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ABSTRACT

Investigating phenomena such as Alignment and Local Elasticity is essential
for understanding feature space of Neural Networks and enhancing performance
across a wide range of tasks. In this context, we investigate the emergence of
these phenomena in two-layer neural networks performing a classification task.
This paper reveals Alignment and Local Elasticity emergence condition after one
step of training are identical. In particular, we demonstrate that intra-class fea-
tures are more aligned when the inner product of their mean and the covariance
of the training data-label i.e. train-unseen similarity is large, with stronger Local
Elasticity occurring under this condition. We validate our theory through experi-
ments with a two-layer network showing that both Alignment and Local Elasticity
improve as the train-unseen similarity increases. Furthermore, we claim that our
analysis provides both theoretical and practical insights into the relationship be-
tween train-unseen similarity, alignment, and the improvement of clustering per-
formance on unseen data for neural networks trained on similar domain data. This
is supported by experiments, including a multi-layer CNN setup and detailed dis-
cussions. Specifically, we show that higher train-unseen similarity improves Re-
call@1 in two-layer networks and that Alignment and Recall@1 exhibit a positive
correlation in metric learning. We also present novel techniques for deriving oper-
ator norm bounds of non-centered Sub-Gaussian matrices, extending conventional
regression analysis with standard Gaussian assumptions to the binary classifica-
tion setting.

1 INTRODUCTION

Representation learning has been advanced thanks to the introduction of deep learning (Goodfellow
et al., 2016; Bengio et al., 2014), surpassing the generalization performance of the conventional
machine learning techniques (Bach, 2016; Sánchez & Perronnin, 2011). However, the underlying
feature training dynamics that enable deep network to learn more generalizable features An et al.
(2023); Radford et al. (2021) remain unclear, prompting studies aimed at theoretically resolving
this issue (Damian et al., 2022; Abbe et al., 2021). To understand the learning dynamics, we argue
that the following three challenges must be addressed: First, under what conditions does learning
occur (He & Su, 2019)? Second, to what extent does learning take place under those conditions e.g.
Local Elasticity (Dan et al., 2023)? Third, how are the resulting features structured after learning
e.g. Alignment (Wang & Isola, 2022; Beaglehole et al., 2024)?

One approach to addressing this challenge is the Neural Tangent Kernel (NTK) (Jacot et al., 2020).
NTK studies have explored the alignment structure of features and the concept of Local Elasticity
in NTK (Seleznova et al., 2023; Chen et al., 2020; Atanasov et al., 2021; Shan & Bordelon, 2022).
However, the NTK operates under a lazy training regime, and its empirical variants exhibit signifi-
cant discrepancies in modeling neural networks (Chizat et al., 2020; Vyas et al., 2022; Yang & Hu,
2022). This makes it challenging to conduct a theoretical analysis of feature learning without addi-
tional assumptions, such as whitened data, feature block structure, or label awareness. On the other
hand, Conjugate Kernel (CK) approaches have been studied (Pennington & Worah, 2017; Fan &
Wang, 2020; Benigni & Péché, 2022), with a key distinction from NTK in their ability to facilitate
the analysis of feature learning (Ba et al., 2022; Dandi et al., 2023; Moniri et al., 2024), thereby
offering a framework for explaining generalization performance. Building on these properties, we
claim that the CK feature learning model not only explains the generalization performance on test
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data from the same distribution as the training data but also offers a structural analysis of features
derived from data sampled from unseen distributions that differ from the training distribution.

Deep representations are used in problems where the distributions are “unseen” or “almost similar
but different downstream task data” such as in transfer learning (Yosinski et al., 2014; Weiss et al.,
2016; Bozinovski, 2020; Galanti et al., 2022), linear probing (Kumar et al., 2022; He et al., 2020;
Kornblith et al., 2019), and metric learning (Huang et al., 2024). In these applications, learned
features remain effective for data outside the training distributions, even though statistical theories
suggest that perfect extrapolation is not attainable (Balestriero et al., 2021; Kang et al., 2024; Arm-
strong, 1984). Therefore, it is essential to investigate such a problem to advance the deep learning
theory. Specifically, this paper investigates the emergence conditions of Alignment Structure and
Local Elasticity for data from unseen distributions to address the three challenges mentioned above.

1.1 RELATED WORKS

Conjugate Kernel Many works (Benigni & Péché, 2021; Louart et al., 2017; Hu & Lu, 2022;
Goldt et al., 2020) study the CK, which models neural networks and enables the analysis of the
structure of the first layer in two-layer networks after the Gradient Descent. Ba et al. (2022) analyze
regression tasks in the teacher-student setups to study feature learning in the proportional regime.
They demonstrate that neural networks exhibit superior performance compared to linear models,
particularly at higher learning rates since the feature learning reflects the structure of the teacher’s
weights. Moniri et al. (2024) utilize Hermite decomposition to analyze how nonlinear features are
learned based on the polynomials. Ba et al. (2023) theoretically compute the condition when neural
networks learn the low-dimensional structure of the dataset with spiked covariance Gaussian distri-
bution data. Bietti et al. (2022) analyze the loss landscape and sample complexity which enables us
to learn a single-index model. Ba et al. (2022); Moniri et al. (2024); Ba et al. (2023); Bietti et al.
(2022) argue that in teacher-student settings for solving regression problems with centered Gaus-
sian distributions, neural network features can learn the structure of the teacher, thereby improving
generalization performance. Unlike these studies, we extend the two-layer network setting to classi-
fication with non-centered Sub-Gaussian distributions and examine the phenomena that arise when
the network is exposed to input drawn from a distribution different from train distributions. To the
best of our knowledge, our work provides the first analysis of non-centered training distributions.
We believe this contributes a framework that can be further utilized in analyzing classification.

Alignment Structure Alignment has been used with various definitions in the study of neural
network structure and applications. For instance, there are studies on the following: intra-class fea-
ture alignment (Deng et al., 2022; Wang & Isola, 2022), feature-weight alignment (Papyan et al.,
2020), feature-label alignment (Shan & Bordelon, 2022; Atanasov et al., 2021), feature-gradient
alignment (Ziyin et al., 2024). We are interested in intra-class feature alignment. Therefore, in
the following, “Alignment” will refer to intra-class feature Alignment. As training progresses,
the Alignment where features of a given class align towards a single point has been observed (Pa-
pyan et al., 2020). It is linked to generalization performance on unseen distributions (Liu et al.,
2018). For example, some works claim that increasing intra-class alignment of train distributions
with inductive bias improves task performance on unseen distributions, particularly in metric learn-
ing. (Wang et al., 2018; Liu et al., 2017). However, to the best of our knowledge, the conditions
under which alignment strongly emerges have not been established. In this work, we demonstrate
that the emergence of higher alignment is governed by the relationship between the training data
and the input data distribution. Specifically, we show that in a binary classification problem, where
β represents the covariance vector of the training data and labels, and µ is the mean of the unseen
class conditioned distributions, a larger inner product

∣∣β⊤µ
∣∣ i.e. train-unseen similarity leads to

higher alignment, thereby providing a theoretical basis for alignment.

Neural Collapse (NC) and Unconstrained Layer-Peeled Model (ULPM) research is related to
intra-class feature and feature-weight alignment. NC (Papyan et al., 2020) addresses the phenomena
that occur with the features and the weights of the classifier head at the final stages of classifier
training. At this stage, phenomena related to alignment occur: First, Variability Collapse, i.e. intra-
class feature alignment, and Second, self-duality, i.e. feature-weight alignment. Several studies
propose the ULPM to analyze NC treating features and weights as unconstrained free variables (Ji
et al., 2022; Tirer & Bruna, 2022; Zhu et al., 2021; Fang et al., 2021). However, ULPM, unlike
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Figure 1: Emergence of Alignment and Local Elasticity: The Neural Networks feature F (x), F0(x)
from data points surrounding the training data ( i.e. unseen data) are influenced by the gradient step,
leading to both phenomena. We denote unseen data as a,b,c,d and two classes of training data
are represented as a sphere. Notably, distribution a, being closer to the training data, undergoes
stronger Alignment and Local Elasticity i.e. the intra-class inner product is enlarged, and the fea-
tures undergo substantial movement during this single step, compared to other distant distributions.
b,c,d.

the CK model we use, assumes the features as free variables, which limits its ability analysis about
input the data distribution and, consequently, prevents studying the structure of the features. This
motivates and provides the need to explore internal features using CK.

Studies on the concept of Local Elasticity (LE) have been established after observing that data
points closer to the training samples are updated more significantly than those farther away (He
& Su, 2019). Thus, Local elasticity has been informally described using terms such as “similar-
ity/closeness”. In other words, it is argued that the greater the “similarity” between the training data
and the input data, the higher the elasticity of the feature. Subsequently, in He & Su (2019), the
elasticity score was formalized as a metric to quantify this informally defined notion of “similarity”.
Meanwhile, there have been attempts to theoretically understand LE. Zhang et al. (2021) model the
learning process of neural networks using SDE to verify its occurrence, but they have a limitation
that actual neural networks are not utilized as our CK modeling. Dan et al. (2023) sort training steps
into two phases by whether LE occurs or not using Gradient Flow, but they only empirically ob-
served the basic condition of LE i.e. feature of “similar” sample is updated more, without engaging
in theoretical exploration. However, with theoretical assumption and analysis, we establish that this
similarity can be measured and expressed as train-unseen similarity.

Additional related works are discussed in Appendix C.

1.2 OVERVIEW

This section provides basic definitions and informal Theorems of the results of Alignment and Local
elasticity, which will be detailed in section 4. The phenomenon described here is also illustrated in
Figure 1. Let θ be the set of every randomly initialized parameter of a neural network, let d,N
denote the dimensions of the data space and feature space, respectively, for x ∈ Rd denote F (x) ∈
RN is trained feature and F0(x) is initialized feature and c is given class conditioned distribution.
Feature represents a network output obtained by peeling off the last task layer. The Alignment score
and Elasticity score are defined as follows:

Definition 1.1 (Alignment score). The Alignment score is defined as the expected inner product
between the features F (x) for two i.i.d. samples of c : Ex,x′∼c,θ[F (x)

⊤F (x′)].
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Definition 1.2 (Elasticity score similar1 to He & Su (2019)). The Elasticity score is defined as the
expected L2 distance between F (x), F0(x) for sample of c: Ex∼c,θ[∥F (x)− F0(x)∥2].

These two definitions are informally expressed as the Theorem below, which is an approximation
with high probability in the proportional regime for a two-layer neural network after one step training
and a Gaussian assumption of given class conditional distribution c.

Theorem 1.3 (Alignment and Elasticity score (Informal of Theorem 4.2, 4.3)). Let n be the number
of data points. Assume x, x′ ∼ N(µ,Σ) be i.i.d random vectors drawn from the arbitrary class
conditional distribution given mean µ ∈ Rd and Covariance Σ ∈ Rd×d and the network allows
for Hermite expansion. Let β ≜ 1

n
√
N
X⊤y from given training datasaet (X, y). Then train(β)-

unseen(µ) similarity |β⊤µ| and β⊤Σβ is governing the Alignment and the Elasticity score.

Following Theorem, Alignment and Elasticity score approximately increase as Train-unseen sim-
ilarity |β⊤µ| and β⊤Σβ grow i.e. , with fixed covariance Σ, both scores are approximately poly-
nomial to |β⊤µ|, which is the similarity between the training sample distributions and the arbitrary
class data distributions.

It can be interpreted that the closer the unseen distribution is to the training data ( i.e. , higher
Train-unseen similarity), the stronger the effect of Local Elasticity (LE) becomes, and leading to
a stronger Alignment of features. These implications can be observed in section 4, where compara-
ble formulae for the two phenomena are derived, demonstrating their simultaneous occurrence and
correlation.

For theoretical analysis, we define two-layer networks with elementwise activation function that
allows Hermite decomposition to decompose a one step trained feature function into initialized
features and polynomial functions. This decomposition is explained thoroughly in subsection 3.1
and subsection 3.2. The decomposed feature is analyzed using unseen data distributions assumed to
follow Gaussian distributions.

This paper also verifies the following supplementary contributions during our theoretical analysis.
We expand the previous two-layer network analysis method, which is based on regression tasks
with standard Gaussian train distribution into binary classification with non-centered Sub-Gaussian
distribution. This assumption makes two-layer model available to analyze classification problems in
further works or any non-centered Sub-Gaussian training data, which is more discussed in section 3.

Finally, we conduct experiments that empirically verify our analyses using a synthetic dataset where
classes of evaluation set are consecutively distant from the training set in section 5.

