
Rewriting the Code: A Simple Method for Large Language Model
Augmented Code Search

Anonymous ACL submission

Abstract
In code search, the Generation-Augmented Re-001
trieval (GAR) framework, which generates ex-002
emplar code snippets to augment queries, has003
emerged as a promising strategy to address the004
principal challenge of modality misalignment005
between code snippets and natural language006
queries, particularly with the demonstrated007
code generation capabilities of Large Language008
Models (LLMs). Nevertheless, our preliminary009
investigations indicate that the improvements010
conferred by such an LLM-augmented frame-011
work are somewhat constrained. This limita-012
tion could potentially be ascribed to the fact013
that the generated codes, albeit functionally ac-014
curate, frequently display a pronounced stylis-015
tic deviation from the ground truth code in the016
codebase. In this paper, we extend the founda-017
tional GAR framework and propose a simple018
yet effective method that additionally Rewrites019
the Code (ReCo) within the codebase for style020
normalization. Experimental results demon-021
strate that ReCo significantly boosts retrieval022
accuracy across sparse (up to 35.7%), zero-shot023
dense (up to 27.6%), and fine-tuned dense (up024
to 23.6%) retrieval settings in diverse search025
scenarios. To further elucidate the advantages026
of ReCo and stimulate research in code style027
normalization, we introduce Code Style Simi-028
larity, the first metric tailored to quantify stylis-029
tic similarities in code. Notably, our empirical030
findings reveal the inadequacy of existing met-031
rics in capturing stylistic nuances.032

1 Introduction033

Code search, aimed at retrieving the most seman-034

tically relevant code snippets from a codebase ac-035

cording to a specified natural language query, is036

a common activity that plays an important role in037

software development (Nie et al., 2016; Shuai et al.,038

2020). Retrieving and reusing analogous code frag-039

ments from large-scale codebases like GitHub can040

enhance productivity significantly.041

Despite both being sequences of words, match-042

ing code queries and natural language queries is043

Generated Exemplar Code:
def count_frequency(my_list):
 frequency = {}
 for element in my_list:
 if element not in frequency:
 frequency[element] = 0
 frequency[element] += 1
 return frequency

True Code:
import collections
def freq_count(list1):
 freq_count = collections.Counter(list1)
 return freq_count

Query:
Write a function to get the frequency of the elements in a list.

Query:
How was the COVID-19 pandemic impacted mental health?

True Passage:
…two studies investigating COVID-19 patients … significantly
higher level of depressive…

Generated Reference:
…depression and anxiety had increased by 20% since the start
of the pandemic…

Passage Retrieval

Code Search

Figure 1: Comparison of GAR between passage re-
trieval and code search. In passage retrieval, the truth
(yellow) is included in the generated content. In code
search, despite the generated exemplar code satisfies the
description of the query, it exhibits noticeable dissimi-
larity to the true code.

challenging as they share few grammatical rules, 044

causing them to fall into two distinct modalities. 045

This grammatical distinction results in limited word 046

overlap, significantly hampering the application of 047

sparse retrieval systems in code search. On the 048

other hand, in dense retrieval systems, the align- 049

ment of query and code representations during the 050

training phase assists in alleviating the challenge 051

(Li et al., 2023). As a result, these systems are capa- 052

ble of encapsulating potential semantic correlations 053

between terminologies employed in programming 054

languages and those in natural languages. How- 055

ever, this potential association becomes challeng- 056

ing to capture if two terminologies rarely manifest 057

together within a query-code pair. 058

1

Generate

CodeQuery

Exemplar Code

Retrieve

Rewritten Code

Rewrite

Augmented
Query

Augmented
Code

LLMLLM

Query:
Write a function to get the frequency of the
elements in a list.

True Code:
import collections
def freq_count(list1):
 freq_count = \
collections.Counter(list1)
 return freq_count

Exemplar Code:
def count_frequency(my_list):
 frequency = {}
 for element in my_list:
 if element not in frequency:
 frequency[element] = 0
 frequency[element] += 1
 return frequency

Rewritten Code:
def frequency(my_list):
 freq = {}
 for i in my_list:
 if i in freq:
 freq[i] += 1
 else:
 freq[i] = 1
 return freq

Figure 2: An illustration of the ReCo method. It initially prompts LLMs to generate exemplar codes based on the
search query. Subsequently, the original query and these exemplar codes are synthesized to formulate an augmented
query. Analogously, the rewritten codes, produced by the LLMs, are merged with the original code, thereby creating
a candidate for retrieval. The example delineated in this figure aligns with the one depicted in Fig. 1.

