
Teaching Computational Machine Learning (without Statistics)

Katherine M. Kinnaird 1

Abstract

This paper presents an undergraduate machine
learning course that emphasizes algorithmic un-
derstanding and programming skills while assum-
ing no statistical training. Emphasizing the devel-
opment of good habits of mind, this course trains
students to be independent machine learning prac-
titioners through an iterative, cyclical framework
for teaching concepts while adding increasing
depth and nuance. Beginning with unsupervised
learning, this course is sequenced as a series of
machine learning ideas and concepts with spe-
cific algorithms acting as concrete examples. This
paper also details course organization including
evaluation practices and logistics.

1. Introduction
In this paper, we present an undergraduate machine learning
course taught at Smith College that focuses on building the
habits of mind one needs to be an effective machine learning
practitioner. Instead of being a survey course that “covers”
as many algorithms as possible, this course seeks to leverage
specific machine learning algorithms as concrete examples
of larger themes and ideas in machine learning through a
computational lens.

In many ways, the course presented in this paper varies from
traditional approaches to teaching machine learning. First
and foremost, the course begins with unsupervised learning
before turning to supervised learning and then ending with a
unit on deep learning. Second is the course’s dual emphasis
on students developing practical skills as well as deep con-
ceptual understanding. Finally, this course places a premium
on understanding machine learning concepts through heuris-
tics and implementing pseudocode over learning complex
mathematical and statistical derivations.

1Statistical & Data Sciences Program and Department of
Computer Science, Smith College, Northampton, Massachusetts,
USA. Correspondence to: Katherine M. Kinnaird <kkin-
naird@smith.edu>.

Teaching Machine Learning Workshop at ECML-PKDD 2020,
Virtual (formerly Ghent, Belgium) Sept. 14, 2020. Copyright 2020
by the author.

This paper is organized into two main parts. Section 2 moti-
vates this computational lens for teaching machine learning.
This section also includes discussions of both the expected
audience and the course learning objectives. In Section 3,
we delve into several course design choices, including the
framework for introducing machine learning concepts, the
list of topics, and general course organization from student
evaluation to daily logistics.

2. Motivation for the course
Previous iterations of a machine learning course at Smith
College were cross-listed between the Department of Com-
puter Science department and Program in Statistical & Data
Sciences (SDS). As part of an effort to broaden the appeal
of a machine learning course, previous iterations had no re-
quired prerequisites, meaning that students with no training
in computer science, statistics, or mathematics could take a
machine learning course.

While this approach certainly can have merits, ultimately
the computer science department and SDS program decided
to create two courses that would complement each other
and would provide discipline specific lenses for the subject
matter. The SDS program offers “Modeling for Machine
Learning” which emphasizes the modeling perspective for
machine learning, highlighting more of the theory underpin-
ning machine learning concepts. The computer science de-
partment offers “Computational Machine Learning” which
emphasizes algorithmic understanding and programming
skills. This second course is presented in this paper.

2.1. Key Questions & Learning Objectives

This course has a number of motivations. The beginning of
the course syllabus1 details three motivating questions posed
to students: 1) What is Machine Learning? 2) What role
does computer science play in machine learning? 3) What
habits of mind do we need to develop to become machine
learning practitioners?

Five course learning outcomes follow these motivating ques-
tions. These learning objectives are specified both to ground
the course topics and activities but also to give students an

1Fall 2019 Syllabus can be found at http://bit.ly/
CompMLsyllabus

http://bit.ly/CompMLsyllabus
http://bit.ly/CompMLsyllabus


Teaching Computational Machine Learning (without Statistics)

understanding of how we will approach answering these
motivating questions. As stated on the syllabus: “[b]y the
end of the course, students will be able to. . .

• Detail differences between supervised and unsuper-
vised learning tasks and methods, as well as discuss
the issues when dealing with large scale data

• Implement a variety of machine learning algorithms in
python and assess their efficacy

• Compare models, and assess the efficacy of machine
learning algorithms and results using evaluation met-
rics and in terms of the context of the data’s domain

• Develop an appreciation for ethical implications of
machine learning algorithms

• Work collaboratively and reflectively to apply machine
learning techniques to a data set of interest with infor-
mative documentation, written for a variety of audi-
ences”

Both the motivating questions and the course learning ob-
jectives place emphasis on critical thinking in the context
of machine learning. In other words, instead of focusing on
memorizing a number of algorithms, formulas, and deriva-
tions, this course seeks to create machine learning practi-
tioners with a strong foundation for conducting independent
work in machine learning. Students leave this course with
the ability to reason in prose and in code, to work collab-
oratively and iteratively, and to evaluate machine learning
concepts and algorithms. This emphasis on critical thinking
within a discipline specific context is inline with the liberal
arts education model, common in the United States.