2 PROBLEM STATEMENTS

Notations Let ∥·∥ be L2 or the operator norm. Let ⊙ be the Hadamad product. Let A◦k be
the Hadamad power. Let C, c > 0 be absolute constants, and let κ ∈ R be a constant that may
change from line to line. Define [d] ≜ {1, 2, · · · , d}. Let 1condition be 1 if the condition is true
and 0 otherwise. The operator diag(·) creates a matrix with the elements of the input vector placed
along the diagonal. Let n!! ≜

∏⌈n
2 ⌉−1

k=0 (n − 2k) be double factorial. For simplicity, we define
(−1)!! = 0!! = 1. For two positive sequences An and Bn, we write An = Θ(Bn) if there exist
constants c1, c2 > 0 s.t. c1Bn ≤ An ≤ c2Bn for sufficiently large n. Similarly, An = ΘP(Bn)
indicates that the relationship holds with high probability as n → ∞. We say An = o(Bn) if, for
every ϵ > 0, there exists N ∈ N such that An ≤ ϵBn for all n ≥ N . For a vector x ∈ Rn, the
expression x[i] denotes the i-th element of x. For a matrix A ∈ Rn×m, A[i] denotes the i-th column
of A, and A[i : j] denotes the columns from i to j. Additionally, A[:] refers to all elements of A.

Hermite Polynomials We employ the probabilist’s Hermite polynomials (Moniri et al., 2024;
Szegő, 1975; Grad, 1949; Bienstman, 2023). The n-th Hermite polynomials, Hn(·), are defined by
the recurrence relation: Hn+1(x) = xHn(x) − nHn−1(x), for n ≥ 1, with the initial conditions
H0(x) = 1, H1(x) = x. Using this recurrence, we have H2(x) = x2 − 1, H3(x) = x3 − 3x, · · · .

1Unlike the definition in the original paper, which uses network’s predictions, this paper examines Elasticity
in the feature level.
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2.1 PROBLEM SETTINGS

Proportional Regime We consider a two-class classification problem with classes c1 and c2, us-
ing two-layer neural networks in the proportional regime. Here, n, d, and N are sample size,
data dimension, and feature dimension, respectively. We perform our analysis under the following
regime: n/d → ψ1, N/d → ψ2 as n,d,N → ∞, where ψ1, ψ2 ∈ (0,∞). This setup reflects
a scenario where the network width scales proportionally to the data size, aligning with common
scaling practices in modern machine learning models.

Training Data Let D = (X,Y ), where X ∈ Rn×d, Y ∈ {−1, 1}n×2 ⊆ Rn×2, represent the
training dataset. For any data point (x, y), y = (1,−1)⊤ if x ∼ c1 and y = (−1, 1)⊤ if x ∼ c2,
where x ∼ ci indicates that x belongs to class ci. We denote the i-th column of Y , Y [i], as yi ∈ Rn.
It follows that y1 = −y2. For every i-th row of X[:][1 : ⌊n/2⌋], we have X[:][i] ∼ c1, for every i-th
row of X[:][⌊n/2⌋+ 1 : n], we have X[:][i] ∼ c2. Let D̃ = (X̃, Ỹ ) an i.i.d. copy of D.

Evaluation Data In this paper, we employ the “Unseen” dataset as the Evaluation dataset, which
is drawn from a distribution different from the one used to generate the training dataset. We assume
that “Unseen” samples follow a Gaussian distribution x ∼ N(µ,Σ), where µ ∈ Rd and Σ ∈ Rd×d.

Network Structure We consider two-layer networks to be fully connected. The initial weight of
the first layer, W0 ∈ Rd×N, is initialized as W0[i] ∼ Unif(Sd−1) for i ∈ [d]. We denote W as
the one-step trained weight. The initial weights of the second layer, ac ∈ RN for c ∈ {1, 2}, are
initialized as ac ∼ N(0, 1

NI). For an input x, we define the initialized feature as F0(x) ≜ σ(W⊤
0 x)

and the one-step trained feature as F (x) ≜ σ(W⊤x). The network output is defined as the following
two-dimensional vector:

(
1√
N
F (x)⊤a1,

1√
N
F (x)⊤a2

)⊤
. The network is designed to output y =

(1,−1) for c1 and y = (−1, 1) for c2.

Optimization Problem Denote θ = {W,a1, a2} as the set of all network parameters. However,
for feature analysis, we only train W and use a1, a2 for calculating gradient. To classify the given
data, we introduce the Mean Squared Error (MSE) loss

L(X, y; θ) =
1

2n

∑
c∈{1,2}

||yc −
1√
N
σ(XW )ac||2. (1)

The weight update formula for the first layer is given byW ′ =W +η
√
NG, where η is the learning

rate and G is the negative gradient of L(X, y; θ) with respect to W expressed as

G = − ∂L

∂W
= − 1

n

∑
c={1,2}

[
X⊤
[( 1√

N
(

1√
N
σ(XW )ac − yc)a

⊤
c

)
⊙ σ′(XW )

]]
. (2)

Now, we introduce the assumptions for our theoretical analysis.
Assumption 2.1 (Activation Function). Let σ(x) be an element-wise activation s.t. σ, σ′, σ′′ is
bounded by λσ almost surely ( a.s. ). For z ∼ N(0, 1), it admits a Hermite decomposition i.e.
σ(z) =

∑∞
k=0 ckHk(z), where ck = 1

k!Ez[σ(z)Hk(z)]. Note that E[σ(z)] = c0 and E[zσ(z)] = c1.
We denote c⊥0,1

≜
√

E[σ2(z)− c21]. We assume c0 = 0, c1 ̸= 0 and c2kk! ≤ Ck−3/2−w, for some
constants C,w > 0.
Assumption 2.2 (Learning Rate). η = Θ(nα), l−1

2l < α < l
2l+2 . l ∈ N.

Assumption 2.3 (Training Data Structure). Let the class-conditional training data distributions c1
and c2 be Sub-Gaussian (Vershynin, 2018; Cole & Lu, 2024; Cao et al., 2021; Jambulapati et al.,
2020; Sivakumar et al., 2015; Bombari et al., 2022; Bazinet et al., 2024).
Remark 2.4 (MSE for Classification). Note that utilizing MSE in classification is as well-established
as using softmax-cross entropy, especially in theoretical analyses of classification problems (Han
et al., 2022; Zhou et al., 2022).
Note 2.5 (Sub-Gaussian Training Data Distribution). The data structure described in Assump-
tion 2.3 allows us to transform the analysis of CK solving linear regression under Gaussian as-
sumptions (Ba et al., 2022; 2023; Moniri et al., 2024) to classification problems. This extension can
open new avenues for theoretical analyses of deep representations in classification tasks.
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3 ANALYSIS OF FEATURE IN THE PROPORTIONAL REGIME WITH MSE
CLASSIFICATION SETTING AND SUB-GAUSSIAN DATA

In this section, we analyze the learning dynamics of a neural network in a single training step,
assuming the training data D originates from two distinct Sub-Gaussian distributions with non-zero
means. To achieve this, we decompose the gradient (equation 2) using Hermite decomposition,
which allows us to extract the essential rank-one matrix structure. As a result, we approximate
the one-step trained feature function F (x) = σ((W0 + η

√
NG⊤x)) as Fl by deriving its Hermite

expansion, which serves as a key step in deriving our main theorem. The entire process is carried
out asymptotically in the proportional regime.

3.1 RANK-ONE APPROXIMATION OF THE FIRST GRADIENT

In this section, we follow the proof structure of Ba et al. (2022) to decompose gradient in our clas-
sification learning setting. Unlike their assumption of centered Gaussian training data, we consider
non-centered Sub-Gaussian data distributions. In this process, we apply a novel approach involving
the concentration of the operator norm on a random matrix. Also, since our framework is not in a
teacher-student setting, we use class labels instead of a teacher function.

Starting from equation 2, by performing an orthogonal decomposition of the first Hermite expan-
sion term and the remainder of σ(x), we express σ(x) = c1x + σ⊥(x). The gradient G is then
decomposed as follows G0 = A+ B+ C i.e.

G0 =

A︷ ︸︸ ︷
c1

n
√
N
X⊤(y1a

⊤
1 + y2a

⊤
2 )+

B︷ ︸︸ ︷
1

n
√
N
X⊤(y1a

⊤
1 + y2a

⊤
2 )⊙ σ′

⊥(XW0)

− 1

nN
X⊤σ(XW0)(a1a

⊤
1 + a2a

⊤
2 )⊙ σ′(XW0) ... C.

(3)

We derive the norm bound for the terms A, B, and C in Lemma F.1. Using these bounds, we establish
the following Proposition 3.1. For the proof, please refer to Appendix F.

Proposition 3.1. Under the assumptions in subsection 2.1, and when n satisfy 1− κ′ log
2 n√
n

> 1/2,
the following holds:

||G0 − A|| ≤ κ
log2 n√

n
||G0|| w.p.1− C(ne−c log

2 n + e−cn). (4)

Now we utilize A as the approximate gradient for training the CK model given the training set D.

3.2 ANALYSIS OF FEATURES AFTER ONE-STEP GD

We now study the feature space induced by the conjugate kernel after one step of gradient descent
(GD). We first analyze σ(X̃W ) = F (X̃W1) = F (X̃W0 + ηX̃G) by an approximation using
Hermite polynomials. Denote β ≜ 1

n
√
N
X⊤y1 and let α = a1 − a2. By Proposition 3.1 and results

D, E in Lemma G.1, we generalize this to Lemma 3.2. For the proof, see Appendix G.
Lemma 3.2 (Monomial Approximation of Data-Gradient). For any k ∈ N, sufficiently large n, and
w.p. 1 - o(1),

||(X̃G⊤)◦k − ck1(X̃β)
◦k(α◦k)⊤|| ≤ Ckn− k

2 log2k n. (5)

Finally, we constructed the Data-Gradient form in our classification setup, satisfying the assumptions
same to those in Theorem 3.2 of Moniri et al. (2024). We now decompose F into a feasible form.
Lemma 3.3 (Decomposition of Trained Features). Let F0 = σ(X̃W⊤

0 ). With probability 1− o(1),
F = Fl +∆,

where Fl = F0 +
∑l
k=1 c

k
1ckη

k(X̃β)◦k(α◦k)⊤ and l is defined in section 2. Moreover, ||∆|| =
o(
√
n), ||F0|| = ΘP(

√
n), and ||ck1ckηk(X̃β)◦k(α◦k)⊤|| has an order larger than o(

√
n).

Based on these results, we analyze the feature representation using the approximation Fl, which
dominates the residual term ||∆|| = o(

√
n) with probability 1− o(1).
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4 EMERGENCE OF ALIGNMENT AND LOCAL ELASTICITY

In this section we provide theorems indicating train(β)-unseen(µ) similarity |β⊤µ| and β⊤Σβ is
governing the Alignment and the Elasticity score. Given separable Sub-Gaussian training data D,
we compute the approximate feature Fl after a single gradient step in the above section.
Condition 4.1 (Condition statement for Theorem 4.2 and Theorem 4.3). Let x, x′ ∼ N(µ,Σ) be i.i.d
random vectors drawn from the arbitrary class conditional distribution given µ,Σ. With assumption
in section 2 and following from Lemma 3.3, remark the approximated initialized/trained neural
network feature extractor as F0(x) = σ(W⊤

0 x), Fl(x) = F0(x) +
∑l
k=1 c

k
1ckη

k(x⊤β)◦k(α◦k)⊤

where β ≜ 1
n
√
N
X⊤y1 with training datasaet (X, y).

Theorem 4.2 (Alignment). Following condition 4.1, denote Tk ≜ ck1ckη
kEx[(β⊤x)k]. Then, the

average Inner Product between two approximated one-step trained features is as follows:

Ex,x′,θ[Fl(x)
⊤Fl(x

′)] = Ex,θ∥F0(x)∥2+2⟨Ex,θF0(x),

l∑
k=1

TkEθ[α◦k]⟩]+
l∑

k=1,j=1

TkTjEθ⟨α◦j , α◦k⟩

(6)
The first term Ex,θ∥F0(x)∥2 only depends on unseen distribution parameter µ,Σ without train
distribution. The second term 2⟨Ex,θF0(x),

∑l
k=1 TkEθ[α◦k]⟩] depends on µ,Σ, |β⊤µ| and β⊤Σβ.

The last term
∑l
k=1,j=1 TkTjEθ⟨α◦j , α◦k⟩ depends on |β⊤µ| and β⊤Σβ. Therefore, the alignment

measure grows as |β⊤µ|, β⊤Σβ increases.

Proof. Proof is in Appendix I

Theorem 4.3 (Local Elasticity). Following Condition 4.1, Then, the average L2 distance between
the initialized features F0(x) and the approximated one step trained features Fl(x) is as follows:

Ex,θ∥Fl(x)− F0(x)∥2 =

l∑
k=1

l∑
m=1

k+m∑
i=0

κLE |β⊤µ|k+m−i(β⊤Σβ)
i
2 1k+m and i is even. (7)

κLE depends only on k,m, i,N, c1, η, and is independent of the data distribution parameters. The
local elasticity measure grows as |β⊤µ|, β⊤Σβ increases.

