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ABSTRACT

Investigating phenomena such as Alignment and Local Elasticity is essential
for understanding feature space of Neural Networks and enhancing performance
across a wide range of tasks. In this context, we investigate the emergence of
these phenomena in two-layer neural networks performing a classification task.
This paper reveals Alignment and Local Elasticity emergence condition after one
step of training are identical. In particular, we demonstrate that intra-class fea-
tures are more aligned when the inner product of their mean and the covariance
of the training data-label i.e. train-unseen similarity is large, with stronger Local
Elasticity occurring under this condition. We validate our theory through experi-
ments with a two-layer network showing that both Alignment and Local Elasticity
improve as the train-unseen similarity increases. Furthermore, we claim that our
analysis provides both theoretical and practical insights into the relationship be-
tween train-unseen similarity, alignment, and the improvement of clustering per-
formance on unseen data for neural networks trained on similar domain data. This
is supported by experiments, including a multi-layer CNN setup and detailed dis-
cussions. Specifically, we show that higher train-unseen similarity improves Re-
call@1 in two-layer networks and that Alignment and Recall@ 1 exhibit a positive
correlation in metric learning. We also present novel techniques for deriving oper-
ator norm bounds of non-centered Sub-Gaussian matrices, extending conventional
regression analysis with standard Gaussian assumptions to the binary classifica-
tion setting.

1 INTRODUCTION

Representation learning has been advanced thanks to the introduction of deep learning (Goodfellow
et al.l |2016; Bengio et al.l 2014), surpassing the generalization performance of the conventional
machine learning techniques (Bach| 2016} |Sanchez & Perronnin, 2011)). However, the underlying
feature training dynamics that enable deep network to learn more generalizable features |An et al.
(2023); Radford et al.|(2021) remain unclear, prompting studies aimed at theoretically resolving
this issue (Damian et al., [2022; |/Abbe et al., [2021). To understand the learning dynamics, we argue
that the following three challenges must be addressed: First, under what conditions does learning
occur (He & Sul|2019)? Second, to what extent does learning take place under those conditions e.g.
Local Elasticity (Dan et al.l [2023)? Third, how are the resulting features structured after learning
e.g. Alignment (Wang & Isola, 2022; Beaglehole et al., 2024)?

One approach to addressing this challenge is the Neural Tangent Kernel (NTK) (Jacot et al., [2020).
NTK studies have explored the alignment structure of features and the concept of Local Elasticity
in NTK (Seleznova et al.| [2023; |Chen et al.l [2020; |Atanasov et al., [2021; |[Shan & Bordelon, [2022).
However, the NTK operates under a lazy training regime, and its empirical variants exhibit signifi-
cant discrepancies in modeling neural networks (Chizat et al., 2020; [Vyas et al.| |2022; Yang & Hu,
2022)). This makes it challenging to conduct a theoretical analysis of feature learning without addi-
tional assumptions, such as whitened data, feature block structure, or label awareness. On the other
hand, Conjugate Kernel (CK) approaches have been studied (Pennington & Worah), 2017} [Fan &
Wang, |2020; Benigni & Péchél 2022), with a key distinction from NTK in their ability to facilitate
the analysis of feature learning (Ba et al., 2022} |Dandi et al.l 2023} Moniri et al., [2024), thereby
offering a framework for explaining generalization performance. Building on these properties, we
claim that the CK feature learning model not only explains the generalization performance on test
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data from the same distribution as the training data but also offers a structural analysis of features
derived from data sampled from unseen distributions that differ from the training distribution.

Deep representations are used in problems where the distributions are “unseen” or “almost similar
but different downstream task data” such as in transfer learning (Yosinski et al., 2014} [Weiss et al.|
2016; Bozinovski, 2020; |Galanti et al., [2022), linear probing (Kumar et al., 2022; |He et al., 2020;
Kornblith et all |2019), and metric learning (Huang et al) [2024). In these applications, learned
features remain effective for data outside the training distributions, even though statistical theories
suggest that perfect extrapolation is not attainable (Balestriero et al.,[2021; |Kang et al.| 2024; |/Arm-
strongl, [1984])). Therefore, it is essential to investigate such a problem to advance the deep learning
theory. Specifically, this paper investigates the emergence conditions of Alignment Structure and
Local Elasticity for data from unseen distributions to address the three challenges mentioned above.

1.1 RELATED WORKS

Conjugate Kernel Many works (Benigni & Péché, [2021; [Louart et al., [2017; Hu & Lu, 2022;
Goldt et al., 2020) study the CK, which models neural networks and enables the analysis of the
structure of the first layer in two-layer networks after the Gradient Descent. Ba et al.[(2022) analyze
regression tasks in the teacher-student setups to study feature learning in the proportional regime.
They demonstrate that neural networks exhibit superior performance compared to linear models,
particularly at higher learning rates since the feature learning reflects the structure of the teacher’s
weights. [Moniri et al.| (2024) utilize Hermite decomposition to analyze how nonlinear features are
learned based on the polynomials. Ba et al.| (2023) theoretically compute the condition when neural
networks learn the low-dimensional structure of the dataset with spiked covariance Gaussian distri-
bution data. Bietti et al.|(2022) analyze the loss landscape and sample complexity which enables us
to learn a single-index model. Ba et al.| (2022); Moniri et al.[(2024); Ba et al.| (2023); Bietti et al.
(2022) argue that in teacher-student settings for solving regression problems with centered Gaus-
sian distributions, neural network features can learn the structure of the teacher, thereby improving
generalization performance. Unlike these studies, we extend the two-layer network setting to classi-
fication with non-centered Sub-Gaussian distributions and examine the phenomena that arise when
the network is exposed to input drawn from a distribution different from train distributions. To the
best of our knowledge, our work provides the first analysis of non-centered training distributions.
We believe this contributes a framework that can be further utilized in analyzing classification.

Alignment Structure Alignment has been used with various definitions in the study of neural
network structure and applications. For instance, there are studies on the following: intra-class fea-
ture alignment (Deng et al., [2022; [Wang & Isola, 2022)), feature-weight alignment (Papyan et al.,
2020), feature-label alignment (Shan & Bordelon, 2022; [Atanasov et al., 2021), feature-gradient
alignment (Ziyin et al., |2024). We are interested in intra-class feature alignment. Therefore, in
the following, “Alignment” will refer to intra-class feature Alignment. As training progresses,
the Alignment where features of a given class align towards a single point has been observed (Pa-
pyan et all 2020). It is linked to generalization performance on unseen distributions (Liu et al.|
2018). For example, some works claim that increasing intra-class alignment of train distributions
with inductive bias improves task performance on unseen distributions, particularly in metric learn-
ing. (Wang et al.l 2018; Liu et al 2017). However, to the best of our knowledge, the conditions
under which alignment strongly emerges have not been established. In this work, we demonstrate
that the emergence of higher alignment is governed by the relationship between the training data
and the input data distribution. Specifically, we show that in a binary classification problem, where
[ represents the covariance vector of the training data and labels, and y is the mean of the unseen
class conditioned distributions, a larger inner product | B8 Tu’ i.e. train-unseen similarity leads to
higher alignment, thereby providing a theoretical basis for alignment.

Neural Collapse (NC) and Unconstrained Layer-Peeled Model (ULPM) research is related to
intra-class feature and feature-weight alignment. NC (Papyan et al.||2020) addresses the phenomena
that occur with the features and the weights of the classifier head at the final stages of classifier
training. At this stage, phenomena related to alignment occur: First, Variability Collapse, i.e. intra-
class feature alignment, and Second, self-duality, i.e. feature-weight alignment. Several studies
propose the ULPM to analyze NC treating features and weights as unconstrained free variables (Ji
et al., 2022} [Tirer & Brunal 2022; Zhu et al.l 2021; [Fang et al.l 2021). However, ULPM, unlike
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Fo(x) One Step Update

Figure 1: Emergence of Alignment and Local Elasticity: The Neural Networks feature F'(x), Fo(x)
from data points surrounding the training data (i.e. unseen data) are influenced by the gradient step,
leading to both phenomena. We denote unseen data as «, 4, ¢, < and two classes of training data
are represented as a sphere. Notably, distribution «, being closer to the training data, undergoes
stronger Alignment and Local Elasticity i.e. the intra-class inner product is enlarged, and the fea-
tures undergo substantial movement during this single step, compared to other distant distributions.
b, e, d.

the CK model we use, assumes the features as free variables, which limits its ability analysis about
input the data distribution and, consequently, prevents studying the structure of the features. This
motivates and provides the need to explore internal features using CK.

Studies on the concept of Local Elasticity (LE) have been established after observing that data
points closer to the training samples are updated more significantly than those farther away (He
& Sul 2019). Thus, Local elasticity has been informally described using terms such as “similar-
ity/closeness”. In other words, it is argued that the greater the “similarity” between the training data
and the input data, the higher the elasticity of the feature. Subsequently, in |He & Su| (2019), the
elasticity score was formalized as a metric to quantify this informally defined notion of “similarity”.
Meanwhile, there have been attempts to theoretically understand LE. Zhang et al.| (2021) model the
learning process of neural networks using SDE to verify its occurrence, but they have a limitation
that actual neural networks are not utilized as our CK modeling. Dan et al.|(2023) sort training steps
into two phases by whether LE occurs or not using Gradient Flow, but they only empirically ob-
served the basic condition of LE i.e. feature of “similar” sample is updated more, without engaging
in theoretical exploration. However, with theoretical assumption and analysis, we establish that this
similarity can be measured and expressed as train-unseen similarity.

Additional related works are discussed in[Appendix C|

1.2 OVERVIEW

This section provides basic definitions and informal Theorems of the results of Alignment and Local
elasticity, which will be detailed in[section 4 The phenomenon described here is also illustrated in
Let 6 be the set of every randomly initialized parameter of a neural network, let d, N
denote the dimensions of the data space and feature space, respectively, for 2 € RY denote F(z) €
RN is trained feature and Fy() is initialized feature and c is given class conditioned distribution.
Feature represents a network output obtained by peeling off the last task layer. The Alignment score
and Elasticity score are defined as follows:

Definition 1.1 (Alignment score). The Alignment score is defined as the expected inner product
between the features F(z) for two i.i.d. samples of ¢ : E, z/co[F(x) T F(2)].
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Definition 1.2 (Elasticity score similalﬂ toHe & Su (2019)). The Elasticity score is defined as the
expected L2 distance between F(z), Fy(x) for sample of ¢: Eyc o[|| F(z) — Fo(z)]?].

These two definitions are informally expressed as the Theorem below, which is an approximation
with high probability in the proportional regime for a two-layer neural network after one step training
and a Gaussian assumption of given class conditional distribution c.

Theorem 1.3 (Alignment and Elasticity score (Informal of B.3)). Let n be the number
of data points. Assume x,x’ ~ N(u,X) be i.i.d random vectors drawn from the arbitrary class
conditional distribution given mean i € R and Covariance ¥ € RI*9 and the network allows
for Hermite expansion. Let 3 £ ﬁX Ty from given training datasaet (X,y). Then train(j3)-

unseen(y1) similarity |37 11| and 87 3 is governing the Alignment and the Elasticity score.

Following Theorem, Alignment and Elasticity score approximately increase as Train-unseen sim-
ilarity |37 p| and BT X3 grow i.e. , with fixed covariance 3, both scores are approximately poly-
nomial to |3 |, which is the similarity between the training sample distributions and the arbitrary
class data distributions.

It can be interpreted that the closer the unseen distribution is to the training data ( i.e. , higher
Train-unseen similarity), the stronger the effect of Local Elasticity (LE) becomes, and leading to
a stronger Alignment of features. These implications can be observed in where compara-
ble formulae for the two phenomena are derived, demonstrating their simultaneous occurrence and
correlation.

For theoretical analysis, we define two-layer networks with elementwise activation function that
allows Hermite decomposition to decompose a one step trained feature function into initialized
features and polynomial functions. This decomposition is explained thoroughly in
and[subsection 3.2] The decomposed feature is analyzed using unseen data distributions assumed to
follow Gaussian distributions.

This paper also verifies the following supplementary contributions during our theoretical analysis.
We expand the previous two-layer network analysis method, which is based on regression tasks
with standard Gaussian train distribution into binary classification with non-centered Sub-Gaussian
distribution. This assumption makes two-layer model available to analyze classification problems in
further works or any non-centered Sub-Gaussian training data, which is more discussed in[section 3]

Finally, we conduct experiments that empirically verify our analyses using a synthetic dataset where
classes of evaluation set are consecutively distant from the training set in

2 PROBLEM STATEMENTS

Notations Let |-|| be L? or the operator norm. Let ® be the Hadamad product. Let A°* be
the Hadamad power. Let C,c > 0 be absolute constants, and let x € R be a constant that may
change from line to line. Define [d] = {1,2,--- ,d}. Let lcondition be 1 if the condition is true

and 0 otherwise. The operator diag(-) creates a matrix with the elements of the input vector placed

along the diagonal. Let n!! £ ,Eg)_l(n — 2k) be double factorial. For simplicity, we define

(=)' = 0" = 1. For two positive sequences A,, and B,,, we write A, = O(B,,) if there exist
constants c1,co > 0 s.t. ¢1B, < A,, < c2B,, for sufficiently large n. Similarly, 4,, = Op(B,)
indicates that the relationship holds with high probability as n — co. We say A,, = o(B,,) if, for
every ¢ > 0, there exists N € N such that A,, < eB,, for all n > N. For a vector x € R", the
expression x[i] denotes the i-th element of . For a matrix A € R"*™_ A[i] denotes the i-th column
of A, and A[i : j] denotes the columns from 4 to j. Additionally, A[:] refers to all elements of A.

