
Higher-Order Learning with Graph Neural Networks
via Hypergraph Encodings

Raphael Pellegrin∗

Independent Researcher
raphaelpellegrin@alumni.harvard.edu

Lukas Fesser∗
Harvard University

lukas_fesser@fas.harvard.edu

Melanie Weber
Harvard University

mweber@seas.harvard.edu

Abstract

Higher-order information is crucial for relational learning in many domains where relation-
ships extend beyond pairwise interactions. Hypergraphs provide a natural framework for
modeling such relationships, which has motivated recent extensions of graph neural network
(GNN) architectures to hypergraphs. Most of these architectures rely on message-passing to
encode higher-order information. In this paper, we propose to instead use hypergraph-level
encodings based on characteristics such as hypergraph Laplacians and discrete curvature
notions. These encodings can be used on datasets that are naturally parametrized as hy-
pergraphs and on graph-level datasets, which we reparametrize as hypergraphs to compute
encodings. In both settings, performance increases significantly, on social networks by more
than 10 percent. Our theoretical analysis shows that hypergraph-level encodings provably
increase the representational power of message-passing graph neural networks beyond that
of their graph-level counterparts. For complete reproducibility, we release our codebase:
https://github.com/Weber-GeoML/Hypergraph_Encodings.

1 Introduction

Many datasets have inherent “multi-way” structure, where downstream tasks depend on relationships
between groups of entities that ordinary graphs, whose edges are pairwise relationships, cannot
represent (Bick et al., 2023; Benson et al., 2021; Schaub et al., 2021). Hypergraphs overcome this by
allowing hyperedges that connect any number of vertices. How can models effectively leverage such
higher-order information for learning?

The enhanced flexibility of hypergraphs has motivated a growing body of literature on hypergraph
neural network architectures, including message-passing (Huang & Yang, 2021) and transformer-
based models (Liu et al., 2024). Naïvely extending these paradigms from graph neural networks
to hypergraphs often fails to capture crucial substructures. On the other hand, reparametrizing a
hypergraph as a standard graph via clique expansion can introduce redundant pairwise edges that
obscure higher-order structures. This suggests that architectural bias alone is insufficient.

While previous work has focused on such architectural extensions, we propose a different route.
Instead of encoding higher-order structure as inductive biases directly, we propose a data augmentation
approach. Encodings that augment the input with structural information (e.g., spectra (Dwivedi et al.,
2023), motif counts (Zhao et al., 2021), discrete curvature (Fesser & Weber, 2024a)) have been shown
to yield significant performance gains. However, encodings have been studied almost exclusively at
the graph-level and fail to capture higher-order information specific to hypergraph representations.

1These authors* contributed equally.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Weber-GeoML/Hypergraph_Encodings

In this work we design hypergraph-level encodings based on classical hypergraph characteristics, and
prove that they capture higher-order structural information that cannot be represented by standard
hypergraph message-passing architectures or existing graph-level encodings. Our experimental results
benchmark the new encodings in combination with graph- and hypergraph-level message-passing
as well as transformer-based architectures. While hypergraph-level encodings offer only marginal
benefit for hypergraph-level architectures, they yield significant performance gains when paired with
graph-level message-passing and transformers.

1.1 Related Work

Topological Deep Learning has emerged as the dominant framework for learning on topological do-
mains, including hypergraphs, as well as simplicial, polyhedral and more general cell complexes (Hajij
et al., 2022, 2024; Papillon et al., 2023). Many classical graph-learning architectures have been
extended to these domains. In the case of hypergraphs, this includes message-passing (Huang &
Yang, 2021; Wang et al., 2022, 2023) and transformer-based (Liu et al., 2024) hypergraph neural
networks.

To the best of our knowledge, encodings have so far only been studied in the context of graph-level
learning (Dwivedi et al., 2023). Popular encodings leverage structural and positional information
captured by classical graph characteristics (Rampášek et al., 2022; Kreuzer et al., 2021; Cai & Wang,
2018; Zhao et al., 2021; Fesser & Weber, 2024a; Bouritsas et al., 2022).

1.2 Summary of Contributions

The main contributions of this paper are as follows:
(1) We introduce hypergraph-level encodings that augment a (hyper-)graph-structured input with

higher-order positional and structural information captured in hypergraph characteristics.

(2) We show that hypergraph-level encodings are provably more expressive than their graph-level
counterparts.

(3) We show that hypergraph-level encodings can significantly enhance the performance of graph
neural networks applied to hypergraph expansions.

2 Background

We consider graphs G = (V,X,E) with node attributes X ∈ R|V |×m and edges E ⊆ V × V ,
representing pairwise relations between nodes in V . We further consider hypergraphs H = (V,X, F)
where hyperedges F denote relations between groups of nodes. Hypergraphs can be reparametrized as
graphs using clique expansions; for more details see Apx. A.1. A graph can be lifted to a hypergraph
by adding a hyperedge for every set of vertices that are pairwise connected in the graph - effectively
turning each clique into a single higher-order relation; see Apx. A.2. In a graph, we represent the
set of all nodes j that are adjacent to i as Ni = {j ∈ V | (i, j) ∈ E}. In a hypergraph, we similarly
define the neighborhood of a node i ∈ V as Ni = {j ∈ V \ {i} | ∃ e ∈ F such that {i, j} ⊆ e} i.e.,
the set of nodes j that co-occur with i in at least one hyperedge. The degree di of a vertex i of an
undirected (hyper)graph H = (V,X, F) is the number of (hyper)edges that contain i (Klamt et al.,
2009).

2.1 Architectures

Message-passing GNN. Message-Passing (MP) (Gori et al., 2005; Hamilton et al., 2017) is a
prominent learning paradigm in relational learning, where a node’s representation is iteratively
updated based on the representations of its neighbors. Formally, let xlv denote the representation of
node v at layer l. Message-passing implements the following update,

xl+1
v = ϕl

(⊕
p∈Nv

ψl

(
xlp
))

,

where ψl denotes an aggregation function (e.g., averaging) acting on the 1-hop neighborhood Nv of v
(if self-loops are added, we consider p ∈ Nv ∪ {v} instead), and ϕl an update function with trainable

2

parameters, such as an MLP. The number of MP iterations is commonly referred to as the depth of
the network. Representations are initialized by the node attributes in the input.

Transformer-based GNN. The second major class of architectures for relational learning is
transformer-based (GT). Networks consist of blocks of multi-head attention layers (GlobalAttn(·)),
followed by fully-connected feedforward networks. In the recent literature, hybrid architectures,
which combine MP and attention layers, have been shown to exhibit strong performance on several
state of the art benchmarks (Rampášek et al., 2022).

Graph-level Architectures. Our selection of graph-level architectures includes two message-passing
GNNs (MPGNNs) and one hybrid architecture. GCN (Kipf & Welling, 2016) is one of the simplest
and most popular MPGNNs, making it an important reference point. GIN (Xu et al., 2018) is designed
to be a maximally expressive MPGNN. GraphGPS (Rampášek et al., 2022) is a widely used hybrid
architecture that performs well across the benchmarks considered here. These models remain strong
baselines and still outperform many newer models in both node- and graph-level tasks (Luo et al.,
2024). As baselines, we evaluate simple instances of all three architectures without additional model
interventions. An overview of the architectures can be found in Tab. 4; more detailed descriptions are
deferred to Apx. B.1.

Hypergraph-level Architectures. The architectures1 analyzed in this study implement message-
passing, which on hypergraphs is implemented via a two-phase scheme: messages are passed from
nodes to hyperedges and then back to nodes (Huang & Yang, 2021). Formally,

hl+1
e = ϕ1

({
xlj
}
j∈e

)
, x̃l+1

i = ϕ2

(
xli,
{
hl+1
e

}
e∈Ei

)
.

Here, xj denotes the node features of node j, he denotes the edge feature of edge e, Ej is the set of all
hyperedges containing j, and ϕ1 and ϕ2 are permutation-invariant functions for aggregating messages
from vertices and hyperedges respectively. x̃i indicates the output of the message-passing layer
before activation or normalization. Tab. 4 provides an overview of the hypergraph-level architectures
considered here; more detailed description can be found in Apx. B.2.

2.2 Encodings

Structural (SE) and Positional (PE) encodings enhance MPGNNs by providing access to struc-
tural information that is crucial for downstream tasks, but that these networks cannot inherently
learn (Dwivedi et al., 2023; Rampášek et al., 2022). Encodings can capture either local or global
properties of the input graph. Local PEs supply nodes with information about their position within
local clusters or substructures, such as their distance to the centroid of their community. In contrast,
global PEs convey a node’s overall position within the entire graph, often based on spectral properties
like the eigenvectors of the Graph Laplacian (Kreuzer et al., 2021) or random-walk based node
similarities (Dwivedi et al., 2021). Graph-level SEs capture structural information, such as pair-wise
node distances, node degrees, or statistics regarding the distribution of neighbors’ degrees (Cai &
Wang, 2018), or discrete curvature (Fesser & Weber, 2024a). Empirical evidence demonstrates that
incorporating these PEs and SEs significantly improves the performance of GNNs (Rampášek et al.,
2022).

2.3 Representational Power

A key theoretical question in evaluating the effectiveness of different relational learning architectures
is their representational power or expressivity: Which functions can and cannot be learned by the
model? This question can be analyzed through the lens of a model’s ability to distinguish graphs
that are not topologically identical (isomorphic). The 1-Weisfeiler-Leman (1-WL) test (Weisfeiler &
Leman, 1968) provides a heuristic for this question. Notably, Xu et al. (2018) showed that MPGNNs
(specifically, GIN) are as expressive as the 1-WL test. While 1-WL (and, by extension, MPGNNs) is
effective for many classes of graphs, it has notable limitations, such as in distinguishing regular graphs.
Generalizations of this procedure, known as the k-WL test, establish a hierarchy of progressively
more powerful tests. At the same time, several graph characteristics are known to be more expressive
than the 1-WL test. Consequently, combining MPGNNs with encodings based on these characteristics
can enhance their expressivity (Southern et al., 2023; Fesser & Weber, 2024a; Bouritsas et al., 2022).
We conduct an expressivity analysis in Apx. E.

1With the exception of PhenomNN (Wang et al., 2023).

3

3 Hypergraph-level Encodings

3.1 Laplacian Eigenvectors

Let Dv be the degree matrix, and A be the adjacency matrix. The Graph Laplacian ∆ = Dv − A
is a classical graph characteristic that is often leveraged for the design of encodings. Laplacian
Eigenvector PE (LAPE) are defined as

pLapPE
i = (Ui1, Ui2, . . . , Uik)

T ∈ Rk , (1)

where ∆ = UTΛU is a spectral decomposition; k is a hyperparameter. Note that the eigenvectors are
only defined up to ±1; we follow the convention in (Dwivedi et al., 2021) and apply random sign
flips.

In order to define a hypergraph-level extension of LAPE, we have to consider first the choice
of Laplacian. We focus on the Hodge Laplacian here, but discuss other choices, specifically the
normalized hypergraph Laplacian and random-walk Laplacian, in Apx. A.4. Our choice of the Hodge
Laplacian is motivated by its desirable properties, including that it is symmetric.

Definition 3.1. (Hodge Laplacian). Let B1 denote an incidence matrix whose entries indicate
relations between nodes and hyperedges. If a node i is on the boundary of a hyperedge j, the relation
is expressed as i ≺ j.

(B1)i,j =

{
1 if i ≺ j

0 otherwise
∈ R|V |×|F | . (2)

The 0- and 1-Hodge Laplacian are given by H0 = BT
1 B1 and H1 = B1B

T
1 .

We define the Hodge-Laplacian Positional Encoding (H-k-LAPE) in analogy to Eq. 1 using the top k
eigenvectors of the Hodge Laplacian. We show below that the additional higher-order information
captured by H-k-LAPE, but not by k-LAPE or standard message-passing, provably enhances the
representational power of the architecture. The proofs in this and subsequent sections refer to graphs
in the BREC dataset (Wang & Zhang, 2023), more information on which is provided in the Apx. E.1.
We outline the computations of the different encodings for a specific pair of the BREC dataset in
Apx. F.2.

Theorem 3.2. (H-k-LAPE Expressivity). For any k, MPGNNs with H-k-LAPE are strictly more
expressive than the 1-WL test and hence MPGNNs without encodings. Furthermore, there exist
graphs which can be distinguished using H-k-LAPE, but not using k-LAPE.

Remark 3.3. In the proof of our theorems, we follow a two-step strategy. We first note that the
seminal work by Xu et al. (2018) has established that standard MPGNNs are at most as expressive as
the 1-WL test, with GIN constructed specifically to be as expressive as the 1-WL test. It can be shown
via an adaptation of Xu et al. (2018) that adding encodings does not decrease MPGNNs expressivity,
i.e., GIN -and thus MPGNNs- with encodings are at least as expressive as the 1-WL test. To establish
strictly better expressivity, it is sufficient to identify a set of non-isomorphic graphs that cannot be
distinguished by the 1-WL test, but that differ in their encodings.

Proof. Pair 0 of the "Basic" category in BREC (Apx. E.1) is a pair of non-isomorphic, 1-WL
indistinguishable graphs (see Fig. 1). The pair is 1-LAPE-indistinguishable, but can be distinguished
with H-1-LAPE (see Apx. F.2).

Remark 3.4. (H-LAPE Complexity). Computing a full spectral decomposition of ∆ has complexity
O(|V |3), where |V | is the number of nodes in the input hypergraph. However, by exploiting sparsity
and the fact that we only require the top eigenvectors, Lanczos’ algorithm can be used to compute
H-k-LAPE in O(|F |k).

3.2 Random Walk Transition Probabilities

Another widely used positional encoding, Random Walk PE (RWPE), is defined using the probability
of a random walk revisiting node i after 1, 2, . . . , k steps, formally

pk-RWPE
i =

(
RWii, RW

2
ii, . . . , RW

k
ii

)T ∈ Rk , (3)

4

Figure 1: A pair of graph from the BREC "Basic" category (top left), the graphs’ liftings (top right),
the hyperedge sizes (bottom left) and node degrees (bottom right).

where k is a hyperparameter. Since the return probabilities depend on the graph’s topology, they
capture crucial structural information. Notably, k-RWPE does not suffer from sign ambiguity like
LAPE, instead providing a unique node representation whenever nodes have topologically distinct
k-hop neighborhoods.