Proof. Proof is included in Appendix J

Note 4.4 (Interpretation of sign of β). If the two given classes have a zero-centered symmetric struc-
ture, a symmetric representation should be learned regardless of the sign of β. This can be observed
in our results and observations as well. We defined β = 1

n
√
N
X⊤y1 in subsection 3.2. When the

sign of α = a1 − a2 is flipped, β can also be defined as 1
n
√
N
X⊤y2. With alternative definition,

the same result is obtained for Theorem 4.2 and Theorem 4.3, where the scores are represented as
polynomials of |β⊤µ| and non-negative β⊤Σβ.
Note 4.5 (Relationship between l and learning rate η). Our learning rate assumption is that it is
determined by the parameter l ∈ N, which determines the maximum Hermite expansion degree of
the Alignment and LE scores as polynomials of |β⊤µ|. This behavior aligns with the intuition that
larger learning rates correspond to more aggressive updates of the features, causing them to shift
and align more during the optimization process.

5 EXPERIMENTS

Remark 5.1. Recall@1= E1yi=ŷi,1-NN ŷi,1-NN is the class of closest feature to xi.

In our experiments, we examine the relationships between train-unseen similarity ( i.e. |β⊤µ|,
Alignment), Elasticity, and Recall@1. The experimental setups range from synthetic datasets
trained with two-layer networks (Setup 1, 2) to real-world datasets, including CARS196 (Krause
et al., 2013) and CUB200 (Wah et al., 2011), trained with multi-layer networks such as ResNet18
(Setup 3) and ResNet50 (He et al., 2015) (Setup 4).
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Setup 1, 2 To evaluate the theory, we follow the configurations described in section 2. We use three
different non-centered Sub-Gaussian distributions as training datasets: (i) a uniform distribution over
a radius-

√
d ball (Data 1); (ii) a multi-dimensional element-wise truncated Gaussian distribution

(Data 2); and (iii) a uniform distribution over a radius-
√
d sphere (Data 3).2 We set d = n = N =

211, and η = n0.25 in accordance with the assumptions. The means of Data 1 and 3 are v and −v,
respectively, where v ≜ 5r2 ·u, with u ∼ Unif

(
Sd−1

)
. For Data 2, one class has support on [1,∞)

across all dimensions, while the other class has support on (−∞,−1]. We define v ≜ (1, 1, · · · , 1)⊤
for Data 2 used in Evaluation data generation.

For the evaluation data, we introduce unseen samples xunseen, which are projected Gaussian dis-
tributed and defined as xunseen ≜ z − (z⊤νν)/∥ν∥4 + ν, where z ∼ N(0, I), and ν ≜ ev for Setup
1 and ν ≜ Rv for Setup 2, with e ∈ (−1, 1), R ∈ SO(d). We use this data for measuring Align-
ment, Elasticity, Recall@1. By adjusting e andR, one can control the train-unseen similarity β⊤µ,
where µ ≜ E[xunseen]. Please refer to Figure 2 for illustrations of these setups.

Train Data 1, 2, 3 Evaluation Data for Setup 1, 2

Figure 2: Examples of training datasets (Data 1, 2, 3) and evaluation data used in Setup 1, 2.

Setup 3, 4 We also conduct the experiment with practical settings i.e. the multi-layer networks
and the real-world data. In Setup 3, we designate either the CAR or CUB dataset and randomly
select two classes as the training set. Then we sample five classes from each evaluation set of CAR
and CUB as our new evaluation set. We set d = N = 211,n = 96. The whole model consists of
ResNet18 whose output dimension is d, a single nonlinear layer F (x) = σ(W⊤x), and classifier
a1, a2. We measure β and µ from the representations after ResNet18 architecture. Then they are
passed through F (x) and final classifier a1, a2. Note that we randomly initialize ResNet18 and do
not freeze its layers during training. The Setup 4, conducted on the CARS196 and CUB200 datasets,
and its every configuration follows the approach outlined in Zhai & Wu (2019), which represents
a baseline in metric learning. We employ the normsoft metric learning loss function Zhai & Wu
(2019). This setup is particularly relevant to our focus on unseen distribution, as it conducts the
metric learning task with use of unseen data. The detailed configuration of two experiments is in
Table 2.

Alignment and Elasticity Observations With Setup 1,2, we analyze the behavior of Alignment,
Elasticity as |β⊤µ| varies with e and R. Following Thm. 4.2 and 4.3, as |β⊤µ| increases, we
expect to observe a positive tendency in Alignment and Elasticity score defined in Definition 1.1,
1.2. In this experiment, the variable e span from -0.9 to 0.9, and the 300 random rotation matrix is
generated using a process in subsection K.4 for R. We repeat the experiment 30 times with different
initializations of the neural network parameters and include the results along with the mean and
standard deviation as in Figure 3, K.1, K.2. It demonstrates that Alignment and Elasticity score
occur strongly as e or β⊤µ increase. This phenomenon corresponds to the results of our theoretical
findings, which suggest that the features from distributions closer to the training data emerge the
stronger Alignment and Local Elasticity.

In Setup 3, we validate the theoretical results by adapting the network and data to a practical set-
ting for a binary classification problem. After each training epoch, we evaluate |β⊤µ|, Alignment,
and Elasticity across evaluation datasets CAR and CUB. We calculate the ranks for each of these
metrics—|β⊤µ|, Alignment, and Elasticity—using the values measured across five classes in each
dataset. These rankings are then compared across all metrics to see if they maintained consistent
ranking orders using Kendall’s W (Kendall & Smith, 1939) ranking correlation. A W value of 1

2The Sub-Gaussian property is proven for Data 1 and 3 in Vershynin (2018), and for Data 2 in Lemma E.1.
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indicates complete agreement in rank order, while a value of 0 indicates no agreement. As a result,
we found that, as the theory suggests, there is a rank correlation between Elasticity, Alignment, and
|β⊤µ| on average across four different seeds. Numerically, during the middle stages of training,
before the model converges, we observed that the model trained on CAR showed a rank correlation
of at least 0.7 across all datasets, while the model trained on CUB exhibited a rank correlation of
at least 0.5 across all datasets. See Figure 4. Additionally, on top of the strict order requirement
of Kendall’s W statistic, we directly observe that |β⊤µ|, Alignment, and Elasticity simultaneously
increased or decreased without aggregation, as shown in Appendix N.

(a) Alignment: Setup 1-Data 1, (b) Elasticity: Setup 1-Data 1 (c) Recall@1: Setup 1-Data 1

(d) Alignment: Setup 2-Data 1 (e) Elasticity: Setup 2-Data 1 (f) Recall@1: Setup 2-Data 1

Figure 3: Observation of Alignment (a, d) and Elasticity (b, e) Recall@1 (c, f). Figure (a, b) are
plotted across different e (lower x-axis, exactly overlapped) and β⊤µ (upper x-axis) values. Figure
(c, d, e, f) are plotted across different β⊤µ (x-axis) values. For figure (c, f) the blue line represents
the clustering performance measured using the features in their initialized state, the orange line
reflects the performance after one step of training, and the green line indicates the improvement, i.e.,
the difference between the two.

(a) Model trained with CAR (b) Model trained with CUB

Figure 4: In Setup 3, the average Kendall’s W value (y-
axis) over step (x-axis) for a model trained on the (a)
CAR and (b) CUB dataset with 4 different seeds. The
magenta line represents the Kendall’s W value for the
CAR dataset, the blue line for the CUB dataset.

R@1 v. Align p-value (two-sided)
CAR 0.24±0.09 0.00
CUB 0.29±0.05 0.00

Recall@1 Avg. Align
CAR 93.65±0.34 843.27±16.83
CUB 68.13±0.40 1072.49±20.46

Table 1: In Setup 4, (top) The average cor-
relation of Recall@1 and Alignment with p
test. (bottom) The final R@1 and Align.

Connections between |β⊤µ|, Alignment and Recall@1 In this section, we analyze the rela-
tionship between the train-unseen similarity, i.e. , |β⊤µ| and Recall@1 performance as well as
Alignment score. Based on the theoretical finding that neural networks produce features with high
alignment and elasticity for unseen classes close to the training data, we hypothesize that data from
unseen data distribution similar to train classes undergoes greater shifts during learning, resulting
in better alignment and cluster formation with superior Recall@1 performance in the feature space.
To validate this hypothesis, we observe whether the higher train-unseen similarity leads to improved
Recall@1 performance in Setup 1, 2.

Through Setup 1, 2, we measure Recall@1 with two classes using cosine similarity. See (c, f) in
Figure 3 and K.4. One class is instantiated according to the original definition as Setup, while the
other is constructed by inverting signs across all axes in data space. After a single learning step,
we observe Recall@1 performance increases when the |β⊤µ| is higher across all neural networks
(orange line in (c, f) at Figure 3).
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Additionally, in Setup 1, we confirm that as e(β⊤µ) increases, the recall@1 measure at initialization
also increases (blue line in (c) at Figure 3). This is a natural phenomenon because, by the definition
of the dataset, as e increases, the L2 distance between the mean of two evaluation classes increases.
Further discussion of the observations of Setup 1 is given in subsection K.5. In the setting of Setup
2, the value of β⊤µ changes due to variations in rotation; however, the distance between the two
classes remains unchanged. Consequently, we observe that the initial Recall@1 does not vary (blue
line in (f) at Figure 3). Moreover, we observed that when β⊤µ is too small, recall performance
decreases after a single step of training (orange line in (f) at Figure 3). This suggests that unseen
datasets, which are not too related to the domain of the train dataset, fail to generate meaningful
representations.

In Setup 4, we extend our experiments from a two-class problem to practical multi-class scenarios
within a baseline metric learning setting where the direct computation of β is not feasible. To test
the conjecture that strong train-unseen similarity leads to better alignment and improved Recall@1
performance, we analyze the correlation between Recall@1 and Alignment scores. At each step of
training, we measure class-wise Alignment and class-wise Recall@1 with unseen classes. After,
we compute the correlation between the Recall@1 and Alignment for each unseen class. Table 1
demonstrates the consistent tendencies of a positive correlation between Recall@1 and Alignment
with a near zero p-value. This matches with our empirical results from a two-class synthetic dataset,
where we observed a tendency for higher alignment to be associated with better Recall@1 perfor-
mance. We use Pearson Correlation to measure the strength and direction of the linear relation-
ship between Recall@1 and Alignment. For the p-value, we use two-sided test. We use Fisher’s
Combined Probability Test to combine the p-values. We provide unaggregated seed-wise results in
Appendix O.

6 CONCLUSION

In this paper, we explored the emergence of Alignment and Local Elasticity in two-layer neural net-
works, focusing on their behavior when trained in the proportional regime. Our theoretical analysis
extends the Conjugate Kernel (CK) framework to classification tasks, providing insights into how
neural networks learn feature representations, particularly under Sub-Gaussian data distributions.
We demonstrate that both Alignment and Local Elasticity arise simultaneously after just one step
of training, especially in cases where data distributions closely resemble the training data. This
phenomenon not only helps explain the clustering of representations but also sheds light on why
neural networks trained on similar domains serve as effective feature extractors for tasks like metric
learning. Furthermore, we validated our theoretical findings through experiments across various se-
tups. These experiments confirmed the theoretical predictions, showing that neural networks exhibit
stronger Alignment and Local Elasticity when evaluated on data distributions closer to the training
set. Additionally, we identified a possible relationship between Recall@1, one of the generalization
performance metrics for unseen distributions, and Alignment. Our work provides a unified frame-
work for understanding feature learning in neural networks and opens avenues for further research
in metric learning, transfer learning, and other task domains where neural networks are applied as
feature extractors for unseen distributions. We believe this work offers valuable insights into the
dynamics of neural networks, contributing to the broader understanding of deep learning theory.

Reproducibility Statement In section 5, Appendix K, Appendix L, and Appendix O the dataset
generation methods and hyperparameters for experimental reproduction are documented. The code
used for data generation and the experimental from this research can be downloaded https://
anonymous.4open.science/r/emk-2E61. Also, We derived all the proofs line by line.
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A LIMITATIONS AND FUTURE WORKS

In this study, we have focused on non-centered sub-Gaussian training data, but this framework could
be extended to more complex distributions, such as Gaussian mixtures. Exploring these broader
classes of data distributions would enrich our understanding of the model’s generalization capabili-
ties. By the way, we have found that both Alignment and Local Elasticity are more strongly emerged
by train-unseen similarity. However, it is necessary to explore how these two phenomena occur si-
multaneously. Furthermore, replacing the MSE loss with softmax cross-entropy could link this work
more directly to Neural Collapse research (Ji et al., 2022), providing new insights into the geometric
structures emerging during training. Additionally, studying scenarios where the parameters diverge
further from their initialization after the first step of training could offer a long-term perspective on
the learning dynamics. Moreover, There seems to be a connection between neural network align-
ment and the contraction of the Riemannian metric (Zavatone-Veth et al., 2023). Further research
into this relationship could unveil deeper insights into the geometry of neural networks. Finally,
in this study, the average of the Alignment and Elasticity scores was analyzed, and through mul-
tiple experiments, the validity of the analysis was supported. Theoretically, this can be extended
to concentration as in Loureiro et al. (2021) and Mignacco et al. (2020), and analyzing the condi-
tions under which the Alignment and Elasticity scores concentrate around the mean is one of the
important research directions.