2.2. Target Audience & Expected Skills

This course was offered in a computer science department
at Smith College, a small liberal arts college (SLAC) and a
historically women’s college. The college has about 2600
undergraduate students2 and observes a semester system
with two 15 week terms. This year, 56 students graduated
with degrees in computer science. This past year, students
in this course had taken fewer than 12 courses in computer
science, and all self-identified as women.

This course was designed for undergraduate computer sci-
ence students in their third year. Students are expected to
have proficiency in programming, fluency with coding con-
cepts, as well as ideas from theoretical computer science;
and so, the computer science prerequisites for the course
include introductory programming (in Python), data struc-
tures (in Java), and theory of computation (or algorithms).

2Though there are post-baccalaurate programs at Smith College,
there is no such program in the computer science department.

Even though the emphasis of this course is on the program-
ming aspects of machine learning, students are required to
have a course in either linear algebra or multi-variable cal-
culus.3 This mathematical prerequisite means that while the
instructor can not assume linear algebra nor multi-variable
calculus, they can assume a level of mathematical maturity.
This course has no statistics prerequisite.

Finally, this course makes few assumptions about students
existing auxiliary programming skills. For example, with in-
troductory programming as the only required Python course,
students are not expected to have familiarity with numpy,
scipy, matplotlib, nor pandas. Additionally, stu-
dents are not expected to be agile with git, unit testing,
nor with continuous integration. All of these auxiliary skills
are woven throughout this computational machine learning
course, adding layer of practicality to the class. In many
ways, this course can be viewed as an advanced Python
course motivated by machine learning.

3. Course Design
This machine learning course aims to both practical and con-
ceptual. The course design focused on creating and main-
taining habits of effective machine learning practitioners.
Cyclical iteration is a central theme in terms of developing
programming skills and for honing critical thinking.

In this section, we will introduce the framework for moti-
vating, introducing, deploying, and practicing each machine
learning concept. We will then demonstrate how the se-
quence of topics follows a broader path of cyclic iteration,
forming a sort of cognitive outer loop to the inner loop in-
troducing each topic. Lastly, we will illustrate how students
iteratively gain professional skills throughout the semester’s
activities, homework assignments, and projects.

3.1. Cyclic Framework for Introducing Concepts

Developing critical thinking requires both repetition and
reflection. For this course, each topic is first introduced
through the associated heuristics. In that introduction, spe-
cific programming issues are highlighted, often through the
think-pair-share discussion model (Mazur, 1997) (which is
also used in other steps). The next step is crafting pseu-
docode that connects to the discussed heuristics. Then stu-
dents create code that matches their pseudocode. In this
step, students will encounter programming nuances and
edge cases that need to be addressed. Finally, students are
introduced to “off the shelf” implementations (perhaps from
scipy and sk-learn) of the associated concept. In this
final step, students may be asked to investigate the source

3At Smith College, only the second semester of calculus is
a prerequisite for linear algebra, meaning that students can take
linear algebra before taking multi-variable calculus.



Teaching Computational Machine Learning (without Statistics)

UNDERSTAND
HEURISTIC

WRITE
PSEUDOCODE

IMPLEMENT
CODE

USE EXISTING
IMPLEMENTATIONS

Figure 1. Cyclical framework for introducing concepts

code and compare it to their implementations. This cycle is
illustrated in Figure 1.

In this cyclic process, students work with each concept four
times. Each phase builds on the previous one, bringing
new depth and nuance to student’s understanding of each
machine learning topic. By starting with heuristics and
pseudocode as distinct phases in the learning process, the
course models that explaining technical content to a broad
audience is just as valuable as coding difficult algorithms.
Furthermore, by continuously using this iterative framework,
students have a model for expanding their machine learning
toolbox after this course ends.

By engaging with each concept reflectively, students hone
their critical evaluation skills, noting limitations of each ma-
chine learning approach and being able to compare different
machine learning techniques. This makes transitioning from
one concept to the next as straightforward as recalling limits
in previous approaches or adding one new idea. For exam-
ple, after students have facility with k-means, motivating
kNN can be as simple as asking “what would change in your
algorithm if you knew which groups 10 of your data points
belong to?” With just one question, the next iteration of the
cycle begins but on a new concept.

3.2. Topics

With this cyclical approach, it is critical to design the course
with a careful scaffolding of the machine learning ideas. In
this view, instead of tethering the course schedule to a list
of algorithms, we assemble a sequence of themes that build
on each other, pulling motivation from previous topics. For
example, leveraging students’ familiarity with linear regres-
sion, one can demonstrate the necessity the using both train-
ing and testing errors to avoid overfitting. It then becomes
natural to ask about how to choose the “right” values for pa-
rameters and hyperparameters, which motivates introducing
grid search, gradient descent, and cross-validation. Table 1
presents the ordering of the topics as both the broader ma-
chine learning ideas and the motivating examples.