Hermite Polynomials We employ the probabilist’s Hermite polynomials (Moniri et al., 2024
Szegd, [1975; |Grad, [1949; Bienstman), 2023). The n-th Hermite polynomials, H,, (), are defined by
the recurrence relation: H,,1(x) = vH,(x) — nH,_1(z), forn > 1, with the initial conditions
Hy(x) = 1, Hy(z) = z. Using this recurrence, we have Hy(z) = 2% — 1, H3(z) = 2% — 3z, - - -.

!'Unlike the definition in the original paper, which uses network’s predictions, this paper examines Elasticity
in the feature level.
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2.1 PROBLEM SETTINGS

Proportional Regime We consider a two-class classification problem with classes c¢; and co, us-
ing two-layer neural networks in the proportional regime. Here, n, d, and N are sample size,
data dimension, and feature dimension, respectively. We perform our analysis under the following
regime: n/d — 1, N/d — 1 as n,d,N — oo, where ¥1,%s € (0,00). This setup reflects
a scenario where the network width scales proportionally to the data size, aligning with common
scaling practices in modern machine learning models.

Training Data Let ® = (X,Y), where X € R4 Y € {—1,1}**2 C R"*2, represent the
training dataset. For any data point (z,y), y = (I,—-1)T ifz ~ ¢y and y = (=1,1)T if z ~ co,
where = ~ ¢; indicates that x belongs to class ¢;. We denote the i-th column of Y, Y'[i], as y; € R™.
It follows that y; = —ys. For every i-th row of X[:][1 : |[n/2]], we have X [:][i] ~ ¢1, for every i-th
row of X[:][|[n/2] + 1 : n], we have X[:][i] ~ c2. Let D = (X,Y") an i.i.d. copy of D.

Evaluation Data In this paper, we employ the ‘“Unseen” dataset as the Evaluation dataset, which
is drawn from a distribution different from the one used to generate the training dataset. We assume
that “Unseen” samples follow a Gaussian distribution 2 ~ 71(j, ), where 1 € R and ¥ € R9xd,

Network Structure We consider two-layer networks to be fully connected. The initial weight of
the first layer, Wy € RI*N s initialized as Wy[i] ~ Unif(Se~1) for i € [d]. We denote W as
the one-step trained weight. The initial weights of the second layer, a. € R™ for ¢ € {1, 2}, are
initialized as a. ~ N(0, 35 I). For an input z, we define the initialized feature as Fy(z) £ o(W, z)
and the one-step trained feature as F'(x) = o(W "x). The network output is defined as the following

two-dimensional vector: (T%F(x)Tal, T%F(x)Tag)T. The network is designed to output 3y =

(1,—1) for ¢y and y = (—1,1) for co.

Optimization Problem Denote § = {W, a1, a2} as the set of all network parameters. However,
for feature analysis, we only train W and use a1, as for calculating gradient. To classify the given
data, we introduce the Mean Squared Error (MSE) loss

1 1
LXy:0) =5~ > e = Zo (XW)acll” ()

ce{1,2}

The weight update formula for the first layer is given by W’ = W +nv/NG, where ) is the learning
rate and G is the negative gradient of L(X, y; 6) with respect to W expressed as

oL 1 11 ,
G=-gp="1 > [XT[(\/N(Na(XW)ac—yc)aI)QU(XW)H- 2

c={1,2}
Now, we introduce the assumptions for our theoretical analysis.

Assumption 2.1 (Activation Function). Let o(x) be an element-wise activation s.t. o,0’ 0" is
bounded by \, almost surely ( a.s. ). For z ~ 1(0,1), it admits a Hermite decomposition i.e.
o(z) =Y po ckHi(z), where ¢, = 5E.[0(2)Hy,(2)]. Note that E[o(2)] = co and E[z0(2)] = c1.
We denote ¢, , = \/E[02(z) — c2]. We assume ¢ = 0,c1 # 0 and c3k! < Ck=3/27", for some
constants C,w > 0.

Assumption 2.2 (Learning Rate). = O(n%), 2 < a < 21% leN

Assumption 2.3 (Training Data Structure). Let the class-conditional training data distributions ¢y
and cy be Sub-Gaussian (Vershynin, |2018} |Cole & Lul 2024} |Cao et al.|, 2021} Jambulapati et al.|
2020y Sivakumar et al.l 2015, \Bombari et al.| 2022, |Bazinet et al., 2024).

Remark 2.4 (MSE for Classification). Note that utilizing MSE in classification is as well-established
as using softmax-cross entropy, especially in theoretical analyses of classification problems (Han
et al., [2022; Zhou et al.||2022).

Note 2.5 (Sub-Gaussian Training Data Distribution). The data structure described in Assump-
tion 2.3] allows us to transform the analysis of CK solving linear regression under Gaussian as-
sumptions (Ba et al.||2022} 12023} IMoniri et al., 2024) to classification problems. This extension can
open new avenues for theoretical analyses of deep representations in classification tasks.



Under review as a conference paper at ICLR 2025

3 ANALYSIS OF FEATURE IN THE PROPORTIONAL REGIME WITH MSE
CLASSIFICATION SETTING AND SUB-GAUSSIAN DATA

In this section, we analyze the learning dynamics of a neural network in a single training step,
assuming the training data @ originates from two distinct Sub-Gaussian distributions with non-zero
means. To achieve this, we decompose the gradient (equation [2) using Hermite decomposition,
which allows us to extract the essential rank-one matrix structure. As a result, we approximate
the one-step trained feature function F(z) = o((Wy + nv NG 2)) as F} by deriving its Hermite
expansion, which serves as a key step in deriving our main theorem. The entire process is carried
out asymptotically in the proportional regime.

3.1 RANK-ONE APPROXIMATION OF THE FIRST GRADIENT

In this section, we follow the proof structure of Ba et al.| (2022)) to decompose gradient in our clas-
sification learning setting. Unlike their assumption of centered Gaussian training data, we consider
non-centered Sub-Gaussian data distributions. In this process, we apply a novel approach involving
the concentration of the operator norm on a random matrix. Also, since our framework is not in a
teacher-student setting, we use class labels instead of a teacher function.

Starting from equation [2] by performing an orthogonal decomposition of the first Hermite expan-
sion term and the remainder of o(x), we express o(z) = cix + o (z). The gradient G is then
decomposed as follows Gy = A +B + C i.e.

A B

Go

‘1 T T T 1 T T T ’
= X ay + Y209 )+ —=X ay +y209 ) © o (XW,
aVN (y1a1 +y20,) aVN (101 +y2a9 ) © 0 (XWo) 3)

1
— ﬁXTU(XWU)(alalT + asaq ) © ' (XWp) ... c.

We derive the norm bound for the terms A, B, and C in Lemma Using these bounds, we establish
the following Proposition [3.1] For the proof, please refer to

Proposition 3.1. Under the assumptions in and when n satisfy 1 — m’% >1/2,

the following holds:
log”n

/n

Now we utilize A as the approximate gradient for training the CK model given the training set 0.

1Go — Al| < & 1Goll wp.1 — C(ne=clog’ 4 g=emy, &)

3.2 ANALYSIS OF FEATURES AFTER ONE-STEP GD

We now study the feature space induced by the conjugate kernel after one step of gradient descent
(GD). We first analyze o(XW) = F(XW,) = F(XW, + nXG) by an approximation using
Hermite polynomials. Denote 3 £ ﬁX Ty, and let @ = a; — ay. By Proposition and results
D, E in Lemma|G.I] we generalize this to Lemma[3.2] For the proof, see[Appendix G|

Lemma 3.2 (Monomial Approximation of Data-Gradient). For any k € N, sufficiently large n, and
wp. 1-o0(l),

I(XGT)™ = k(X (™) T|| < CFn~ 5 1o, 5)
Finally, we constructed the Data-Gradient form in our classification setup, satisfying the assumptions
same to those in Theorem 3.2 of [Moniri et al.|(2024)). We now decompose F' into a feasible form.
Lemma 3.3 (Decomposition of Trained Features). Let Fy = o(XW,"). With probability 1 — o(1),
F=F+A,

where Fy = Fy + Y 5._, ke (X8)°*(a°*)T and 1 is defined in Moreover,
o(yv/m), ||Fo|| = Op(y/m), and ||ckcin® (X B)°* () || has an order larger than o(y/n).

Based on these results, we analyze the feature representation using the approximation Fj, which
dominates the residual term ||A|| = o(y/n) with probability 1 — o(1).

Al =
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4 EMERGENCE OF ALIGNMENT AND LOCAL ELASTICITY

In this section we provide theorems indicating train(3)-unseen(y) similarity |37 x| and 8T %3 is
governing the Alignment and the Elasticity score. Given separable Sub-Gaussian training data @,
we compute the approximate feature Fj after a single gradient step in the above section.

Condition 4.1 (Condition statement for[Theorem 4.2|and[Theorem 4.3). Let x, 2’ ~ N (1, 2) be i.i.d
random vectors drawn from the arbitrary class conditional distribution given i, >.. With assumption
in and following from Lemma [3.3] remark the approximated initialized/trained neural

network feature extractor as Fo(x) = o(Wy z), Fi(z) = Fy(z) + 22:1 e (T B)°F (aF)T
where 3 & ﬁXTyl with training datasaet (X, y).

Theorem 4.2 (Alignment). Following condition denote Ty, = cfeinE,[(BTx)F]. Then, the
average Inner Product between two approximated one-step trained features is as follows:

l
Eo,or 0[Fi(2) T Fi(a)] = Eq ol Fo(2)|*+2(Eq 0 Fo (x Zma N+ D TuTiEe(a®, )

k=1,j=1
(6)
The first term E, o||Fo(z)||? only depends on unseen distribution parameter ju,%. without train
distribution. The second term 2(E,, o Fy(z), 22:1 TuEg[a®%])] depends on i, % | and BT 0.
The last term Zic:l,j:l T T;Ee(a®, a°F) depends on |37 11| and BT X 3. Therefore, the alignment
measure grows as |3 |, BT L3 increases.

Proof. Proof is in Appendix [I| O
Theorem 4.3 (Local Elasticity). Following Condition Then, the average L? distance between

the initialized features Fyy(x) and the approximated one step trained features Fi(x) is as follows:

I k+m

Ew,0||E(x) H2 Z Z Z RLE |BT/J/|k+m Z(ﬁ—rzﬁ) 1k+mundiiseven~ (7)

k=1m=1 i=0

K1 depends only on k,m,i,N, c1,n, and is independent of the data distribution parameters. The
local elasticity measure grows as |37 |, BT £3 increases.

Proof. Proof is included in Appendix O

Note 4.4 (Interpretation of sign of 3). If the two given classes have a zero-centered symmetric struc-

ture, a symmetric representation should be learned regardless of the sign of B. This can be observed
in our results and observations as well. We defined f = ﬁXTyl in When the
lNX Tyg. With alternative definition,
the same result is obtained for|Theorem 4.2| and [Theorem 4.3 where the scores are represented as

polynomials of | 3T j1| and non-negative B7%3.

sign of a = a1 — ag is flipped, B can also be defined as -

Note 4.5 (Relationship between [ and learning rate 7). Our learning rate assumption is that it is
determined by the parameter | € N, which determines the maximum Hermite expansion degree of
the Alignment and LE scores as polynomials of |37 pu|. This behavior aligns with the intuition that
larger learning rates correspond to more aggressive updates of the features, causing them to shift
and align more during the optimization process.

5 EXPERIMENTS

Remark 5.1. Recall@1= Ely,_¢,  « ¥ 1-nn i the class of closest feature to x;.

In our experiments, we examine the relationships between train-unseen similarity ( i.e. | BT ul,
Alignment), Elasticity, and Recall@1. The experimental setups range from synthetic datasets
trained with two-layer networks (Setfup 1, 2) to real-world datasets, including CARS196 (Krause
et al.l [2013)) and CUB200 (Wah et al., 2011), trained with multi-layer networks such as ResNet18
(Setup 3) and ResNet50 (He et al.,|2015) (Setup 4).
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Setup 1,2  To evaluate the theory, we follow the configurations described in[section 2] We use three
different non-centered Sub-Gaussian distributions as training datasets: (i) a uniform distribution over

a radius-v/d ball (Data 1); (ii) a multi-dimensional element-wise truncated Gaussian distribution
(Data 2); and (iii) a uniform distribution over a radius-v/d sphere (Data 3) Wesetd =n=N =
211 "and 1 = n°%25 in accordance with the assumptions. The means of Data 1 and 3 are v and —v,
respectively, where v £ 5r2 - u, with u ~ Unif (S9~*). For Data 2, one class has support on [1, 00)
across all dimensions, while the other class has support on (—oc, —1]. We definev £ (1,1,---,1)T
for Data 2 used in Evaluation data generation.

For the evaluation data, we introduce unseen samples T, seen, Which are projected Gaussian dis-
tributed and defined as Ty seen = 2 — (2 ¥¥)/|v|* + v, where z ~ 11(0, 1), and v £ ev for Setup

Iand v = Ruv for Setup 2, with e € (—1,1), R € SO(d). We use this data for measuring Align-
ment, Elasticity, Recall@1. By adjusting e and R, one can control the train-unseen similarity ﬂTu,
where p £ E[Zunseen). Please refer to for illustrations of these setups.