B EXTEND CLASSIFICATION SETTINGS TO REGRESSION SETTINGS

We chose a binary classification setup to analyze network learning, ensuring that it aligns with the
settings proposed by He & Su (2019). However, our analysis is not limited to classification tasks
alone. Inspired by works like Ba et al. (2022), we will incorporate a setting that reflects an regression
form to demonstrate that our proof techniques can straightforwardly extend to scenarios involving
regression setting. This straightforward adaptability is possible because our analysis applies to any
loss or model that satisfies the condition of Proposition 3.1 and Lemma 3.2 in the main text. We
argue that this is a key aspect showcasing the extensibility of our study.

Under all the assumptions stated in our paper, we define a new random variable a ∼ N(0, 1
N I),

and modify the assumptions from Ba et al. (2022) for regression by replacing the centered Gaussian
assumption with a non-centered sub-Gaussian assumption, leading to the following problem setup:

xi ∼ SG s.t. E[xi] ̸= 0, yi = f∗(xi) + ϵi, ϵi ∼ N(0, σ2
ϵ ),

f∗ is a Lipschitz function, and
√

Ex[f∗2] = Θ(1).
(8)

In the above setup, we define the loss as follows:

θ = {W,a}, L(X, y; θ) = 1
2n ||y − σ(XW )a||2

G = − ∂L

∂W
= − 1

n

[
X⊤
[( 1√

N
(

1√
N
σ(XW )a− y)a⊤

)
⊙ σ′(XW )

]]
In this case, if we define α = a as opposed to the main text, α becomes a Gaussian with zero mean
and variance halved, so it follows the same bound structure.

Specifically, based on the sub-Gaussian bound results in Appendix E, A can be bounded using the
second equation of Lemma 14(i) from Ba et al. (2022) and the fact that A is rank-1, so ∥A∥ = ∥A∥F .
For B, we can remove ||a2||∞ from equation 20 in our Lemma F.1 proof. For C, by removing a2aT2
from equation 30, we obtain the same bounds as the previous results.

In conclusion, these three bounds satisfy our Proposition 3.1 under the same conditions, and the
same conclusion holds even outside of classification tasks. Note that β is defined as in the previous
setting.

C ADDITIONAL RELATED WORK

ADDITIONAL RELATED WORKS ABOUT NEURAL COLLAPSE Additionally, investigations into
the features of neural networks have led to observations suggesting that Neural Collapse does not
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actually take place internally (Yang et al., 2023), and claims that it does not contribute to under-
standing generalization (Hui et al., 2022; Ma et al., 2023; Galanti et al., 2022).

REGARDING FEATURE-GRADIENT ALIGNMENT, Ziyin et al. (2024) argues that the alignment be-
tween features, weights, and gradients naturally facilitates the learning of compact representations.
Beaglehole et al. (2024) investigate the Alignment of feature matrices by examining the correlation
between feature matrices and the outer product of gradients. Furthermore, He & Su (2019) claim
that gradients influence feature structures and Szolnoky et al. (2022); Chatterjee (2020) unveil the
relation between the gradients of similar datasets.

RIEMANNIAN GEOMETRY PERSPECTIVE There is research from a Riemannian geometry per-
spective related to our result that the closer the data is to training data, i.e. , the larger |β⊤µ|, the
greater the occurrence of alignment and LE. Zavatone-Veth et al. (2023) find out the decrease of
determinant of Riemannian metrics in the space i.e. volume decrease around training data. This is
related to the strong tendency of the Local Elasticity and Alignment at the point close to the training
samples.

NEURAL NETWORK THEORIES BASED ON THE TWO-LAYER ASSUMPTION Several prior stud-
ies have effectively utilized the feature extractor assumption same to our, to interpret phenomena
observed in practical neural networks. For example, Damian et al. (2022) analyzed the efficient
generalization and transfer performance of neural networks, while Tripuraneni et al. (2021) used
this framework as a tool to study robustness to input distribution shifts. Similarly, Lee et al. (2023)
employed it to analyze out-of-distribution inputs, and Bombari et al. (2023) utilized it to investi-
gate adversarial robustness. These studies focused on understanding phenomena of neural network
representations, particularly the hidden representations allowing them to model and explain behav-
iors observed in practical deep learning scenarios. Based on this body of work, we argue that the
assumption of a two-layer network capable of learning hidden representations is a reasonable and
effective framework for analyzing neural networks without significant loss of generality.

D ADDITIONAL NOTATIONS

∥·∥F is the Frobenius norm. ∥·∥∞ is the infinity norm. ∥·∥ψ2
is orlicz-2 norm e(i) Standard basis

vector with 1 at position i.

ADDITIONAL INFORMATION OF HERMITE POLYNOMIALS Hermite polynomials can be repre-
sented as the following explicit form:

Hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 .

for n ∈ N0. Lastly, there are another expression:

Hn(x) = n!

⌊n
2 ⌋∑

m=0

(−1)m

m!(n− 2m)!

xn−2m

2m

The probabilist’s Hermite polynomials form an orthogonal set with respect to the standard normal
weight function w(x) = 1√

2π
e−

x2

2 on the interval (−∞,∞). Their orthogonality condition is given
by: ∫ ∞

−∞
Hm(x)Hn(x)

1√
2π
e−

x2

2 dx = δmnn!,

where δmn is the Kronecker delta, and n! is the factorial of n.

E GENERALIZATION OF CENTERED SUB-GAUSSIAN RESULTS TOWARD
NON-CENTERED

For more detailed explanation and well known results of Sub-Gaussian we used, please refer to
Vershynin (2018; 2010).
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Lemma E.1. Truncated Gaussian distribution which have support on (a, b) s.t. a, b ∈ (−∞,∞) is
Sub-Gaussian.

Proof. Denote N(a,b)(0, σ
2) is Truncated Gaussian distribution which have support on (a, b) s.t.

a, b ∈ (−∞,∞). support (N(a,b)(0, σ
2)) ⊂ Rd. Therefore, P(|X| ≥ t) s.t. X ∼ N(a,b)(0, σ

2) have
same tail behavior with Gaussian and Gaussian is Sub-Gaussian.

Lemma E.2. Sum of non-centered Sub-Gaussian random variable is Sub-Gaussian.

Proof. If the Orlicz 2 norm is bounded ||X||ψ2
< ∞, then X is Sub-Gaussian. Also, ||EX||ψ2

≤
C||X||ψ2

, and Sum of centered Sub-Gaussian random variable is Sub-Gaussian. We show
||
∑
Xi||ψ2 <∞, s.t. X is non-centered Sub-Gaussian.

||
∑

Xi||ψ2
≤ ||

∑
(Xi − EXi)||ψ2

+ ||
∑

EXi||ψ2

≤ ||
∑

(Xi − EXi)||ψ2 +
∑

||EXi||ψ2

≤ ||
∑

(Xi − EXi)||ψ2
+ C

∑
||Xi||ψ2

<∞

(9)

Lemma E.3. (Operator norm bound for non-centered Sub-Gaussian matrix, generalization of 4.4.5
in Vershynin (2018)) let A ∈ Rm×n, A[i][j] is independent, non-centered Sub-Gaussian. ∀t > 0,

||A|| ≤ CK(
√
m+

√
n+ t) w.p. 1− exp(−t2)

Alternatively, ||A|| ≤ CK(
√
m+ n+ t) w.p. 1− exp(−t2)

(10)

K = maxi,j ||A[i][j]||ψ2

Lemma E.4. (Expectation of operator norm for non-centered Sub-Gaussian matrix generalization
of 4.4.6 in Vershynin (2018))

E||A|| ≤ CK(
√
m+

√
n)

Alternatively, E||A|| ≤ CK(
√
m+ n), and, E||A||2 ≤ C(m+ n)

(11)

Proof of Lemma E.3 and Lemma E.4. Based on the result of Lemma E.2, one can follow the same
proof process of Vershynin (2018)

F ADDITIONAL RESULTS OF SECTION 3.1

For the aforementinoed A, B, and C, we obtain bounds for each operator norm as follows
Lemma F.1.

P
(
∥A∥ ≤ C(

1√
N

− C

√
d√
nN

)

)
≤ 2
(
e−cN + e−cn

)
P
(
∥B∥ ≥ C

n
√
Nd

(
√
n+

√
d)(

√
n+

√
N) logN

)
≤ C

(
e−cN + e−cd +Ne−c log

2 n + e−(
√
n+

√
d)2
)

P
(
∥C∥ ≥ C√

nN
(2
√
d+

√
n) logn logN

)
≤ 2
(
ne−cd + ne−c log

2 n +Ne−c log
2 n
)
.

(12)

Proof of Lemma F.1 (A). Let us first define α = a1 − a2. Then, we obtain

A =
c1

n
√
N
X⊤(y1a⊤1 + y2a

⊤
2

)
. (13)

Then, we can find an explicit notation of the norm as

∥A∥ =
c1

n
√
N

∥X⊤(y1a
⊤
1 + y2a

⊤
2 )∥ =

c1

n
√
N

∥X⊤y1(a
⊤
1 − a⊤2 )∥op

=
c1

n
√
N

∥X⊤y1∥2∥(a1 − a2)∥2 =
c1

n
√
N

(
y⊤1 XX

⊤y1
)1/2∥α∥2 (14)
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∥α∥2 study By definition, α ∼ N(0, 2
N ), so

√
N
2 α[i] is a sub-Gaussian. Use Thm 3.3.1 in Ver-

shynin (2018),

P

(∣∣∣∣∥
√
N

2
α∥ −

√
N

∣∣∣∣ ≥ t

)
≤ 2e−ct

2

let t =
√
N/2

P(∥α∥2 ≤ 1) ≤ 2e−cN

(15)

(
y⊤1 XX

⊤y1
)1/2 study Note that theU, V matrices resulting from the SVD belong to theO-group,

so there is no length transformation.

y⊤1 XX
⊤y1 = ∥X⊤y1∥22 = ∥UΣV ⊤y1∥22 = ∥ΣV ⊤y1∥

=
∑
i

σ2
i |V ⊤y[i]|2 ≥ σ2

min

∑
i

|V ⊤y[i]|2 = σ2
min∥y∥22 = nσ2

min
(16)

We get
(
y⊤1 XX

⊤y1
)1/2 ≥

√
nσmin. σmin is singular value ofX which is a anistropic sub-Gaussian

matrix. With the result of Remark 1.2 in Liaw et al. (2016),

Pσmin ≤ (
√
n− c

√
d)) ≤ e−n. (17)

Therefore, P(∥A∥ ≤ C( 1√
N

− C
√
d√

nN
)) ≤ 2(e−cN + e−cn).

Fact F.2 (from Ba et al. (2022)). For m ∈ Rm, n ∈ Rn,M ∈ Rm×n,

mn⊤ ⊙M = diag(m)Mdiag(n)

∥mn⊤ ⊙M∥ ≤ ∥diag(m)∥ ∥M∥ ∥diag(n)∥ = ∥m∥∞∥M∥∥n∥∞n
(18)

Lemma F.3. For Sub-Gaussian R.V. a,

P(∥a∥∞ ≤ t/
√
N) ≥ 1− 2Ne−ct

2

Proof. We use the Hoeffding inequality such that

P(∥a∥∞ ≥ t√
N

) = P
(
max
i

|ai| ≥
t√
N

)
≤ P

(⋃
i

{|ai| ≥
t√
N

}
)

≤
∑
i

P
(
|ai| ≥

t√
N

)
i.i.d.
= NP

(
|ai| ≥

t√
N

)
= P(|

√
Nai| ≥ t) ≤ 2N exp(−ct2)

(19)

Fact F.4. Let a sub-Gaussian random variable v s.t. ∥v∥ψ2
≤ k, and bounded function σ, then

σ(v) is Sub-Gaussian, i.e. ∥σ(v)∥ψ2
≤ ∥λ∥ψ2

<∞.

Proof of Lemma F.1 (B).

