeps the conservation laws, and also use an
auto-encoder to identify the nonlinear coordinate transformation, mapping the original data to a
low-dimensional manifold on a high-dimensional sphere. Taking the Kepler problem as an example,
we demonstrate the efficacy of the proposed framework.

2 Methodology

We consider a dynamical system whose state vector x = (x1, · · · , xn)
⊤ ∈ M ⊂ Rn evolves along

some smooth symplectic vector field f(x). Actually, the flow mappings of this autonomous dynamical
system form an operator group, denoted by {Ft : Ft(x) = x+

∫ t

0
f(x(s))ds,x ∈ M, t > 0}. The

Koopman operator Kt with regard to the flow Ft is an infinite-dimensional linear operator, acting on
the function space F = {g : M → R}, and satisfying Ktg = g ◦ Ft for g ∈ F . Specifically, if we
fix the time interval ∆t and given an initial state x0 ∈ M, one can accordingly generate the state
trajectory by this flow, i.e., {xk : xk = Fk∆tx0}mk=0. Thus, we have K∆tg(xk) = g(F∆t(xk)) =
g(xk+1). In practice, the data {xi}mi=0 often contains noise perturbations due to the nature of data
measurement, which therefore motivates us to robustly approximate the Koopman operator, and
preserve the energy-like quantity in the original Hamiltonian dynamics. For a sake of simplicity, we
denote by K∆t for K when ∆t is given.

Connections with DMD and EDMD The DMD [16, 18, 14] constructs two data matri-
ces X and X

′
from the observational sequential data as X = (x0,x2, · · · ,xm−1), X

′
=

(x1,x2, · · · ,xm), X,X
′ ∈ Rn×m. Then, obtain the optimal linear operator K = X

′
X+ ∈

Rn×n 2 for KX ≈ X
′

as the approximation of K [16]. Particularly, the Koopman operator for the
conservative dynamical systems governed by the Hamiltonian dynamics is unitary. This property im-
plies that we should restrict the candidate K in the orthogonal group SO(n) = {B ∈ Rn×n|BB⊤ =
I, det(B) = 1}, then we formally have the following vanilla optimal problem

arg min
K∈SO(n)

∥∥∥KX −X
′
∥∥∥
F
,

where ∥·∥F denotes the Frobenius norm. The vanilla surrogate of the DMD has two major weaknesses:

1. The size of K is limited by the dimension n of the original system, which is not sufficiently
large enough to approximate the intrinsic infinite-dimensional operator K;

2. The orthogonal transformation preserves the norm of the state and hence induces its dynamics
{Kix0}mi=0 embedded on a sphere, while the conserved orbit of the Hamiltonian dynamics
may not be on some n-dimensional sphere.

For the first weakness, the EDMD [19, 2] lifts the dimension of K by introducing a
dictionary of nonlinear observation functions {gi}pi=1 to obtain the augmented state y =
(g1(x), g2(x), · · · , gp(x))⊤ ∈ Rp, p > n. Analogous to the DMD, the two data matrices are
constructed as Y = (y0, · · · ,ym−1) and Y

′
= (y1, · · · ,ym), yielding an approximated Koopman

operator as K = Y
′
Y + ∈ Rp×p. For the second weakness, in this work, we embed the augmented

state y to some higher-dimensional sphere, denoted by Sp(r) = {y ∈ Rp : ∥y∥2 = r2}. Then, we

2X+ = (X⊤X)−1X⊤ is the Moore-Penrose pseudo-inverse.
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obtain the following constrained optimization problem:

argmin
K

∥∥∥KY − Y
′
∥∥∥
F
, s.t. K ∈ SO(p), r2 ≥ max

0≤i≤m
∥xi∥2,

and yi = (g1(xi), · · · , gp(xi))
⊤ ∈ Sp(r), i = 1, · · · ,m.

(1)

In general, it is difficult to solve the optimization problem (1) with the classical optimization methods
due to the highly nonconvex property. Hence, we transform the above problem into a neural network
framework to efficiently address it.