® | & @ |
¢ v & e e-

Train Data 1, 2, 3 Evaluation Data for Setup 1, 2

Figure 2: Examples of training datasets (Data 1, 2, 3) and evaluation data used in Setup 1, 2.

Setup 3, 4 We also conduct the experiment with practical settings i.e. the multi-layer networks
and the real-world data. In Sefup 3, we designate either the CAR or CUB dataset and randomly
select two classes as the training set. Then we sample five classes from each evaluation set of CAR
and CUB as our new evaluation set. We set d = N = 2! n = 96. The whole model consists of
ResNet18 whose output dimension is d, a single nonlinear layer F(x) = o(W "z), and classifier
a1,as. We measure 5 and p from the representations after ResNet18 architecture. Then they are
passed through F'(x) and final classifier a1, as. Note that we randomly initialize ResNet18 and do
not freeze its layers during training. The Sefup 4, conducted on the CARS196 and CUB200 datasets,
and its every configuration follows the approach outlined in |[Zhai & Wu| (2019)), which represents
a baseline in metric learning. We employ the normsoft metric learning loss function [Zhai & Wu
(2019). This setup is particularly relevant to our focus on unseen distribution, as it conducts the
metric learning task with use of unseen data. The detailed configuration of two experiments is in

(Table 21

Alignment and Elasticity Observations With Setup 1,2, we analyze the behavior of Alignment,
Elasticity as |37 | varies with e and R. Following Thm. and as |87 u| increases, we
expect to observe a positive tendency in Alignment and Elasticity score defined in Definition
[[.2] In this experiment, the variable e span from -0.9 to 0.9, and the 300 random rotation matrix is
generated using a process in[subsection K.4|for R. We repeat the experiment 30 times with different
initializations of the neural network parameters and include the results along with the mean and
standard deviation as in Figure [3] It demonstrates that Alignment and Elasticity score
occur strongly as e or 3T increase. This phenomenon corresponds to the results of our theoretical
findings, which suggest that the features from distributions closer to the training data emerge the
stronger Alignment and Local Elasticity.

In Setup 3, we validate the theoretical results by adapting the network and data to a practical set-
ting for a binary classification problem. After each training epoch, we evaluate |37 11|, Alignment,
and Elasticity across evaluation datasets CAR and CUB. We calculate the ranks for each of these
metrics—|3 " u|, Alignment, and Elasticity—using the values measured across five classes in each
dataset. These rankings are then compared across all metrics to see if they maintained consistent
ranking orders using Kendall’s W (Kendall & Smith| |1939) ranking correlation. A W value of 1

’The Sub-Gaussian property is proven for Data 1 and 3 in [Vershynin|(2018), and for Data 2 in Lemma
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indicates complete agreement in rank order, while a value of O indicates no agreement. As a result,
we found that, as the theory suggests, there is a rank correlation between Elasticity, Alignment, and
|37 1| on average across four different seeds. Numerically, during the middle stages of training,
before the model converges, we observed that the model trained on CAR showed a rank correlation
of at least 0.7 across all datasets, while the model trained on CUB exhibited a rank correlation of
at least 0.5 across all datasets. See Additionally, on top of the strict order requirement
of Kendall’s W statistic, we directly observe that |3 T x|, Alignment, and Elasticity simultaneously
increased or decreased without aggregation, as shown in
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Figure 3: Observation of Alignment (a, d) and FElasticity (b, €) Recall@1 (c, f). Figure (a, b) are
plotted across different e (lower x-axis, exactly overlapped) and 3 1 (upper x-axis) values. Figure
(c, d, e, f) are plotted across different 3 Tu (x-axis) values. For figure (¢, f) the blue line represents
the clustering performance measured using the features in their initialized state, the orange line
reflects the performance after one step of training, and the green line indicates the improvement, i.e.,
the difference between the two.

~ R@]1 v. Align p-value (two-sided)
\ |/ “ ‘ CAR  0.24£0.09 0.00
W\, =¥ . CUB__ 0.29+0.05 0.00
(a) Model trained with CAR  (b) Model trained with CUB Recall@1 Avg. Align
CAR 9365034  843.27£16.83
CUB  68.13£040  1072.49420.46

Figure 4: In Setup 3, the average Kendall’s W value (y-
axis) over step (x-axis) for a model trained on the (a)
CAR and (b) CUB dataset with 4 different seeds. The Table 1: In Setup 4, (top) The average cor-
magenta line represents the Kendall’s W value for the relation of Recall@1 and Alignment _Wlth P
CAR dataset, the blue line for the CUB dataset. test. (bottom) The final R@1 and Align.

Connections between |37 11|, Alignment and Recall@1 In this section, we analyze the rela-
tionship between the train-unseen similarity, i.e. , |3 | and Recall@1 performance as well as
Alignment score. Based on the theoretical finding that neural networks produce features with high
alignment and elasticity for unseen classes close to the training data, we hypothesize that data from
unseen data distribution similar to train classes undergoes greater shifts during learning, resulting
in better alignment and cluster formation with superior Recall@1 performance in the feature space.
To validate this hypothesis, we observe whether the higher train-unseen similarity leads to improved
Recall@1 performance in Setup 1, 2.

Through Setup 1, 2, we measure Recall@1 with two classes using cosine similarity. See (c, f) in
and One class is instantiated according to the original definition as Setup, while the
other is constructed by inverting signs across all axes in data space. After a single learning step,
we observe Recall@1 performance increases when the |3 | is higher across all neural networks

(orange line in (c, f) at[Figure 3)).
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Additionally, in Setup 1, we confirm that as e(3 T 1) increases, the recall @ 1 measure at initialization
also increases (blue line in (c) at[Figure 3). This is a natural phenomenon because, by the definition
of the dataset, as e increases, the L2 distance between the mean of two evaluation classes increases.
Further discussion of the observations of Setup 1 is given in[subsection K.3| In the setting of Setup
2, the value of BT 1 changes due to variations in rotation; however, the distance between the two
classes remains unchanged. Consequently, we observe that the initial Recall@1 does not vary (blue
line in (f) at [Figure 3). Moreover, we observed that when 8y is too small, recall performance
decreases after a single step of training (orange line in (f) at [Figure 3). This suggests that unseen
datasets, which are not too related to the domain of the train dataset, fail to generate meaningful
representations.

In Setup 4, we extend our experiments from a two-class problem to practical multi-class scenarios
within a baseline metric learning setting where the direct computation of 3 is not feasible. To test
the conjecture that strong train-unseen similarity leads to better alignment and improved Recall@ 1
performance, we analyze the correlation between Recall@1 and Alignment scores. At each step of
training, we measure class-wise Alignment and class-wise Recall@1 with unseen classes. After,
we compute the correlation between the Recall@1 and Alignment for each unseen class. Table ]
demonstrates the consistent tendencies of a positive correlation between Recall@1 and Alignment
with a near zero p-value. This matches with our empirical results from a two-class synthetic dataset,
where we observed a tendency for higher alignment to be associated with better Recall@1 perfor-
mance. We use Pearson Correlation to measure the strength and direction of the linear relation-
ship between Recall@1 and Alignment. For the p-value, we use two-sided test. We use Fisher’s
Combined Probability Test to combine the p-values. We provide unaggregated seed-wise results in

6 CONCLUSION

In this paper, we explored the emergence of Alignment and Local Elasticity in two-layer neural net-
works, focusing on their behavior when trained in the proportional regime. Our theoretical analysis
extends the Conjugate Kernel (CK) framework to classification tasks, providing insights into how
neural networks learn feature representations, particularly under Sub-Gaussian data distributions.
We demonstrate that both Alignment and Local Elasticity arise simultaneously after just one step
of training, especially in cases where data distributions closely resemble the training data. This
phenomenon not only helps explain the clustering of representations but also sheds light on why
neural networks trained on similar domains serve as effective feature extractors for tasks like metric
learning. Furthermore, we validated our theoretical findings through experiments across various se-
tups. These experiments confirmed the theoretical predictions, showing that neural networks exhibit
stronger Alignment and Local Elasticity when evaluated on data distributions closer to the training
set. Additionally, we identified a possible relationship between Recall @1, one of the generalization
performance metrics for unseen distributions, and Alignment. Our work provides a unified frame-
work for understanding feature learning in neural networks and opens avenues for further research
in metric learning, transfer learning, and other task domains where neural networks are applied as
feature extractors for unseen distributions. We believe this work offers valuable insights into the
dynamics of neural networks, contributing to the broader understanding of deep learning theory.

Reproducibility Statement In|section 5| [Appendix Kl [Appendix L] and [Appendix O|the dataset
generation methods and hyperparameters for experimental reproduction are documented. The code
used for data generation and the experimental from this research can be downloaded https://
anonymous.4open.science/r/emk-2E61. Also, We derived all the proofs line by line.

10


https://anonymous.4open.science/r/emk-2E61
https://anonymous.4open.science/r/emk-2E61

Under review as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe, Enric Boix-Adsera, Matthew Brennan, Guy Bresler, and Dheeraj Nagaraj. The
staircase property: How hierarchical structure can guide deep learning, 2021. URL |https:
//arxiv.orqg/abs/2108.10573.

Xiang An, Jiankang Deng, Kaicheng Yang, Jaiwei Li, Ziyong Feng, Jia Guo, Jing Yang, and
Tongliang Liu. Unicom: Universal and compact representation learning for image retrieval, 2023.
URLhttps://arxiv.org/abs/2304.05884.

J. Armstrong. Forecasting by extrapolation: Conclusions from 25 years of research. Interfaces, 14:
52-66, 12 1984. doi: 10.1287/inte.14.6.52.

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:
The silent alignment effect, 2021.

Jimmy Ba, Murat A. Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation,
2022. URL https://arxiv.org/abs/2205.01445|

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, and Denny Wu. Learning in the
presence of low-dimensional structure: A spiked random matrix perspective. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 17420-17449. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/38al671ab0747b6ffeddlcoefll7a3a9-Paper—-Conference.pdf.

Francis Bach. Breaking the curse of dimensionality with convex neural networks, 2016. URL
https://arxiv.org/abs/1412.8690.

Zhidong Bai and Jack W. Silverstein. Spectral Analysis of Large Dimensional Random Matrices.
Springer New York, 2010. ISBN 9781441906618. doi: 10.1007/978-1-4419-0661-8. URL
http://dx.doi.org/10.1007/978-1-4419-0661-8l

Randall Balestriero, Jerome Pesenti, and Yann LeCun. Learning in high dimension always amounts
to extrapolation, 2021. URL https://arxiv.org/abs/2110.09485|

Mathieu Bazinet, Valentina Zantedeschi, and Pascal Germain. Sample compression unleashed :
New generalization bounds for real valued losses, 2024. URL https://arxiv.org/abs/
2409.17932.

Daniel Beaglehole, Ioannis Mitliagkas, and Atish Agarwala. Feature learning as alignment: a
structural property of gradient descent in non-linear neural networks, 2024. URL |https:
//arxiv.org/abs/2402.05271.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives, 2014. URL |https://arxiv.org/abs/1206.5538,

Lucas Benigni and Sandrine Péché. Eigenvalue distribution of some nonlinear models of random
matrices. Electronic Journal of Probability, 26(none), January 2021. ISSN 1083-6489. doi:
10.1214/21-ejp699. URL http://dx.doi.org/10.1214/21-EJP699.

Lucas Benigni and Sandrine Péché. Largest eigenvalues of the conjugate kernel of single-layered
neural networks, 2022. URL https://arxiv.orqg/abs/2201.04753.

Peter Bienstman. Mathematics for photonics. Course Syllabus, September 2023. URL https://
studiekiezer.ugent.be/studiefiche/en/E002640/current. Course size: 4.0
credits, Study time: 120 hours. Offered in English and Dutch.

Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index models with
shallow neural networks, 2022. URL https://arxiv.org/abs/2210.15651.

11


https://arxiv.org/abs/2108.10573
https://arxiv.org/abs/2108.10573
https://arxiv.org/abs/2304.05884
https://arxiv.org/abs/2205.01445
https://proceedings.neurips.cc/paper_files/paper/2023/file/38a1671ab0747b6ffe4d1c6ef117a3a9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/38a1671ab0747b6ffe4d1c6ef117a3a9-Paper-Conference.pdf
https://arxiv.org/abs/1412.8690
http://dx.doi.org/10.1007/978-1-4419-0661-8
https://arxiv.org/abs/2110.09485
https://arxiv.org/abs/2409.17932
https://arxiv.org/abs/2409.17932
https://arxiv.org/abs/2402.05271
https://arxiv.org/abs/2402.05271
https://arxiv.org/abs/1206.5538
http://dx.doi.org/10.1214/21-EJP699
https://arxiv.org/abs/2201.04753
https://studiekiezer.ugent.be/studiefiche/en/E002640/current
https://studiekiezer.ugent.be/studiefiche/en/E002640/current
https://arxiv.org/abs/2210.15651

Under review as a conference paper at ICLR 2025

Simone Bombari, Mohammad Hossein Amani, and Marco Mondelli. Memorization and optimiza-
tion in deep neural networks with minimum over-parameterization. In Alice H. Oh, Alekh Agar-
wal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=x8DN1iTBSYY.

Simone Bombari, Shayan Kiyani, and Marco Mondelli. Beyond the universal law of robustness:
Sharper laws for random features and neural tangent kernels, 2023. URL https://arxiv.
org/abs/2302.016209.