B =
1

n
√
N
X⊤(y1a

⊤
1 + y2a

⊤)⊙ σ′
⊥(XW0) (20)

∥B∥ ≤ 1

n
√
N

∥X∥ ∥y1a⊤1 + y2a
⊤
2 ⊙ σ′

⊥(XW0)∥

≤ 1

n
√
N

∥X∥

(
∥y1a⊤1 ⊙ σ′

⊥(XW0)∥+ ∥y2a⊤2 ⊙ σ′
⊥(XW0)∥

)

≤ 1

n
√
N

∥X∥

(
∥y1∥∞ ∥σ′

⊥(XW0)∥ ∥a1∥∞ + ∥y2∥∞ ∥σ′
⊥(XW0)∥ ∥a2∥∞

)

=
1

n
√
N

∥X∥ ∥σ′
⊥(XW0)∥(∥a1∥∞ + ∥a2∥∞)

(21)
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∥σ′
⊥(XW0)∥ study Use the result of D.4 in Fan & Wang (2020), which is hold for orthogonal

columns. X is sampled from continuous support distribution c1, c2. The first vector is linearly
independent with probability 1 due to the continuous support of its distribution. For the second
vector, which is drawn independently, the probability that it lies in the span of the first vector is 0,
as it also has a continuous density. This reasoning extends to n vectors, implying that, with high
probability, they are orthogonal or nearly orthogonal because no vector falls into the span of the
others. Thus, ∀B > 0 following is hold.

P({∥σ′
⊥∥ ≥ C(

√
n+

√
N)λσB},AB) ≤ 2e−cN

AB = {{∥W0∥ ≤ B}, {
N∑
i=1

(∥W [i]∥2 − 1)2 ≤ B2}}.
(22)

Therefore,
P(∥σ′

⊥∥ ≥ C(
√
n+

√
N)λσB) ≤ 2e−cN + P(Ac

B) (23)

P(AB) study We choose t = C
√

d
N , B = C

√
d
N .

CASE OF ∥W0∥ ≤ B By Lemma E.3,

P(∥
√
NW0∥ ≥ 2

√
N+

√
d) ≤ 2e−cN ⇒ P(∥W0∥ ≥ C

√
d

N
) ≤ 2e−cN (24)

Therefore, ∥W0∥ ≤ B at least w.p. 1− 2e−cN

CASE OF
∑N
i=1(∥W [i]∥2 − 1)2 ≤ B2 By definition, ∥W0[i]∥2 = 1, so 0 ≤ B2 w.p. 1.

We know P(Ac
B) ≤ 2e−cN .

P(∥σ′
⊥∥ ≥ C(

√
n+

√
N)

√
d

N
) ≤ 2e−cN (25)

Use Lemma F.3, and E.3,

∥σ′
⊥∥ ≤ C

(√
nN

d
+

√
N2

d

)
w.p. 1− C(e−cN + e−cd) (26)

∥a∥∞ ≤ t√
N

w.p. 1− 2Ne−ct
2

(27)

∥X∥ ≤
√
n+

√
d+ t′ w.p. 1− 2e−ct

′2
. (28)

In summary, we get

∥B∥ ≤ C

n
√
N

(
√
n+

√
d+ t′)

(√
nN

d
+

√
N2

d

)
t√
N

let t = logn, t′ =
√
n+

√
d

P(∥B∥ ≥ C

n
√
Nd

(√
n+

√
d)(

√
n+

√
N) logN

)
≤ C

(
e−cN + e−cd +Ne−c log

2 n + e−(
√
n+

√
d)2
)
.

(29)
This compelete the proof.

Proof of Lemma F.1 (C). We know that σ′ is bounded, so ∥σ′∥F ≤ λσ
√
nN

C = − 1

nN
X⊤σ(XW0)

(
a1a

⊤
1 + a2a

⊤
2

)
⊙ σ′(XW0), (30)
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ans we can bound the norm as follows

∥C∥ ≤ 1

nN
∥X∥(∥σa1a⊤1 ⊙ σ′∥+ ∥σa2a⊤2 ⊙ σ′∥)

≤ 1

nN
∥X∥(∥σa1∥∞∥a1∥∞∥σ′∥F + ∥σa2∥∞∥a2∥∞∥σ′∥F )

≤ λσ√
nN

∥X∥(∥σa1∥∞∥a1∥∞ + ∥σa2∥∞∥a2∥∞)

(31)

Control of ∥σa∥∞ Let t =
√
d. Given X s.t. P(

∣∣X[i] −
√
d
∣∣ ≥ √

d) ≤ 2e−ct
2

, consider one
element σ

(
X[j]⊤W0

)
a =

∑N
i aiσ

(
x[j]⊤W0[i]

)
.

We know a[i],
√
nW0[i] is an independent centered sub-Gaussian, and use Fact F.4, then

σ
(X[j]⊤√

N

√
NW0

)
a is sub-exponential and mean is zero, since ∥aiσ(x[j]⊤W0[i])∥ψ1

≤
∥ai∥ψ2

∥σ(x[j]⊤W0[i])∥ψ2
<∞. Apply the Bernstein inequality for the sub-exponential,

P(|σ(X[j]⊤a)| ≥ logn given {
∣∣X[i]−

√
d
∣∣ ≥ √

d}) ≤ 2e−c log
2 n. (32)

For every element ∥σ(XW0)a∥∞ ≤ logn w.p. 1− [2ne−c log
2 n+2ne−cd

]

By Lemma F.3 P(∥a∥∞ ≤ t/
√
N) ≥ 1− 2Ne−ct

2

, and Lemma E.3 with t =
√
d

P
(
∥C∥ ≥ C√

nN
(2
√
d+

√
n) logn logN

)
≤ 2
(
ne−cd + ne−c log

2 n +Ne−c log
2 n
)
. (33)

Remark F.5. In the proportional regime, as n,d,N → ∞, these quantities can be interchanged to a
constant. Thus, Lemma F.1 is reformulated as follows

P(∥A∥ ≤ κ/
√
n) ≤ Ce−cn)

P
(
∥B∥ ≥ C logN

n

)
≤ C(e−cn + ne−c log

2 n)

P
(
∥C∥ ≥ C log2 N

n

)
≤ C(ne−cn + ne−c log

2 n)

(34)

Proof of Proposition 3.1. Using ∥G0 − A∥ = ∥B+ C∥ ≤ ∥B∥+ ∥C∥ and Lemma F.5

P
(
∥G0 − A∥ ≥ C

log2 n

n

)
≤ P

(
∥G0 − A∥ ≥ C(

log n

n
+

log2 n

n
)

)
≤ Cne−c log

2 n. (35)

Therefore, almost surely, in the proportional limit,

∥G0 − A∥ ≤ C
log2 n

n
=

κ√
n

C

κ

log2 n√
n

≤ ∥A∥C
κ

log2 n√
n

≤ κ′
log2 n√

n

(
∥G0∥+ ∥G0 − A∥

)
. (36)

G ADDITIONAL RESULTS OF SECTION 3.2

Lemma G.1. Given dataset D, D̃

A. Ma ≜ max1≤i≤N |ai| ≤ C log1/2 n√
n

w.p 1− 2ne−c logn

B. Mb ≜ max1≤i≤n | < X̃[i], β > | ≤ C log1/2 n, w.p. 1− 2ne−c logn

C. MW0
≜ supk≥1 ||(W0W

⊤
0 )◦k|| ≤ C

D. ||X̃|| ≤ C
√
n
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E.
√
N||G|| = OP(1)

F. ||A◦k|| ≤ ||A||k

Proof. For A, B, C, and D, we employ proof techniques adapted from Moniri et al. (2024).

For A, B, by hoeffding inequality P(|Xi| ≥ t) ≤ 2e−ct
2

for t = log1/2 n, and use ai, ⟨X̃[i], β⟩ is
Sub-Gaussian.

For C, refer Moniri et al. (2024).

For D, by Lemma E.3 and the proportional regime.

For E, by Lemma F.1 ||G|| ≤ ||A||+ ||B||+ ||C|| = OP(
1√
n
+ logn

n + log2 n
n ) = OP(

1√
n
)

For F, refer Bai & Silverstein (2010) Corollary A.21.

Corollary G.2. By Proposition 3.1 and D, E in Lemma G.1, we have w.p. 1− o(1).

||X̃G⊤ − µ1X̃βα
⊤|| = O(

log2 n√
n

) (37)

Remark G.3. Remark W1 =W0 + η
√
nG, so X̃W1 = X̃W0 + η

√
nX̃G.

Proof of Lemma 3.2. k = 1 is trivial with above statements. We follow Moniri et al. (2024) for
k ≥ 2. We need to show ∃C > 0, w.p. 1-o(1)

||(X̃G⊤)◦k − ck1(X̃β)
◦k(α◦k)⊤|| ≤ Ckn− k

2 log2k n (38)

(X̃G⊤)◦k = (X̃G⊤ − c1X̃βα
⊤ + c1X̃βα

⊤)◦k

=

k∑
j=1

(
k

j

)
ck−j1 diag(X̃β)◦(k−j)(X̃G⊤ − c1X̃βα)

◦jdiag(α)◦(k−j) by binomial theorem

+ ck1diag(X̃β)◦kdiag(α)◦k

(39)

Thus, (X̃G⊤)◦k−ck1(X̃β)◦k(α◦k)⊤ =

k∑
j=1

(
k

j

)
ck−j1 diag(X̃β)◦(k−j)(X̃G⊤−c1X̃βα)◦jdiag(α)◦(k−j)

(40)

We have to norm bound RHS of equation 40

||diag(X̃β)◦(k−j)(X̃G⊤ − c1X̃βα)
◦jdiag(α)◦(k−j)||

≤ ||diag(X̃β)◦(k−j)|| ||(X̃G⊤ − c1X̃βα)
◦j || ||diag(α)◦(k−j)||

≤ (MaMb)
k−j ||(X̃G⊤ − c1X̃βα)||j by Lemma G.1 A, B, F

(41)

In summary, w.p. 1− o(1)

||(X̃G⊤)◦k − ck1(X̃β)
◦k(α◦k)⊤|| ≤ C

k∑
j=1

(
log1/2 n√

n

)k−j(
log2 n√

n

)j
(42)

Remark G.4. The definition of gradient G and the size of the norm are different between Moniri
et al. (2024) and our paper, but both produce the same results as above, up to scaling factor 1√

N
.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

H STUDY OF EXPECTATION OF HERMITE POLYNOMIAL

The inner product between a random Gaussian vector x and a vector u, v, where u, v corresponds to
a column of the weight matrix W or β, is substituted into the variable of a Hermite polynomial and
its expectation is derived.

We have analyzed various macroscopic results regarding the feature space of a neural network using
Hermite polynomials and different activation functions. We have cited previously known facts, while
our derived results are presented without explicitly marking them as new. We believe these findings
will strengthen our paper and aid in the analysis of dynamics across different feature spaces.

H.1 EXPECTATION OF A PRODUCT OF TWO HERMITE POLYNOMIALS

Here is the result of the expectation of the product of two Hermite polynomials, utilizing the orthog-
onality of Hermite polynomials.
Lemma H.1 (Orthogonality of Hermite polynomials from Lemma C.1 Moniri et al. (2024)). See
also derivation in Chapter 11.2 O’Donnell (2021).

Let (Z1, Z2) be jointly Gaussian with E[Z1] = E[Z2] = 0, E[Z2
1 ] = E[Z2

2 ] = 1, and E[Z1Z2] = ρ.
Then for any k1, k2 ∈ {0, 1, · · · , }

E[Hk1(Z1)Hk2(Z2)] = k1!ρ
k11k1=k2

In the other form, for d ∈ N, Z ∼ N(0, Id), a, b ∈ Sd−1,

E[Hk1(Z
⊤a)Hk2(Z

⊤b)] = k1!(a
⊤b)k11k1=k2

Fact H.2. Let W ∈ Rd×N s.t. ∀i W [i] ∈ Sd−1. For Z ∼ N(0, I),

EZ∼N(0,1)[Hj(W
⊤Z)Hk(W

⊤Z)⊤] = k!(W⊤W )◦j1j=k (43)

EZ∼N(0,1)[Hj(W
⊤Z)⊤Hk(W

⊤Z)] = k!
∑

||W [i]||2j1j=k = k!N1j=k (44)

Proof. We apply Hj element-wise. By Lemma H.1, we can acquire the above result.

The following remark presents a modified condition of Lemma H.1 for the case where a, b /∈ Sd−1 in
Lemma H.1. In this case, the variances of Z⊤a and Z⊤b are not equal to 1, and the covariance may
exceed the bounds [−1, 1]. Under this condition, we will compute the expectation of the product of
two Hermite polynomials as in Lemma H.1.
Remark H.3 (the modified condition of Lemma H.1). For d ∈ N, u, v ∈ Rd, Z ∼ N(0, Id),

Z1 = ⟨u, Z⟩ ∼ N(0, ||u||22), Z2 = ⟨v, Z⟩ ∼ N(0, ||v||22).