We define an analogous notion of PEs at the hypergraph level. We consider the following notion:

Definition 3.5. (Random Walks on Hypergraphs (Coupette et al., 2022)). We define Equal-
Nodes Random Walks (EN) and Equal-Edges Random Walks (EE), which induce the following two
measures:

µEN
i (j) =

{
1

|Ni| , if j ∈ Ni

0 otherwise
, µEE

i (j) =

{
PEE(i→ j) , if j ∈ Ni

0 otherwise
; (4)

where Ni are the neighbors of i and transition probabilities are given by

PEE(i→ j) =
1

|{e|i ∈ e, |e| ≥ 2}|
∑

{e|{i,j}⊆e}

1

|e| − 1
.

For an EN random walk, considering a move from node i, we pick one of the neighbors of node i at
random. For the EE scheme, we first pick a hyperedge that i belongs to at random and then pick one
of the nodes in the hyperedge at random.

We can now define Hypergraph Random Walk Positional Encodings (H-k-RWPE) in analogy to
k-RWPE. Again, we can show that H-k-RWPE provably enhances the representational power of an
MPGNN, beyond those of k-RWPE.

Theorem 3.6. (H-k-RWPE Expressivity). For k ≥ 2, MPGNNs with H-k-RWPE are strictly more
expressive than the 1-WL test and hence than MPGNNs without encodings. There exist graphs which
can be distinguished using H-k-RWPE, but not using graph-level k-RWPE.

Proof. Pair 0 of the “Basic” category in BREC is a pair of non-isomorphic graphs that is not 1-WL-
distinguishable. The pair cannot be distinguished with graph-level 2-RWPE, but can be distinguished
using the H-2-RWPE encodings computed at the hypergraph level (see Apx. F.2).

Remark 3.7. Note that k-RWPE is less expressive that (k + 1)-RWPE and H-k-RWPE is less
expressive than (k + 1)-H-RWPE.
Remark 3.8. (H-k-RWPE Complexity). Computing H-k-RWPE scales as O(|V |dkmax), where dmax
is the highest node degree in the input hypergraph.

5

3.3 Local Curvature Profiles

Recently it was shown that discrete Ricci curvature yields an effective structural encoding at the graph
level (Fesser & Weber, 2024a). Ricci curvature is a classical tool from Differential Geometry that
allows for characterizing local and global properties of geodesic spaces. Discrete analogues of Ricci
curvature (Forman, 2003; Ollivier, 2007) have been studied extensively on graphs and, more recently,
on hypergraphs (Leal et al., 2021; Coupette et al., 2022; Saucan & Weber, 2019). Here, we focus on
defining hypergraph-level curvatures, we defer all details on graph-level notions to Apx. A.5.

We restrict ourselves to two notions of discrete Ricci curvature, originally introduced by Forman (For-
man, 2003) and Ollivier (Ollivier, 2007), which have previously been considered for graph-level
encodings. We begin with Forman’s curvature:
Definition 3.9. (Forman’s Ricci Curvature on Hypergraphs (H-FRC) (Leal et al., 2021)). The
H-FRC of a hyperedge e is defined as F (e) =

∑
k∈e(2− dk).

Ollivier’s Ricci curvature derives from a fundamental relationship between Ricci curvature and the
behavior of random walks on geodesic spaces. To define an analogous notion on hypergraphs, we
leverage again the previously introduced notions of random walks (Coupette et al., 2022).
Definition 3.10. (Ollivier’s Ricci Curvature on Hypergraphs (H-ORC) (Coupette et al., 2022)).
The H-ORC of a subset s of nodes on a hypergraph is defined as:

κ(s) = 1− AGG(s)

d(s)
, (5)

where d(s) = {max d(i, j)|{i, j} ⊆ s} and where d(i, j) is the length of a shortest path connecting
nodes i, j. We define for a hyperedge e

κ(e) = 1−AGG(e) . (6)

Here, AGG(·) denotes an aggregation function.

Different types of aggregations could be considered for the choice of AGG(·). Here, we choose
AGG(·) to be the average of the Wasserstein distances between all pairs {i, j} in a hyperedge e, i.e.,

AGG(e) =
1(|e|
2

) ∑
{i,j}⊆e

W1(µi, µj) . (7)

We can now define the actual encoding, extending Local Curvature Profiles (LCP) (Fesser & Weber,
2024a), computed at the graph level, to hypergraphs.
Definition 3.11. (Hypergraph Curvature Profile (HCP)). For v ∈ V let CMS(v) denote a curvature
multi-set consisting of the curvatures of all hyperedges containing v, CMS(v) = {κ(e) : v ∈ e, e ∈
F}, where κ may be chosen to denote either H-FRC or H-ORC. We define HCP as the following five
summary statistics of CMS(v):

HCP(v) = [min(CMS(v)),max(CMS(v)),mean(CMS(v)),median(CMS(v)), std(CMS(v))] .
(8)

As for the other proposed encodings, we investigate the expressivity of HCP. Note that ORC computed
at the graph level is by itself very expressive, leading to LCP provably enhancing the expressivity
of MPGNNs. In fact, there exist variants of ORC which can distinguish graphs that are not 3-WL
distinguishable (Southern et al., 2023). However, the same is not true for graph-level FRC. This
merits a closer analysis of HCP where κ is chosen to be the H-FRC.
Theorem 3.12. (HCP Expressivity). MPGNNs with HCP (κ denoting H-FRC) are strictly more
expressive than the 1-WL test and hence than MPGNNs without encodings. In contrast, leveraging
LCP with standard FRC at the graph level does not enhance expressivity.

Proof. Consider the 4 by 4 Rook and the Shrikhande graphs, which cannot be distinguished by the
k-WL test for k ≤ 3. All nodes in both graphs have identical LCP-FRC, namely [−8,−8,−8,−8, 0].
This is because all nodes have degree 6, consequently their FRC is −8. However, when computing
HCP-FRC on the lifted hypergraphs the curvatures differ: In the Rook graph, all nodes have HCP-FRC

6

[0, 0, 0, 0, 0], whereas in the Shrikhande graph all nodes have HCP-FRC [−12,−12,−12,−12, 0]
(see Apx. F.1). Furthermore, it is possible to find non-isomorphic graphs with the same LCP, but
different HCP (even up to scaling): Pair 0 of the “Basic” category in BREC is an example where
both graphs have the same LCP, but different HCP (even up to scaling) (see Apx. F.2 for additional
details).

Remark 3.13. (HCP Complexity). Computing the H-FRC and hence the HCP-FRC scales as
O(|F |emax), where emax denotes the size of the largest hyperedge. On the other hand, computing
H-ORC incurs significant computational cost: The computation of the W1-distance, which scales as
(|F |e3max), introduces a significant bottleneck. Hence, HCP-FRC has significant scaling advantages
over HCP-ORC.

3.4 Local Degree Profile

Lastly, we define a hypergraph-level notion of Local Degree Profiles (LDP) (Cai & Wang, 2018),
which captures structural information encoded in the node degree distribution over a node’s 1-hop
neighborhood. We consider the multi-set of node degrees in the 1-hop neighborhood of a node v, i.e.,
DN(v) = {du|u ∈ Nv} and define

LDP(v) = [dv,min(DN(v),max(DN(v)),mean(DN(v)),median(DN(v)), std(DN(v))] . (9)

An analogous notion on the hypergraph level (H-LDP) can be defined by a simple extension. Again,
H-LDP exhibits improved expressivity:
Theorem 3.14. (H-LDP Expressivity). MPGNNs with H-LDP are strictly more expressive than the
1-WL test and hence than MPGNNs without encodings. There exist graphs which can be distinguished
using H-LDP, but not using LDP.

Proof. The 4 by 4 Rook graph and the Shrikhande graph cannot be distinguished by LDP, as all
nodes the same degree, resulting in LDPs [6, 6, 6, 6, 6, 0]. However, they can be distinguished using
H-LDP: The nodes in the Rook graph have H-LDP [2, 2, 2, 2, 2, 0], the nodes in the Shrikhande graph
[6, 6, 6, 6, 6, 0] (see Apx. F.1). Furthermore, it is possible to find non-isomorphic graphs with the
same LDP, but different H-LDP even up to scaling: Pair 0 of the “Basic” category in BREC is an
example, where both graphs have identical LDPs, but different H-LDPs, even up to scaling. For more
details, see Fig. 1 and Apx. F.2.

Remark 3.15. (H-LDP Complexity). Computing H-LDP scales as O(|F |emax). We only need to
count the degree for each node and save the statistics of 1-neighborhood for each node.
Remark 3.16. We observe that in the examples demonstrating the enhanced representational power of
HCP and H-LDP, the respective profiles are scalar multiples of each other. It is common in hypergraph
architectures to normalize node attributes during preprocessing, which would obscure the structural
differences captured by the two encodings. However, we emphasize that no such preprocessing is
applied in our experiments.

4 Experiments

4.1 Experimental setup

Throughout all of our experiments, we treat the computation of encodings as a preprocessing step,
which is first applied to all graphs in the data sets considered. We then train a GNN on a part of the
preprocessed graphs and evaluate its performance on a withheld set of test graphs (nodes in the case
of node classification). Settings and optimization hyperparameters are held constant across baseline
models for all encodings, so that hyperparameter tuning can be ruled out as a source of performance
gain. We obtain the settings for the individual encoding types via hyperparameter tuning. For all
preprocessing methods and hyperparameter choices, we record the test set performance of the settings
with the best validation performance. As there is a certain stochasticity involved, especially when
training neural networks, we accumulate experimental results across 50 random trials. We report
the mean test accuracy, along with the 95% confidence interval for the node classification tasks on
hypergraph datasets in Tab. 1 and for tasks on graph datasets in Tab. 2, 3, 10, 11, 12, and 13. For
Peptides-func, we report average precision and for Peptides-struct the mean absolute error (MAE).
Details on all datasets can be found in Apx. C.1.

7

Model (Encodings) citeseer-CC (↑) cora-CA (↑) cora-CC (↑) pubmed-CC (↑) DBLP (↑)

GCN (No Encoding) 69.28 ± 0.28 76.51 ± 0.82 75.43 ± 0.26 84.66 ± 0.49 75.66 ± 0.81
GCN (HCP-FRC) 71.03 ± 0.51 78.43 ± 0.76 76.61 ± 0.31 84.78 ± 0.57 76.49 ± 0.90
GCN (HCP-ORC) 70.89 ± 0.54 79.25 ± 0.81 76.09 ± 0.70 85.12 ± 0.61 76.57 ± 0.85
GCN (EE H-19-RWPE) 69.63 ± 0.71 76.84 ± 0.69 75.92 ± 0.28 86.24 ± 0.63 76.18 ± 0.88
GCN (EN H-19-RWPE) 68.85 ± 0.91 77.19 ± 0.64 75.33 ± 0.35 86.53 ± 0.61 76.76 ± 0.84
GCN (Hodge H-20-LAPE) 69.61 ± 0.45 79.61 ± 0.85 75.62 ± 0.31 86.06 ± 0.52 77.48 ± 0.93
GCN (Norm. H-20-LAPE) 69.13 ± 0.77 78.13 ± 0.79 76.18 ± 0.29 85.78 ± 0.55 76.92 ± 0.88

UniGCN (No Encoding) 63.36 ± 1.76 75.72 ± 1.16 71.10 ± 1.37 75.32 ± 1.09 71.05 ± 1.40
UniGCN (HCP-FRC) 61.20 ± 1.83 74.64 ± 1.45 68.98 ± 1.59 67.37 ± 1.73 71.02 ± 1.43
UniGCN (HCP-ORC) 61.81 ± 1.70 75.03 ± 1.33 70.42 ± 1.17 71.64 ± 1.52 70.69 ± 1.62
UniGCN (EE H-19-RWPEE) 63.29 ± 1.52 75.34 ± 1.28 71.13 ± 1.24 74.61 ± 1.18 71.21 ± 1.53
UniGCN (EN H-19-RWPEE) 63.09 ± 1.62 75.30 ± 1.37 71.21 ± 1.34 74.61 ± 1.09 71.26 ± 1.47
UniGCN (Hodge H-20-LAPE) 63.46 ± 1.58 75.64 ± 1.37 71.31 ± 1.19 75.37 ± 1.01 70.71 ± 1.61
UniGCN (Norm. H-20-LAPE) 63.41 ± 1.61 75.55 ± 1.48 71.20 ± 1.24 75.30 ± 1.01 71.10 ± 1.33

Table 1: GCN and UniGCN performance on hypergraph datasets with different hypergraph encodings.
We report mean accuracy and standard deviation over 50 runs. In our tables, the best value is in bold
and the second best in blue. In case of overlap, we underline. For example, for citeseer-CC, GCN
(HCP-ORC) is underlined because it is the tied best model-encoding pair, up to 0.51 accuracy (the
accuracy of the best pair GCN (HFC-FRC)).