Stevo Bozinovski. Reminder of the first paper on transfer learning in neural networks, 1976. Infor-
matica (Slovenia), 44, 2020. URL https://api.semanticscholar.org/CorpusID:
227241910.

Yuan Cao, Quanquan Gu, and Mikhail Belkin. Risk bounds for over-parameterized max-
imum margin classification on sub-gaussian mixtures. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 8407-8418. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/46e0eae7d5217c79c3efobd4c212b8cof-Paper.pdfl

Satrajit Chatterjee. Coherent gradients: An approach to understanding generalization in gradient
descent-based optimization, 2020. URL https://arxiv.org/abs/2002.10657,

Shuxiao Chen, Hangfeng He, and Weijie J. Su. Label-aware neural tangent kernel: Toward better
generalization and local elasticity, 2020. URL https://arxiv.org/abs/2010.11775,

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming,
2020. URL https://arxiv.org/abs/1812.07956.

Frank Cole and Yulong Lu. Score-based generative models break the curse of dimensionality in
learning a family of sub-gaussian distributions. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=wG12xUSqrI.

Alex Damian, Jason D. Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent, 2022. URL https://arxiv.org/abs/2206.15144,

Soham Dan, Anirbit Mukherjee, Avirup Das, and Phanideep Gampa. Dynamics of local elasticity
during training of neural nets, 2023.

Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer
neural networks learn, one (giant) step at a time, 2023. URL https://arxiv.org/abs/
2305.18270.

Jiankang Deng, Jia Guo, Jing Yang, Niannan Xue, Irene Kotsia, and Stefanos Zafeiriou. Arcface:
Additive angular margin loss for deep face recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(10):5962-5979, October 2022. ISSN 1939-3539. doi: 10.1109/
tpami.2021.3087709. URL http://dx.doi.org/10.1109/TPAMI.2021.30877009.

Zhou Fan and Zhichao Wang. Spectra of the conjugate kernel and neural tangent kernel for linear-
width neural networks, 2020. URL https://arxiv.org/abs/2005.11879.

Cong Fang, Hangfeng He, Qi Long, and Weijie J. Su. Exploring deep neural networks via layer-
peeled model: Minority collapse in imbalanced training. Proceedings of the National Academy
of Sciences, 118(43), October 2021. ISSN 1091-6490. doi: 10.1073/pnas.2103091118. URL
http://dx.doi.org/10.1073/pnas.2103091118.

Tomer Galanti, Andras Gyorgy, and Marcus Hutter. On the role of neural collapse in transfer learn-
ing, 2022. URL https://arxiv.org/abs/2112.15121,

Sebastian Goldt, Bruno Loureiro, Galen Reeves, Florent Krzakala, Marc Mézard, and Lenka Zde-
borovd. The gaussian equivalence of generative models for learning with shallow neural net-
works. Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference, PMLR
145:426-471 (2021), 06 2020. URL https://arxiv.org/pdf/2006.14709.pdfl

12


https://openreview.net/forum?id=x8DNliTBSYY
https://arxiv.org/abs/2302.01629
https://arxiv.org/abs/2302.01629
https://api.semanticscholar.org/CorpusID:227241910
https://api.semanticscholar.org/CorpusID:227241910
https://proceedings.neurips.cc/paper_files/paper/2021/file/46e0eae7d5217c79c3ef6b4c212b8c6f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/46e0eae7d5217c79c3ef6b4c212b8c6f-Paper.pdf
https://arxiv.org/abs/2002.10657
https://arxiv.org/abs/2010.11775
https://arxiv.org/abs/1812.07956
https://openreview.net/forum?id=wG12xUSqrI
https://arxiv.org/abs/2206.15144
https://arxiv.org/abs/2305.18270
https://arxiv.org/abs/2305.18270
http://dx.doi.org/10.1109/TPAMI.2021.3087709
https://arxiv.org/abs/2005.11879
http://dx.doi.org/10.1073/pnas.2103091118
https://arxiv.org/abs/2112.15121
https://arxiv.org/pdf/2006.14709.pdf

Under review as a conference paper at ICLR 2025

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Harold Grad. Note on n-dimensional hermite polynomials. Communications on Pure and Ap-
plied Mathematics, 2:325-330, 1949. URL |https://api.semanticscholar.org/
CorpusID:1227764609.

X. Y. Han, Vardan Papyan, and David L. Donoho. Neural collapse under mse loss: Proximity to and
dynamics on the central path, 2022. URL https://arxiv.org/abs/2106.02073,

Hangfeng He and Weijie J Su. The local elasticity of neural networks. arXiv preprint
arXiv:1910.06943, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015. URL https://arxiv.org/abs/1512.03385.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning, 2020. URL https://arxiv.org/abs/1911.
05722,

Hong Hu and Yue M. Lu. Universality laws for high-dimensional learning with random features,
2022. URL https://arxiv.org/abs/2009.07669.

Hailang Huang, Zhijie Nie, Ziqiao Wang, and Ziyu Shang. Cross-modal and uni-modal soft-label
alignment for image-text retrieval. 03 2024. doi: https://doi.org/10.1609/aaai.v38i16.29789. URL
https://arxiv.orqg/pdf/2403.05261.pdfl

Like Hui, Mikhail Belkin, and Preetum Nakkiran. Limitations of neural collapse for understanding
generalization in deep learning, 2022. URL https://arxiv.org/abs/2202.08384,

L. Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency
distribution in any number of variables. Biometrika, 12(1/2):134-139, 1918. ISSN 00063444,
14643510. URL http://www. jstor.org/stable/2331932.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks, 2020. URL https://arxiv.org/abs/1806.07572.

Arun Jambulapati, Jerry Li, and Kevin Tian. Robust sub-gaussian principal component analysis and
width-independent schatten packing. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 15689—-15701.
Curran Associates, Inc., 2020. URL lhttps://proceedings.neurips.cc/paper_
files/paper/2020/file/b58144d7e90b5a43edccelca%e642882-Paper.pdf.

Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, and Weijie J. Su. An unconstrained layer-peeled
perspective on neural collapse, 2022. URL https://arxiv.org/abs/2110.02796.

Katie Kang, Amrith Setlur, Claire Tomlin, and Sergey Levine. Deep neural networks tend to extrap-
olate predictably, 2024. URL https://arxiv.org/abs/2310.00873|

Maurice G Kendall and B Babington Smith. The problem of m rankings. The annals of mathematical
statistics, 10(3):275-287, 1939.

Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better imagenet models transfer better?,
2019. URL https://arxiv.org/abs/1805.08974.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV)
Workshops, June 2013.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can

distort pretrained features and underperform out-of-distribution, 2022. URL https://arxiv.
org/abs/2202.10054.

13


https://api.semanticscholar.org/CorpusID:122776469
https://api.semanticscholar.org/CorpusID:122776469
https://arxiv.org/abs/2106.02073
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/2009.07669
https://arxiv.org/pdf/2403.05261.pdf
https://arxiv.org/abs/2202.08384
http://www.jstor.org/stable/2331932
https://arxiv.org/abs/1806.07572
https://proceedings.neurips.cc/paper_files/paper/2020/file/b58144d7e90b5a43edcce1ca9e642882-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b58144d7e90b5a43edcce1ca9e642882-Paper.pdf
https://arxiv.org/abs/2110.02796
https://arxiv.org/abs/2310.00873
https://arxiv.org/abs/1805.08974
https://arxiv.org/abs/2202.10054
https://arxiv.org/abs/2202.10054

Under review as a conference paper at ICLR 2025

Donghwan Lee, Behrad Moniri, Xinmeng Huang, Edgar Dobriban, and Hamed Hassani. Demysti-
fying disagreement-on-the-line in high dimensions, 2023. URL https://arxiv.org/abs/
2301.13371.

Christopher Liaw, Abbas Mehrabian, Yaniv Plan, and Roman Vershynin. A simple tool for bounding
the deviation of random matrices on geometric sets, 2016. URL https://arxiv.org/abs/
1603.00897.

Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax loss for convolu-
tional neural networks, 2017. URL https://arxiv.org/abs/1612.02295.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep hy-
persphere embedding for face recognition, 2018. URL https://arxiv.org/abs/1704.
08063.

Cosme Louart, Zhenyu Liao, and Romain Couillet. A random matrix approach to neural networks,
2017. URL https://arxiv.org/abs/1702.054109.

Bruno Loureiro, Gabriele Sicuro, Cedric Gerbelot, Alessandro Pacco, Florent Krzakala,
and Lenka Zdeborova. Learning gaussian mixtures with generalized linear mod-
els:  Precise asymptotics in high-dimensions. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 10144-10157. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/543e83748234f7cbab2laalade66565f-Paper.pdfl

Jiawei Ma, Chong You, Sashank J. Reddi, Sadeep Jayasumana, Himanshu Jain, Felix Yu, Shih-
Fu Chang, and Sanjiv Kumar. Do we need neural collapse? learning diverse features for fine-
grained and long-tail classification, 2023. URL https://openreview.net/forum?id=
5gri-cs4RVa.

Francesca Mignacco, Florent Krzakala, Yue Lu, Pierfrancesco Urbani, and Lenka Zdeborova. The
role of regularization in classification of high-dimensional noisy Gaussian mixture. In Hal Daumé
IIT and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning Research, pp. 6874—6883. PMLR, 13-18
Jul 2020. URL https://proceedings.mlr.press/v119/mignacco20a.html.

Behrad Moniri, Donghwan Lee, Hamed Hassani, and Edgar Dobriban. A theory of non-linear
feature learning with one gradient step in two-layer neural networks, 2024. URL https://
openreview.net/forum?id=MY8SBpUece.

Ryan O’Donnell. Analysis of boolean functions, 2021. URL https://arxiv.org/abs/
2105.10386.

Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652-24663, September 2020. ISSN 1091-6490. doi: 10.1073/pnas.2015509117. URL http:
//dx.doi.org/10.1073/pnas.2015509117.

Jeffrey Pennington and Pratik Worah. Nonlinear random matrix theory for deep learning.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/f11le/0f3d014eead934bbdbacb62a0l1dc4831-Paper.pdf.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Jorge Sanchez and Florent Perronnin. High-dimensional signature compression for large-scale im-
age classification. pp. 1665-1672, 06 2011. doi: 10.1109/CVPR.2011.5995504.

14


https://arxiv.org/abs/2301.13371
https://arxiv.org/abs/2301.13371
https://arxiv.org/abs/1603.00897
https://arxiv.org/abs/1603.00897
https://arxiv.org/abs/1612.02295
https://arxiv.org/abs/1704.08063
https://arxiv.org/abs/1704.08063
https://arxiv.org/abs/1702.05419
https://proceedings.neurips.cc/paper_files/paper/2021/file/543e83748234f7cbab21aa0ade66565f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/543e83748234f7cbab21aa0ade66565f-Paper.pdf
https://openreview.net/forum?id=5gri-cs4RVq
https://openreview.net/forum?id=5gri-cs4RVq
https://proceedings.mlr.press/v119/mignacco20a.html
https://openreview.net/forum?id=MY8SBpUece
https://openreview.net/forum?id=MY8SBpUece
https://arxiv.org/abs/2105.10386
https://arxiv.org/abs/2105.10386
http://dx.doi.org/10.1073/pnas.2015509117
http://dx.doi.org/10.1073/pnas.2015509117
https://proceedings.neurips.cc/paper_files/paper/2017/file/0f3d014eead934bbdbacb62a01dc4831-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/0f3d014eead934bbdbacb62a01dc4831-Paper.pdf
https://arxiv.org/abs/2103.00020

Under review as a conference paper at ICLR 2025

Mariia Seleznova, Dana Weitzner, Raja Giryes, Gitta Kutyniok, and Hung-Hsu Chou. Neural (tan-
gent kernel) collapse. arXiv preprint arXiv:2305.16427, 2023.

Haozhe Shan and Blake Bordelon. A theory of neural tangent kernel alignment and its influence on
training, 2022. URL https://arxiv.org/abs/2105.14301,

Vidyashankar Sivakumar, Arindam Banerjee, and Pradeep K Ravikumar. Beyond sub-
gaussian measurements: High-dimensional structured estimation with sub-exponential de-
signs. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/f3flb7fc5a8779a9%9e618el1f23a7b7860-Paper.pdfl

G. Szeg6. Orthogonal Polynomials. American Math. Soc: Colloquium publ. American Mathemati-
cal Society, 1975. ISBN 9780821810231. URL https://books.google.co.kr/books?
1d=Z20hmnsX1cYOC.

Vincent Szolnoky, Viktor Andersson, Balazs Kulcsar, and Rebecka Jornsten. On the interpretability
of regularisation for neural networks through model gradient similarity. Advances in Neural
Information Processing Systems, 35:16319-16330, 2022.

Tom Tirer and Joan Bruna. Extended unconstrained features model for exploring deep neural col-
lapse, 2022. URL https://arxiv.org/abs/2202.08087.

Nilesh Tripuraneni, Ben Adlam, and Jeffrey Pennington. Overparameterization improves robustness
to covariate shift in high dimensions. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://
openreview.net/forum?id=PxMfDdPnTfV.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. Chapter 5 of:
Compressed Sensing, Theory and Applications. Edited by Y. Eldar and G. Kutyniok. Cambridge
University Press, 2012, 11 2010. URL https://arxiv.org/pdf/1011.3027.pdf.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Sci-
ence. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
2018.