To bridge this gap, one possible solution is059

to transform the data from one modality to the060

other. This could involve either generating ex-061

emplar codes based on the query or summarizing062

the functionality of codes in the codebase. Given063

that natural language queries in code search are064

often short and ambiguous (Mao et al., 2023; Rah-065

man and Roy, 2021), our research concentrates066

on the former solution, referred as Generation-067

Augmented Retrieval (GAR) (Mao et al., 2020).068

GAR has demonstrated competitive performance069

in question answering and passage retrieval. In070

these NLP tasks, a language model is adopted to071

generate references based on the query to augment072

it. Similarly, we could use a language model to gen-073

erate exemplar code snippets that realize the func-074

tionalities described in the query. Then the query075

and exemplar codes are combined to be fed into the076

retrieval system. With many LLMs demonstrating077

great intelligence in precisely writing codes (Tou-078

vron et al., 2023a,b; OpenAI, 2023b; Zan et al.,079

2022), performing GAR with LLMs becomes a080

promising approach for code search.081

However, from our preliminary studies, the im-082

provement in performance brought by GAR using083

LLMs is limited, especially with the high computa-084

tional cost of LLMs. We argue that answer format085

influences the performance of GAR on question086

answering and code search. In question answering,087

the correct answer to the question is often unique088

and can be expressed in limited forms. The gener-089

ated contents from LLMs, if correct, are usually in090

the exact same form as the answer. As highlighted091

in Fig. 1, the matching word “depressive” appears092

in the reference. On the other hand, code snippets093

with the same functionality can have diverse for-094

mulations, which lowers the chance of matching 095

the code in the codebase, and thus leads to minor 096

improvement of GAR in code search. As shown in 097

Fig. 1, the true code uses Python built-in function 098

Counter to count the number of elements in a list, 099

while the exemplar code snippet does it manually. 100

To address the mismatch of the generated and 101

ground truth code snippets, we build upon GAR 102

and propose a simple yet effective framework that 103

additionally Rewrites and the Code (ReCo) in the 104

codebase. As shown in Fig. 2, after rewriting, the 105

style of codes in the codebase are normalized by 106

LLMs to align with the exemplar code, thereby 107

facilitating the retrieval. We evaluate ReCo on 108

several code search models across various search 109

scenarios, including coding challenge competence, 110

online programming community, and general pro- 111

gramming problems in Python and Java. Experi- 112

mental results show that ReCo could significantly 113

boost the performance of sparse retrieval systems 114

(up to 35.7%) and dense retrieval systems in both 115

zero-shot (up to 27.6%) and fine-tuning (up to 116

23.6%) settings. 117

Furthermore, we propose a novel evaluation met- 118

ric, dubbed Code Style Similarity, to quantitatively 119

measure the disparity in code style. Our metric vali- 120

dates ReCo’s capability in aligning the style of code 121

within the codebase with that of code generated by 122

LLMs. Conventional metrics like BLEU (Papineni 123

et al., 2002) and CodeBLEU (Ren et al., 2020) are 124

deemed less appropriate as they calculate similar- 125

ity based on exact-matched tokens of the given 126

two code snippets. In contrast, Code Style Similar- 127

ity evaluates style from three distinct perspectives: 128

variable naming, API invocation, and code struc- 129

ture, based on edit distance (Ristad and Yianilos, 130

2

1998). Our experiments show that Code Style Sim-131

ilarity exhibits superior explanatory power than132

existing metrics in measuring the style deviation133

of code from the dataset and that generated from134

LLM.135

2 Related Works136

Code Search Models The development of code137

search models could be split into three stages. Tra-138

ditional methods, also denoted as sparse retrieval,139

employ information retrieval techniques to match140

words between queries and codes (Hill et al., 2011;141

Yang and Huang, 2017; Satter and Sakib, 2016).142

As we mentioned before, since programming lan-143

guages and natural languages share few grammat-144

ical rules, these methods often suffer from vocab-145

ulary mismatch problems (McMillan et al., 2011).146

Then, neural models became popular (Gu et al.,147

2021; Cambronero et al., 2019; Gu et al., 2018;148

Husain et al., 2019). They all employ a framework149

where queries and codes are encoded by neural en-150

coders separately into a joint representation space.151

Recently, transformer-based pre-trained models152

significantly outperformed previous methods, since153

they can be trained on large-scale unlabelled cor-154

pus with self-supervised pre-training tasks. Many155

novel pre-training tasks are proposed to let models156

have a better general understanding of codes (Guo157

et al., 2021; Li et al., 2022b,c; Shi et al., 2022).158

For instance, CodeBERT (Feng et al., 2020) uti-159

lizes masked language modeling and replaced to-160

ken detection. CodeT5 (Wang et al., 2021) focuses161

on generative tasks through bimodal dual genera-162

tion. UniXcoder (Guo et al., 2022) integrates the163

aforementioned generative and understanding pre-164

training tasks.165

LLMs for Retrieval While LLMs1 are designed166

for token generation, their direct application to re-167

trieval tasks such as code search is not suitable. In-168

deed, there have been attempts to amalgamate the169

search query and all the candidates together as in-170

put, subsequently requesting the LLMs to rank the171

candidates within the input (Qin et al., 2023). How-172

ever, the constraint on input sequence length im-173

pedes its applicability to large-scale retrieval tasks.174

One indirect way is to ask LLMs to generate175

some references and expand the search query with176

them. This framework, denoted as Generation-177

Augmented Retrieval, has been proven effective178

1We introduce related works for LLMs in Appendix A.