Then, Z1, Z2 is ρ =≜ ⟨ u
||u|| ,

v
||v|| ⟩ - correlated

corr(Z1, Z2) =
E[Z1Z2]√

V (Z1)
√
V (Z2)

=
EZ⟨u, Z⟩⟨v, Z⟩

||u|| ||v||

=
Eg
∑
i

∑
j uivjZiZj

||u|| ||v||
=

∑
i

∑
j uivjEZ [ZiZj ]
||u|| ||v||

=
⟨u, v⟩

||u|| ||v||

(45)

Additionally, (
Z1

Z2

)
∼ N

((
0

0

)
,

(
||u||2 ⟨u, v⟩
⟨v, u⟩ ||v||2

))
(46)

We first introduce Isserlis’ theorem, which is essential for the proof. This theorem allows the ex-
pectation of the product of centered Gaussian random variables to be expressed as a product of
covariances, making the computation feasible.
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Theorem H.4 (Isserlis’ Theorem (Isserlis, 1918; Vignat, 2011)). Let X = (X1, · · · , Xd) Gaussian
random vector s.t. E[X] = 0 , and let A = {α1, · · · , αN} be set of integers s.t. 1 ≤ αi ≤ d, ∀i.
Denote XA =

∏
αi∈AXαi

, and X∅ = 1. Let
∏
(A) denote partitions of A into disjoint pairs and

σ ∈
∏
(A) is pair.

E[XA] =
∑

σ∈
∏

(A)

∏
(i,j)∈σ

E[Xαi
Xαj

]1d is even. (47)

Now, we generalize the assumptions from the previous works so that Lemma H.1 holds for arbitrary
vectors as Remark H.3. This could allow the weights of the networks to become analyzable when
they go beyond the assumption of lying on the unit spheres.

Theorem H.5 (Generalization of Lemma H.1 for centered Gaussian distribution). For d ∈ N, u, v ∈
Rd, g ∼ N(0, Id), ⟨u, g⟩ ∼ N(0, ||u||22), ⟨v, g⟩ ∼ N(0, ||v||22).

Eg[Hj(u
⊤g)Hk(v

⊤g)]

=
j!⟨u, v⟩j

||u||2||v||2
1j=k −

(||u||2 − 1)(||v||2 − 1)

||u||2||v||2
Eg[(v⊤g)k(u⊤g)j ]

+
(||v||2 − 1)

||v||2
Eg[Hj(u

⊤g)(v⊤g)k] +
(||u||2 − 1)

||u||2
Eg[Hk(v

⊤g)(u⊤g)j ]

(48)

Remark H.6. The same results can be derived as in Lemma H.1 when the variance is 1 in Thm. H.5.

Proof of Theorem H.5. (Generalize Chapter 11.2 O’Donnell (2021)’s derivation to non unit vari-
ance)

Ez∼N(0,σ2)[e
tz] study

First, we study about Eg∼N(0,σ2)[e
tg] in order to analysis non unit variance case.

Eg∼N(0,σ2)[e
tg] =

1√
2πσ

∫
etge−

g2

2σ2 dg

=
1√
2πσ

e
1
2 t

2

∫
exp(− (g − σ2t)2

2σ2
) complete square

= e
1
2 t

2

(49)

EZ,Z′ [exp(sZ + tZ ′)] study

Studying EZ,Z′ [exp(sZ + tZ ′)], we can derive what we need to show.

EZ,Z′ [exp(sZ + tZ ′)] = Eg∼N(0,I)[exp(s⟨u, g⟩) + exp(t⟨v, g⟩)]

=
∏
i

Eg∼N(0,1)[exp((sui + tvi)gi)] Use equation 49

=
∏
i

exp(
1

2
(sui + tvi)

2) =
∏
i

exp(
1

2
s2||u||2 + ⟨u, v⟩st+ 1

2
t2||v||2)

(50)

Therefore,

exp(⟨u, v⟩st) = Eg[exp(su⊤g −
1

2
s2||u||2) exp(tv⊤g − 1

2
t2||v||2)].

Facts for proof : one can verify below propositions with simple calculations.

Let Pj(z) + zj = Hj(z), Cu = ||u||2 − 1, a > 0

Let f(s) = exp(sz − 1
2s

2), f̄(s) = exp(sz − 1
2as

2)

7.3.A. By Taylor expansion, exp(⟨u, v⟩st) =
∑∞
j=0

1
j! ⟨u, v⟩

jsjtj .

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

7.3.B. By Taylor expansion, f̄(s) =
∑∞
j=0

1
j! f̄

(n)(0)sj

7.3.C. f̄ (n)(0) = Hn(z) + CuPn(z)

By using the fact that exp(⟨u, v⟩st) = Eg[exp(su⊤g − 1
2s

2||u||2) exp(tv⊤g − 1
2 t

2||v||2)], we can
eliminate the different orders of s t by a Taylor expansion and equating all monomials of the resulting
polynomials.

j!⟨u, v⟩j1j=k = Eg
[
(Hj(u

⊤g) + Pj(u
⊤g)Cu)(Hj(v

⊤g) + Pj(v
⊤g)Cv)

]
= Eg

[
(Hj(u

⊤g) + (Hj(u
⊤g)− (u⊤g)j)Cu)(Hj(v

⊤g) + (Hj(v
⊤g)− (v⊤g)j)Cv)

]
= ||u||2||v||2Eg[Hj(u

⊤g)Hj(v
⊤g)] + (||u||2 − 1)(||v||2 − 1)Eg[(v⊤g)j(u⊤g)j ]

− ||u||2(||v||2 − 1)Eg[Hj(u
⊤g)(v⊤g)j ]− ||v||2(||u||2 − 1)Eg[Hj(v

⊤g)(u⊤g)j ]

(51)

Therefore,

Eg[Hj(u
⊤g)Hj(v

⊤g)]

=
j!⟨u, v⟩j

||u||2||v||2
1j=k −

(||u||2 − 1)(||v||2 − 1)

||u||2||v||2
Eg[(v⊤g)j(u⊤g)j ]

+
(||v||2 − 1)

||v||2
Eg[Hj(u

⊤g)(v⊤g)j ] +
(||u||2 − 1)

||u||2
Eg[Hj(v

⊤g)(u⊤g)j ]

(52)

Note that the result of Lemma H.7 can be applied for concrete calculation, and conclude the proof.

Lemma H.7. For d ∈ N, u, v ∈ Rd, g ∼ N(0, Id), Z̄1 = ⟨u, g⟩, Z̄2 = ⟨v, g⟩.(
Z̄1

Z̄2

)
∼ N

((
0

0

)
,

(
||u||2 ⟨u, v⟩
⟨v, u⟩ ||v||2

))
(53)

Xαi
is defined at Thm. H.4

EZ̄1,Z̄2
[Hj(Z̄1)Z̄

k
2 ] = j!

⌊ j
2 ⌋∑

m=0

(−1)m

m!(j − 2m)!2m

∑
σ∈

∏
({{Z̄1}×j−2m}∪{{Z̄2}×k}})

∏
(p,q)∈σ

E[XαpXαq ]1j+k−2m is even

EZ̄1,Z̄2
[Z̄j1Z̄

k
2 ] =

∑
σ∈

∏
({{Z̄1}×j}∪{{Z̄2}×k}})

∏
(p,q)∈σ

E[XαpXαq ]1j+k is even

(54)

Proof. By explicit formula of Hermite polynomials

EZ̄1,Z̄2
[Hj(Z̄1)(Z̄2)

k] = j!

⌊ j
2 ⌋∑

m=0

(−1)m

m!(j − 2m)!2m
EZ̄1,Z̄2

[Z̄j−2m
1 Z̄k2 ] (55)

Therefore, we need to figure out EZ̄1,Z̄2
[Z̄p1 Z̄

q
2 ]. We know Z̄1, Z̄2 is mean zero Gaus-

sian, so we can apply Thm. H.4 with A = {{Z̄1} × p} ∪ {{Z̄2} × q}}, E[Z̄p1 Z̄
q
2 ] =∑

σ∈
∏

(A)

∏
(τ,υ)∈σ E[Xατ

Xαυ
].1p+q is even

Corollary H.8 (Corollary of Lemma H.7). Remark Z1 ∼ N(0, ∥u∥2) For the case k = 0,

EZ̄1
[Z̄j1 ] = ∥u∥j(j − 1)!!1j is even (56)
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Proof.

EZ̄1,Z̄2
[Z̄j1Z̄

k
2 ] = EZ̄1

[Z̄j1 ] =
∑

σ∈
∏

({Z̄1}×j})

∏
(p,q)∈σ

E[Xαp
Xαq

]1j is even

=
∑

σ∈
∏

({Z̄1}×j})

∏
(p,q)∈σ

∥u∥21j is even =
∑

σ∈
∏

({Z̄1}×j})

∥u∥j1j is even = (j − 1)!!∥u∥j1j is even

(57)

H.2 EXPECTATION OF A PRODUCT OF TWO HERMITE POLYNOMIALS—GENERALIZATION
TOWARD NON-CENTERED GAUSSIAN

We will change Theorem H.5 and Lemma H.7 to adopt a generalized Gaussian assumption with a
mean of zero.

Lemma H.9 (Taylor expansion of Hermite polynomials from Lemma C.2 Moniri et al. (2024)). For
any k1, k2 ∈ {0, 1, · · · , } and x, y ∈ R,

Hk(x+ y) =

k∑
j=0

(
k

j

)
xjHk−j(y). (58)

Theorem H.10 (Generalization of Thm. H.5 for any Gaussian distribution). For d ∈ N, u, v ∈ Rd,
ξ ∼ N(0, 1), g ∼ N(µ,Σ), Z1 = ⟨u, g⟩ ∼ N(µ⊤u, u⊤Σu), Z2 = ⟨v, g⟩ ∼ N(µ⊤v, v⊤Σv).

Eg[Hj(Z1)Hk(Z2)]

=

j∑
α=0

k∑
β=0

(
j

α

)(
k

β

)
(u⊤µ)α(v⊤µ)β

×

[
(j − α)!(u⊤Σv)j−α

u⊤Σuv⊤Σv
1j−α=k−β − (u⊤Σu− 1)(v⊤Σv − 1)

u⊤Σuv⊤Σv
Eg[(

√
u⊤Σuξ)j−α(

√
v⊤Σvξ)k−β ]

+
(v⊤Σv − 1)

v⊤Σv
Eg[Hj−α(

√
u⊤Σuξ)(

√
v⊤Σvξ)k−β ] +

(u⊤Σu− 1)

u⊤Σu
Eg[(

√
u⊤Σuξ)j−αHk−β(

√
v⊤Σvξ)]

]
(59)

Proof of Theorem H.10. By reparametrization i.e. Z1 =
√
u⊤Σuξ + u⊤µ, Z2 =

√
v⊤Σvξ + v⊤µ,

and Lemma H.9,

Hj(
√
u⊤Σuξ + u⊤µ) =

j∑
α=0

(
j

α

)
(u⊤µ)αHj−α(

√
µ⊤Σuξ). (60)

Eg[Hj(u
⊤g)Hk(v

⊤g)] = Eξ[Hj(
√
u⊤Σuξ + u⊤µ)Hk(

√
v⊤Σvξ + v⊤µ)]

= Eξ
[ j∑
α=0

(
j

α

)
(u⊤µ)αHj−α(

√
µ⊤Σuξ)

][ k∑
β=0

(
k

β

)
(v⊤µ)βHk−β(

√
µ⊤Σvξ)

]
=

j∑
α=0

k∑
β=0

(
j

α

)(
k

β

)
(u⊤µ)α(v⊤µ)βEξ[Hj−α(

√
µ⊤Σuξ)Hk−β(

√
µ⊤Σvξ)]

(61)

Use same proof technique Thm. H.5, with
(√u⊤Σuξ√

v⊤Σvξ

)
∼ N

((
0
0

)
,

(
u⊤Σu u⊤Σv
v⊤Σu v⊤Σv

))
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Eξ[Hj−α(
√
u⊤Σuξ)Hk−β(

√
v⊤Σvξ)]

=
(j − α)!(u⊤Σv)j−α

u⊤Σuv⊤Σv
1j−α=k−β − (u⊤Σu− 1)(v⊤Σv − 1)

u⊤Σuv⊤Σv
Eg[(

√
u⊤Σuξ)j−α(

√
v⊤Σvξ)k−β ]

+
(v⊤Σv − 1)

v⊤Σv
Eg[Hj−α(

√
u⊤Σuξ)(

√
v⊤Σvξ)k−β ] +

(u⊤Σu− 1)

u⊤Σu
Eg[(

√
u⊤Σuξ)j−αHk−β(

√
v⊤Σvξ)]

(62)

In summery,

Eg[Hj(u
⊤g)Hk(v

⊤g)]

=

j∑
α=0

k∑
β=0

(
j

α

)(
k

β

)
(u⊤µ)α(v⊤µ)β

×

[
(j − α)!(u⊤Σv)j−α

u⊤Σuv⊤Σv
1j−α=k−β − (u⊤Σu− 1)(v⊤Σv − 1)

u⊤Σuv⊤Σv
Eξ[(

√
u⊤Σuξ)j−α(

√
v⊤Σvξ)k−β ]

+
(v⊤Σv − 1)

v⊤Σv
Eξ[Hj−α(

√
u⊤Σuξ)(

√
v⊤Σvξ)k−β ] +

(u⊤Σu− 1)

u⊤Σu
Eξ[(

√
u⊤Σuξ)j−αHk−β(

√
v⊤Σvξ)]

]
(63)

The following Corollary which calculates the Expectation of the Power of a Gaussian Random
Variable can be derived using the binomial expansion with the reparametrization technique and
Corollary H.8. It corresponds to the case k = 0 in Lemma H.7.