C. Vignat. A generalized isserlis theorem for location mixtures of gaussian random vectors. 07
2011. URLhttps://arxiv.org/pdf/1107.2309.pdf.

Nikhil Vyas, Yamini Bansal, and Preetum Nakkiran. Limitations of the ntk for understanding gen-
eralization in deep learning, 2022. URL https://arxiv.org/abs/2206.10012|

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and
Wei Liu. Cosface: Large margin cosine loss for deep face recognition, 2018. URL https:
//arxiv.org/abs/1801.09414\

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere, 2022. URL https://arxiv.org/abs/2005.
10242

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of
Big data, 3:1-40, 2016.

Greg Yang and Edward J. Hu. Feature learning in infinite-width neural networks, 2022. URL
https://arxiv.org/abs/2011.14522.

Yongyi Yang, Jacob Steinhardt, and Wei Hu. Are neurons actually collapsed? on the fine-grained
structure in neural representations, 2023. URL https://arxiv.org/abs/2306.17105.

15


https://arxiv.org/abs/2105.14301
https://proceedings.neurips.cc/paper_files/paper/2015/file/f3f1b7fc5a8779a9e618e1f23a7b7860-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/f3f1b7fc5a8779a9e618e1f23a7b7860-Paper.pdf
https://books.google.co.kr/books?id=ZOhmnsXlcY0C
https://books.google.co.kr/books?id=ZOhmnsXlcY0C
https://arxiv.org/abs/2202.08087
https://openreview.net/forum?id=PxMfDdPnTfV
https://openreview.net/forum?id=PxMfDdPnTfV
https://arxiv.org/pdf/1011.3027.pdf
https://arxiv.org/pdf/1107.2309.pdf
https://arxiv.org/abs/2206.10012
https://arxiv.org/abs/1801.09414
https://arxiv.org/abs/1801.09414
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2011.14522
https://arxiv.org/abs/2306.17105

Under review as a conference paper at ICLR 2025

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks?, 2014. URL https://arxiv.org/abs/1411.1792.

Jacob A. Zavatone-Veth, Sheng Yang, Julian A. Rubinfien, and Cengiz Pehlevan. Neural networks
learn to magnify areas near decision boundaries, 2023.

Andrew Zhai and Hao-Yu Wu. Classification is a strong baseline for deep metric learning, 2019.
URLhttps://arxiv.org/abs/1811.126409.

Jiayao Zhang, Hua Wang, and Weijie Su. Imitating deep learning dynamics via locally elastic
stochastic differential equations. Advances in Neural Information Processing Systems, 34:6392—
6403, 2021.

Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing Qu, and Zhihui Zhu. On the optimization
landscape of neural collapse under mse loss: Global optimality with unconstrained features, 2022.
URLhttps://arxiv.org/abs/2203.01238.

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu.
A geometric analysis of neural collapse with unconstrained features, 2021. URL https:
//arxiv.org/abs/2105.02375.

Liu Ziyin, Isaac Chuang, Tomer Galanti, and Tomaso Poggio. Formation of representations in neural
networks, 2024. URL https://arxiv.org/abs/2410.03006.

16


https://arxiv.org/abs/1411.1792
https://arxiv.org/abs/1811.12649
https://arxiv.org/abs/2203.01238
https://arxiv.org/abs/2105.02375
https://arxiv.org/abs/2105.02375
https://arxiv.org/abs/2410.03006

Under review as a conference paper at ICLR 2025

A LIMITATIONS AND FUTURE WORKS

In this study, we have focused on non-centered sub-Gaussian training data, but this framework could
be extended to more complex distributions, such as Gaussian mixtures. Exploring these broader
classes of data distributions would enrich our understanding of the model’s generalization capabili-
ties. By the way, we have found that both Alignment and Local Elasticity are more strongly emerged
by train-unseen similarity. However, it is necessary to explore how these two phenomena occur si-
multaneously. Furthermore, replacing the MSE loss with softmax cross-entropy could link this work
more directly to Neural Collapse research (J1 et al., | 2022)), providing new insights into the geometric
structures emerging during training. Additionally, studying scenarios where the parameters diverge
further from their initialization after the first step of training could offer a long-term perspective on
the learning dynamics. Moreover, There seems to be a connection between neural network align-
ment and the contraction of the Riemannian metric (Zavatone-Veth et al., 2023)). Further research
into this relationship could unveil deeper insights into the geometry of neural networks. Finally,
in this study, the average of the Alignment and Elasticity scores was analyzed, and through mul-
tiple experiments, the validity of the analysis was supported. Theoretically, this can be extended
to concentration as in [Loureiro et al.| (2021) and [Mignacco et al.| (2020), and analyzing the condi-
tions under which the Alignment and Elasticity scores concentrate around the mean is one of the
important research directions.

B EXTEND CLASSIFICATION SETTINGS TO REGRESSION SETTINGS

We chose a binary classification setup to analyze network learning, ensuring that it aligns with the
settings proposed by He & Su (2019). However, our analysis is not limited to classification tasks
alone. Inspired by works like Ba et al.| (2022)), we will incorporate a setting that reflects an regression
form to demonstrate that our proof techniques can straightforwardly extend to scenarios involving
regression setting. This straightforward adaptability is possible because our analysis applies to any
loss or model that satisfies the condition of Proposition [3.1] and Lemma [3.2]in the main text. We
argue that this is a key aspect showcasing the extensibility of our study.

Under all the assumptions stated in our paper, we define a new random variable a ~ 77(0, ﬁ] ),
and modify the assumptions from Ba et al.|(2022) for regression by replacing the centered Gaussian
assumption with a non-centered sub-Gaussian assumption, leading to the following problem setup:

x; ~SGs.t. Elzg] #0, wi= f*(z;)+e, € ~MN0,0%),

f* is a Lipschitz function, and /E,[f*2] = ©(1).
In the above setup, we define the loss as follows:
0 ={W,a}, L(X,y:0) = 5. |ly — o(XW)al|?

®)

oL 1 T 1 1 T ’
G = = [X [(W(\/NU(XW)CL —y)a ) O0c (XW)”

In this case, if we define a = a as opposed to the main text, & becomes a Gaussian with zero mean
and variance halved, so it follows the same bound structure.

Specifically, based on the sub-Gaussian bound results in A can be bounded using the
second equation of Lemma 14(i) from Ba et al. (2022) and the fact that A is rank-1, so || A|| = || 4] F.
For B, we can remove ||az||o from equationin our Lemmaproof. For C, by removing asas
from equation[30] we obtain the same bounds as the previous results.

In conclusion, these three bounds satisfy our Proposition under the same conditions, and the
same conclusion holds even outside of classification tasks. Note that 3 is defined as in the previous
setting.

C ADDITIONAL RELATED WORK

ADDITIONAL RELATED WORKS ABOUT NEURAL COLLAPSE Additionally, investigations into
the features of neural networks have led to observations suggesting that Neural Collapse does not
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actually take place internally (Yang et al., 2023), and claims that it does not contribute to under-
standing generalization (Hui et al.| 2022; Ma et al., [2023} |Galanti et al.| 2022).

REGARDING FEATURE-GRADIENT ALIGNMENT, |Ziyin et al.|(2024) argues that the alignment be-
tween features, weights, and gradients naturally facilitates the learning of compact representations.
Beaglehole et al.| (2024) investigate the Alignment of feature matrices by examining the correlation
between feature matrices and the outer product of gradients. Furthermore, He & Suf(2019) claim
that gradients influence feature structures and Szolnoky et al.| (2022)); |Chatterjee| (2020) unveil the
relation between the gradients of similar datasets.

RIEMANNIAN GEOMETRY PERSPECTIVE There is research from a Riemannian geometry per-
spective related to our result that the closer the data is to training data, i.e. , the larger |3 |, the
greater the occurrence of alignment and LE. [Zavatone-Veth et al.| (2023)) find out the decrease of
determinant of Riemannian metrics in the space i.e. volume decrease around training data. This is
related to the strong tendency of the Local Elasticity and Alignment at the point close to the training
samples.

NEURAL NETWORK THEORIES BASED ON THE TWO-LAYER ASSUMPTION  Several prior stud-
ies have effectively utilized the feature extractor assumption same to our, to interpret phenomena
observed in practical neural networks. For example, Damian et al.| (2022)) analyzed the efficient
generalization and transfer performance of neural networks, while [Tripuraneni et al.| (2021) used
this framework as a tool to study robustness to input distribution shifts. Similarly, |[Lee et al.| (2023)
employed it to analyze out-of-distribution inputs, and Bombari et al| (2023)) utilized it to investi-
gate adversarial robustness. These studies focused on understanding phenomena of neural network
representations, particularly the hidden representations allowing them to model and explain behav-
iors observed in practical deep learning scenarios. Based on this body of work, we argue that the
assumption of a two-layer network capable of learning hidden representations is a reasonable and
effective framework for analyzing neural networks without significant loss of generality.

D ADDITIONAL NOTATIONS

||| 7 is the Frobenius norm. ||||« is the infinity norm. ||-||, is orlicz-2 norm e*) Standard basis
vector with 1 at position %.

ADDITIONAL INFORMATION OF HERMITE POLYNOMIALS Hermite polynomials can be repre-
sented as the following explicit form:
nox2 db a2
H,(z)=(=1)"e> e

for n € Ny. Lastly, there are another expression:

Lz)

_1)m mn—Qm

I(n — | m
L= ml(n—2m)! 2

The probabilist’s Hermite polynomials form an orthogonal set with respect to the standard normal

7)2 . . . .. . .
weight function w(z) = \/#276_‘7 on the interval (—oo, 00). Their orthogonality condition is given
by:

| @) )= o= bt
m\T n\T € 2 4dxr = Omnpn!,
—o0 V2w

where J,,,,, is the Kronecker delta, and n! is the factorial of n.

E GENERALIZATION OF CENTERED SUB-GAUSSIAN RESULTS TOWARD
NON-CENTERED

For more detailed explanation and well known results of Sub-Gaussian we used, please refer to
Vershynin| (2018} [2010).
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Lemma E.1. Truncated Gaussian distribution which have support on (a,b) s.t. a,b € (—o0, 00) is
Sub-Gaussian.

Proof. Denote 11, 3)(0, 02) is Truncated Gaussian distribution which have support on (a,b) s.t.
a,b € (—00,00). support (N4 (0,02)) C R% Therefore, P(|X| > t) s.t. X ~ 14)(0,0?%) have
same tail behavior with Gaussian and Gaussian is Sub-Gaussian. O

Lemma E.2. Sum of non-centered Sub-Gaussian random variable is Sub-Gaussian.

Proof. If the Orlicz 2 norm is bounded || X||y, < oo, then X is Sub-Gaussian. Also, ||[EX]||,, <
C||X||y,» and Sum of centered Sub-Gaussian random variable is Sub-Gaussian. We show
[15° Xillyp, < 00, s.t. X is non-centered Sub-Gaussian.

1" Xl 11D (X —EXi)lly, + 1Y EXilly,
<D (X —EX3)|ly, + D 1EXily, ©)
<D (X —EX)|ly, +C Y |IXil [, < 00

O

Lemma E.3. (Operator norm bound for non-centered Sub-Gaussian matrix, generalization of 4.4.5
in|Vershynin|(2018)) let A € R™*", Ali|[j] is independent, non-centered Sub-Gaussian. ¥t > 0,

|A|| < CK(vm + v/ +t) wp. 1 — exp(—t?)
Alternatively, ||A|| < CK(v/m +n +t) wp. 1 — exp(—t?)
K = max; j ||A[i][j]]]y.

Lemma E.4. (Expectation of operator norm for non-centered Sub-Gaussian matrix generalization
of 4.4.6 in\Vershynin|(2018))

E||A|| < CK(v/m + /n)
Alternatively, E||A|| < CK(vVm +n), and, E||A|*> < C(m+n)

(10)

(1)

Proof of LemmalE.3|and Lemma Based on the result of Lemma [E.2] one can follow the same
proof process of [Vershynin| (2018)) O

F ADDITIONAL RESULTS OF SECTION [3.1]

For the aforementinoed A, B, and C, we obtain bounds for each operator norm as follows
Lemma F.1.