While many topics are omitted from this course, the big
themes of machine learning (such as comparing supervised
and unsupervised learning, the train/test paradigm, etc) are
present. With this course’s emphasis on the programming

Table 1. Topics in “Computational Machine Learning” connected
to the specific algorithms serving as examples

CONCEPTS & THEMES EXAMPLES

AUXILIARY PROGRAM-
MING SKILLS

GIT , UNIT TESTS,
MATPLOTLIB

DISTANCE COMPUTA-
TIONS AND STOPPING
CONDITIONS

K-MEANS

DIMENSION REDUCTION PCA, SVD
INTRODUCTION TO SUPER-
VISION

KNN

TRAIN/TEST PARADIGM
LINEAR REGRES-
SION

PARAMETERS & HYPER-
PARAMETERS

COMPARISON BE-
TWEEN KNN, K-
MEANS, AND LIN-
EAR REGRESSION

TUNING PARAMETERS

GRID SEARCH,
GRADIENT DE-
SCENT, CROSS-
VALIDATION

CLASSIFICATION SVM
INTERPRETABILITY DECISION TREES
ENSEMBLE METHODS RANDOM FORESTS

DESIGN CONSIDERATIONS
EPOCHS, BENCH-
MARKING

DEEP LEARNING

PERCEPTRONS,
MLP, BACK-
PROPAGATION,
TENSORFLOW

aspects of machine learning, included algorithms leverage
existing coding skills to illuminate machine learning ideas.
What is more, this course presents a sequence of topics that
do not rely on deep statistical or mathematical training.

The course adds concepts one at a time building from unsu-
pervised machine learning to supervised and on through to
deep learning, using specific algorithms as motivation for
those concepts. The course’s ordering of machine learning
topics is less traditional but allows for a coherence across the
semester with new machine learning ideas added methodi-
cally bit by bit. This approach contrasts the typical course
that starts with supervised learning, then ‘removes’ super-
vision before returning to deep learning. Additionally by
starting with unsupervised learning, this course highlights
unsupervised learning as a critical area of study, instead of
as a concession when compared to supervised learning.

This sequence of topics is not typical for a machine learn-
ing course, which makes selecting one book (or even two
books) for the course challenging. Instead of drawing course
readings from one book, this course drew on a number of
sources including two books (Raschka & Mirjalili, 2017;
McKinney, 2017), and a variety carefully curated blog and
medium posts that do not rely on familiarity with supervised
learning in their explanations of unsupervised learning.



Teaching Computational Machine Learning (without Statistics)

3.3. Course Organization

This course is structured to be an active classroom with
students engaged through discussion, writing, and coding
nearly every class meeting. The organization of the course
falls into two categories: 1) evaluation structure and 2)
logistics.

3.3.1. EVALUATION

The work in this course has an explicit scaffolding, leading
students towards independent machine learning work. The
labs are highly-structured, yet interactive. The homework
emphasizes practicing implementing concepts from end to
end without the step-by-step structuring of the labs. The
projects are open-ended and designed to stretch students’
understanding of concepts, by having students experiment
and mix several machine learning ideas. These project
as well as the final portfolio emphasize applying course
concepts. Student work in this course falls into four types:

1. Routine course work including 26 lab assignments,
weekly reflection forms, and one summary of an aca-
demic paper on fairness in machine learning

2. Coding assignments, including seven homework as-
signments and five projects

3. Final portfolio of revised work from the semester

4. Professional development, including two reflective
writing assignments and class engagement in person
and on the course’s slack workspace4

This course uses a mix of grading practices. Homework as-
signments, projects, and the final portfolio are graded with
typical points-based rubrics. The lab assignments, weekly
reflection forms, and reflective writing assignments are
graded on completion. Lastly, class engagement is graded
with student input from two self-evaluation forms: one as-
signed in the middle of the term, and the second assigned at
the end. Additionally, the course uses a series of flexibility
systems designed to be more closely aligned with the “real
world.” For example, late work is not accepted, but to get
full credit for several areas of the course, students need to
do about 80% of the work well. This model allows students
to practice making decisions such as balancing health and
work in a more authentic manner than under a traditional
points-based grading where every point must be attempted.

3.3.2. COURSE LOGISTICS

The course logistics have two goals: 1) students engage ac-
tively with concepts and 2) students practice skills expected

4Slack - https://slack.com/ - is a kind of discussion
board that can have channels for specific topics.

by industry. Explicitly the course was designed such that stu-
dents repeatedly engaged with version control, continuous
integration, and weaving code with prose.