Corollary H.11 (Corollary of Lemma H.7). Given β, let Gaussian Random Variable Z ∼
N(µ⊤β, β⊤Σβ), then expectation of power of Z is

EZ(Z)k =

k∑
t=0

(
k

t

)
(µ⊤β)k−tEZ̄∼N(0,β⊤Σβ)[Z̄

t]

=

k∑
t=0

(
k

t

)
(µ⊤β)k−t(t− 1)!! · (β⊤Σβ)

t
21t is even .

(64)

The following corollary, which computes the Gaussian expectation of Hermite polynomials, is de-
rived from the explicit form of Hermite polynomials and Corollary H.11. It corresponds to the case
k = 0 in Theorem H.10.

Corollary H.12 (Corollary of Theorem H.10). For d ∈ N, given w ∈ Rd, x ∼ N(µ,Σ),

Ex[Hn(w
⊤x)] =

⌊n
2 ⌋∑

m=0

n−2m∑
i=0

(−1)m(i− 1)!! n!

2m m!(n− 2m)!

(
n− 2m

i

)
(w⊤µ)n−2m−i(w⊤Σw)

i
2 1i is even

(65)

I DETAIL OF ALIGNMENT ANALYSIS

Proof of Theorem 4.2. Let kמ ≜ ck1ckη
k.
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When x ∼ N(µ,Σ), we approximate F to dominant term Fl, then

Ex,x′,θ[Fl(x)
⊤Fl(x

′)]

= Ex,x′,θ[(F0(x) +

l∑
k=1

k(β⊤x)kα◦k)⊤(F0(xמ
′) +

l∑
k=1

[⊤(k(β⊤x′)kα◦kמ

= Ex,x′,θ

[
⟨F0(x), F0(x

′)⟩

+ ⟨F0(x),

l∑
k=1

+⟨k(β⊤x′)kα◦kמ ⟨F0(x
′),

l∑
k=1

+⟨k(β⊤x)kα◦kמ
l∑

k=1,j=1

j(β⊤x)k(β⊤x′)jמkמ
∑
r

α[r]j+k
]

≜ A +B+C
(66)

I.1 A: Eθ
[
Ex[σ(W⊤

0 x)]
⊤Ex′ [σ(W⊤

0 x
′)]
]

STUDY

Let n,m,iב ≜
(−1)m(i−1)!! n!
2m m!(n−2m)!

(
n−2m
i

)
.

By Corollary H.12,

A = Eθ
[ N∑
a=1

∞∑
n=1

⌊n
2 ⌋∑

m=0

n−2m∑
i=0

∞∑
o=1

⌊ o
2 ⌋∑

p=0

o−2p∑
q=0

cncoבn,m,iבo,p,q

× (W0[a]
⊤µ)n−2m−i(W0[a]

⊤ΣW0[a])
i/21i is even

× (W0[a]
⊤µ)o−2p−q(W0[a]

⊤ΣW0[a])
q/21q is even

] (67)

We know, W0 ∼ Rd×N, W0[i] ∼ Unif(Sd−1).

Denote w ≜W0[a], t = n+ o− 2m− 2p− i− q, k = i+q
2 .

E
[
(W0[a]

⊤µ)n−2m−i(W0[a]
⊤ΣW0[a])

i/2(W0[a]
⊤µ)o−2p−q(W0[a]

⊤ΣW0[a])
q/2
]

= E[(w⊤µ)t(w⊤Σw)k]
(68)

Use covariance matrix property, which is diagonalizable i.e. Σ = QΛQ. w⊤Σw = w⊤QΛQ⊤w.
Let z = Q⊤w and µ̃ = Q⊤µ then w⊤Σw = z⊤Λz =

∑
i λiz

2
i . By symmetry, z ∼ Unif(Sd−1)

Therefore, using multi-index notation, where |α| =
∑n
i=1 αi, αi ≥ 0, and

(
t
α

)
= t!

α1!α2!···αn!

Ew[(w⊤µ)t(w⊤Σw)k] = Ez[(z⊤µ̃)t(
∑
i

λiz
2
i )
k]

= Ez[(
∑
|α|=t

(
t

α

) d∏
i=1

(ziµ̃i)
αi)(

∑
|β|=k

(
k

β

) d∏
j=1

(z2jλj)
βj )

=
∑
|α|=t

∑
|β|=k

(
t

α

)(
k

β

) d∏
i=1

d∏
j=1

µ̃αi
i λ

βj

j Ez[zαi
i z

2βj

j ]

(69)

The term related to µ of A is associated with the random value W [a]. Therefore, taking expecta-
tion on network parameters, A only depends on unseen distribution parameter µ,Σ without train
distribution.

In summery, let S(r, s, i, j) = Ez[zri zsj ],

R(n,m, i, o, p, q, α, β, cn, co,N) = Ncncoבn,m,iבo,p,q1i,q are even
(
n+o−2m−2p−i−q

α

)( i+q
2
β

)
, which

are deterministic function, then

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

A =

∞∑
n=1

⌊n
2 ⌋∑

m=0

n−2m∑
i=0

∞∑
o=1

⌊ o
2 ⌋∑

p=0

o−2p∑
q=0

∑
|α|=n+o−2m−2p−i−q

∑
|β|= i+q

2

R(n,m, i, o, p, q, α, β, cn, co,N)

d∏
l=1

d∏
j=1

µ̃αl

l λ
βj

j S(αl, βj , l, j)

(70)

I.2 B : 2
∑l
k=1 k⟨Bk,Eα[a◦k]⟩מ STUDY

Bk: Ex,x′ [σ(W⊤
0 x)(β

⊤x′)k] study
Let Z1 = ⟨W0[a], x⟩, Z2 = ⟨β, x′⟩,
then Z1|W0[a] ∼ N(W0[a]

⊤µ,W0[a]
⊤ΣW0[a]), Z2 ∼ N(β⊤µ, β⊤Σβ).

Therefore, by Corollary H.11 and H.12

Bk[a] =Eθ
∞∑
j=1

cjEZ1Hj(Z1)EZ2(Z2)
k

=

∞∑
j=1

⌊ j
2 ⌋∑

m=0

j−2m∑
i=0

k∑
t=0

(
j − 2m

i

)(
k

t

)
(−1)mcj(i− 1)!! j! (k − t− 1)!

2m m!(j − 2m)!
1k−t is even 1i is even

Eθ
[
(W0[a]

⊤µ)j−2m−i(W0[a]
⊤ΣW0[a])

i
2

]
(µ⊤β)t · (β⊤Σβ)

k−t
2

=

∞∑
j=1

⌊ j
2 ⌋∑

m=0

j−2m∑
i=0

k∑
t=0

∑
|α|=j−2m−i

∑
|β|= i

2

(
j − 2m

i

)(
k

t

)(
j − 2m− i

α

)( i
2

β

)
(−1)mcj(i− 1)!! j! (k − t− 1)!

2m m!(j − 2m)!

d∏
u=1

d∏
v=1

µ̃αu
u λβv

v S(αu, αv, u, v) (µ
⊤β)t · (β⊤Σβ)

k−t
2 1k−t is even 1i is even

(71)

The term related to µ of Bk[a] is associated with the random value W [a]. Therefore, ∀a, Bk[a]
depends on unseen distribution parameter µ,Σ and β⊤µ with same value.

Eα[a◦k] study We know a1[i], a2[i] ∼ N(0, 1
N ), so α[i] ≜ (a1 − a2)[i] ∼ N(0, 2

N ). Therefore, by
centered gaussian moments,

Eα[α[r]k] =
(k)!

w
k
2 (k2 )!

(
2

N
)

k
2 1k is even (72)

Since Eα[α[r]k] is nonzero only when k is even, and even condition of k− t is exist in Bk[a], taking
the absolute value of βTµ within Bk produce equivalent results.

Therefore, in B = 2
∑l
k=1 k⟨Bk,Eα[a◦k]⟩מ is depends on µ,Σ, |β⊤µ| and β⊤Σβ

I.3 C:
∑l
k=1,j=1 ]jEαמkמ

∑
r α[r]

j+k]Cj,k STUDY

Cj,k: Ex,x′ [(β⊤x)k(β⊤x′)j ] study
Let Z1 ≜ β⊤x ∼ N(β⊤µ, β⊤Σβ), same as Z ′

2. Using Corollary H.11,

EZj1Z
k
2 =

j∑
s=0

k∑
t=0

(
j

s

)(
k

t

)
(j − s− 1)!!(k − t− 1)!!(µ⊤β)s+t(β⊤Σβ)

j−s+k−t
2 1j−s, k−t are even

(73)

Therefore, the term related to µ in Cj,k is only dominated by the discriminative data β, independent
of the randomly initialized parameters.
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∑
r Eα[α[r]j+k] study∑

r

Eα[α[r]j+k] =
N(j + k)!

2
j+k
2 ( j+k2 )!

( 2
N

) j+k
2 1j+k and i is even (74)

Since Eα[α[r]j+k] is nonzero only when j+k is even, and even condition of j−s and k−t are exist
in Ck[a], so s + t is even in this conditions, taking the absolute value of βTµ within Ck produce
equivalent results.

Therefore, in C =
∑l
k=1,j=1 ]jEαמkמ

∑
r α[r]

j+k]Cj,k is depends on |β⊤µ| and β⊤Σβ

J DETAIL OF LOCAL ELASTICITY ANALYSIS

Proof of Theorem 4.3.

Ex,θ||Fl(x)− F0(x)||2 = Ex,θ[
l∑

k=1

ck1ckη
k(β⊤x)k(α◦k)]⊤[

l∑
m=1

cm1 cmη
m(β⊤x)m(α◦m)]. (75)

For E[(x⊤β)k+m], by Corollary H.11

Ex[(x⊤β)k+m] = Ez∼N(0,1)[(β
⊤µ+

√
β⊤Σβz)k+m]

=

k+m∑
i=0

(
k +m

i

)
(β⊤µ)k+m−i(β⊤Σβ)

i
2E[zi]

=

k+m∑
i=0

(
k +m

i

)
(β⊤µ)k+m−i(β⊤Σβ)

i
2 (i− 1)!! 1i is even

(76)

Remark kמ ≜ ck1ckη
k. Finally,

Ex,θ||Fl(x)− F0(x)||2

=

l∑
k=1

l∑
m=1

ck+m1 ckcmη
k+m

k+m∑
i=0

(
k +m

i

)
(β⊤µ)k+m−i(β⊤Σβ)

i
2 (i− 1)!! 1i is evenEα[α◦k⊤α◦m]

=

l∑
k=1

l∑
m=1

k+m∑
i=0, even

mמkמ

(
k +m

i

)
(β⊤µ)k+m−i(β⊤Σβ)

i
2 (i− 1)!!

∑
r

Eα[α[r]k+m].

(77)

Taking Expectation over Network parameters, one can acquire

=

l∑
k=1

l∑
m=1

k+m∑
i=0

mמkמ

(
k +m

i

)
(β⊤µ)k+m−i(β⊤Σβ)

i
2 (i− 1)!!

N(k +m)!

2
k+m

2 (k+m2 )!

( 2
N

) k+m
2 1k+m and i is even

(78)

Therefore, k +m− i is even. For clarity, we use absolute values,

=

l∑
k=1

l∑
m=1

k+m∑
i=0

mמkמ

(
k +m

i

)
N(k +m)!

2
k+m

2 (k+m2 )!

( 2
N

) k+m
2 (i− 1)!! |β⊤µ|k+m−i(β⊤Σβ)

i
2 1k+m and i is even

(79)

For clearity, we define constant

κLE(k,m, i,N, c1, ck, cm, η) ≜ mמkמ

(
k +m

i

)
N(k +m)!