P(IIAII <o

RO AN e

]P<||]B%|| >_¢ (va + Vd)(vn + vVN) log N) < O(eN 4 e7ed 4 Nemelog™n | o= (VRHVA)?)
nvNd
]P’<||(C|| > %(2\@ + v/n)lognlog N> <2(ne 4 + ne °l8°n 4 Ne—clos’ ).
(12)
Proof of Lemma[F1|(A). Let us first define & = a3 — as. Then, we obtain
c
A= n\/INXT(ylair —|—y2a;—). (13)
Then, we can find an explicit notation of the norm as
Cc1 C1
Al = IX T (y1a] +y2a9 )| = IX Ty1(al —ag)llop
n\/ﬁ nvN (14)

Cc1

-

C1

nvN

1/2
1X Tyill2]l(a1 — az)ll2 = (v XX Tyn) a2
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), sO @a[i] is a sub-Gaussian. Use Thm 3.3.1 in |Ver-

|al|2 study By definition, v ~ N(O, 1

shynin| (2018)),

2w

P H@aH ~VN|>t) <2 lett = VN/2
2 (15)

P(lafls 1) < 27
(y{ XX 1) /2 study  Note that the U, V matrices resulting from the SVD belong to the O-group,
so there is no length transformation.
yl XX Ty = |X T3 = ||UEVT91||§ ==V
16
- Zazﬂ/T |2 > Umm Z |‘/T - 0-12any||§ = nUI211in ( )

We get (y] XX "y1) 1z VMO pmin. Omin is singular value of X which is a anistropic sub-Gaussian
matrix. With the result of Remark 1.2 in|Liaw et al.[|(2016),

Pomin < (V0 —cVd)) <e ™ (17)
Therefore, P(||A]] < C’(— — )) <2(e N 4 e7em), O
Fact F.2 (from Ba et al.|(2022))). For m € R™,n € R", M € R™*",
mn' ® M = diag(m)Mdiag(n)
lmn™ © M| < |[diag(m)|| | M]| |diag(n)]| = [mllsl|M|[][]lscr
Lemma F.3. For Sub-Gaussian R.V. a,

P(||allec < t/VN) > 1 — 2Ne~¢""

(18)

Proof. We use the Hoeffding inequality such that

B(al]o0 > f>n»(max|az|>jﬁ) <]p<U{a,|> ) Zp(|al>\ﬁ>

iid. t
= NP|( |ai| > —= | = P(]VNa,| > t) < 2N exp(—ct?
(1 = ) = FVRai| 2 ) < 2N exp(-cr)

19)
O

Fact F.4. Let a sub-Gaussian random variable v s.t. ||v||y, < k, and bounded function o, then
o(v) is Sub-Gaussian, i.e. ||o(v)||yp, < [|Allyp, < 00

Proof of Lemmal|F1|(B).
1
B= X el +y2a7) © 0L (XWh) (20)
1 T T /
IB| < WHXH ly1a) +y2ay © o) (XWo)|

IN

1
m“XH (ylalT © o (XWo)| + lly2a0 ® J/L(XWO)”>
(21)

IN

1
WHXII (yllloo 1o (XWO)l llarlloo + [ly2lloe llo’ (XWo) ||a2||oo>

1
——|X|| e, (XW, a1l|eo + |la2]|so
X1 o X (s + o)
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lo’ (XWps)|| study Use the result of D.4 in [Fan & Wang| (2020), which is hold for orthogonal
columns. X is sampled from continuous support distribution c1,ce. The first vector is linearly
independent with probability 1 due to the continuous support of its distribution. For the second
vector, which is drawn independently, the probability that it lies in the span of the first vector is 0,
as it also has a continuous density. This reasoning extends to n vectors, implying that, with high
probability, they are orthogonal or nearly orthogonal because no vector falls into the span of the
others. Thus, VB > 0 following is hold.

P({lo | = C(Va+ VN)A,B}, Az) < 2¢”N

- 2112 2 2 (22)
A = {IWoll < B} (W — 1) <B}}.
i=1
Therefore,
]P)(”O'/LH > C(\/ﬁ + \/N)/\UB) < 2¢~°N P(Ag) (23)

P(Ap) study We choose t = C\/E, B= C\/g.
CASE OF [|[Wy| < B By LemmalE.3]

(VW > 2R+ V) < 2N o Bl > €y Sy <2
Therefore, ||[W|| < B at least w.p. 1 — 2¢ =N

case oF YN (|Wi]||? = 1)2 <B2 By definition, | Wo[i]||> = 1,50 0 < B2 w.p. 1.
We know P(Ag5) < 2=V,

d
P([lo’ || > C(vn+ \/N)VN) < 2e~N (25)
Use Lemma|[F.3] and[E3]
N /N2
o’ |l < C(\/er \/ d) w.p. 1—C(emN 4 e7d) (26)
lafloo < % wp. 1 — 2Ne—<t @7
|X]| < vn+Vd+t wp. 1 — 2", (28)

In summary, we get

B < v (2N ) L

lett =logn, ¢ = vn+vd

c 2
P(|B|| > —— (vn + Vd)(vn + VN)log N) < C(e™N 4 ¢ ¢ 4 Ne clog"n 4 o= (VRHVD?),
nvNd
(29)
This compelete the proof. O
Proof of Lemma[F1|(C). We know that ¢’ is bounded, so ||¢o’||p < A\, vVnN
1
C= ——XTU(XWO)(alaI + aga;) © o' (XWy), (30)

nN
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ans we can bound the norm as follows

1
ICl < < IIXI(leara) © ' + [loazas © o'[))
1

< X lloaillcliar ool + ll7asllo lazlloc o) &
n
As
< Xl ol + llrazl clla)

Control of ||oalloc Lett = vd. Given X s.t. P(|X[i] — vd| > Vd) < 2¢=°", consider one
element o (X [j]" Wo)a = Z? a;o (z[5]T Woli]).

We know ali],/nW[i] is an independent centered sub-Gaussian, and use Fact [F4] then
ST

a(%\/NWO)a is sub-exponential and mean is zero, since |la;o(z[j]T Wo[i])|ly, <

llailly,llo (23] T Woli]) ||, < oo. Apply the Bernstein inequality for the sub-exponential,

P(lo(X[j]Ta)| > logn given {|X[i] — Vd| > Vd}) < 2¢~¢1o¢"n, (32)
]
By LemmaIP’(||a||oo <t/VN)>1—2Ne " and Lemmawitht =+d

P(ucn >

For every element [|o(XWo)a|ae < logn w.p. 1 — [2ne—¢log” n+2ne*

C ) i .
ﬁ(2\/& ++v/n)lognlog N) < 2(ne ! + ne=clos®n 4 Ne—clog’® ™). (33)
n
O

Remark E.5. In the proportional regime, as n, d, N — oo, these quantities can be interchanged to a
constant. Thus, Lemma[E1]is reformulated as follows

P(JA[l < #/vn) < Ce™™)

ClogN _ elog?
> < cn clog™ n
]P’<||]B%|| > > < C(e™™ +ne ) 34
log? N 2
P(ncn > C‘j) < O(ne=™ 4 ne~e1o8"n)

Proof of Proposition[3.1} Using ||Go — A|| = B+ C|| < ||B|| + ||C|| and Lemma|F.3]

log?n logn

P(HGO _AlzC
n

log? 2
) < IP(IIGO —Alz 0By Oin)) < Cne~cg’n (35)

Therefore, almost surely, in the proportional limit,
log’n k Clog’n Clog’n
= 7*7 < A=

nk /n K

< log? n

va =" m

IGo— Al <C (IGoll + 1Go — A])). G36)

O

G ADDITIONAL RESULTS OF SECTION [3.2]

Lemma G.1. Given dataset D, D

A Clog'/?n
A. Ma = maxlgiSN \a2| S 7\%

wp 1 —2neclogn
B. My = maxj<i<n| < X[z], B>]< C’logl/2 n, wp. 1 — 2ne—clogn
C. Mw, £ SuPg>1 ||(W0W0T)ok|| <C

D. |IX]| < Cva
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E. VN||G|| = 0p(1)
F||A%k|] < ||A]F

Proof. For A, B, C, and D, we employ proof techniques adapted from Moniri et al.| (2024).

For A, B, by hoeffding inequality #(|X;| > t) < 2e~<" for t = log'/?n, and use a;, (X[i], B) is
Sub-Gaussian.

For C, refer Moniri et al.|(2024).

For D, by Lemma[E.3]and the proportional regime.

For E, by Lemma[F.1]||G]| < [|A]| + [[B|| + [|C]| = Op(J; + %2 4 lo'n) — (L)

For F, refer Bai & Silverstein| (2010) Corollary A.21. O

Corollary G.2. By Propositionand D, Ein Lemma we have w.p. 1 — o(1).

log”n
Vvn

Remark G.3. Remark Wi = Wy + ny/nG, so XW; = XW, + ny/nXG.

IXGT — i XBa"|| = O ) (37)

Proof of Lemma[3.2] k = 1 is trivial with above statements. We follow Moniri et al. (2024) for
k > 2. We need to show 3C' > 0, w.p. 1-o(1)

(XGT)* — b (XB)H (k) T|| < CFn—5log™ n (38)

(XGT)°k = (XGT —aXBa’ + ¢ XBaT)ok
= Z < ) “Tdiag(XB)°*FI(XGT — ¢ X Ba)* diag(a)°* =7 by binomial theorem

+ck d1ag(X5)°kdlag( )k (39)

k
Thus, (XGT)°*—c¥(XB)%(aF) T = Z <§) c’f_jdiag(f(ﬂ)o(k_j)(XGT—clf(ﬁa)ojdiag(a)o(k_j)

j=1

(40)
We have to norm bound RHS of equation 40|
ldiag(X5)° ) (XGT - 1% ) diag(a) |
< [|diag(XB)° "] |(XGT — e X )| [|diag(ar)* 7| @D
< (M, Mp)F 7 |(XGT = 1 X Ba)|) by Lemmal[G.1|A, B, F
In summary, w.p. 1 — o(1)
k 1/2 k—j 2 J
- - log’“n log“n
X Tyok _ Kk X ok (OR\T|| <« 42
I(XG )™ = (XP)7 (« )ILC; —a n (42)
O

Remark G.4. The definition of gradient G and the size of the norm are different between [Moniri
et al.| (2024) and our paper, but both produce the same results as above, up to scaling factor ﬁ
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H STUDY OF EXPECTATION OF HERMITE POLYNOMIAL

The inner product between a random Gaussian vector x and a vector u, v, where u, v corresponds to
a column of the weight matrix W or f3, is substituted into the variable of a Hermite polynomial and
its expectation is derived.

We have analyzed various macroscopic results regarding the feature space of a neural network using
Hermite polynomials and different activation functions. We have cited previously known facts, while
our derived results are presented without explicitly marking them as new. We believe these findings
will strengthen our paper and aid in the analysis of dynamics across different feature spaces.

H.1 EXPECTATION OF A PRODUCT OF TWO HERMITE POLYNOMIALS

Here is the result of the expectation of the product of two Hermite polynomials, utilizing the orthog-
onality of Hermite polynomials.

Lemma H.1 (Orthogonality of Hermite polynomials from Lemma C.1 Moniri et al.| (2024)). See
also derivation in Chapter 11.2|0’Donnell (2021)).

Let (Z1, Za) be jointly Gaussian with E[Z,] = E[Z5] = 0, E[Z}] = E[Z3] = 1, and E[Z, Z5] = p.
Then for any ky1,ks € {0,1,--- .}

E[Hkl (Zl)sz (ZQ)] =k !pkl 1k,
In the other form, ford € N, Z ~ 1(0, ), a,b € S471,

E[Hy, (Z"a)Hy, (ZD)] = k1!(a" )" 1y, =y,
Fact H2. Let W € RN s.t. Vi Wi € S* L. For Z ~ (0, 1),

EznonH;(WT Z2)Hy (W Z)T] = k(W TW)*I 1j_y (43)
Ezno.nH; (W' 2)TH (W' Z)] = kY |[Will|[¥ 1z = kN1, (44)
Proof. We apply H; element-wise. By Lemma@, we can acquire the above result. O

The following remark presents a modified condition of Lemmafor the case where a, b ¢ S ! in
Lemma In this case, the variances of Z " a and Z T b are not equal to 1, and the covariance may
exceed the bounds [—1, 1]. Under this condition, we will compute the expectation of the product of
two Hermite polynomials as in Lemma [H.T]

Remark H.3 (the modified condition of Lemma|H.1). Ford € N, u,v € R%, Z ~ 1(0, 1),
Zy = (u, Z) ~ N(0,|[ull3), Z2 = (v, Z) ~ N0, [[v][3).

Then, Zy, Zo is p == (%, 727 ) - correlated

[ull? 1ol
worr(21. 23) — —_EZZ _ Ey(u,2){v,2)
V(Z1)\/V(Z2) [l ] [l
[ull {]ol] [lul| {]ol]
_ (wv)
[l ] [l

Additionally,
Z O\ (llul?® (u v>>
~MN , ’ 46
(%) ((o) (G o
We first introduce Isserlis’ theorem, which is essential for the proof. This theorem allows the ex-

pectation of the product of centered Gaussian random variables to be expressed as a product of
covariances, making the computation feasible.
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Theorem H.4 (Isserlis’ Theorem (Isserlis, {1918 |Vignat, [2011)). Let X = (X1, -, Xq) Gaussian
random vector s.t. E[X] =0, and let A = {a1,- -+ ,an} be set of integers s.t. 1 < a; < d, Vi.
Denote Xa = [],.ca Xa;, and Xg = 1. Let [[(A) denote partitions of A into disjoint pairs and
o € [[(A) is pair.
EXal= > ][ ElXaXo,laisewen (47)
o€[I(A) (¢,j)€0

Now, we generalize the assumptions from the previous works so that Lemma[H.T|holds for arbitrary

vectors as Remark [H.3] This could allow the weights of the networks to become analyzable when
they go beyond the assumption of lying on the unit spheres.

Theorem H.5 (Generalization of Lemma[H.T|for centered Gaussian distribution). Ford € N, u,v €
R, g ~1(0,1a), (u,9) ~ N0, [[ul[3), (v, 9) ~ N0, [Jv][3).

Eg[H;(u" g)Hy(v' g)]

_ Mww)? (P = DRI =) kT o
- ||UH2||U||2 ]‘J:k ||u‘|2||v||2 Eg[( g) ( g) ] (48)
(llv[]* - 1) (llwl” = 1)

+ W]Eg [Hj(uTg)(ng)k] + WE‘(] [Hk-(UTg) (uTg)j]

Remark H.6. The same results can be derived as in Lemma[H. 1] when the variance is 1 in Thm.