Instead of using a typical learning management system
like Canvas or Blackboard, this course uses a combination
of GitHub Classroom and Travis CI for managing course
materials and collecting assignments. Course set-up in
GitHub Classroom followed recommendations from Fik-
sel et al. (2019).5. Additionally homework assignments
and projects include unit testing and continuous integration
through Travis CI.6 This set-up required continuous practice
of auxiliary programming skills. Given that git, GitHub,
and continuous integration are not widely adopted in the
computer science department at Smith College, students set
up these services through the first lab, which was adapted
from the first three parts of McFee and Kell’s tutorial (2018)
and parts of the tutorials on GitHub Classroom associated
to Fiksel et al.’s work (2019).

This course’s explicit focus on practicality extends to con-
tent delivery, preferring an interactive setting to the standard
lecture-based teaching model.7 Every class meeting uses
a computational notebook (either Jupyter or Colab) as the
main vehicle for content delivery. Called “labs,” each note-
book outlines a class meeting, including short reading pas-
sages, discussion questions (with text boxes to take notes),
and coding blocks for students to experiment in. Using
computational notebooks allowed the instructor to struc-
ture course notes for the students and to model the iterative
learning process discussed in Section 3.1. Effectively, these
notebooks are machine learning worksheets, but students
readily accepted them given the interactive nature inherent
to Jupyter notebooks (Kluyver et al., 2016).

4. Conclusion
In this paper, we have presented “Computational Machine
Learning,” a machine learning course for undergraduate
computer science majors with limited mathematical train-
ing. This course demonstrates that teaching a meaningful
course in machine learning without statistical training is pos-
sible. In addition to providing a number of course logistics,
we have also provided an iterative cyclical framework for
introducing concepts as well as list of topics that leverage
this framework to create natural transitions between topics.

5GitHub Classroom for Teachers - https://github.
com/jfiksel/github-classroom-for-teachers
Github Classroom for Students - https://github.com/
jfiksel/github-classroom-for-students

6Travis CI - https://travis-ci.org/
7The initial version of course materials is available at - https:

//github.com/comp-machine-learning-general/
course-materials.

https://slack.com/
https://github.com/jfiksel/github-classroom-for-teachers
https://github.com/jfiksel/github-classroom-for-teachers
https://github.com/jfiksel/github-classroom-for-students
https://github.com/jfiksel/github-classroom-for-students
https://travis-ci.org/
https://github.com/comp-machine-learning-general/course-materials
https://github.com/comp-machine-learning-general/course-materials
https://github.com/comp-machine-learning-general/course-materials


Teaching Computational Machine Learning (without Statistics)

Acknowledgements
The author is the Clare Boothe Luce Assistant Professor
of Computer Science and Statistical and Data Science at
Smith College and as such, is supported by Henry Luce
Foundation’s Clare Boothe Luce Program. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the Luce Foundation.

References
Fiksel, J., Jager, L. R., Hardin, J. S., and Taub, M. A.

Using github classroom to teach statistics. Journal of
Statistics Education, 27(2):110–119, 2019. doi: 10.1080/
10691898.2019.1617089. URL https://doi.org/
10.1080/10691898.2019.1617089.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bus-
sonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout,
J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Will-
ing, C., and development team, J. Jupyter notebooks—a
publishing format for reproducible computational work-
flows. In Proceedings of the International Conference on
Electronic Publishing, pp. 87–90, Göttingen, Germany,
2016.

Mazur, E. Peer Instruction: A User’s Manual. Pear-
son Series in Educational Innovation: Instructor Re-
sources for Physics Series. Prentice Hall, 1997. ISBN
9780135654415. URL https://books.google.
com/books?id=tjcbAQAAIAAJ.

McFee, B. and Kell, T. Open source and reproducible mir
research, 2018. URL https://brianmcfee.net/
ismir2018-oss-tutorial/.

McKinney, W. Python for Data Analysis: Data Wrangling
with Pandas, NumPy, and IPython. O’Reilly Media, Inc.,
2nd edition, 2017. ISBN 1491957662.

Raschka, S. and Mirjalili, V. Python Machine Learning:
Machine Learning and Deep Learning with Python, Scikit-
Learn, and TensorFlow, 2nd Edition. Packt Publishing,
2nd edition, 2017. ISBN 1787125939.

https://doi.org/10.1080/10691898.2019.1617089
https://doi.org/10.1080/10691898.2019.1617089
https://books.google.com/books?id=tjcbAQAAIAAJ
https://books.google.com/books?id=tjcbAQAAIAAJ
https://brianmcfee.net/ismir2018-oss-tutorial/
https://brianmcfee.net/ismir2018-oss-tutorial/