in both question answering and passage retrieval 179

(Mao et al., 2020; Gao et al., 2022; Wang et al., 180

2023). Mao et al. (2020) is the first work to pro- 181

pose GAR in question answering. HyDE (Gao 182

et al., 2022) evaluates GAR in passage retrieval 183

under zero-shot setting. query2doc (Wang et al., 184

2023) extends GAR to fine-tuning. Our research 185

findings suggest that the Generation-Augmented 186

Retrieval (GAR) method does not substantially en- 187

hance the efficiency of code search, primarily due 188

to the significant stylistic difference between exem- 189

plar code and true code. 190

Code Generation Evaluation Metrics A suit- 191

able automatic evaluation metric is vital to the 192

growth of code generation. It is used to measure 193

the lexical similarity between the generated hypo- 194

thetical code and the true reference code. Initially, 195

metrics such as BLEU (Papineni et al., 2002) and 196

ROUGE (Lin, 2004), originally designed for ma- 197

chine translation, were utilized in the realm of code 198

generation. However, subsequent scholarly dis- 199

course posits that these metrics overlook the syntac- 200

tic and semantic nuances inherent to code. Hence, 201

to consider those features, CodeBLEU (Ren et al., 202

2020) adds terms that calculate Abstract Syntax 203

Tree similarity and data-flow similarity. Crystal- 204

BLEU (Eghbali and Pradel, 2022) sets weights for 205

tokens according to their frequency. They find that 206

high-frequency tokens are often meaningless hence 207

assigning lower weights. These metrics are widely 208

adopted in code generation evaluation, yet they are 209

not suitable for measuring the style difference be- 210

tween two codes due to shared syntactic verbosity. 211

3 Methodology 212

3.1 Preliminaries 213

Code search aims to retrieve code snippets that are 214

semantically most pertinent to a specified query. 215

Given a search query q and a code snippet c in the 216

fixed codebase, an encoder G is used to map the 217

query and the code to a shared representation space. 218

We calculate the similarity between query and code 219

by dot product, which could be formulated as: 220

sim(q, c) = ⟨G(q), G(c)⟩ = ⟨vq,vc⟩, (1) 221

where vq and vc are representation vectors of q and 222

c, respectively. Finally, codes in the codebase are 223

ranked according to the similarity score. Note that 224

in a code search system, code representations vc 225

can be calculated and stored in advance. 226

3

3.2 ReCo227

Building on GAR, ReCo not only generates exem-228

plar codes based on the query but also rewrites the229

codes in the codebase.230

Generating and Rewriting Code First, we elu-231

cidate the process of generating exemplar codes.232

Given a query q, we employ few-shot prompting233

(a.k.a in-context learning) (Brown et al., 2020) to234

generate an exemplar code snippet. The prompt235

consists of an instruction “Please generate a236

Java/Python code snippet according to the given237

description.” and K randomly sampled query-code238