Model (Encodings) Collab (↑) Imdb (↑) Reddit (↑) Peptides-f (↑) Peptides-s (↓)

GCN (No Encoding) 61.94 ± 1.27 48.10 ± 1.02 67.87 ± 1.38 0.532 ± 0.005 0.266 ± 0.002
GCN (LCP-FRC) 68.36 ± 1.13 63.42 ± 1.47 79.53 ± 1.62 0.537 ± 0.006 0.261 ± 0.003
GCN (LCP-ORC) 70.48 ± 0.97 67.93 ± 1.55 80.75 ± 1.54 0.561 ± 0.005 0.252 ± 0.004
GCN (19-RWPE) 49.63 ± 2.38 50.41 ± 1.26 78.93 ± 1.60 0.538 ± 0.007 0.265 ± 0.003
GCN (20-LAPE) 58.33 ± 1.64 48.82 ± 1.31 77.26 ± 1.58 0.534 ± 0.006 0.258 ± 0.003

GCN (HCP-FRC) 72.03 ± 0.51 64.64 ± 0.88 82.09 ± 0.58 0.559 ± 0.004 0.255 ± 0.004
GCN (HCP-ORC) 70.82 ± 0.68 66.16 ± 0.75 80.35 ± 0.72 0.559 ± 0.004 0.258 ± 0.003
GCN (EE H-19-RWPE) 69.63 ± 0.71 73.96 ± 0.65 82.79 ± 0.62 0.546 ± 0.006 0.263 ± 0.003
GCN (EN H-19-RWPE) 68.85 ± 0.91 73.84 ± 0.48 83.30 ± 0.79 0.549 ± 0.005 0.263 ± 0.003
GCN (Hodge H-20-LAPE) 69.61 ± 0.45 71.38 ± 0.75 79.46 ± 0.82 0.557 ± 0.005 0.254 ± 0.003
GCN (Norm. H-20-LAPE) 69.13 ± 0.77 71.05 ± 0.82 80.08 ± 0.67 0.557 ± 0.006 0.253 ± 0.003

Table 2: GCN performance with graph level encodings (top) and hypergraph level encodings (bottom).
We report mean and standard deviation across 50 runs.

4.2 Comparison of Hypergraph- and Graph-level Architectures

We begin by comparing the utility of our encodings for message-passing architectures that operate
at the graph or at the hypergraph level. Hypergraph neural networks are predominantly used for
node classification in hypergraphs. In fact, we are not aware of hypergraph classification datasets
analogous to the graph datasets used in the previous subsection. As such, we choose five common
hypergraph node classification datasets: Cora-CA, Cora-CC, Citeseer, DBLP, and Pubmed. We use
clique expansion to convert these hypergraphs into graphs (empirically, we found this to be the best
performing expansion - see Apx. A.1) and train GCN on them with either no encoding or one of our
hypergraph encodings. As a hypergraph-level message-passing architecture, we use UniGCN (Huang
& Yang, 2021). Additional experiments with UniGIN, UniGAT, and other architectures are presented
in Apx. G, along with a detailed explanation of the clique expansions we use.

Graph-level message-passing Benefits from Hypergraph-level Encodings. Our results are pre-
sented in Tab. 1. Somewhat surprisingly, we note that even on these datasets, which are originally
hypergraphs, GCN with no encodings outperforms UniGCN. Perhaps even more surprising, UniGCN
does not seem to benefit from any of the encodings provided. Apx. G shows that the same holds
true for UniGIN and UniGAT. GCN on the other hand clearly benefits from (most) hypergraph-level
encodings, although admittedly less so than when used for graph classification. Previous work has
reported similar differences in the utility of encodings for graph and node classification tasks. Overall,
we take our results in this subsection and in Apx. G as evidence that our proposed hypergraph-level
encodings present a strong alternative to established message-passing architectures at the hypergraph
level.

4.3 Hypergraph-level Encodings Capture Higher-order Information Effectively

We now evaluate to what extent our hypergraph encodings can be used for datasets that are originally
graph-structured. We lift these graphs to the hypergraph level (see. Apx. A.2 for details) and compare

8

Model (Encodings) Reddit (↑) Enzymes (↑) Proteins (↑) Peptides-f (↑) Peptides-s (↓)

GPS (No Encoding) 80.94 ± 1.42 46.83 ± 1.14 74.10 ± 0.98 0.593 ± 0.009 0.262 ± 0.003

GPS (LCP-FRC) 80.53 ± 1.55 43.75 ± 1.39 73.38 ± 1.07 0.598 ± 0.010 0.257 ± 0.003
GPS (LCP-ORC) 82.83 ± 1.47 48.51 ± 1.58 74.88 ± 1.20 0.613 ± 0.010 0.252 ± 0.003
GPS (19-RWPE) 81.92 ± 1.31 51.09 ± 1.64 71.92 ± 1.18 0.594 ± 0.011 0.257 ± 0.003
GPS (20-LAPE) 82.05 ± 1.29 42.90 ± 1.35 71.46 ± 1.25 0.599 ± 0.011 0.253 ± 0.003

GPS (HCP-FRC) 81.68 ± 1.16 47.66 ± 0.92 74.50 ± 1.13 0.604 ± 0.010 0.254 ± 0.003
GPS (HCP-ORC) 83.07 ± 1.24 48.19 ± 1.31 74.52 ± 1.20 0.609 ± 0.010 0.254 ± 0.004
GPS (EE H-19-RWPE) 84.04 ± 1.07 51.83 ± 1.07 75.08 ± 1.14 0.615 ± 0.009 0.251 ± 0.003
GPS (EN H-19-RWPE) 84.25 ± 1.13 51.28 ± 1.12 74.82 ± 1.11 0.617 ± 0.010 0.252 ± 0.003
GPS (Hodge H-20-LAPE) 83.97 ± 1.21 47.44 ± 1.16 73.95 ± 1.08 0.602 ± 0.010 0.252 ± 0.003
GPS (Norm. H-20-LAPE) 83.85 ± 1.18 47.78 ± 0.98 74.03 ± 1.10 0.604 ± 0.010 0.254 ± 0.002

Table 3: GPS performance with graph level encodings (top) and hypergraph level encodings (bottom).
We report mean and standard deviation across 50 runs.

against encodings computed at the graph level. Tables 2, 10 and 3, 11 report results for GCN and
GPS, respectively; additional results with GIN can be found in Apx. D.

Performance Gains with Hypergraph-level Encodings. We note several things: 1) adding encod-
ings is beneficial in nearly all scenarios, 2) encodings computed at the hypergraph level are always at
least as beneficial as their cousins computed at the graph level (e.g. H-RWPE is at least as useful as
RWPE), and 3) on social network datasets (Collab, Imdb, and Reddit), hypergraph encodings provide
the largest performance boosts, often by a wide margin. This aligns with our intuition, as social
networks can often naturally be thought of as hypergraphs.

Positional vs Structural Encodings. Our results with GPS confirm our observations with GCN.
Hypergraph-level encodings significantly boost performance on almost all datasets (only Proteins is
not statistically significant) and are generally more useful than their graph-level analogues. Further,
while GCN usually performed best with local structural encodings such as the Local Curvature Profile,
GraphGPS seems to benefit more from global positional encodings such as (Hypergraph-) Random
Walk Positional Encodings. This aligns with previous findings in the literature using graph-level
encodings (Fesser & Weber, 2024a).

Utility beyond Weisfeiler-Leman. Our previous results on the BREC dataset indicate that much of
the utility of our hypergraph-level encodings can perhaps be attributed to improving the expressivity
of GCN and GPS. To better quantify this, we run an additional suite of experiments on the Collab,
Imdb, and Reddit datasets using the GIN. As noted previously, GIN is provably as powerful as
the 1-WL test and therefore more expressive than GCN. Our results in Apx. D show that GIN has
indeed a higher baseline accuracy (without encodings) than GCN, and benefits significantly less
from encodings than both GCN and GPS. Nevertheless, our hypergraph-level encodings significantly
boost performance. We take this as evidence that providing information from domains other than the
computational domain (graphs in our setting) provides benefits beyond increased expressivity.

5 Discussion

In this study, we proposed hypergraph-level encodings as an approach for leveraging higher-order
relational information. Our results show that combining hypergraph encodings with graph-level
architectures leads to enhanced representational power and significant performance gains in “multi-
way” relational learning tasks.

Lessons for Model Design. Our study is motivated by the observation that graph-level architectures
applied to a hypergraphs’ clique expansions frequently outperform hypergraph-level architectures,
even when the inputs are naturally parametrized as hypergraphs. While hypergraph-level encodings
do not significantly enhance the performance of hypergraph architectures, they can lead to substantial
performance gains when used in graph architectures. Notably, random walk-based (H-k-RWPE) and
curvature-based encodings (HCP) are particularly effective across data sets. These findings suggest a
graph-level architecture augmented with hypergraph-level encodings as a suitable model choice for
higher-order learning tasks.

Limitations. A key limitation of this study, and many of the related works, is a lack of benchmarks
consisting of true hypergraph-structured data. Many of the existing data sets consists of graphs
that are reparametrized (“lifted”) to hypergraphs, or hypergraphs that can be easily reparametrized

9

as graphs. This suggests the establishment of better benchmark as a key direction for future work.
Given the promise of topological deep learning for scientific machine learning, we envision future
benchmarks that are based on scientific data, where multi-way interactions are known to arise
naturally (Garcia-Chung et al., 2023; Gjorgjieva et al., 2011). Another limitation of this study arises
in the choice of hypergraph architectures. While our selection was guided by top-performing models
in recent benchmarks (Huang & Yang, 2021; Telyatnikov et al., 2024), a more comprehensive analysis
could further strengthen the validity of the reported observations.

Other Future Directions. Despite the aforementioned caveats regarding datasets and the breadth
of architectures included in this study, our observations raise questions about the effectiveness of
existing message-passing schemes on hypergraphs. We believe that a thorough analysis of these
architectures’ ability to effectively encode higher-order information into learned representations is
an important direction for future work. A possible lens for such an investigation could be graph
reasoning tasks, as previously suggested in (Luo et al., 2023).

Additionally, the negative results observed regarding hypergraph-level encodings paired with
hypergraph-level architectures warrant further exploration. Specifically, understanding how to effec-
tively augment hypergraph inputs with structural and positional information that can be leveraged by
hypergraph-level architectures is a promising direction for further study.

Lastly, while this study primarily focused on hypergraph learning, there are several other topological
domains of interest, including simplicial complexes, polyhedral complexes, and more general CW
complexes. Extending the present study to these domains represents another interesting avenue for
further investigation.

6 Broader Impacts

This paper presents work whose goal is to advance our theoretical understanding of Machine Learn-
ing. There are many potential societal consequences of our work, none of which we feel must be
specifically highlighted here.

7 Acknowledgments

LF was supported by a Kempner Graduate Fellowship. MW was partially supported by NSF award
CBET-2112085 and DMS-2406905, and an Alfred P. Sloan Research Fellowship in Mathematics.
Some of the computations in this paper were run on the FASRC Cannon cluster supported by the
FAS Division of Science Research Computing Group at Harvard University.

References
Ames, B. N., Durston, W. E., Yamasaki, E., & Lee, F. D. (1973). Carcinogens are mutagens: a simple

test system combining liver homogenates for activation and bacteria for detection. Proceedings of
the National Academy of Sciences, 70(8), 2281–2285.

Banerjee, A. (2021). On the spectrum of hypergraphs. Linear algebra and its applications, 614,
82–110.

Benson, A. R., Gleich, D. F., & Higham, D. J. (2021). Higher-order network analysis takes off, fueled
by classical ideas and new data. arXiv preprint arXiv:2103.05031.

Bick, C., Gross, E., Harrington, H. A., & Schaub, M. T. (2023). What are higher-order networks?
SIAM Review, 65(3), 686–731.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S., Smola, A. J., & Kriegel, H.-P. (2005).
Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1), i47–i56.

Bouritsas, G., Frasca, F., Zafeiriou, S., & Bronstein, M. M. (2022). Improving graph neural network
expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(1), 657–668.

10

Cai, C. & Wang, Y. (2018). A simple yet effective baseline for non-attributed graph classification.
arXiv preprint arXiv:1811.03508.

Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020). Simple and deep graph convolutional
networks. In International conference on machine learning (pp. 1725–1735).: PMLR.

Coupette, C., Dalleiger, S., & Rieck, B. (2022). Ollivier-ricci curvature for hypergraphs: A unified
framework. arXiv preprint arXiv:2210.12048.

Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shusterman, A. J., & Hansch, C. (1991).
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correla-
tion with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34(2),
786–797.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio, Y., & Bresson, X. (2023). Benchmarking
graph neural networks. Journal of Machine Learning Research, 24(43), 1–48.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., & Bresson, X. (2021). Graph neural networks
with learnable structural and positional representations. arXiv preprint arXiv:2110.07875.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf, G., Luu, A. T., & Beaini, D. (2022). Long
range graph benchmark. Advances in Neural Information Processing Systems, 35, 22326–22340.

Feng, Y., You, H., Zhang, Z., Ji, R., & Gao, Y. (2019). Hypergraph neural networks. In Proceedings
of the AAAI conference on artificial intelligence, volume 33 (pp. 3558–3565).

Fesser, L., de Haro Ivánez, S. S., Devriendt, K., Weber, M., & Lambiotte, R. (2024). Augmentations
of forman’s ricci curvature and their applications in community detection. Journal of Physics:
Complexity, 5(3), 035010.

Fesser, L. & Weber, M. (2024a). Effective structural encodings via local curvature profiles. In
International Conference on Learning Representations.

Fesser, L. & Weber, M. (2024b). Mitigating over-smoothing and over-squashing using augmentations
of forman-ricci curvature. In Learning on Graphs Conference (pp. 19–1).: PMLR.

Forman, R. (2003). Bochner’s method for cell complexes and combinatorial Ricci curvature. Discrete
and Computational Geometry, 29(3), 323–374.

Garcia-Chung, A., Bermúdez-Montaña, M., Stadler, P. F., Jost, J., & Restrepo, G. (2023). Chemically
inspired erd\h {o} sr\’enyi oriented hypergraphs. arXiv preprint arXiv:2309.06351.

Gjorgjieva, J., Clopath, C., Audet, J., & Pfister, J.-P. (2011). A triplet spike-timing–dependent
plasticity model generalizes the bienenstock–cooper–munro rule to higher-order spatiotemporal
correlations. Proceedings of the National Academy of Sciences, 108(48), 19383–19388.

Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for learning in graph domains.
In Proceedings. 2005 IEEE international joint conference on neural networks, volume 2 (pp.
729–734).

Hagberg, A., Swart, P. J., & Schult, D. A. (2008). Exploring network structure, dynamics, and function
using NetworkX. Technical report, Los Alamos National Laboratory (LANL), Los Alamos, NM
(United States).