2
k+m

2 (k+m2 )!

( 2
N

) k+m
2 (i− 1)!!
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which depends on constant k,m, i,N, c1, ck, cm, η.

=

l∑
k=1

l∑
m=1

k+m∑
i=0

κLE |β⊤µ|k+m−i(β⊤Σβ)
i
2 1k+m and i is even (80)

κLE depends only on the constants k,m, i,N, c1, ck, cm, η, and is independent of the parameters of
the data distribution.

K ADDITIONAL INFORMATION OF EXPERIMENT 1, 2

K.1 ADDITIONAL RESULTS FOR ALIGNMENT AND ELASTICITY

Alignment of Setup 1-Data 1 Alignment of Setup 1-Data 2 Alignment of Setup 1-Data 3

Elasticity of Setup 1-Data 1 Elasticity of Setup 1-Data 2 Elasticity of Setup 1-Data 3

Figure K.1: Setup 1 Observation of Alignment and Elasticity (y-axis) derived from the LHS of Thm.
1.1, 1.2 across different e (blue, lower x-axis, exactly overlaped) and β⊤µ (red, upper x-axis) values.

Alignment of Setup 2-Data 1 Alignment of Setup 2-Data 2 Alignment of Setup 2-Data 3

Elasticity of Setup 2-Data 1 Elasticity of Setup 2-Data 2 Elasticity of Setup 2-Data 3

Figure K.2: Experiment 2 The observation of Alignment and Elasticity (y-axis), derived from the
LHS of Thms. 1.1 and 1.2, across different values of β⊤µ (x-axis) with varying R.
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Alignment of Data 1 Alignment of Data 2 Alignment of Data 3

LE of Data 1 LE of Data 2 LE of Data 3

Figure K.3: Experiment 1 The x-axis is displayed on a logarithmic scale. Observation of Alignment
and LE (y-axis) derived from the LHS of Thm. 4.2, 4.3 across different e (blue, lower x-axis) and
β⊤µ (red, upper x-axis) values.
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K.2 ADDITIONAL RESULTS FOR RECALL@1

We present the cosine similarity Recall@1 experiment for the remaining datasets not included in the
main text in this section Figure K.4.

Train: Data 1, Evaluation:
Setup 1

Train: Data 2, Evaluation:
Setup 1

Train: Data 3, Evaluation:
Setup 1

Train: Data 1, Evaluation:
Setup 2

Train: Data 2, Evaluation:
Setup 2

Train: Data 3, Evaluation:
Setup 2

Figure K.4: Recall@1 (y-axis) measurement of Exper 1, 2 of features across different β⊤µ values
(x-axis). The blue line represents the clustering performance measured using the features in their
initialized state, the orange line reflects the performance after one step of training, and the green line
indicates the improvement, i.e., the difference between the two. For Setup 1 (top), the x-axis is on a
logarithmic scale, whereas for Setup 2 (bottom), the x-axis is on a linear scale.

K.2.1 INNER PRODUCT RECALL@1 OF EXPERIMENT 1

In this experiment we use Recall@1 with Inner Product similarity. Figure K.5. Similar trends are
observed in the Recall@1 of the Inner Product similarity as in the Cosine similarity. The Recall@1
of the Inner Product similarity is also maximized when the alignment is high.

Recall@1 of Data 1 Recall@1 of Data 2 Recall@1 of Data 3

Recall@1 of Data 1 Recall@1 of Data 2 Recall@1 of Data 3

Figure K.5: Recall@1 measurement using Inner Product similarity
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K.3 EMPIRICAL VALIDATION OF THE LINEAR RELATIONSHIP BETWEEN GENERATED DATA
PARAMETER e AND β⊤µ IN EXPERIMENT 1

As shown in Figure K.6, we observe a positive, linear relationship between e and β⊤µ as e is varied.
This confirms the validity of our test data generation method based on e.

(a) β from Data 1 (b) β from Data 2 (c) β from Data 3

Figure K.6: We calculated β from Training Datasets 1, 2, and 3, and then computed β⊤µ by adjust-
ing e to determine µ in the test data. The x-axis represents e, and the y-axis shows the values of
β⊤µ.

K.4 ROTATION MATRIX GENERATION PROCESS OF Setup 2

To generate a set of rotation matrices with diverse magnitudes of rotation, we constructed an algo-
rithm that samples k = 300 random matrices, each formed by adding i.i.d. Gaussian noise matrix
of varying variance to the identity matrix I . The process ensures the generation of rotation matrices
with varying extents of rotation, from slight to more substantial deviations from the identity matrix.

The rotation matrices are generated as follows:

1. A matrix is initialized as I + ϵ ·M , where M is a i.i.d. standard random Gaussian matrix.

2. Using the QR decomposition, we orthogonalize this matrix to ensure it forms a valid rota-
tion matrix.

3. Finally, if the determinant of the resulting matrix is negative, we flip the sign of the first
column to maintain a determinant of +1, ensuring it is a valid rotation.

In summary, this method provides a collection of matrices that progressively deviate from I , allow-
ing us to observe and sample rotations of increasing magnitude.

K.5 ADDITIONAL DISCUSSION OF RECALL@1 EVALUATION FOR EXPR 1

The Recall@1 results of Expr 1 setting indicate three phases in Recall@1 outcomes.

The first phase: The learning process fails to improve performance either because the training and
evaluation data are too distant, as predicted by our theory, or because e is too small for the fea-
ture extractor to achieve separation. We interpret that either of these factors contributes to the lack
of performance improvement. The second phase: Performance improves as the similarity between
training and evaluation data becomes appropriate, allowing better Recall@1 after training. It is note-
worthy that the improvement also increases along with larger e. This indicates not only the increased
e leading to greater distances between evaluation features but also the Recall@1 improvement with
e as our theory. The third phase: Effective feature separation has already occurred; thus, even with
sufficiently close training data, the learning process does not enhance Recall@1 performance.

We conclude that the first and third phases represent unsuitable configurations for retrieval tasks,
while the second phase provides a dataset which effectively supports training for retrieval tasks and
is explainable by our theory.

L ADDITIONAL SETTINGS FOR EXPERIMENT 3, 4

In Table 2, we provide the detailed parameters for the experiments.
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Experiment 3 Experiment 4
Model ResNet18 ResNet50

Learning Task Binary Classification Multi-class Classification
Loss Mean Squared Error Norm Softmax (Zhai & Wu, 2019)

Epoch 20 30
Batch Size 96 (Full GD) 75 (use 3 classes with 25 samples)
Optimizer Adam SGD

Learning Rate 0.001 CARS: 0.01 / CUB: 0.001

Table 2: Comparison between Experiment 3 and Experiment 4

M ADDITIONAL INFORMATION FOR SETUP 3

For gradient stability and fair evaluation, all classes are truncated to include only 48 images. The
batch size is set to 96 for Full gradient descent. Remark that, to align the experimental setup with
our theoretical setting, two classifier heads and sign flipped label 1,−1 is used.

N ADDITIONAL RESULTS OF EXPERIMENT 3

The performance of the two classifier heads during training is shown in Figure N.1. The results
of the empirical validation without Kendall’s W aggregation are presented in subsection N.1 for
the model trained with the CARS196 dataset and in subsection N.2 for the model trained with the
CUB200 dataset. Consistent with Kendall’s W calculations and theoretical analyses, in most cases,
we observe that LE, alignment, and |β⊤µ| individually rise and fall in similar trends during training.
The gray line represents metrics calculated on the entire dataset, while the colored lines denote
individual test classes. Since classes were randomly sampled per seed, the same color represents the
same class only within a single seed.

(a) 1st seed for the CAR
dataset train

(b) 2nd seed for the
CAR dataset train

(c) 3rd seed for CAR
dataset train

(d) 4th seed for the CAR
dataset train

(e) 1st seed for the CUB
dataset train

(f) 2nd seed for the CUB
dataset train

(g) 3rd seed for the CUB
dataset train

(h) 4th seed for CUB
dataset train

Figure N.1: Classification accuracy measured with training data. As two classifier heads were used
in the theoretical setup, two accuracy values are plotted for each setting.
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N.1 TRAIN MODEL WITH CARS196

N.1.1 1ST SEED

(a) |β⊤µ| (b) Align (c) LE

Figure N.2: The 1st seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CAR dataset’s test set.

(a) |β⊤µ| (b) Align (c) LE

Figure N.3: The 1st seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CUB dataset’s test set.

N.1.2 2ND SEED

(a) |β⊤µ| (b) Align (c) LE

Figure N.4: The 2nd seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CAR dataset’s test set.

(a) |β⊤µ| (b) Align (c) LE

Figure N.5: The 2nd seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CUB dataset’s test set.
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N.1.3 3RD SEED

(a) |β⊤µ| (b) Align (c) LE

Figure N.6: The 3rd seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CAR dataset’s test set.

(a) |β⊤µ| (b) Align (c) LE

Figure N.7: The 3rd seed of CAR dataset training. Results were computed using the features of five
randomly selected classes from the CUB dataset’s test set.

N.1.4 4TH SEED

(a) |β⊤µ| (b) Align (c) LE

Figure N.8: The 4th seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CAR dataset’s test set.

(a) |β⊤µ| (b) Align (c) LE

Figure N.9: The 4th seed of the CAR dataset training. Results were computed using the features of
five randomly selected classes from the CUB dataset’s test set.
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N.2 TRAIN MODEL WITH CUB200

N.2.1 1ST SEED

(a) |β⊤µ| (b) Align (c) LE

Figure N.10: The 1st seed of the CUB dataset training. Results were computed using the features of
five randomly selected classes from the CAR dataset’s test set.

(a) |β⊤µ| (b) Align (c) LE

Figure N.11: The 1st seed of the CUB dataset training. Results were computed using the features of
five randomly selected classes from the CUB dataset’s test set.

N.2.2 2ND SEED

(a) |β⊤µ| (b) Align (c) LE

Figure N.12: The 2nd seed of the CUB dataset training. Results were computed using the features
of five randomly selected classes from the CAR dataset’s test set.

(a) |β⊤µ| (b) Align (c) LE

Figure N.13: The 2nd seed of the CUB dataset training. Results were computed using the features
of five randomly selected classes from the CUB dataset’s test set.
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N.2.3 3RD SEED

(a) |β⊤µ| (b) Align (c) LE

Figure N.14: The 3rd seed of the CUB dataset training. Results were computed using the features
of five randomly selected classes from the CAR dataset’s test set.

(a) |β⊤µ| (b) Align (c) LE

Figure N.15: The 3rd seed of the CUB dataset training. Results were computed using the features
of five randomly selected classes from the CUB dataset’s test set.

N.2.4 4TH SEED

(a) |β⊤µ| (b) Align (c) LE

Figure N.16: The 4th seed of the CUB dataset training. Results were computed using the features
of five randomly selected classes from the CAR dataset’s test set.

(a) |β⊤µ| (b) Align (c) LE

Figure N.17: The 4th seed of the CUB dataset training. Results were computed using the features
of five randomly selected classes from the the CUB dataset’s test set.
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O ADDITIONAL RESULTS OF EXPERIMENT 4

We provide non aggregated data for the experiment 4 in this section. The data is presented in the
form of tables. The tables are as follows:

R@1 v. Align p-value Recall@1 Recall@2 Recall@4 Recall@8 final Avg. Align
0.3195 0.0013 93.4694 96.6056 97.9707 98.7947 829.4791
0.2386 0.0180 93.7523 96.4949 97.9461 98.7332 858.0315
0.1052 0.3025 94.0844 96.7409 98.1798 98.9792 857.6394
0.2864 0.0043 93.3096 96.4457 98.0445 98.8439 827.9364

0.2374±0.0942 0.0000 93.6539±0.3404 96.5718±0.1311 98.0353±0.1050 98.8378±0.1046 843.2716±16.8294

Table 3: Measurement from CARS196 trained model. R@1 v. Align is Pearson correlation between
Recall@1 and final Avg. Align. Recall@k and final average Alignment is measured after training.

R@1 v. Align p-value Recall@1 Recall@2 Recall@4 Recall@8 final Avg. Align
0.2925 0.0032 68.0621 78.7643 86.5294 91.6948 1060.0284
0.2308 0.0209 68.6867 79.4564 87.6097 92.2687 1088.8525
0.3498 0.0004 67.9946 79.2539 86.7995 92.4038 1050.2296
0.2769 0.0053 67.7583 78.8150 87.0695 92.2181 1090.8598

0.2875±0.0491 0.0000 68.1254±0.3962 79.0724±0.3374 87.0020±0.4613 92.1464±0.3111$ 1072.4926±20.4613

Table 4: Measurement from CUB200 trained model. R@1 v. Align is Pearson correlation between
Recall@1 and final Avg. Align. Recall@k and final average Alignment is measured after training.
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