pairs from the training set. In this paper, we set239

K = 4. The instruction and in-context samples are240

denoted as GEN, enabling us to derive the exem-241

plary code cq as follows:242

cq = LLM(q, GEN). (2)243

In the procedure of rewriting the code c, we244

initially summarize the code into a natural lan-245

guage description, represented as qsum. This can246

be achieved by changing the instruction in GEN to247

“What is the main purpose of the Java/Python code248

snippet?”. We denote it as SUM. Subsequently,249

similar to generating exemplar codes, we consider250

qsum as the query q2. The entire process leading to251

the acquisition of the rewritten code, denoted as cc,252

is as follows:253

qsum = LLM(c, SUM), (3)254
255

cc = LLM(qsum, GEN). (4)256

Detailed examples are provided in Appendix B257

to further elucidate the prompt.258

Sparse Retrieval Query q and code c are ap-259

pended with exemplar code cq and rewritten code260

cc in a sparse retrieval system, respectively. Since261

we could generate multiple code snippets as aug-262

mentation, to retain the original semantics of q and263

c, we simply repeat them for N times which is264

equal to the number of augmented codes. Take the265

query as an example, the augmented search query266

q+ could be expressed as:267

q+ = concat({q}×N, {cq1, cq2, . . . , cqN}). (5)268

Similarly, we could get the augmented code c+. In269

application, q+ is fed to the sparse retrieval system270

as the search query and c+ are candidates in the271

codebase.272
2The process of rewriting is implemented via a summarize-

then-generate approach, as we have observed that merely in-
structing LLMs to rewrite the original codes does not result in
significant alterations.

Dense Retrieval InfoNCE loss (Van den Oord 273

et al., 2018) is widely adopted in fine-tuning be- 274

cause it can pull together the representations be- 275

tween the query and its corresponding code while 276

pushing away the representation of negative codes 277

(Li et al., 2023, 2022a). During training, we take 278

other in-batch codes as negative samples for a query 279

(Huang et al., 2021). With augmented query q+ 280

and augmented code c+, InfoNCE loss L can be 281

described as: 282

L = −E

[
log

exp(v+
qi · v

+
ci)

exp(v+
qi · v

+
ci) +

∑n
j ̸=i exp(v

+
qi · v

+
cj)

]
,

(6) 283

where n is the batch size, v+
q and v+

c are aug- 284

mented representations of q+ and c+, respectively. 285

For augmented representations, we calculate the 286

expectation of all the generated content according 287

to the chain rule. Take the exemplar code as an 288

example, we have: 289

E[vcq] = E[G(cq)] = E[G(LLM(q, GEN))]. (7) 290

Here we assume the distribution of vcq is uni- 291

modal since the preferred style of LLM is con- 292

sistent when generating codes. Then, we employ 293

average pooling between the representation of vcq 294

and vq to get the augmented representation v+
q . 295

The total process can be described as: 296

v+
q =

1

2N

N ·G(q) +
∑

cq∼LLM(q,GEN)

G(cq)