Hajij, M., Papillon, M., Frantzen, F., Agerberg, J., AlJabea, I., Ballester, R., Battiloro, C., Bernárdez,
G., Birdal, T., Brent, A., et al. (2024). Topox: a suite of python packages for machine learning on
topological domains. Journal of Machine Learning Research, 25(374), 1–8.

Hajij, M., Zamzmi, G., Papamarkou, T., Miolane, N., Guzmán-Sáenz, A., & Ramamurthy, K. N.
(2022). Higher-order attention networks. arXiv preprint arXiv:2206.00606, 2(3), 4.

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs.
Advances in neural information processing systems, 30.

11

Huang, J. & Yang, J. (2021). Unignn: a unified framework for graph and hypergraph neural networks.
arXiv preprint arXiv:2105.00956.

Kim, S., Lee, S. Y., Gao, Y., Antelmi, A., Polato, M., & Shin, K. (2024). A survey on hypergraph
neural networks: An in-depth and step-by-step guide. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (pp. 6534–6544).

Kipf, T. N. & Welling, M. (2016). Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907.

Klamt, S., Haus, U.-U., & Theis, F. (2009). Hypergraphs and cellular networks. PLoS computational
biology, 5(5), e1000385.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., & Tossou, P. (2021). Rethinking graph
transformers with spectral attention. Advances in Neural Information Processing Systems, 34,
21618–21629.

Leal, W., Restrepo, G., Stadler, P. F., & Jost, J. (2021). Forman–ricci curvature for hypergraphs.
Advances in Complex Systems, 24(01), 2150003.

Liu, Z., Tang, B., Ye, Z., Dong, X., Chen, S., & Wang, Y. (2024). Hypergraph transformer for
semi-supervised classification. In ICASSP 2024-2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (pp. 7515–7519).: IEEE.

Luo, Y., Shi, L., & Wu, X.-M. (2024). Classic gnns are strong baselines: Reassessing gnns for node
classification. Advances in Neural Information Processing Systems, 37, 97650–97669.

Luo, Z., Mao, J., Tenenbaum, J. B., & Kaelbling, L. P. (2023). On the expressiveness and generaliza-
tion of hypergraph neural networks. arXiv preprint arXiv:2303.05490.

Mulas, R., Kuehn, C., Böhle, T., & Jost, J. (2022). Random walks and laplacians on hypergraphs:
When do they match? Discrete Applied Mathematics, 317, 26–41.

Ollivier, Y. (2007). Ricci curvature of metric spaces. Comptes Rendus Mathematique, 345(11),
643–646.

Papillon, M., Sanborn, S., Hajij, M., & Miolane, N. (2023). Architectures of topological deep
learning: A survey on topological neural networks. Arxiv. Submitted to Transactions on Pattern
Analysis and Machine Intelligence.

Praggastis, B., Aksoy, S., Arendt, D., Bonicillo, M., Joslyn, C., Purvine, E., Shapiro, M., & Yun, J. Y.
(2023). Hypernetx: A python package for modeling complex network data as hypergraphs. arXiv
preprint arXiv:2310.11626.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., & Beaini, D. (2022). Recipe for a
general, powerful, scalable graph transformer. Advances in Neural Information Processing Systems,
35, 14501–14515.

Rossi, R. & Ahmed, N. (2015). The network data repository with interactive graph analytics and
visualization. In Proceedings of the AAAI conference on artificial intelligence, volume 29.

Saucan, E. & Weber, M. (2019). Forman’s ricci curvature-from networks to hypernetworks. In
Complex Networks and Their Applications VII: Volume 1 Proceedings The 7th International
Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2018 7 (pp.
706–717).: Springer.

Schaub, M. T., Zhu, Y., Seby, J.-B., Roddenberry, T. M., & Segarra, S. (2021). Signal processing on
higher-order networks: Livin’on the edge... and beyond. Signal Processing, 187, 108149.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Collective
classification in network data. AI magazine, 29(3), 93–93.

Southern, J., Wayland, J., Bronstein, M. M., & Rieck, B. (2023). On the expressive power of
ollivier-ricci curvature on graphs.

12

Sun, L., Ji, S., & Ye, J. (2008). Hypergraph spectral learning for multi-label classification. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining (pp. 668–676).

Telyatnikov, L., Bernardez, G., Montagna, M., Vasylenko, P., Zamzmi, G., Hajij, M., Schaub, M. T.,
Miolane, N., Scardapane, S., & Papamarkou, T. (2024). Topobenchmark: A framework for
benchmarking topological deep learning.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention
networks. arXiv preprint arXiv:1710.10903.

Wang, P., Yang, S., Liu, Y., Wang, Z., & Li, P. (2022). Equivariant hypergraph diffusion neural
operators. arXiv preprint arXiv:2207.06680.

Wang, Y., Gan, Q., Qiu, X., Huang, X., & Wipf, D. (2023). From hypergraph energy functions
to hypergraph neural networks. In International Conference on Machine Learning (pp. 35605–
35623).: PMLR.

Wang, Y. & Zhang, M. (2023). Towards better evaluation of gnn expressiveness with brec dataset.
arXiv preprint arXiv:2304.07702.

Wang, Y. & Zhang, M. (2024). An empirical study of realized gnn expressiveness. In Forty-first
International Conference on Machine Learning.

Weisfeiler, B. & Leman, A. (1968). The reduction of a graph to canonical form and the algebra which
appears therein. nti, Series, 2(9), 12–16.

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826.

Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., & Talukdar, P. (2019). Hypergcn: A new
method for training graph convolutional networks on hypergraphs. Advances in neural information
processing systems, 32.

Yanardag, P. & Vishwanathan, S. (2015). Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining (pp. 1365–1374).

Zhao, L., Jin, W., Akoglu, L., & Shah, N. (2021). From stars to subgraphs: Uplifting any gnn with
local structure awareness. arXiv preprint arXiv:2110.03753.

Zhou, D., Huang, J., & Schölkopf, B. (2006). Learning with hypergraphs: Clustering, classification,
and embedding. Advances in neural information processing systems, 19.

13

A Extended Background

A.1 Hypergraph Expansions

There exist several expansion techniques for reparametrizing hypergraphs as graphs. Here, we focus
on clique expansion, which we empirically found to be the best performing expansion. For more
details see, e.g., (Sun et al., 2008).

To reparametrize a hypergraph H = (V,X, F) as a graph via clique expansion, we define G =
(V,X,E) where E = {{u, v}|{u, v} ⊆ e, e ∈ F}. An example is given in Fig. 2.

Figure 2: Example of a clique expansion of a hypergraph to a graph. The plots are created using
NetworkX (Hagberg et al., 2008) and HyperNetX (Praggastis et al., 2023).

A.2 Lifting graphs to hypergraphs

The term “lifting” refers generally to the reparametrization of one topological domain to another,
usually one that captures richer higher-order information. In our setting we lift graphs to hypergraphs
by adding hyperedges to groups of nodes that are pairwise interconnected. An example of a lift of a
graph to a hypergraph is shown in Fig. 3.

Figure 3: Lifting of a graph to a hypergraph.

A.3 Weighted-Edges (WE) Hypergraph Random walks

We define Weighted-Edges Random Walks (WE), which induce the following measure

µWE
i (j) =

{
PWE(i→ j), if j ∈ Ni

0 otherwise
, (10)

where Ni are the neighbors of i and transition probabilities are given by

PWE(i→ j) =
1∑

{f |i∈f}(|f | − 1)

∑
{e|{i,j}⊆e}

1 . (11)

14

The probability of picking a hyperedge is directly proportional to the number of nodes in the
hyperedge minus 1.

A.4 Laplacians

Several notions of Laplacians have been studied on hypergraphs. In this work, we consider two types
of Laplacians on graphs for implementing H-LAPE, the Hodge-Laplacian, with we defined in the
main text, and the normalized Laplacian, which we discuss below. Additionally, we comment on
random walks hypergraphs Laplacians. However, since they need not be symmetric, there are not
suitable for use in H-LAPE. Nonetheless, their spectrum provides an additional means for defining
structural encodings.

A.4.1 Normalized graph and hypergraph Laplacian

For graphs, the symmetrically normalized graph Laplacian is defined as

I −D−1/2
v AD−1/2

v = D−1/2
v LD−1/2

v , (12)

where L = Dv −A is the standard graph Laplacian.

The normalized hypergraph Laplacian (Zhou et al., 2006; Feng et al., 2019) is defined as

∆ = I −D−1/2
v B1D

−1
e BT

1 D
−1/2
v = D−1/2

v (Dv −B1D
−1
e BT

1)D
−1/2
v , (13)

where Dv and De are the diagonal node and edge degree matrices. The Dirichlet energy E(f) of a
scalar function on a hypergraph is defined as

E(f) =
1

2

∑
e∈E

∑
{u,v}⊆e

1

|e|

(
f(u)√
d(u)

− f(v)√
d(v)

)2

. (14)

The normalized hypergraph Laplacian satisfies

E(f) = fT∆f , (15)

which establishes that the normalized hypergraph Laplacian is positive semi-definite (Zhou et al.,
2006). The smallest eigenvalue of ∆ is 0.

A.4.2 Random walks hypergraph Laplacians

For a graph, the random walk Laplacian is defined as L = I −D−1
v A, where, as usual, Dv denotes

the degree matrix and A the adjency matrix. The probability of a random walk transitioning from
node i to j is given by −Lij =

Aij

di
. Mulas et al. (2022) introduce a generalized random-walk

Laplacians on hypergraphs: For any random walk on a hypergraph, they define in analogy to the
graph case

Lij =

{
1 if i = j

−P(i→ j)
. (16)

This random walk notion is equivalent to the EE scheme in Coupette et al. (2022), defined in the main
text: Starting at v, choose one of the hyperedges containing v with equal probability, then select any
of the vertices of the chosen hyperedge (other than v) with equal probability. Formally, we write

P(i→ j) =
Aij

Dii
. (17)

A similar notion was previously studied in (Banerjee, 2021).

Note that the random-walk Laplacian need not be symmetric. As a result, it is not suitable for
defining H-LAPE. However, in some recent works, the spectrum of the graph Laplacian, rather than
its eigenvectors, have been used as SE (Kreuzer et al., 2021). An analogous notion can be defined
at the hypergraph level, which we term Hypergraph Laplacian Structural Encoding (H-LASE). We
analyze the expressivity of such SEs, establishing that they a provably more expressive than the 1-WL
test/ MPGNNs.

15

Theorem A.1. (H-LASE Expressivity). MPGNNs with H-LASE are strictly more expressive than the
1-WL test and hence than MPGNNs without encodings. Further, there exist graphs, which can be
distinguished using H-LASE, but not using standard, graph-level LASE.

Proof. Consider the 4 by 4 Rook and Shrikhande graphs: the two graphs are isospectral using the
Normalized, Random Walk and Hodge Laplacians. But the two graphs’s liftings to hypergraphs are
not isospectral for the Normalized Laplacian. □.

A.5 Discrete Curvature

Forman’s curvature. Forman (2003) proposed a curvature definition on CW complexes, which
derives from a fundamental relation between Ricci curvature and Laplacians (Bochner-Weizenböck
identity). For a simple, undirected, and unweighted graphG = (V,X,E), the Forman-Ricci curvature
(FRC) of an edge e = {u, v} ∈ E is given by:

FR(u, v) = 4− deg(u)− deg(v) .

The edge-based Forman curvature definition can be extended to capture curvature contributions from
higher-order structures. Incorporating cycle counts up to order k (denoted as AFk) has been shown
to enrich the utility of the notion. Setting k = 3 and k = 4, the Augmented Forman-Ricci curvature
is given by

AF3(u, v) = 4− deg(u)− deg(v) + 3△(u, v)

AF4(u, v) = 4− deg(u)− deg(v) + 3△(u, v) + 2□(u, v) ,

where △(u, v) and □(u, v) represent the number of triangles and quadrangles containing the edge
{u, v}. Prior work in the graph machine learning literature has demonstrated the effectiveness of
these notions, e.g., (Fesser & Weber, 2024b; Fesser et al., 2024). To the best of our knowledge,
characterizations of such higher-order information via hypergraph curvatures have not been previously
studied in this literature.

Ollivier’s curvature. We also consider the Ollivier-Ricci Curvature (ORC), a notion of curvature
on metric spaces equipped with a probability measure (Ollivier, 2007). On graphs endowed with the
shortest path distance d(·, ·), the ORC of an edge {i, j} is defined as

κ(i, j) = 1− W1(µi, µj)

d(i, j)
, (18)

where W1 denotes the Wasserstein distance. Recall that, in general, W1(·, ·) between two probability
distributions µ1, µ2 is defined as

W1(µ1, µ2) = inf
µ∈Γ(µ1,µ2)

∫
d(x, y)µ(x, y) dx dy , (19)

where Γ(µ1, µ2) is the set of measures with marginals µ1, µ2. In our case, the measures are defined
by a uniform distribution over the 1-hop neighborhoods of the nodes i and j.
Remark A.2. (ORC in a general setting). As noted in (Southern et al., 2023), the ORC can be
defined in a more general setting on graphs, where the metric d does not have to be the shortest-
path distance. Furthermore, the probability measures need not be uniform probability measures
in the 1-hop neighborhood of the node. This is shown to be beneficial in distinguishing 3-WL
indistinguishable graphs using the ORC computed with respect to measures induced by m-hop
random walks where m > 1.