Auto-encoder structure of dictionary functions In the EDMD, the dictionary {gi}pi=1 is regarded
as a basis of F and the coordinate function is reconstructed as the optimal linear combination of
these functions. In practice, it always requires a large dictionary to approximate a set of basis
functions. To reduce the computational cost and sustain the representation ability, we adopt an auto-
encoder structure to encode y = (g1(x), · · · , gp(x))⊤ as y = ϕθ1

(x), and decode the coordinates
as x = ϕ−1

θ2
(y). We train the parameters θ = (θ1,θ2) of this auto-encoder using the loss function as

Ldict(θ) =

m∑
i=0

∥∥xi − ϕ−1
θ2

(ϕθ1
(xi))

∥∥2 .
Introduction of the neural orthogonal method The Lie exponent map A → exp(A) := I +
A+ 1

2A
2 + · · · from the skew-symmetric group so(n) = {A ∈ Rn×n : A+A⊤ = 0} to SO(n)

is surjective [11], and there exists an isomorphism α from R
n(n−1)

2 to so(n) as α(A) = A −A⊤,
where A ∈ R

n(n−1)
2 is identified as an upper triangular matrix with the zero diagonal elements.

Thus, we can represent the approximative orthogonal Koopman operator as a parameterized form
K = exp(α(A)), where A owns n(n−1)

2 learnable parameters. Then we train the matrix K using
the loss function as

Lkoop(K) =

m−1∑
i=0

∥Kyi − yi+1∥2 =

m−1∑
i=0

∥ exp(α(A))ϕθ1(xi)− ϕθ1(xi+1)∥2.

Notice that, in our framework, the orthogonality of the operator K is automatically guaranteed by its
construction procedure. Indeed, this framework does not require an injection of the regularization
terms into the loss function as those usually required in the literature [7, 5].

Constrain the dimension of the embedded manifold To ensure the augmented states {yi}mi=0 on
some p-dimensional sphere, we set the radius r of the embedded sphere as a learnable parameter and
simply set the distance to the origin as the loss function

Lsphere(θ, r) =

m∑
i=0

(
∥yi∥2 − r2

)2
=

m∑
i=0

(
∥ϕθ1(xi)∥2 − r2

)2
.

From Theorem 3.1, it follows that the trajectory generated by K ∈ SO(p) belongs to an at most
⌊p/2⌋-dimensional manifold. Hence, the freedom degree of the augmented state trajectory {yi}mi=0
should be lower than ⌊p/2⌋. Notice that, once the hyperplane equation ⟨v,y⟩ = 0 is satisfied for any
nonzero vector v, the freedom degree for y decreases by one order. Thus, to restrict the freedom
degree of the augmented states, we introduce the loss as follows:

Ldeg(q) =

q∑
k=1

m∑
i=0

〈
vk

∥vk∥
,yi

〉2

=

q∑
k=1

m∑
i=0

〈
vk

∥vk∥
, ϕθ1

(xi)

〉2

,

where {vk ∈ Rp, k = 1, · · · , q} are learnable parameters and q ∈ Z+ holds q ≤ p − 2. To
guarantee that {vk}qk=1 are linearly independent, we design an orthogonal regularization term as
Lind =

∑
k ̸=j ⟨vk,vj⟩2. Finally, we train the parameters {θ,K, r, V = (v1, ...,vq)} using the

following integrated loss function
L(K,θ, r,V) = Ldict(θ) + Lkoop(K) + Lsphere(θ, r) + Ldeg(q,θ, V ) + Lind(V ), (2)

where q is an adjustable hyperparameter. We use Lsphere and Ldeg to embed the original n-dimensional
data to the (p− q − 1)-dimensional manifold on Sp(r). Here we select q such that p− ⌊p/2⌋ − 1 ≤
q ≤ p− 2 with p− q − 1 ≤ ⌊p/2⌋.
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Robustness learning from noisy data The proposed framework can be directly applied to the
noise perturbed case, i.e., {x̃i = xi + ξi}mi=0, where {ξi} are the samples of independent random
variables. Generally, the existing models, such as the DMD, the EDMD and the other learning-based
methods, likely to overfit the noise perturbed data due to a lack of prior knowledge. For example,
it may break the conservative law in the Hamiltonian dynamics as the noise perturbed data act as
an effect of a diffusion dynamics. On the contrary, our framework can identify the noisy samples
effectively, because the conservation is naturally rooted in the orthogonal transform. We numerically
validate the natural conservation in Appendix A.2.2.