 ,

(8) 297

where N is the number of exemplar codes. Sim- 298

ilarly, we can get the augmented representation 299

v+
c of each code. During evaluation, vq and vc in 300

Eq.(1) are replaced by v+
q and v+

c . 301

Theoretical Insights We offer theoretical in- 302

sights to more effectively differentiate between 303

GAR and our proposed ReCo. Each code in the 304

codebase is an implementation of a specific query, 305

which we denote as c ∼ P (q). Here P denotes a 306

real-world distribution between queries and codes. 307

LLM also defines a probability distribution over 308

queries. Thus, exemplar codes can be considered to 309

follow cq ∼ LLM(q). We could find that c and cq 310

are sampled from two different distributions given 311

q. This accounts for the occasional divergence be- 312

tween the true code and the exemplar code for the 313

same query, as illustrated in Fig. 1. 314

The rewritten code follows cc ∼ LLM(qsum). 315

If the query q and code c are identical in seman- 316

tics and qsum correctly reflect the functionality 317

4

of code c, we could approximate the distribution318

of LLM(qsum) as LLM(q). Once the exemplar319

code and the rewritten code are both sampled from320

LLM(q), the expectation of LLM-generated con-321

tent becomes more similar, which is reflected in the322

style of generated codes.323

4 Code Style Similarity324

To quantitatively measure the style difference325

among codes, we propose a novel evaluation met-326

ric, dubbed Code Style Similarity (CSSim). To the327

best of our knowledge, this is the first metric ad-328

dressing the similarity between two codes from a329

stylistic perspective. Indeed, there are several eval-330

uation metrics widely adopted in code generation331

or translation to measure semantic similarity like332

BLEU and CodeBLEU. Yet they are not suitable333

for measuring the style similarity.334

The basic idea of these metrics is to compare335

the predicted code snippet against the ground truth336

by calculating the intersection of contiguous se-337

quences of code tokens (i.e., n-grams). It is rec-338

ognized that due to the syntactic verbosity and339

coding conventions inherent to programming lan-340

guages, two code snippets frequently share numer-341

ous n-grams that are incapable of reflecting their342

stylistic nuances. Besides, the score is calculated343

based on the exact match of n-grams, which can be344

deemed excessively rigid. For example, compared345

with token_count, word_count is expected to be346

more stylistically similar to words_count. How-347

ever, both of them will be assigned a score of 0348

under 2-gram match.349

CSSim addresses style from three perspectives:350

variable naming, API invocation, and code struc-351

ture. Variable naming is generally believed as a352

reflection of the programmer’s preference. For353

API invocation, similar APIs often exist in vari-354

ous libraries or packages, the choice of APIs also355

indicates the preference. As for code structure,356

sometimes the swap of two lines does not influ-357

ence the operation hence the order should also be358

considered. Besides, CSSim is calculated based359

on a softer measurement, edit distance (Ristad and360

Yianilos, 1998).361

API invocation and variable name follow the362

same process. Here we take the variable name as an363

example. We first extract all the variables from the364

code snippet to get V = {vi}Ni=1. For each variable365

in the set, we find the most similar variable from366

the other code and take the edit distance between367

the two as the similarity of this variable. Then, we 368

take the weighted average value of all the variables 369

as the style distance in variable naming. The whole 370

process can be described as: 371

DisV1 =
1

||λ||1

∑
vi∈V1

λi min
vj∈V2

ED(vi, vj), (9) 372

where V1 and V2 are extracted variables from two 373

codes and ED denotes Edit Distance. λi is normal- 374

ized inverse document frequency (IDF) because we 375

intend to decrease the impact of common words. 376

To ensure symmetry in this metric, we update code 377

distance in variable naming as: 378

DisVar =
DisV1 +DisV2

2
. (10) 379

For the measurement of code structure, we sim- 380

ply apply Tree Edit Distance (TED) (Paaßen, 2018) 381

to the Abstract Syntax Tree transformed from the 382

code. Similar to edit distance, TED quantifies the 383

least amount of basic operations (Insertion, Dele- 384

tion, and Substitution) required to transform one 385

tree into the other. To calculate CSSim, we first 386

calculate the Code Style Distance CSDis between 387

two codes c1 and c2, which is: 388

CSDis(c1, c2) =
DisVar +DisAPI +TED

3
,

(11) 389

where DisVar, DisAPI, TED ∈ [0, 1] hence 390

CSDis ∈ [0, 1]. We define CSSim = 1− CSDis. 391

5 Experimental Setups 392

Datasets We evaluate ReCo across various 393

search scenarios and programming languages: on- 394

line forum StackOverflow CoNaLa (Yin et al., 395