16

B Architectures

Architecture Type Level Update Function

GCN (Kipf & Welling, 2016) MP graph
Xl+1 = σ

(
D̃−1/2ÃD̃−1/2XlW l

)
Ã = A + IN
D̃ii =

∑
j Ãij

GIN (Xu et al., 2018) MP graph Xl+1 = MLPl
(
(1 + ϵ)Xl + AXl

)

GPS (Rampášek et al., 2022) hybrid (MP, GT) graph

Xl+1, El+1 = GPSl(Xl, El, A)

Xl+1
M , El+1 = MPNNl

e(X
l, El, A)

Xl+1
T = GlobalAttnl(Xl)

Xl+1 = MLP(Xl+1
M + Xl+1

T)

UniGCN (Huang & Yang, 2021) MP hypergraph x̃l+1
i = 1√

di+1

∑
e∈Ẽi

1√
de

W lhl+1
e

UniGIN (Huang & Yang, 2021) MP hypergraph x̃l+1
i = W l

(
(1 + ε)xl

i +
∑

e∈Ei
hl+1
e

)

UniGAT (Huang & Yang, 2021) MP hypergraph

αl+1
ie = σ

(
aT

[
W lhl+1

{i} ;W lhl+1
e

])
,

α̃l+1
ie =

exp(α
l+1
ie

)∑
e′∈Ẽi

exp(α
l+1
ie′

)
,

x̃l+1
i =

∑
e∈Ẽi

α̃l+1
ie W lhl+1

e

UniSAGE (Huang & Yang, 2021) MP hypergraph x̃l+1
i = W l(xl

i + AGGREGATE({hl+1
e }e∈Ei

))

UniGCNII (Huang & Yang, 2021) MP hypergraph

x̂l+1
i =

√
1

di+1

∑
e∈Ẽi

√
1
de

hl+1
e

x̃l+1
i =

(
(1 − β)I + βW l

)(
(1 − α)x̂l+1

i + αx0
i

)
where α and β are hyperparameters

HGNN (Feng et al., 2019) MP hypergraph Xl+1 = σ
(
D−1/2

v B1D
−1
e B⊤

1 D−1/2
v XlW l

)
PhenomNN (Wang et al., 2023) MP hypergraph

Y l+1 = ReLU
(
(1 − α)Y l + α D̃−1Ỹ l

)
where Ỹ l = f(X;W) + λ0 Ỹ l

C + λ1 (L̄S Y l + Ỹ l
S)

Table 4: Overview of Architectures. W l represents a trainable weight matrix for layer l. ϵ represents
a learnable parameter. We use matrix notation except for Huang & Yang (2021) where we use vector
notation.

B.1 GNN architectures

B.1.1 GCN

GCN extends convolutional neural networks to graph-structured data. It derives a shared representa-
tion by integrating node features and graph connectivity through message-passing. Mathematically, a
GCN layer is expressed as

X l+1 = σ
(
D̃−1/2ÃD̃−1/2X lW l

)
,

where W l is the learnable weight matrix at layer l, and D̃−1/2ÃD̃−1/2 is the normalized adjacency
matrix of the original graph with added self-loops. This graph has adjacency matrix Ã = A+ IN and
node degree matrix D̃. The activation function σ is typically chosen as ReLU or a sigmoid function.

B.1.2 GIN

GIN is a message-passing graph neural network (MPGNN) designed for maximum expressiveness,
meaning it can learn a broader range of structural patterns compared to other MPGNNs like GCN.
GIN is inspired by the Weisfeiler-Leman (WL) graph isomorphism test. Formally, the GIN layer is
given by

xl+1
i = MLPl

(1 + ϵ) · xli +
∑
j∈Ni

xlj

 , (20)

17

where xli denotes the feature of node i at layer l, Ni represents the neighbors of node i, and ϵ is a
learnable parameter. The update step is carried out using a multi-layer perceptron MLP(·), which is a
fully connected neural network.

B.1.3 GraphGPS

GraphGPS is a hybrid graph transformer (GT) model that integrates MPGNNs with transformer layers
to effectively capture both local and global patterns in graph learning. It enhances standard GNNs
by incorporating positional encodings (which provide node location information) and structural
encodings (which capture graph-theoretic properties of nodes). By alternating between GNN layers
(for local aggregation) and transformer layers (for global attention), GraphGPS can efficiently
model both short-range and long-range dependencies in graphs. It employs multi-head attention,
residual connections, and layer normalization to maintain stability and improve learning performance.
Mathematically, GraphGPS updates the node and edge features as follows:

X l+1, El+1 = GPSl(X l, El, A) ,

computed as:

X l+1
M , El+1 = MPNNl

e(X
l, El, A) ,

X l+1
T = GlobalAttnl(X l) ,

X l+1 = MLP(X l+1
M +X l+1

T) .

where MLP(·) is a 2-layer Multi-Layer Perceptron (MLP) block. Note that we omit the batch
normalization in this exposition.

B.2 HNN architectures

Models on the hypergaph-level domain are approaches that preserve the hypergraph structure during
learning (Kim et al., 2024). Huang & Yang (2021) proposes UniGCN, UniGIN, UniGAT, UniSAGE
and UniGCNII, which directly generalize the classic GCN, GIN, GAT (Veličković et al., 2017),and
GraphSAGE (Hamilton et al., 2017) and GNCII (Chen et al., 2020). We also study PhenomNN Wang
et al. (2023) and ED-HNN Wang et al. (2022).

B.2.1 UniGCN

UniGCN follows the two-phase scheme (described in 2.1) and sets the second aggregation function
ϕ2 to be

x̃l+1
i =

1√
di + 1

∑
e∈Ẽi

1√
de
W lhl+1

e , (21)

where W l is a trainable weight matrix, de = 1
|e|
∑

i∈e(di + 1) is the average degree of an hyperedge

(after adding self-loops to the original hypergraph), and where Ñi and Ẽ(i) are the neighborhood of
vertex i and the incident hyperedges to i after adding self loops.

B.2.2 UniGIN

UniGIN also follows the two-phase scheme and sets the second aggregation function ϕ2 to be

x̃l+1
i =W l

(
(1 + ε)xli +

∑
e∈Ei

hl+1
e

)
. (22)

18

B.2.3 UniGAT

UniGAT adopts an attention mechanism to assign importance score to each of the center node’s
neighbors (Huang & Yang, 2021). The attention mechanism is formulated as

αl+1
ie = σ

(
aT
[
W lhl+1

{i} ;W
lhl+1

e

])
, (23)

α̃l+1
ie =

exp(αl+1
ie)∑

e′∈Ẽi
exp(αl+1

ie′)
, (24)

x̃l+1
i =

∑
e∈Ẽi

α̃l+1
ie W lhl+1

e . (25)

B.2.4 UniSAGE

UniSAGE follows the two-phase scheme and sets the second aggregation function ϕ2 to be

x̃l+1
i =W l(xli + AGGREGATE({hl+1

e }e∈Ei .)) (26)

B.2.5 UniGCNII

UniGCNII updates node features using:

x̂l+1
i =

√
1

di + 1

∑
e∈Ẽi

√
1

de
hl+1
e , (27)

x̃l+1
i =

(
(1− β)I + βW l

) (
(1− α)x̂l+1

i + αx0i
)
, (28)

where α and β are hyperparameters.

B.2.6 HGNN

HGNN (Feng et al., 2019) utilizes the normalized hypergraph Laplacian 13, which expands the
hypergraph to a graph via clique expansion. HGNN also follows the two-phase scheme (described in
2.1). Using non-linear activation σ, the HGNN layer update is:

X(+1 = σ
(
D−1/2

v B1D
−1
e B⊤

1 D
−1/2
v X lW l

)
(29)

where X0 = X .

B.2.7 PhenomNN

PhenomNN Wang et al. (2023) is defined on a hypergraph H = (V,X, F) with incidence matrix
B1 ∈ {0, 1}|V |×|F |, node featuresX ∈ R|V |×d and base predictor f(X;W) ∈ R|V |×d, and produces
embeddings Y l ∈ R|V |×d via L shared-parameter layers. Writing De ∈ R|F |×|F | for the hyperedge
degree matrix, define the clique-expansion adjacency

AC = B1B
⊤
1 , DC = diag(AC1), ĀS = B1D

−1
e B⊤

1 , D̄S = diag(ĀS1). (30)

At iteration l, let
Ỹ l
C = AC Y

l (H0 +H⊤
0)−DC Y

lH0H
⊤
0 , (31)

Ỹ l
S = ĀS Y

l (H1 +H⊤
1)− D̄S Y

lH1H
⊤
1 , (32)

where H0, H1 ∈ Rd×d are learned compatibility matrices, and set D̃ = DC λ0 + D̄S λ1 + I . Then

Y l+1 = ReLU
(
(1− α)Y l + α D̃−1

(
f(X;W) + λ0 Ỹ

l
C + λ1 (L̄S Y

l + Ỹ l
S)
))
, (33)

with step-size α, Laplacian L̄S = D̄S − ĀS , and nonlinearity ReLU(Z) = max(0, Z). Tying
{H0, H1,W, λ0, λ1, α} across layers yields an unrolled proximal-gradient descent that provably
converges to the minimizer of a hypergraph energy while remaining implementable via standard
message-passing primitives. We can re-express PhenomNN in the node-wise MP form:

19

yl+1
i = σ

 ∑
j∈NC

i

yljW
l
ij + yliW

l
i + αD̃−1

ii f(xi;W)

 (34)

where NC
i are the neighbors in the clique expansion graph, and:

W l
ij = αD̃−1

ii

[
λ0[AC]i,j(H0 +H⊤

0) + λ1[ĀS]i,j(H1 +H⊤
1 − I)

]
, (35)

W l
i = (1− α)I − αD̃−1

ii

[
λ0[DC]i,iH0H

⊤
0 + λ1[D̄S]i,i(H1H

⊤
1 − I)

]
. (36)

C Experimental details

C.1 Datasets

We consider multiple datasets commonly used for benchmarking in the literature, including social
networks, chemical reaction networks, and citation networks.

C.1.1 Graph Datasets

Collab, Imdb and Reddit are proposed in (Yanardag & Vishwanathan, 2015). Collab is a collection
of ego-networks where nodes are researchers. The labels correspond to the fields of research of
the authors. Imdb is also a collection of ego-networks. Nodes are actors and an edge between two
nodes is present if the actors played together. The labels correspond to the genre of movies used to
construct the networks. Reddit is a collection of graphs corresponding to online discussion threads
on reddit. Nodes correspond to users, who are connected if they replied to each other comments. The
task consists in determining if the community is a discussion-community or a question answering
community.

Mutag is a collection of graphs corresponding to nitroaromatic compounds (Debnath et al., 1991).
The goal is to predict their mutagenicity in the Ames test (Ames et al., 1973) using S. typhimurium
TA98.

Proteins and Enzymes are introduced in (Borgwardt et al., 2005). These datasets use the 3D structure
of the folded proteins to build a graph of amino acids.

Peptides is a chemical data set introduced in (Dwivedi et al., 2022). The graphs are derived from
peptides, short chains of amino acid, such that the nodes correspond to the heavy (non-hydrogen)
atoms while the edges represent the bonds between them. Peptides-func is a graph classification task,
with a total of 10 classes based on the peptide function (Antibacterial, Antiviral, etc). Peptides-struct
is a graph regression task.

We outline basic characteristics of these datasets in Tab. 5.

Collab Imdb Reddit Mutag Enzymes Proteins Peptides-func Peptides-struct

graphs 5000 1000 2000 188 600 1113 15,535 15,535

avg. # node per graph 74.49 19.77 425.57 17.93 31.86 37.40 150.94 150.94
classes 3 2 2 2 6 2 10 -

Table 5: Dataset Statistics for Collab, Imdb, Reddit, Mutag, Enzymes, Proteins and Peptides.

C.1.2 Hypergraph Datasets

We use five datasets that are naturally parametrized as hypergraphs: pubmed, Cora co-authorship
(Cora-CA), cora co-citation (Cora-CC), Citeseer (Sen et al., 2008) and DBLP (Rossi & Ahmed, 2015).
We use the same pre-processed hypergraphs as in Yadati et al. (2019), which are taken from Huang &
Yang (2021). The hypergraphs are created with each vertex representing a document. The Cora data
set, for example, contains machine learning papers divided into one of seven classes. In a given graph
of the co-authorship datasets Cora-CA and DBLP, all documents co-authored by one author form one
hyperedge. In pubmed, citeseer and Cora-CC, all documents cited by an author from one hyperedge.
We outline basic characteristics of these datasets in Tab. 6.

20

Pubmed Cora-CA Cora-CC Citeseer DBLP

hypernodes, V 19717 2708 2708 3312 43413
hyperedges, E 7963 1072 1579 1079 22535
features, d 500 1433 1433 3703 1425
classes, q 3 7 7 6 6

Table 6: Dataset statistics.

We use these datasets in semi-supervised hypernode classification tasks, where the objective is to
predict labels for test nodes given the hypergraph structure, node features, and a limited number of
training labels.

C.2 Hyperparameters

For GNNs.

We outline the hyperparameter used for Tab. 1, Tab. 2, Tab. 10, and Tab. 13 in Tab. 7, Tab. 8, Tab. 9.

Features citeseer-CC Cora-CA Cora-CC Pubmed-CC DBLP

Num. Layers 3 3 3 3 3
Hidden Dim. 128 128 128 128 128
Learning Rate 0.001 0.001 0.001 0.001 0.001
Dropout 0.2 0.2 0.2 0.2 0.2
Batch Size 50 50 50 50 50
Epochs 300 300 300 300 300

Table 7: Hyperparameter settings for Tab. 1 (for GCN).

Features Collab Imdb Reddit Mutag Enzymes Proteins Peptides-f Peptides-s

Num. Layers 4 4 4 4 4 4 8 8
Hidden Dim. 64 64 64 64 64 64 235 235
Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Dropout 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.1
Batch Size 50 50 50 50 50 50 50 50
Epochs 300 300 300 300 300 300 300 300

Table 8: Hyperparameter settings used for GCN for Tab. 2 and 10.

Features Collab Imdb Reddit
MP-Layer GIN GIN GIN
Num. Layers 4 4 4
Hidden Dim. 64 64 64
Learning Rate 0.001 0.001 0.001
Dropout 0.2 0.2 0.2
Batch Size 50 50 50
Epochs 300 300 300

Table 9: Hyperparameter settings for GIN for Tab. 13.

For HNNs.