Proof of Theorem|H.5] (Generalize Chapter 11.2 [O'Donnell| (2021)’s derivation to non unit vari-
ance)

E..n (0,02) [et’z] study

First, we study about E,_» (0, 52) [e%9] in order to analysis non unit variance case.

t 1 tg -2
ngn(o,a?)[e g] = eJe 2.2 dg

2ro

]- 1 _ 2t 2
= m0€§t2 /exp(—%) complete square (49)

= e2

Ez 2z [exp(sZ + tZ')] study

Studying Ez 7z [exp(sZ + tZ')], we can derive what we need to show.

Ez z/[exp(sZ 4+ tZ")] = Egn(o,n lexp(s(u, g)) + exp(t{v, g))]

= HEg~n(0,1) [exp((su; + tv;)g;)] Use equation [49] 50

1 1 1
= TTexp(g(sus + 1)) = [T exp(gs?lull® + (w,v)st + 5¢2o]?)
Therefore,

1 1
55 llul®) exp(tvT g — S#[[v][*)].

exp({u, v)st) = Eylexp(su’g — 5

Facts for proof : one can verify below propositions with simple calculations.
Let Pj(2) 4+ 27 = Hj(2),Cy, = |[ul[* = 1,a >0

Let f(s) = exp(sz — 35°), f(s) = exp(sz — Fas?)

7.3.A. By Taylor expansion, exp((u, v)st) = 322 %(u, V)Tt
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7.3.B. By Taylor expansion, f(s) = .72 %f(") (0)s’
7.3.C. fM(0) = Hy(2) + CuPp(2)

By using the fact that exp((u, v)st) = Ey[exp(su’g — 32|[u||?) exp(tv " g — 1¢2||v||?)], we can
eliminate the different orders of s ¢ by a Taylor expansion and equating all monomials of the resulting
polynomials.

3 0 Lk = By [(Hj(uT g) + Py (T 9)Cu) (Hy (07 g) + P07 9)Co)]
(

= E, | (H;(ug) + (H,(u"g) — (u" 9)")C)(H; (vTg) + (H;(0Tg) = (0 T9))C)] (51,
=l 201 2B [H; (0 ) H; (0T )] + (Il 2 = 1) ([lel|* = DE, [0 9)? (u" g)’]
[l (ol = DB [H; (T g) (0T g)] = [0l 2l = VE, [H; (0" ) (u" 9]

Therefore,

Ey[H;(u"g)H;j(v"g)]
B T A (1 G V1L et Y
= Tl P2 5= TPz el )oY (52)

v||2 = ‘ ull2 — ‘
Vs, o 0T+ WU, 07 Wy

Note that the result of Lemma[H.7] can be applied for concrete calculation, and conclude the proof.
O

Lemma H.7. Ford € N, u,v € R%, g ~1(0,1,), Z1 = (u,g), Zo = (v,g).

7, 0 |l |2 <u,v>)
2) ™" 53
(Z2> <(0>’(<U»U> 1Els (53)
X, is defined at Thm.

1%)

o (—1)m
Ez, 2,[Hj(Z1)Z5] = j' ) (G = 2m)izm > I ElXa,Xa,)li—2mis cven
m=0 : ce[1({{Z1} xj—2m}Uu{{Z2} xk}}) (p,q)Ec
EZ,ZZ[Z{ZQ = Z H E[Xaanq]ljJrkiseven
o€lT({{Z1} xjYu{{Z=2} xk}}) (@) €0
(54)
Proof. By explicit formula of Hermite polynomials
S s
THAZNZN = _gimgk 55
Ez, 2, [H;(Z1)(Z2)"] = j! Z ml(j — 2m)!2mE21’22 (24 Z5] (55)
Therefore, we need to figure out E21,22 [ZVZ3]. We know Z,Z, is mean zero Gaus-

sian, so we can apply Thm. with A = {{Z;} x p} U {{Z2} x q}}, E[ZVZ]] =
ZO’GH(A H(q— U)egE[X Xau] p+q is even

O
Corollary H.8 (Corollary of Lemma[H.7). Remark Z; ~ 1(0, ||u||?) For the case k = 0,
Ezl [Z{] = ”u”J(] - 1)”13 is even (56)
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Proof.
E21,22 [Z{ZS] = EZ1 [Z{] = Z H E[Xapxozq]lj is even
2U€H({Zl}><j}) (p,9)co ‘ 4 57)
= Z H ||UH 1j iseven — Z ”qulj iseven — (] - 1)””””]1] is even
c€l1({Z1}x4}) (p.g) €0 o€l1({Z1}x4})
O

H.2 EXPECTATION OF A PRODUCT OF TWO HERMITE POLYNOMIALS—GENERALIZATION
TOWARD NON-CENTERED GAUSSIAN

We will change Theorem [H.3] and Lemma [H.7) to adopt a generalized Gaussian assumption with a
mean of zero.

Lemma H.9 (Taylor expansion of Hermite polynomials from Lemma C.2 Moniri et al.|(2024)). For
any k1, ko € {0,1,--- ,}and x,y € R,

k
Hy(x +y) = Z <I;)$ijj(y)- (58)

Theorem H.10 (Generalization of Thm. for any Gaussian distribution). Ford € N, u,v € R,
E~N0,1), g~N(, %), Zy = (u,g) ~ N(u"u,u"Su), Zy = (v,g) ~N(p"v,v" Zv).
Ey[H;(Z1)Hy(Z2)]

S »3 () (5)emmremwye

=0 B=0

l j— )T Sv)i al; - (uTZu—l)(vTEv—1)Eg[(\/m£)jfa(\/mg)kfﬁ]
(

g —
uTZuUTZv jma=k=p uTTuv T v

2 Vg oV S (Vo) + 2 (TS (VTS

Y uT Zu
(59)

Proof of Theorem@l By reparametrization i.e. Z; = Vu ' Sué +u' p, Zo = VoT Své +v ' p,
and Lemma

Hj(\/mﬁ + uT/L) - Z (i) (uTﬂ)aHj—a(\/mf). 60)
. UTQ)HIC(Q)TQ ] [ (\/mf +u ,U,)Hk(\/mf—l—ﬂ M)]
J J T " ; s F
az:% <a> Hj o \/qu ] [Z <5> ) Hk_g(\/ﬁg)} o)
ik k
gy (D (6) ") (0" ) Be[Hj o (Vi T Su) Hy— (Vi T S0€)]

a=0 p=

= T T
Use same proof technique Thm. with (\/%g) ~MN ((8), <5T gz ZT gg) )
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Ee[Hj—o(VuTZué)Hy_g(Vo T XvE)]
(.7 - a) ( TEU)] aljfa:kfﬁ o (U’TEU B 1)(UTEU _ 1)Eg[(\/m€)j—a(\/m§)k—5]

T Suv T Yo uw! Yuv T Xv
+ME [H; (,/ ™S 5)(1/ ™™ g)kfﬁ]JrME [(‘/ > g)jfaH (‘/ 3
UTZU g j—a u U v v UTEU g u U k—p v v
(62)
In summery,
Eq[H;(u"g)Hi(v' g)]
ZZ( ) (5)wrweeay
a=0 =0
T o TS, TSy, _
l oy~ I T (VT )
PO g VTS (Vo e ) + g (VT (Vo )
(63)
O

The following Corollary which calculates the Expectation of the Power of a Gaussian Random
Variable can be derived using the binomial expansion with the reparametrization technique and
Corollary It corresponds to the case £ = 0 in Lemma

Corollary H.11 (Corollary of Lemma [H.7). Given B, let Gaussian Random Variable 7 ~
N(u' B, BTEPB), then expectation of power of Z is

k
k _
Ez(Z2)* = Z <t)(HT5)kth~n(o,5Tzﬁ) [Z"]

t=0 (64)

—Z( ) (" B)EH(t = 1)1 (BTSB)2 Liis even -

The following corollary, which computes the Gaussian expectation of Hermite polynomials, is de-
rived from the exphclt form of Hermite polynomials and Corollary [H.TT] It corresponds to the case

k = 0 in[Theorem H.10l
Corollary H.12 (Corollary of [Theorem H.10). Ford € N, given w € R%, & ~ N(p, ),

L

|3

I n—2m
D™ — Dl (n—2 ;
Z ( ) 7 ) n. (n ’ m) (leu/)n72m 1( TEU})§ 1i is even

B [Hn(w! 2m ml(n — 2m)! i
m=0 =0

(65)
I DETAIL OF ALIGNMENT ANALYSIS
Proof of Theorem[|:2] Let »y, = cfepn®.
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When z ~ 1(u, ), we approximate F' to dominant term Fj, then

Er,m’,@[ﬂ( )TFZ( /)]
l

—Emz 0 FO +ZD7€ BT k ok) (F()(x/)_’_znk(ﬁTm/)kaok)T}

k=1 k=1

= Exw’ﬁ |:<F0(JJ), F0($/)>

l l
2), Y mp(BTa)fak) + (Fo(a), > me(BTa) a®) + Y mem;(BTa)F (82 > a[r]jﬂ
k=1

k=1 k=1,j=1 T
Ld+RB+EC
(66)
L1 o: Eg|Ex[oc(W, 2)] Ey[o(W, 2')]] sTUDY
Let 3, m,s £ G st (7).
By Corollary [H.12]
N o L%J n—2m oo \.%J o—2p
oA =, [Z Z Z CnCodn,m,ido,p.q
a=1n=1m=0 ¢=0 o=1p=0 ¢q=0 (67)
X (WO[G]TIU’)n_Qm_i(WO[a]TZWO[a])imliiseven
X (WO[G]T:U’)O_QP_Q(WO[a]TZWO[a])Q/21qiseven:|
We know, Wy ~ RN 117 [i] ~ Unif(S9-1).
Denote w = Wylal,t =n+o0—2m —2p—i—q, k= HTq.
E[(Wola] " p)" =™~ (Wolal "SWola]) "> (Wola] T 1)° =P~ 4(Wy[a] " SWola])¥/?] 68)

=E[(w' 1)"(w' Sw)"]

Use covariance matrix property, which is diagonalizable ie. ¥ = QAQ. w'Yw = w' QAQ T w.
Letz=Q wand i =Q pthenw'Xw = 2TAz = ", \;22. By symmetry, z ~ Unif(S9~1)

Therefore, using multi-index notation, where | = 37" | o, a; > 0, and () = a

Euf(w' @) (wSw)*] = Ez[(zTﬂ)t(Z Aiz})"]

) %0 >.n 2w
P00 ) EUREg

laf=t |B|=Fk

The term related to p of & is associated with the random value W{a]. Therefore, taking expecta-
tion on network parameters, & only depends on unseen distribution parameter u, > without train
distribution.

In summery, let S(r, 5,4, 7) = E.[2] 2]],

- n+o—2m-—2p—i— itg :
R(nam77’a07p7 qaa7570n7007N) = Ncnco:n,m,ino,p,qli,qa.reeven( a P q) ( [23 ), which
are deterministic function, then
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=n+o—2m—2p—i—q |B|= igq

(70)
d d
R(TL, m, ia o,p, 4, O‘767cn7cmN) H H ﬁ?l)‘?js(ala 5]'7 la])

1=1j=1

12 B:2Y_ m(Bk, Eula®]) sSTUDY

Byt By o [0(W, )(ﬁ ) | study
Let Z; = (Wyla ] x), Zo = (B, 2},
then Z1[Wola] ~ 1(Wola] " 1, Wo[a] " EWola]), Zo ~ N(B T u, BT EB).

Therefore, by Corollary [H.T1]and

=E, Z ¢;Ez, H;(Z1)Ez,(Z2)"

J .
_i 4] ]imzk: j=2m\ (R (CD)7e G- k-t -l
R i ¢ 2m m'(] - 2m)| k—t is even 1iiseven

B (Wolal )2~ (Wafal = Wala)? | (476" (57 E0)'F

:i ] Z i Z Z (] - 2m> ( ) (j - Z;n — z) (2’) (—1)7"c]2»£z ;n}();!j!;z)? t—1)!

d d
k—t
H H 5“)\5”S(C¥uy Qg U,y U) (/LTﬁ)t : (5T25)T1k—tis even Liis even
(71)

The term related to u of By [a] is associated with the random value Wa]. Therefore, Va, % [a]
depends on unseen distribution parameter 1, ¥ and 3 1 with same value.

Eo[a°¥] study  We know a1 [i], as[i] ~ 1(0, ), so afi] = (a1 — az)[i] ~ 11(0, Z). Therefore, by
centered gaussian moments,

—~

B2 .
Eo[a[r]"] = wg()k)'(N)z]-kiseven (72)
E))

Since E, [a[r]*] is nonzero only when k is even, and even condition of k — ¢ is exist in 9By[a], taking
the absolute value of 57 1 within 9B, produce equivalent results.

Therefore, in B = 2 Z;Zl (B, Eq[a°*]) is depends on p, 2, |37 pu| and BT
L3 @Y menEalY, ofr)/ %)%, . sTUDY

Gkt Ea o [(B72)" (8" 2")7] study
Let Z, 2 8Ta ~N(B" p, BT £A), same as Z4. Using Corollary [H.11}

ZJZ2 ZZ( )( ) ]7571)”(]671571)”( T5)5+t(ﬂ—r26)] §+k f J s, k—t are even
s=0 t=0
(73)

Therefore, the term related to y in €; . is only dominated by the discriminative data 3, independent
of the randomly initialized parameters.
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>, Ealalr]**] study
it

ZE J+k ( ) (N)le+kandiiseven (74)

Since E,, [a[r]?T*] is nonzero only when j + k is even, and even condition of j — s and k —t are exist
in Gla), so s + t is even in this conditions, taking the absolute value of 47 within €}, produce
equivalent results.