3 Theoretical Results

In this section, we focus on the lowest dimension of manifold M ⊂ Rn that covers the trajectory Γ =
{x,Ax,A2x, · · · } generated by the orthogonal transform A ∈ SO(n). Although the orthogonal
transform restricts the trajectory Γ to some n-dimensional sphere, this constraint is too rough to
describe the manifold M. In particular, Γ may have degrees of freedom lower than n − 1. The
following theorem precisely provides the admitted dimension for M. The proof is presented in
Appendix A.1.1.

Theorem 3.1 For each A ∈ SO(n), if the orthogonal normal form of A has s diagonal blocks,
denoted by Ai, i = 1, · · · , s with Ai = ±1, ((ai,−bi)

⊤, (bi, ai)
⊤), and bi ̸= 0. Then, for any initial

state x, the trajectory Γ = {Ajx}∞j=0 belongs to an (n − s)-dimensional manifold. Moreover, Γ

belongs to an at most ⌊n
2
⌋-dimensional manifold, where ⌊·⌋ represents the floor function.

Using the result in Theorem 3.1, we can determine all the admitted dimensions for M as
1, 2, · · · , ⌊n/2⌋ according to the number of diagonal blocks in A’s Jordan normal form. This
theorem suggests that the degrees of freedom in the embedding procedure should be restricted such
that the augmented states are distributed on some at most ⌊p/2⌋-dimensional manifold.

4 Experiments

We consider the planar Kepler problem with the Hamiltonian quantity H = m
2 (ẋ

2 + ẏ2)− gm2√
x2+y2

,

which is a special case for the classical n-body Hamiltonian system with n = 1 [1]. Here, (x, y) and
(ẋ, ẏ) represent the coordinate and the velocity, respectively. Here, we set m = g = 1 and sample the
trajectory of this 4-D equation with the odeint package [4] and add the Gaussian noise N (0, 0.03)
to each data point. We compare our HNKO with the currently mainstream methods, the HNN [7]
and the EDMD [19], in terms of the trajectory prediction and the energy conservation. As shown in
Figure 1, our HNKO outperforms the other methods in terms of robustness and accuracy.
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Figure 1: Results of Kepler problem. The first row and the second row show the qualitative comparison
of trajectories and different kinds of energy, respectively. The right column displays the mean square
error (MSE) for trajectories and energy prediction.
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5 Conclusion

We propose a learning-based framework to approximate the Koopman operator for the Hamiltonian
dynamics. We provide theoretical analysis for the dimension of manifold induced by the orthogonal
transform and using an auto-encoder to encode the original data to some low-dimensional manifold
restricted in some high-dimensional sphere, then decode it back to the original data space. We show
the proposed framework outperforms the existing methods through the numerical comparison on the
Kepler problem.
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A Appendix

A.1 Proofs

A.1.1 Proof of Theorem 3.1

First, denote the orthogonal normal form of A as Jdiag(A1, · · · , As), and there exists transform
matrix P ∈ SO(n) such that A = P⊤JP . Then the transform P induce an isomorphism between
Γ = {Ajx}∞j=0 and Γ̃ = {J jy}∞j=0, where y = Px. Hence, we only need to identify the degree of
freedom of Γ̃.

Next, split the state y as y = (y⊤1 , · · · , y⊤s )⊤ such that the number of variables of ys is the same
as the order of As. Then we have Jy = ((A1y1)

⊤, · · · , (Asys)
⊤). Since Ai, i = 1, · · · , s are also

orthogonal matrix, then preserve the norm of the corresponding vector, i.e.

∥Aiyi∥ = ∥yi∥, Ai ∈ SO(2), or |Aiyi| = |yi|, Ai ∈ SO(1).