For the hypergraph architectures (Huang & Yang (2021)), we use a weight decay of 0.0005, a patience
of 200 and 200 epochs. The learning rate is set to 0.01, the dropout to 0.6. The activation layer
between UniConvs is relu. We add self loops to the (hyper-)graphs. The number of convolution heads
is 8. The number of hidden layers is 2. The parameters for PhenomNN are presented in Tab. 27 and
the parameters for HGNN are presented in Tab. 29

21

D Additional GNN results

We include additional results with graph-level and hypergraph-level encodings with GCN (Tab. 10)
and GPS (Tab. 11).

Model (Encodings) Enzymes (↑) Proteins (↑)

GCN (No Encoding) 28.03± 1.15 71.48± 0.90

GCN (LCP-FRC) 27.66± 1.48 70.89± 1.16
GCN (LCP-ORC) 33.17± 1.43 74.22± 1.77
GCN (19-RWPE) 30.66± 1.78 71.94± 1.58
GCN (20-LAPE) 28.52± 1.16 71.46± 1.52

GCN (HCP-FRC) 30.87± 1.38 71.27± 1.20
GCN (HCP-ORC) 32.83± 1.36 73.78± 1.25
GCN (EE H-19-RWPE) 31.74± 1.30 73.83± 1.08
GCN (EN H-19-RWPE) 30.93± 1.27 74.05± 1.13
GCN (Hodge H-20-LAPE) 29.46± 1.14 72.89± 1.31
GCN (Norm. H-20-LAPE) 29.60± 1.21 73.12± 1.36

Table 10: GCN performance with graph level encodings (top) and hypergraph level encodings
(bottom). We report mean and standard deviation across 50 runs.

Model (Encodings) Collab (↑) Imdb (↑)

GPS (No Encoding) 74.17± 1.33 70.93± 1.21

GPS (LCP-FRC) 74.22± 1.27 71.46± 1.77
GPS (LCP-ORC) 74.52± 1.18 71.84± 1.26
GPS (19-RWPE) 74.29± 1.42 66.40± 1.53
GPS (20-LAPE) 74.74± 1.23 70.67± 1.18

GPS (HCP-FRC) 73.37± 1.59 71.48± 1.03
GPS (HCP-ORC) 74.18± 1.22 72.05± 1.15
GPS (EE H-19-RWPE) 76.19± 1.29 73.19± 1.07
GPS (EN H-19-RWPE) 75.92± 1.33 73.08± 1.24
GPS (Hodge H-20-LAPE) 76.10± 1.16 73.15± 1.02
GPS (Norm. H-20-LAPE) 75.81± 1.21 72.94± 1.18

Table 11: GPS performance with graph level encodings (top) and hypergraph level encodings (bottom).
We report mean and standard deviation across 50 runs.

We include additional results with graph-level and hypergraph-level encodings on the Mutag dataset
with GCN and GPS (Tab. 12) and on the social networks Collab, Imdb, and Reddit using GIN
(Tab. 13).

Encodings GCN (↑) GPS (↑)
No Encoding 65.96± 1.76 80.40± 1.53
LCP-FRC 67.04± 1.49 83.94± 2.06
LCP-ORC 83.09± 1.71 84.93± 1.82
19-RWPE 71.75± 2.08 80.13± 1.65
20-LAPE 73.30± 1.95 82.27± 1.57
HCP-FRC 80.85± 1.77 89.36± 1.68
EE H-19-RWPE 85.32± 1.63 88.65± 2.24
EN H-19-RWPE 82.34± 2.68 88.49± 2.12
Hodge H-20-LAPE 83.66± 1.90 86.72± 1.96
Norm. H-20-LAPE 81.68± 1.79 86.90± 1.81

Table 12: GCN and GPS performance on the Mutag dataset with various graph and hypergraph
encodings. We report mean and standard deviation across 50 runs.

22

Model (Encodings) Collab (↑) Imdb (↑) Reddit (↑)

GIN (No Encoding) 67.44± 1.13 67.12± 1.36 75.38± 1.27
GIN (LCP-FRC) 71.96± 1.30 70.18± 1.44 69.66± 1.62
GIN (LCP-ORC) 72.60± 1.28 70.64± 1.32 87.19± 1.56
GIN (19-RWPE) 71.76± 1.34 69.35± 2.24 74.40± 1.68
GIN (20-LAPE) 71.52± 1.26 68.16± 2.83 75.84± 1.65

GIN (HCP-FRC) 71.44± 1.46 70.40± 1.52 70.53± 1.48
GIN (HCP-ORC) 72.18± 1.37 69.92± 1.50 84.82± 1.62
GIN (EE H-19-RWPE) 72.08± 1.40 70.23± 1.78 77.87± 1.49
GIN (EN H-19-RWPE) 72.32± 1.42 70.53± 1.80 77.46± 1.53
GIN (Hodge H-20-LAPE) 72.16± 1.39 69.37± 1.65 79.94± 1.81
GIN (Norm. H-20-LAPE) 71.95± 1.35 69.48± 1.71 79.15± 1.54

Table 13: GIN performance with selected graph-level encodings (top) and hypergraph level encodings
(bottom). We report mean and standard deviation across 50 runs for the Collab, Imdb, and Reddit
datasets. In our tables, the best value is in bold, the second best in blue and the third best in green.

E Empirical Expressivity Analysis

E.1 BREC Dataset

The BREC dataset is an expressiveness dataset containing 1-WL-indistinguishable graphs in 4
categories: Basic, Regular, Extension, and CFI graphs (Wang & Zhang, 2024). The 140 pairs of
regular graphs are further sub-categorized into simple regular graphs (50 pairs), strongly regular
graphs (50 pairs), 4-vertex condition graphs (20 pairs) and distance regular graphs (20 pairs). Note
that we remove pairs that include non-connected graphs from the original 400 pairs to arrive at a total
of 390 pairs. Graphs in the Basic category (60 pairs, of which we remove 4) are non-regular. Some of
the CFI graphs are 4-WL-indistinguishable. We provide a plot of the number of nodes and edges in
each categories’ graphs in Fig. 4 and Fig. 5.

Figure 4: Histogram of the number of nodes in the graphs in BREC. The bars are stacked. We exclude
pairs containing non-connected graphs from the original 800 graphs to arrive at 780 graphs. Best
seen in color.

23

Figure 5: Histogram of the number of edges in the graphs in BREC. The bars are stacked. We exclude
pairs containing non-connected graphs from the original 800 graphs to arrive at 780 graphs. Best
seen in color.

E.2 Empirical comparaisons of encodings

We provide a comparison of encodings computed at the graph level and the hypergraph level in
Tab. 14. We report the percentage of pairs in BREC that can be distinguished using the encodings,
up to row permutation. The results in this table further illustrate theorems A.1, 3.2, 3.6, 3.12 and
3.14. We note that hypergraph-level encodings, with the exception of Hodge H-LAPE, are unable to
distinguish pairs in the "Distance Regular" category. The "CFI" category is also notoriously difficult:
Some pairs are 4-WL-indistinguishable.

Level (Encodings) BASIC Regular str Extension CFI 4-Vertex-Condition Distance Regular

Graph: 1-WL/GIN 0 0 0 0 0 0 0

Graph (LDP) 0 0 0 0 0 0 0
Hyperaph (LDP) 91.07 94.0 100 25.77 0 100 0

Graph (LCP-FRC) 0 0 0 0 0 0 0
Hypergaph (HCP-FRC) 91.07 96.0 100 26.8 0 100 0

Graph (LCP-ORC) 100 100 100 100 55.67 100 0
Hypergaph (HCP-ORC) 100 100 100 94.85 100 100 0

Graph (EE 2-RWPE) 0 0 0 0 0 0 0
Hypergraph (EE H-2-RWPE) 91.07 82 98 50.52 0 100 0

Graph (EE 3-RWPE) 85.71 92 0 6.19 0 0 0
Hypergraph (EE H-3-RWPE) 98.21 98 98 59.79 0 100 0

Graph (EE 4-RWPE) 100 96 0 83.51 0 0 0
Hypergraph (EE H-4-RWPE) 100 100 98 92.78 0 100 0

Graph (EE 5-RWPE) 100 100 0 95.88 0 0 0
Hypergraph (EE H-5-RWPE) 100 100 98 95.88 0 100 0

Graph (EE 20-RWPE) 100 100 0 100 3.09 0 0
Hypergraph (EE H-20-RWPE) 100 100 98 100 3.09 100 0

Graph (Normalized 1-LAPE) 0.0 0.0 0 0 0 0 0
Hypergraph (Normalized 1-LAPE) 91.07 90 96 25.77 0 100 0

Graph (Hodge 1-LAPE) 48.21 100 100 71.13 7.22 100 5
Hypergraph (Hodge 1-LAPE) 98.21 98 100 74.23 7.22 100 10

Table 14: Difference in encodings on the BREC dataset (390 pairs). We report the percentage of pairs
with different encoding up to row permutation, at different level (graph or hypergraph). For the ORC
Computations, we use the code from (Coupette et al., 2022) applied to hypergraphs and graphs.

24

F Detailed Comparaison of encodings

F.1 Rook and Shrikhande graphs

The Rook and Shrikhande graphs are examples of strongly regular graphs with parameters
srg(16,6,2,2), meaning that they have 16 nodes, all of degree 6, and that any ajacent vertices share 2
common neighbors, while any non-adjacent vertices also share 2 common neighbors. We illustrate
these graphs in 6.

We first compute 2-RWPE. The first entry is 0, as a random walk from node i with 1-hop does not
return to node i. The second entry is:

1

6

∑
j∈Ni

(
1

6

)
=

1

6
.

Figure 6: The Rook graph and the Shrikhande graph. Those two non-isomorphic graphs can be hard
to distinguish: they are both srg(16,6,2,2) and are isospectral.

Figure 7: The Rook graph (left), its lifting (right) and its lifting’s bipartite representation (center).

For the Rook graph’s lifting to a hypergraph (which we shall call the Rook hypergraph), the edges
and vertices degree matrices are De = 4I8 and Dv = 2I16: every hyperedge has 4 nodes, and every
node is in two hyperedge (see 7). For the Shrikhande graph’s lifting to a hypergraph (which we call
the Shrikhande hypergraph), these matrices are De = 3I8 and Dv = 6I16: every hyperedge has 3
nodes, and every node is in 6 hyperedge. Using Def. 3.9, we see that for the Rook graph, the FRC of
any edge is 4(2− 2) = 0, while for Shrikhande graph, the FRC of any edge is 3(2− 6) = −12.

25

F.2 Pair 0 of the "Basic" Category of BREC

Figure 8: The pair 0 of the "Basic" category in BREC. Top: the two graphs in the pair. Second row:
the (node) degree distributions and some statistics. Bottom: the adjacency matrices of the graphs.

26

Figure 9: The pair 0 of the "Basic" category in BREC. Top: the two graphs in the pair. Second row:
the graphs’ liftings. Third row: the sizes of the (hyper)edges. Bottom: the node degrees.

We compute various encodings on this pair.

F.2.1 RWPE

The 1st entry of the RWPE encoding is 0. We now compute one of the 2nd entries at the graph level.
Start with node 0, a node of degree 4, on pair A (see 8). A random-walker can go to nodes of degree
4 (the node 3), 5 (the node 7) or 6 (the nodes 5 and 8). Thus, the probability of coming back to node
0 after 2 hops is 1

4 × 1
4 + 1

4 × 1
5 + 2

4 × 1
6 = 0.19583.

We report the full encodings for 2-RWPE in 15. We can actually see they are the same (up to row
permutation.

At the hypergraph level, H-2-RWPE are different because the maximum absolute value of the
last (second) column of the encoding for hypergraph A is 0.2503052503052503 while it is

27

0.0 0.19583
0.0 0.1916
0.0 0.20555556
0.0 0.18
0.0 0.196
0.0 0.18
0.0 0.196
0.0 0.19583
0.0 0.18
0.0 0.1916

0.0 0.196
0.0 0.196
0.0 0.1916
0.0 0.1916
0.0 0.19583
0.0 0.18
0.0 0.18
0.0 0.18
0.0 0.205
0.0 0.19583

Table 15: Pair A (left) and Pair B (right) 2-RWPE encodings. They match if we reorder the rows of
pair A as follow: (4, 6, 1, 9, 0, 3, 8, 5, 2, 7).

0.2935064935064935 for graph B. The full encodings can be found in 16. It is straightforward
to check that the two encodings cannot be made the same even up to scaling and row permutation.

0.0 0.15842491
0.0 0.24619611
0.0 0.15620094
0.0 0.14429618
0.0 0.24619611
0.0 0.15842491
0.0 0.25030525
0.0 0.24175824
0.0 0.14429618
0.0 0.15620094

0.0 0.15165945
0.0 0.15818182
0.0 0.21682409
0.0 0.15909091
0.0 0.15909091
0.0 0.29350649
0.0 0.26695527
0.0 0.21682409
0.0 0.15165945
0.0 0.15818182

Table 16: Pair A (left) and Pair B (right) H-2-RWPE encodings.

F.2.2 FRC

We now turn our attention to the FRC-LCP and FRC-HCP. The FRC-LCP of both pairs is presented
in 17. The encoding match with the following ordering for pair A: (6, 5, 0, 1, 2, 3, 7, 4, 8, 9).

-6.00 -4.00 -5.25 -5.50 0.8291562
-7.00 -6.00 -6.60 -7.00 0.48989795
-7.00 -6.00 -6.60 -7.00 0.48989795
-6.00 -4.00 -5.25 -5.50 0.8291562
-8.00 -7.00 −7.33 -7.00 0.47140452
-8.00 -6.00 −7.33 -7.50 0.74535599
-7.00 -5.00 -6.20 -6.00 0.74833148
-7.00 -5.00 -6.20 -6.00 0.74833148
-8.00 -6.00 -7.00 -7.00 0.81649658
-8.00 -6.00 −7.33 -7.50 0.74535599

-7.00 -5.00 -6.20 -6.00 0.74833148
-8.00 -6.00 −7.33 -7.50 0.74535599
-6.00 -4.00 -5.25 -5.50 0.8291562
-7.00 -6.00 -6.60 -7.00 0.48989795
-7.00 -6.00 -6.60 -7.00 0.48989795
-6.00 -4.00 -5.25 -5.50 0.8291562
-7.00 -5.00 -6.20 -6.00 0.74833148
-8.00 -7.00 −7.33 -7.00 0.47140452
-8.00 -6.00 -7.00 -7.00 0.81649658
-8.00 -6.00 −7.33 -7.50 0.74535599

Table 17: Pair A (left) and Pair B (right) FRC-LCP encodings. They match with the following
permuation: (6, 5, 0, 1, 2, 3, 7, 4, 8, 9)

At the hypergraph level, they are different because the maximum absolute value of encoding graph A
is 12.0, the maximum absolute value of encoding graph B is 10.0. The full encodings are presented
in 18. It is straightforward to check that the matrices cannot be scaled and row permuted to match.