Therefore, in € = 22:1 =1 P Ea D, a[r)iT*|%;  is depends on |3y and BT

J  DETAIL OF LOCAL ELASTICITY ANALYSIS

Proof of Theoremd.3]
l l
E.ol|Fi(x) = Fo(@)|]* = Ev o) cfern®(BT2) (@) T [ f'enn™ (BT 2)™ (@), (75)

k=1 m

For E[(z " 8)k*™], by Corollary

1

E,[(z" )™ = Ez~n(o,1)[(5TM +V/BTEBz)F™

k+m

> (M) e e

(76)

E
+ 1
3 ©

(k * m> (BT )keriZ(ﬂTEﬂ)%(l - ]-)” ]-iiseven

=0

Remark 2, £ cFcpnF. Finally,
Eq0||Fi(z) — Fo()]]”

l l k+m
m m k +m m—1i i o om
= g § k+ Ckcmnk+ § ( ) (5T )k+ (5TZB) 2 (Z - 1) Liss evenEa[a "o ]

1

k=1m=1 1=0
l l k+m
k+m m—1 i m
= Z B ( )(BT ) (ﬂTEﬂ)Hfl”ZE [+ ).
=1 m=11{=0, even

(77)

Taking Expectation over Network parameters, one can acquire

l I k+m k ; N(k b
Z Z Z Dkn ( * m) (BT )ker Z(/BTEB)g(Z - 1) (m(_;))(li—) 2 1k+m and i is even
k=1m=1 i=0 2
(78)

Therefore, k + m — i is even. For clarity, we use absolute values,

1 I k+m
_ k+m (k+m) 2 ktm " T |k+m—i QT
_lellzmk m( 'L >2k+m(k+,m) (N) ( ) |ﬁ //4| (/B Eﬁ) 1k+mand115even
(719)

For clearity, we define constant

k
KLE(k,m,LN,C]_,Ck,Cm,n) £ nkn7n( +m> T
(]
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which depends on constant k, m, ¢, N, ¢1, cx, Cp, 1.

Yy

l

1m=1

k

m

KLE |6T;U’|k+m_i(ﬁ—rzﬁ) z 1k+m and i is even

(80)

k1 g depends only on the constants k, m, i, N, ¢1, ¢k, ¢, 1), and is independent of the parameters of

the data distribution.

O
K ADDITIONAL INFORMATION OF EXPERIMENT 1, 2
K.1 ADDITIONAL RESULTS FOR ALIGNMENT AND ELASTICITY
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Figure K.1: Sefup 1 Observation of Alignment and Elasticity (y-axis) derived from the LHS of Thm.
across different e (blue, lower x-axis, exactly overlaped) and 3 ' 11 (red, upper x-axis) values.
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Figure K.2: Experiment 2 The observation of Alignment and Elasticity (y-axis), derived from the
LHS of Thms. and across different values of 3"y (x-axis) with varying R.
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Figure K.3: Experiment 1 The x-axis is displayed on a logarithmic scale. Observation of Alignment

and LE (y-axis) derived from the LHS of Thm. 4.2} A3 across different e (blue, lower x-axis) and
BT (red, upper x-axis) values.
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K.2 ADDITIONAL RESULTS FOR RECALL@ 1

We present the cosine similarity Recall@ 1 experiment for the remaining datasets not included in the

main text in this section
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Figure K.4: Recall@1 (y-axis) measurement of Exper 1, 2 of features across different 5 ' ;1 values
(x-axis). The blue line represents the clustering performance measured using the features in their
initialized state, the orange line reflects the performance after one step of training, and the green line
indicates the improvement, i.e., the difference between the two. For Setup I (top), the x-axis is on a
logarithmic scale, whereas for Sefup 2 (bottom), the x-axis is on a linear scale.

K.2.1 INNER PRODUCT RECALL@ 1 OF EXPERIMENT 1

In this experiment we use Recall@1 with Inner Product similarity. Similar trends are
observed in the Recall@1 of the Inner Product similarity as in the Cosine similarity. The Recall@1
of the Inner Product similarity is also maximized when the alignment is high.
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Figure K.5: Recall@ 1 measurement using Inner Product similarity
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K.3 EMPIRICAL VALIDATION OF THE LINEAR RELATIONSHIP BETWEEN GENERATED DATA
PARAMETER ¢ AND 31 4 IN EXPERIMENT 1

As shown in|Figure K.6| we observe a positive, linear relationship between e and 3z as e is varied.
This confirms the validity of our test data generation method based on e.
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Figure K.6: We calculated 3 from Training Datasets 1, 2, and 3, and then computed 3 11 by adjust-
ing e to determine p in the test data. The x-axis represents e, and the y-axis shows the values of

B p.

K.4 ROTATION MATRIX GENERATION PROCESS OF Setup 2

To generate a set of rotation matrices with diverse magnitudes of rotation, we constructed an algo-
rithm that samples k£ = 300 random matrices, each formed by adding i.i.d. Gaussian noise matrix
of varying variance to the identity matrix /. The process ensures the generation of rotation matrices
with varying extents of rotation, from slight to more substantial deviations from the identity matrix.

The rotation matrices are generated as follows:

1. A matrix is initialized as I + ¢ - M, where M is ai.i.d. standard random Gaussian matrix.

2. Using the QR decomposition, we orthogonalize this matrix to ensure it forms a valid rota-
tion matrix.

3. Finally, if the determinant of the resulting matrix is negative, we flip the sign of the first
column to maintain a determinant of +1, ensuring it is a valid rotation.

In summary, this method provides a collection of matrices that progressively deviate from I, allow-
ing us to observe and sample rotations of increasing magnitude.

K.5 ADDITIONAL DISCUSSION OF RECALL@ 1 EVALUATION FOR EXPR 1

The Recall@1 results of Expr 1 setting indicate three phases in Recall@1 outcomes.

The first phase: The learning process fails to improve performance either because the training and
evaluation data are too distant, as predicted by our theory, or because e is too small for the fea-
ture extractor to achieve separation. We interpret that either of these factors contributes to the lack
of performance improvement. The second phase: Performance improves as the similarity between
training and evaluation data becomes appropriate, allowing better Recall@1 after training. It is note-
worthy that the improvement also increases along with larger e. This indicates not only the increased
e leading to greater distances between evaluation features but also the Recall@1 improvement with
e as our theory. The third phase: Effective feature separation has already occurred; thus, even with
sufficiently close training data, the learning process does not enhance Recall@1 performance.

We conclude that the first and third phases represent unsuitable configurations for retrieval tasks,
while the second phase provides a dataset which effectively supports training for retrieval tasks and
is explainable by our theory.

L ADDITIONAL SETTINGS FOR EXPERIMENT 3, 4

In Table 2] we provide the detailed parameters for the experiments.
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Experiment 3 Experiment 4
Model ResNet18 ResNet50
Learning Task | Binary Classification Multi-class Classification
Loss Mean Squared Error | Norm Softmax (Zhai & Wu[[2019) |
Epoch 20 30 B T
Batch Size 96 (Full GD) 75 (use 3 classes with 25 samples)
Optimizer Adam SGD
Learning Rate 0.001 CARS: 0.01 /CUB: 0.001

Table 2: Comparison between Experiment 3 and Experiment 4

M ADDITIONAL INFORMATION FOR SETUP 3

For gradient stability and fair evaluation, all classes are truncated to include only 48 images. The
batch size is set to 96 for Full gradient descent. Remark that, to align the experimental setup with
our theoretical setting, two classifier heads and sign flipped label 1, —1 is used.

N ADDITIONAL RESULTS OF EXPERIMENT 3

The performance of the two classifier heads during training is shown in [Figure N.1l The results
of the empirical validation without Kendall’s W aggregation are presented in [subsection N.]| for
the model trained with the CARS196 dataset and in for the model trained with the
CUB200 dataset. Consistent with Kendall’s W calculations and theoretical analyses, in most cases,
we observe that LE, alignment, and |3 2| individually rise and fall in similar trends during training.
The gray line represents metrics calculated on the entire dataset, while the colored lines denote
individual test classes. Since classes were randomly sampled per seed, the same color represents the
same class only within a single seed.

(a) Ist seed for the CAR (b) 2nd seed for the (c) 3rd seed for CAR (d) 4th seed for the CAR
dataset train CAR dataset train dataset train dataset train

(e) Ist seed for the CUB (f) 2nd seed for the CUB (g) 3rd seed for the CUB (h) 4th seed for CUB
dataset train dataset train dataset train dataset train

Figure N.1: Classification accuracy measured with training data. As two classifier heads were used
in the theoretical setup, two accuracy values are plotted for each setting.
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N.1 TRAIN MODEL WITH CARS196

N.1.1 1ST SEED

@ |87 ul (b) Align (c) LE

Figure N.2: The 1st seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CAR dataset’s test set.

@ 18" (b) Align (c)LE
Figure N.3: The 1st seed of the CAR dataset training. Results were computed using the features of

five randomly selected classes from the CUB dataset’s test set.

N.1.2 2ND SEED

@ (8" p (b) Align (©)LE

Figure N.4: The 2nd seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CAR dataset’s test set.

@ |8 ul (b) Align (©)LE

Figure N.5: The 2nd seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CUB dataset’s test set.
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N.1.3 3RD SEED

@ |87yl (b) Align (¢)LE

Figure N.6: The 3rd seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CAR dataset’s test set.

@ |8l (b) Align (©)LE

Figure N.7: The 3rd seed of CAR dataset training. Results were computed using the features of five
randomly selected classes from the CUB dataset’s test set.

N.1.4 4TH SEED

@ |87yl (b) Align (¢)LE

Figure N.8: The 4th seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CAR dataset’s test set.

@ 8" p (b) Align (©)LE

Figure N.9: The 4th seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CUB dataset’s test set.
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N.2 TRAIN MODEL WITH CUB200

N.2.1 1ST SEED

@ |87 ul (b) Align (c) LE

Figure N.10: The 1st seed of the CUB dataset training. Results were computed using the features of
five randomly selected classes from the CAR dataset’s test set.

@ |87 ul (b) Align (c) LE

Figure N.11: The 1st seed of the CUB dataset training. Results were computed using the features of
five randomly selected classes from the CUB dataset’s test set.

N.2.2 2ND SEED

@ |87 pl (b) Align (c) LE

Figure N.12: The 2nd seed of the CUB dataset training. Results were computed using the features
of five randomly selected classes from the CAR dataset’s test set.

@ |87 pl (b) Align (c) LE

Figure N.13: The 2nd seed of the CUB dataset training. Results were computed using the features
of five randomly selected classes from the CUB dataset’s test set.
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N.2.3 3RD SEED

@ |87yl (b) Align (¢)LE

Figure N.14: The 3rd seed of the CUB dataset training. Results were computed using the features
of five randomly selected classes from the CAR dataset’s test set.

@ |8l (b) Align (©)LE

Figure N.15: The 3rd seed of the CUB dataset training. Results were computed using the features
of five randomly selected classes from the CUB dataset’s test set.

N.2.4 4TH SEED

@ |87yl (b) Align (¢)LE

Figure N.16: The 4th seed of the CUB dataset training. Results were computed using the features
of five randomly selected classes from the CAR dataset’s test set.

/[beta mu|

@ 8" p (b) Align (©)LE

Figure N.17: The 4th seed of the CUB dataset training. Results were computed using the features
of five randomly selected classes from the the CUB dataset’s test set.
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O ADDITIONAL RESULTS OF EXPERIMENT 4

We provide non aggregated data for the experiment 4 in this section. The data is presented in the
form of tables. The tables are as follows:

R@1 v. Align  p-value Recall@1 Recall@2 Recall@4 Recall@8 final Avg. Align
0.3195 0.0013 93.4694 96.6056 97.9707 98.7947 829.4791
0.2386 0.0180 93.7523 96.4949 97.9461 98.7332 858.0315
0.1052 0.3025 94.0844 96.7409 98.1798 98.9792 857.6394
0.2864 0.0043 93.3096 96.4457 98.0445 98.8439 827.9364

0.237440.0942  0.0000 93.6539+0.3404 96.57184+0.1311 98.0353+0.1050 98.83784+0.1046 843.2716+£16.8294

Table 3: Measurement from CARS196 trained model. R@1 v. Align is Pearson correlation between
Recall@1 and final Avg. Align. Recall@k and final average Alignment is measured after training.

R@I1 v. Align  p-value Recall@1 Recall@2 Recall@4 Recall@8 final Avg. Align
0.2925 0.0032 68.0621 78.7643 86.5294 91.6948 1060.0284
0.2308 0.0209 68.6867 79.4564 87.6097 92.2687 1088.8525
0.3498 0.0004 67.9946 79.2539 86.7995 92.4038 1050.2296
0.2769 0.0053 67.7583 78.8150 87.0695 92.2181 1090.8598

0.2875+0.0491  0.0000 68.1254+0.3962 79.0724+0.3374 87.0020+0.4613  92.1464+0.3111$  1072.4926+20.4613

Table 4: Measurement from CUB200 trained model. R@1 v. Align is Pearson correlation between
Recall@1 and final Avg. Align. Recall@k and final average Alignment is measured after training.
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