Each of the above equality constraint will remove one degree from Γ̃. Then these s equations will
restrict Γ̃ on some (n− s)-dimensional manifold, which completes the proof.

A.2 Experimental Configurations

Numerical Implementation For parameters learning of the constructed orthogonal Koopman
operator K, we use the GeoTorch package for constraints on the manifold [10]. All the necessary
models can be trained within several minutes on a computing device with a single i7-10870 CPU
with 16GB memory.

A.2.1 Kepler Problem

Mathematically, the kepler problem is written as

ẍ = gm2 x

(x2 + y2)
3
2

,

ÿ = gm2 y

(x2 + y2)
3
2

.
(3)
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The corresponding physical quantities are

Kinetic energy: Ek =
m

2
(ẋ2 + ẏ2),

Potential energy: Ep = −gm2 1√
x2 + y2

,

Total energy: E = Ek + Ep

(4)

We uniformly sample 50 observables {xi}49i=0 from the initial point (1.0, 0.0, 0.0, 0.9)⊤ on time
interval [0, 5], then we add Gaussian noise N (0, σ2) with σ2 = 0.03 to the samples.

In the learning procedure, we use a 4× 40× 40× 40× 13 fully connected neural network (FNN)
with Tanh activation to encode the original 4-D data to 13-D sphere and use a 13 × 40 × 40 × 4
FNN as decoder. The Koopman operator K is constructed as a linear layer in FNN without bias
under constraint geotorch.orthogonal. We train the parameters simultaneously with the loss
function (2).

In the predicting procedure, we select any point x on the original continuous trajectory as initial
point and encode it to y = ϕθ1(x), then we use K to generate the high-dimensional predictive
trajectory {Kjy}lj=0. Finally, we use decoder to obtain the predictive trajectory in original space
{x̂i = ϕ−1

θ2
(Kjy)}lj=0. Specifically, we choose x = x0 and l = 50 to test the performance of long

term prediction of learned K.

For HNN, we use 4 × 100 × 100 × 1 FNN with Tanh activation and without the last layer bias
as proposed by [7]. For EDMD, we use Hermite polynomial functions up to order 3 as dictionary
functions, and this dictionary corresponds to a 256 order Koopman matrix, which is far greater than
our HNKO. The predictive procedure is the same as above.

A.2.2 Planar Rotation

We compare the vanilla version of our HNKO and the classic DMD method in an planar rotation
model to demonstrate the robustness of our HNKO.

First, we define a rotation matrix as A = ((cos(a), sin(a))⊤, (− sin(a), cos(a))⊤). Then we obtain
m observables as {Ajx}mj=0. We add Gaussian noise N (0, σ2) to this dataset. Now we test the
performance of HNKO and DMD. We select a = 0.2, m = 99, σ2 = 0.0, 0.1. Notice that A itself
is the unique solution of the following optimal problem

arg min
K∈R2×2

∥KX −X
′
∥,

X = (x, Ax, · · · , Am−1x),

X
′
= (Ax, A2x, · · · , Amx).

(5)

Hence DMD can exactly learn the dynamic A in noise-free case. However, DMD solution K∗ =

X
′
X+ generally cannot equal to A in the noisy case because A cannot minimize the objective

function of the following oprimal problem

arg min
K∈R2×2

∥KX̃ − X̃
′
∥,

X̃ = (x+ ξ0, Ax+ ξ1, · · · , Am−1x+ ξm−1),

X̃
′
= (Ax+ ξ1, A

2x+ ξ2, · · · , Amx+ ξm),

ξi ∼ N (0, σ2), i = 1, · · · ,m.

(6)

We demonstrate the above analysis in Figure 2. To guarantee the predictive stability of HNKO, we
modify Lkoop as

Lkoop =

m−2∑
i=1

∥Kyi − yi+1∥2 +
m−2∑
i=1

∥K2yi − yi+2∥2.

We can see that HNKO learn the exact transform A in both noisy and noise-free case, while DMD
fail to learn the A in the noisy case due to overfit on the noisy data.
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Figure 2: Results of planar rotation. The prediction performance of HNKO and DMD in noise-free
case (left) and noisy case (right).
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