28

-9 -6 -7 -6 1.41421356
-9 -5 −7.6 -9 1.88561808
-9 -5 −7.6 -9 1.88561808
-9 -6 -7 -6 1.41421356
-11 -5 -7.8 -9 2.4
-12 -6 −9.3 -9 1.88561808
-9 -5 −6.6 -6 1.69967317
-9 -5 −6.6 -6 1.69967317
-12 -6 -9 -9 1.73205081
-12 -6 −9.3 -9 1.88561808

-8 -2 -5 -5 2.44948974
-10 -8 -8.6 -8 0.8
-8 -2 −5.3 -6 2.49443826
-8 -5 -7 -8 1.41421356
-8 -5 -7 -8 1.41421356
-8 -2 −5.3 -6 2.49443826
-8 -2 -5 -5 2.44948974
-9 -5 -7 -8 1.67332005

-10 -6 -8 -8 1.15470054
-10 -8 -8.6 -8 0.8

Table 18: Pair A (left) and Pair B (right) FRC-HCP encodings.

F.2.3 1-LAPE

Using the Normalized Laplacian, the pair is 1-LAPE indistinguishable (up to row permuation, and
sign flip, as the eingenvectors are defined up to ±1). The 1-LAPE encodings are presented in 19.

0.30348849
0.3441236
0.3441236

0.30348849
0.28097574
0.28097574
0.30348849
0.30348849
0.3441236
0.3441236

0.30348849
0.3441236

0.30348849
0.3441236

0.28097574
0.28097574
0.30348849
0.30348849
0.3441236
0.3441236

Table 19: Pair A (left) and Pair B (right) Normalized 1-LAPE encodings. They match with the
following ordering for pair A: (0, 1, 3, 2, 4, 5, 6, 7, 8, 9).

At the hypergraph level, H-1-LAPE are different because the maximum absolute value is
0.408248290463863 for pair A and 0.39223227027636787 for pair B. The H-1-LAPE can be found
in 20.

0.25
0.40824829
0.40824829

0.25
0.40824829
0.40824829

0.25
0.25

0.20412415
0.20412415

0.2773501
0.39223227
0.2773501

0.39223227
0.39223227
0.39223227
0.2773501
0.2773501

0.19611614
0.19611614

Table 20: Pair A (left) and Pair B (right) Normalized H-1-LAPE encodings.

F.3 Additional Plots

We present the pairs 0 of the regular category, alongside with the graphs’ liftings, in Fig. 10. We
present the pairs 0 of the strongly regular category in Fig. 11.

29

Figure 10: The pair 0 of the regular category in BREC. Top: the two graphs in the pair. Second row:
the graphs’ liftings. Third row: the sizes of the (hyper)edges. Bottom: the node degrees.

30

Figure 11: The pair 0 of the strongly regular category in BREC. Top: the two graphs in the pair.
Second row: the graphs’ liftings. Third row: the sizes of the (hyper)edges. Bottom: the node degrees.

G Detailed ablation study for HNNs

G.1 UniGNN

We run node-level classification tasks using HNNs (Huang & Yang, 2021). We present results using
UniGAT in Tab. 22, UniGCN in Tab. 23, UniGIN in Tab. 24, UniSAGE in Tab. 25 and UniGCNII in
Tab. 26. For these experiments, we repeat experiments over 10 data splits (Yadati et al., 2019) with 8
different random seeds (80 total experiments). We train for 200 epochs and report the mean and std
of the testing accuracies across 80 runs. We use the Adam optimizer with a learning rate of 0.01 and
a weight decay of 0.0005. We use the relu activation function. The patience is set to 200 epochs, and
the dropout probability for the input layer is 0.6. The number of hidden features is set to 8, and the
number of layers is 2.

31

For this semi-supervised hypernode classification task, each dataset is split so that a small fraction
of labeled nodes is used for training (with label rates ranging from 0.8% to 5.2%, depending on the
dataset - see Tab. 21), and the rest are used for testing and validation.

Dataset Total Samples Train Test/Val Classes
Cora-CA 2,708 140 (5.2%) 2,568 (94.8%) 7
Citeseer 3,312 138 (4.2%) 3,174 (95.8%) 6
Cora-CC 2,708 140 (5.2%) 2,568 (94.8%) 7
Pubmed 19,717 78 (0.4%) 19,639 (99.6%) 3

Table 21: Train/Test split proportions in the hypergraph datasets.

Model citeseer-CC (↑) cora-CA (↑) cora-CC (↑) pubmed-CC (↑)

UniGAT (HCP-FRC) 61.08 ± 1.85 74.85 ± 1.66 65.95 ± 3.24 66.34 ± 1.79
UniGAT (LDP) 62.07 ± 1.68 75.47 ± 1.47 69.31 ± 2.23 68.41 ± 1.79
UniGAT (Hodge H-20-LAPE) 63.21 ± 1.53 75.80 ± 1.23 71.22 ± 1.60 75.77 ± 1.05
UniGAT (Norm. H-20-LAPE) 63.15 ± 1.63 75.65 ± 1.50 71.23 ± 1.87 75.77 ± 1.02
UniGAT (H-19-RWPEE EE) 62.97 ± 1.51 75.65 ± 1.40 70.78 ± 1.85 74.78 ± 1.18
UniGAT (H-19-RWPEE EN) 62.88 ± 1.53 75.76 ± 1.37 70.74 ± 1.86 74.75 ± 1.18
UniGAT (H-19-RWPEE WE) 62.97 ± 1.45 75.53 ± 1.53 70.86 ± 1.93 74.82 ± 1.12

UniGAT (no encodings) 63.25 ± 1.48 75.68 ± 1.45 71.16 ± 1.55 75.62 ± 1.09
Table 22: Node level classification for hypergraph using hypegraph encodings for UniGAT. The depth
is 2.

Model citeseer-CC (↑) cora-CA (↑) cora-CC (↑) pubmed-CC (↑)

UniGCN (HCP-FRC) 61.20 ± 1.83 74.64 ± 1.45 68.98 ± 1.59 67.37 ± 1.73
UniGCN (LDP) 61.67 ± 1.90 75.17 ± 1.54 69.17 ± 1.58 69.33 ± 1.57
UniGCN (Hodge H-20-LAPE) 63.46 ± 1.58 75.64 ± 1.37 71.31 ± 1.19 75.37 ± 1.01
UniGCN (Norm. H-20-LAPE) 63.41 ± 1.61 75.55 ± 1.48 71.20 ± 1.24 75.30 ± 1.01
UniGCN (H-19-RWPEE EE) 63.29 ± 1.52 75.34 ± 1.28 71.13 ± 1.24 74.61 ± 1.18
UniGCN (H-19-RWPEE EN) 63.09 ± 1.62 75.30 ± 1.37 71.21 ± 1.34 74.61 ± 1.09
UniGCN (H-19-RWPEE WE) 63.04 ± 1.74 75.53 ± 1.43 71.40 ± 1.25 74.59 ± 1.11

UniGCN (no encodings) 63.36 ± 1.76 75.72 ± 1.16 71.10 ± 1.37 75.32 ± 1.09
Table 23: Node level classification for hypergraph using hypegraph encodings for UniGCN. The
depth is 2.

Model citeseer-CC (↑) cora-CA (↑) cora-CC (↑) pubmed-CC (↑)

UniGIN (HCP-FRC) 59.10 ± 1.84 72.91 ± 1.88 57.77 ± 3.10 65.55 ± 2.40
UniGIN (LDP) 59.88 ± 2.37 73.83 ± 1.59 62.96 ± 2.89 67.41 ± 3.16
UniGIN (Hodge H-20-LAPE) 60.67 ± 2.23 74.29 ± 1.62 67.67 ± 2.50 75.11 ± 1.47
UniGIN (Norm. H-20-LAPE) 60.18 ± 2.37 74.12 ± 1.46 67.92 ± 2.23 75.09 ± 1.45
UniGIN (H-19-RWPEE EE) 60.33 ± 2.04 74.03 ± 1.51 67.70 ± 2.15 74.44 ± 1.44
UniGIN (H-19-RWPEE EN) 60.13 ± 2.31 74.04 ± 1.58 67.62 ± 2.46 74.34 ± 1.37
UniGIN (H-19-RWPEE WE) 60.23 ± 2.19 73.97 ± 1.61 67.50 ± 2.46 74.44 ± 1.32

UniGIN (no encodings) 60.56 ± 2.31 73.97 ± 1.56 67.70 ± 2.33 75.02 ± 1.39
Table 24: Node level classification for hypergraph using hypegraph encodings for UniGIN. The depth
is 2.

32

Model citeseer-CC (↑) cora-CA (↑) cora-CC (↑) pubmed-CC (↑)

UniSAGE (HCP-FRC) 59.10 ± 2.29 72.57 ± 1.96 57.35 ± 3.15 65.71 ± 2.58
UniSAGE (LDP) 59.97 ± 2.27 73.88 ± 1.71 63.08 ± 2.68 67.53 ± 3.09
UniSAGE (Hodge H-20-LAPE) 60.55 ± 2.02 74.13 ± 1.57 67.80 ± 2.27 75.03 ± 1.42
UniSAGE (Norm. H-20-LAPE) 60.54 ± 2.19 74.10 ± 1.52 67.89 ± 2.37 75.07 ± 1.44
UniSAGE (H-19-RWPEE EE) 60.29 ± 2.17 73.99 ± 1.59 67.76 ± 1.91 74.41 ± 1.43
UniSAGE (H-19-RWPEE EN) 60.30 ± 2.33 74.00 ± 1.57 67.86 ± 2.15 74.29 ± 1.36
UniSAGE (H-19-RWPEE WE) 60.22 ± 2.22 73.97 ± 1.35 67.82 ± 2.18 74.37 ± 1.33

UniSAGE (no encodings) 60.56 ± 2.10 74.16 ± 1.50 67.80 ± 2.33 75.02 ± 1.44
Table 25: Node level classification for hypergraph using hypegraph encodings for UniSAGE. The
depth is 2.

Model citeseer-CC (↑) cora-CA (↑) cora-CC (↑) pubmed-CC (↑)

UniGCNII (HCP-FRC depth 2) 61.19 ± 1.65 75.50 ± 1.41 66.83 ± 1.88 65.00 ± 2.18
UniGCNII (LDP depth 2) 62.34 ± 1.62 76.39 ± 1.58 68.65 ± 1.59 67.40 ± 1.93
UniGCNII (Hodge H-20-LAPE depth 2) 63.90 ± 1.87 76.68 ± 1.44 71.09 ± 1.20 75.51 ± 1.13
UniGCNII (Norm. H-20-LAPE depth 2) 64.09 ± 1.80 76.79 ± 1.31 71.06 ± 1.28 75.44 ± 1.09
UniGCNII (H-19-RWPEE EE depth 2) 63.72 ± 1.55 76.59 ± 1.39 70.64 ± 1.28 75.05 ± 0.99
UniGCNII (H-19-RWPEE EN depth 2) 63.67 ± 1.47 76.56 ± 1.48 70.87 ± 1.31 75.01 ± 0.98
UniGCNII (H-19-RWPEE WE depth 2) 63.71 ± 1.53 76.74 ± 1.36 70.68 ± 1.30 75.03 ± 0.96

UniGCNII (no encodings depth 2) 64.13 ± 1.68 76.70 ± 1.43 70.68 ± 1.53 75.40 ± 1.18

UniGCNII (HCP-FRC depth 8) 62.05 ± 1.47 75.97 ± 1.37 66.45 ± 1.88 64.27 ± 2.66
UniGCNII (LDP depth 8) 62.90 ± 1.40 76.98 ± 1.28 69.06 ± 1.67 66.78 ± 2.23
UniGCNII (Hodge H-20-LAPE depth 8) 65.18 ± 1.41 77.06 ± 1.22 71.93 ± 1.15 75.29 ± 1.33
UniGCNII (Norm. H-20-LAPE depth 8) 65.01 ± 1.60 77.00 ± 1.37 71.91 ± 1.26 75.30 ± 1.35
UniGCNII (H-19-RWPEE EE depth 8) 64.77 ± 1.49 76.95 ± 1.31 71.57 ± 1.22 74.59 ± 1.40
UniGCNII (H-19-RWPEE EN depth 8) 64.66 ± 1.43 76.92 ± 1.20 71.79 ± 1.14 74.61 ± 1.35
UniGCNII (H-19-RWPEE WE depth 8) 64.75 ± 1.46 76.85 ± 1.23 71.60 ± 1.28 74.60 ± 1.37

UniGCNII (no encodings depth 8) 64.72 ± 1.58 77.17 ± 1.34 71.57 ± 1.32 75.24 ± 1.30

UniGCNII (HCP-FRC depth 64) 62.93 ± 1.45 75.01 ± 1.40 65.54 ± 1.93 64.44 ± 2.82
UniGCNII (LDP depth 64) 63.60 ± 1.61 75.89 ± 1.41 69.85 ± 1.65 66.80 ± 2.07
UniGCNII (Hodge H-20-LAPE depth 64) 65.38 ± 1.53 76.35 ± 1.08 72.52 ± 1.38 75.36 ± 1.29
UniGCNII (Norm. H-20-LAPE depth 64) 65.25 ± 1.60 76.24 ± 1.16 72.68 ± 1.36 75.36 ± 1.29
UniGCNII (H-19-RWPEE EE depth 64) 65.40 ± 1.49 76.25 ± 1.17 72.62 ± 1.24 74.54 ± 1.43
UniGCNII (H-19-RWPEE EN depth 64) 65.38 ± 1.56 76.31 ± 1.15 72.59 ± 1.25 74.63 ± 1.36
UniGCNII (H-19-RWPEE WE depth 64) 65.20 ± 1.52 76.16 ± 1.20 72.65 ± 1.27 74.60 ± 1.33

UniGCNII (no encodings depth 64) 65.24 ± 1.67 76.34 ± 1.12 72.64 ± 1.06 75.34 ± 1.24

Table 26: Node level classification for hypergraph using hypegraph encodings for UniGCNII (depth:
2, 8, 64).

G.2 PhenomNN

We conduct experiments using PhenomNN with the hyperparameters from Wang et al. (2023). The
model employs a hidden dimension of 64 units with a single hidden layer architecture. For the
PhenomNN-specific parameters, we set λ0 = 20 and λ1 = 80 to control the weighting between
different adjacency matrices, α = 0.1 for residual connections, and 16 propagation steps. Training
is performed with a learning rate of 0.01, high dropout rate of 0.7 for regularization, and up to
1000 epochs with early stopping patience of 100. L2 regularization is applied with weight decay of
5× 10−4. The normalization type is set to "full". The full set of parameters is presented in Tab. 27.
The results are presented in Tab. 28.

33

Parameter Category Parameter Value
Core Model Hidden dimension 64

Number of hidden layers 1
Base block layers 1

Batch normalization False

PhenomNN-Specific λ0 20
λ1 80

α (residual) 0.1
Propagation steps 16

Normalization type Full

Training Learning rate 0.01
Dropout rate 0.7

Epochs 1000
Weight decay 5× 10−4

Early stopping patience 100

Additional K (APPNP) 10
α (GCNII) 0.1
λ (GCNII) 0.5

λ4 0
Table 27: Hyperparameters used for the PhenomNN experiments.

Model citeseer-CC (↑) cora-CA (↑) cora-CC (↑) pubmed-CC (↑)

PhenomNN (HCP-FRC) 58.87 ± 1.03 74.03 ± 0.97 54.02 ± 2.06 68.88 ± 01.44
PhenomNN (HCP-ORC) 64.89 ± 0.45 75.93 ± 0.41 72.21 ± 0.31 77.37 ± 0.23
PhenomNN (LDP) 62.54 ± 0.52 75.67 ± 0.50 62.28 ± 3.33 70.63 ± 0.87
PhenomNN (Hodge H-20-LAPE) 64.98 ± 0.58 76.76 ± 0.71 72.18 ± 0.33 78.36 ± 0.23
PhenomNN (Norm. H-20-LAPE) 64.75 ± 0.52 76.64 ± 0.49 72.06 ± 0.68 78.27 ± 0.25
PhenomNN (H-20-RWPEE EE) 64.23 ± 0.40 76.24 ± 0.57 72.18 ± 0.52 77.97 ± 0.29
PhenomNN (H-20-RWPEE EN) 64.47 ± 0.62 76.39 ± 0.57 71.57 ± 0.73 78.10 ± 0.20
PhenomNN (H-20-RWPEE WE) 64.52 ± 0.69 76.54 ± 0.57 72.30 ± 0.79 78.06 ± 0.24

PhenomNN (no encodings) 64.96 ± 0.58 76.98 ± 0.41 72.27 ± 0.41 78.09 ± 0.24
Table 28: Node level classification for hypergraph using hypegraph encodings for PhenomNN. Mean
accuracy (%) ± standard deviation results over 10 train-test splits.

G.3 HGNN

We conduct experiments using HGNN with the hyperparameters presented in Tab. 29. The results are
presented in Tab. 30.

Parameter Value

hidden_dims 128.0
dropout_rate 0.5
learning_rate 0.01
weight_decay 0.0005
epochs 500.0
patience 50.0
val_ratio 0.2
normalize_features False
normalize_encodings False

Table 29: HGNN configuration parameters. Model depth: 2 layers.

34

Model citeseer-CC (↑) cora-CA (↑) cora-CC (↑) pubmed-CC (↑)

HGNN (HCP-ORC) 58.48 ± 1.24 59.41 ± 1.53 59.93 ± 1.40 71.69 ± 1.41
HGNN (HCP-FRC) 56.04 ± 1.54 58.36 ± 1.93 56.37 ± 2.47 65.83 ± 1.70
HGNN (LDP) 57.07 ± 1.39 59.85 ± 1.71 58.06 ± 2.12 67.12 ± 1.30
HGNN (Hodge H-20-LAPE) 58.82 ± 1.24 60.10 ± 1.64 60.15 ± 1.52 72.47 ± 1.37
HGNN (Norm. H-20-LAPE) 58.68 ± 1.40 60.20 ± 1.55 60.16 ± 1.55 72.47 ± 1.36
HGNN (H-19-RWPEE EE) 57.79 ± 1.33 59.14 ± 2.15 59.76 ± 1.53 72.42 ± 1.28
HGNN (H-19-RWPEE EN) 57.73 ± 1.28 59.28 ± 1.97 59.79 ± 1.63 72.39 ± 1.28
HGNN (H-19-RWPEE WE) 57.69 ± 1.22 59.29 ± 1.91 59.69 ± 1.57 72.38 ± 1.31

HGNN (no encodings) 58.24 ± 1.20 60.35 ± 1.48 59.48 ± 1.80 72.60 ± 1.39
Table 30: Node level classification for hypergraph using hypegraph encodings for HGNN. We report
mean accuracy and standard deviation over 80 runs (8 seed with ten runs each). We use the splits
present in Tab 21.

H Rankings of encodings

We rank the hypergraph encodings by raw accuracies on all (graph model, datasets) pairs. We then
average the rankings by model or by task in Tab. 31, 32, 33, 34, 35, 36. For example, we average the
rankings over GPS, GCN and GIN for graph classification tasks in Tab. 31.

Encoding Average Rank (↓)
EE H-19-RWPE 2.24
EN H-19-RWPE 2.53
HCP-ORC 3.13
Hodge H-20-LAPE 4.12
Norm. H-20-LAPE 4.29
HCP-FRC 4.41
No Encoding 6.71

Table 31: Average ranking of each hypergraph encoding across all dataset evaluations on graph
classification tasks using the models GPS, CGN, and GIN. Lower is better. A total of 17 evaluations
were considered.

Encoding Average Rank (↓)
EE H-19-RWPE 1.43
EN H-19-RWPE 2.14
HCP-ORC 4.00
Hodge H-20-LAPE 4.28
HCP-FRC 4.71
Norm. H-20-LAPE 5.71
No Encoding 6.43

Table 32: Average ranking of each hypergraph encoding across all dataset evaluations on graph
classification tasks using GPS. Lower is better. A total of 7 evaluations were considered.

35

Encoding Average Rank (↓)
EE H-19-RWPE 2.43
HCP-ORC 2.67
EN H-19-RWPE 3.00
HCP-FRC 3.86
Hodge H-20-LAPE 4.14
Norm. H-20-LAPE 4.29
No Encoding 6.71

Table 33: Average ranking of each hypergraph encoding across all dataset evaluations on graph
classification tasks using GCN. Lower is better. A total of 7 evaluations were considered.

Encoding Average Rank (↓)
EE H-19-RWPE 3.67
EN H-19-RWPE 2.33
HCP-ORC 2.33
Hodge H-20-LAPE 3.67
Norm. H-20-LAPE 4.33
HCP-FRC 5.00
No Encoding 6.67

Table 34: Average ranking of each hypergraph encoding across all dataset evaluations on graph
classification tasks using GIN. Lower is better. A total of 3 evaluations were considered. Note that
the rows are not ordered by average rank here.

Encoding Average Rank (↓)
EE H-19-RWPE 1.38
EN H-19-RWPE 2.13
HCP-ORC 4.0
Hodge H-20-LAPE 4.0
Norm. H-20-LAPE 5.5
HCP-FRC 4.63
No Encoding 6.5

Table 35: Average ranking of each hypergraph encoding across all dataset evaluations on graph
classification and regressions tasks using GPS. Lower is better. A total of 8 evaluations were
considered. Note that the rows are not ordered by average rank here.

Encoding Average Rank (↓)
EE H-19-RWPE 2.75
EN H-19-RWPE 3.25
HCP-ORC 2.86
Hodge H-20-LAPE 3.88
Norm. H-20-LAPE 3.88
HCP-FRC 3.75
No Encoding 6.75

Table 36: Average ranking of each hypergraph encoding across all dataset evaluations on graph
classification and regressions tasks using GCN. Lower is better. A total of 8 evaluations were
considered. Note that the rows are not ordered by average rank here.

36

I Runtimes

We present the runtimes necessary to compute the graph and hypergraph encodings on Imdb in
Tab. 37 and on Mutag in Tab. 38.

I.1 On Imdb

Encoding Method Encodings on original graphs Encodings on lifted hypergraphs

Random Walk EN 0.0007 ± 0.0009 0.0006 ± 0.0008
Curvature FRC 0.0009 ± 0.0005 0.0007 ± 0.0003
Degree 0.0010 ± 0.0005 0.0010 ± 0.0005
Laplacian Hodge 0.0014 ± 0.0022 0.0003 ± 0.0002
Laplacian Normalized 0.0075 ± 0.0113 0.0007 ± 0.0003
Random Walk EE 0.0182 ± 0.0397 0.0022 ± 0.0031
Curvature ORC 5.1573 ± 0.1235 5.1990 ± 0.0994

Table 37: Encoding runtimes (mean ± std in seconds) on original graphs and clique-lifted hypergraphs
for the first 50 graphs of Imdb.

I.2 On Mutag

Encoding Method Encodings on original graphs Encodings on lifted hypergraphs

Laplacian Hodge 0.0003 ± 0.0001 0.0003 ± 0.0001
Random Walk EN 0.0004 ± 0.0002 0.0004 ± 0.0001
Curvature FRC 0.0007 ± 0.0002 0.0007 ± 0.0002
Degree 0.0007 ± 0.0002 0.0007 ± 0.0002
Laplacian Normalized 0.0012 ± 0.0006 0.0007 ± 0.0002
Random Walk EE 0.0024 ± 0.0012 0.0017 ± 0.0007
Curvature ORC 5.3687 ± 0.2250 5.3564 ± 0.1863

Table 38: Encoding runtimes (mean ± std in seconds) on original graphs and clique-lifted hypergraphs
for the first 50 graphs in Mutag.

J Hardware specifications and libraries

All experiments in this paper were implemented in Python using PyTorch, Numpy PyTorch Geometric,
and Python Optimal Transport.

Our experiments were conducted on a local server with the specifications presented in Tab. J.

Components Specifications

Architecture X86_64
OS UBUNTU 20.04.5 LTS x86_64
CPU AMD EPYC 7742 64-CORE
GPU NVIDIA A100 TENSOR CORE
RAM 40GB

Table 39: Server specifications.

37

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: In this work, we support formal claims on the proposed encoding’s expressivity
with proofs and provide experimental results for several graph learning benchmark as evidence of
the claimed performance gains.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We mention limitations throughout the paper. The discussion section has a dedicated
paragraph on limitations of our study, including a lack of benchmarks with true hypergraph-
structured data and a non-exhaustive comparison against existing hypergraph neural network
architectures.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role in
developing norms that preserve the integrity of the community. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

38

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: We provide proofs for all theoretical results in the main text or the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setup is described in section 4 in the main text. Additional
experimental details on data sets and hyperparameter choices are given in Appendix C. We
publicly release the code in an anonymous repository.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

39

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We make the code available in an anonymous repository. The repository includes
documentation that provides instructions for running the code and reproducing results. The
experiments in this study leverage publicly available data sets, details are provided in Appendix
C.1.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide all training and testing details in the main text and in Appendix C.
Hardware specification and usage of libraries is detailed in Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results are reported with error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

40

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: The computing resources used in this study are detailed in Table 26.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance our theoretical understanding of
Machine Learning. There are many potential societal consequences, none of which we feel must
be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.

41

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: Data sets and models are referenced throughout the main text and appendix. Licenses
are listed in Appendix H.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

42

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Implementations of the proposed encodings are provided in an anonymous repository.
No new data sets are introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

43

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

44

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Summary of Contributions

	Background
	Architectures
	Encodings
	Representational Power

	Hypergraph-level Encodings
	Laplacian Eigenvectors
	Random Walk Transition Probabilities
	Local Curvature Profiles
	Local Degree Profile

	Experiments
	Experimental setup
	Comparison of Hypergraph- and Graph-level Architectures
	Hypergraph-level Encodings Capture Higher-order Information Effectively

	Discussion
	Broader Impacts
	Acknowledgments
	Extended Background
	Hypergraph Expansions
	Lifting graphs to hypergraphs
	Weighted-Edges (WE) Hypergraph Random walks
	Laplacians
	Normalized graph and hypergraph Laplacian
	Random walks hypergraph Laplacians

	Discrete Curvature

	Architectures
	GNN architectures
	GCN
	GIN
	GraphGPS

	HNN architectures
	UniGCN
	UniGIN
	UniGAT
	UniSAGE
	UniGCNII
	HGNN
	PhenomNN

	Experimental details
	Datasets
	Graph Datasets
	Hypergraph Datasets

	Hyperparameters

	Additional GNN results
	Empirical Expressivity Analysis
	BREC Dataset
	Empirical comparaisons of encodings

	Detailed Comparaison of encodings
	Rook and Shrikhande graphs
	Pair 0 of the "Basic" Category of BREC
	RWPE
	FRC
	1-LAPE

	Additional Plots

	Detailed ablation study for HNNs
	UniGNN
	PhenomNN
	HGNN

	Rankings of encodings
	Runtimes
	On Imdb
	On Mutag

	Hardware specifications and libraries