2018), coding challenge competence APPS 396

(Hendrycks et al., 2021), general programming 397

problems MBPP (Austin et al., 2021) and MBJP 398

(Athiwaratkun et al., 2022). The first three datasets 399

are written in Python while the last one is written 400

in Java. The statistics of the datasets are shown in 401

Appendix C.1. We take the widely adopted Mean 402

Reciprocal Rank (MRR) as the evaluation metric 403

(Li et al., 2023). MRR is the average of reciprocal 404

ranks of the true code snippets for the given query. 405

Baselines We apply ReCo on several models: 406

BM25, an enhanced version of TF-IDF, is a sta- 407

tistical measure that matches certain keywords in 408

codes with the given query. CodeBERT is a bi- 409

modal model pre-trained on Masked Language 410

5

Modeling and Replaced Token Detection. UniX-411

coder unifies both generating and understanding412

pre-training tasks to further enhance code represen-413

tation learning by leveraging cross-modal contents.414

Contriever (Izacard et al., 2021) is an unsuper-415

vised dense information retrieval model that lever-416

ages contrastive learning for its training.417

Compared Metrics We compare Code Style418

Similarity with several metrics used for measuring419

semantic similarity. BLEU measures how many420

words are shared between the generated and the421

reference sentence based on the modified n-gram422

precision. ROUGE-L computes the longest com-423

mon subsequence of words. CodeBLEU is tai-424

lored for code snippets by setting higher weights425

for programming language keywords and consider-426

ing data-flow and AST match as well.427

Implementation Details When prompting428

LLMs, we randomly sample 4 in-context examples429

from the training sets and set a temperature of 1.430

And when we prompt LLMs multiple times for the431

same input, each time we resample the in-context432

example. The maximum length of output for433

code summarization and generation is 128 and434

256, respectively. For sparse retrieval, we use the435

default implementation from Pyserini (Lin et al.,436

2021). For dense retrieval, during training, we437

adopt the default hyperparameters described in438

the original paper. They are trained for 10 epochs439

with a batch size of 32. Experiments are conducted440

on a Nvidia Tesla A100 GPU. Please refer to441

Appendix C.3 for more details.442

6 Results443

Overall Results The results are shown in Table 1.444

It is worth noting that our experiments encompass445

the use of various LLMs and multiple instances of446

both exemplar codes and rewritten codes for con-447

ducting ablation studies. Here we report the best448

performance when equipped with ReCo. Compre-449

hensive results can be found in Appendix E. We450

can observe that ReCo significantly outperforms451

GAR on both supervised and unsupervised mod-452

els across diverse search scenarios. With ReCo,453

the non-neural model BM25 can have competi-454

tive performance compared to neural models un-455

der zero-shot setting. And ReCo could boost the456

performance of zero-shot neural models similar457

to supervised models. We also evaluate ReCo on458

Contriever, a passage retrieval model that is not459

CoNaLa MBPP APPS MBJP

Unsupervised
BM25 52.6 12.6 11.6 11.3

+ GAR 71.7 35.1 17.6 33.5
+ ReCo 75.8+4.1 70.8+35.7 22.6+5.0 65.3+31.8

UniXcoder 77.2 69.3 8.3 73.2
+ GAR 83.9 85.0 13.2 80.0
+ ReCo 85.1+1.2 92.4+7.4 28.8+15.6 87.6+7.6

Contriever 55.7 55.3 9.6 37.0
+ GAR 75.0 71.3 14.0 62.3
+ ReCo 77.9+2.9 87.4+16.1 41.6+27.6 76.6+14.3

Supervised
CodeBERT 83.6 79.6 25.1 79.6

+ GAR 88.6 87.7 29.3 84.1
+ ReCo 85.0−3.6 92.3+4.6 51.2+21.9 89.1+5.0

UniXcoder 84.8 81.2 24.3 81.6
+ GAR 85.9 89.0 34.5 85.6
+ ReCo 87.1+1.2 94.2+5.2 58.1+23.6 90.5+4.9

Table 1: Comparative analysis of various models w.r.t
MRR(%) when utilizing GAR or ReCo.

specifically trained for code-related tasks. We ar- 460

gue that ReCo can also benefit general-purpose 461

retrieval models. Note that compared with GAR, 462

ReCo does not bring any additional computation in 463

real-time search because the rewritten code could 464

be pre-processed and stored in the codebase. 465

Comparison among Evaluation Metrics To 466

demonstrate the superiority of Code Style Similar- 467

ity, we prove that existing metrics are not effective 468

in measuring the style similarity between two codes 469

by contradiction. If existing metrics are effective, 470

they should satisfy two necessary conditions: 1) 471

the variation of metric scores ∆MetricScore be- 472

tween Metric(cq, cc) and Metric(cq, c) is in the 473

same direction with code search performance gap 474

between ReCo and GAR (∆MRR = MRRReCo− 475

MRRGAR). This is because once the rewritten 476

code is closer to the exemplar code in style, the 477

code search performance should improve accord- 478

ingly. 2) If we only choose the best one with 479

the highest Metric(cq, c) among multiple exem- 480

plar codes, the performance should be significantly 481

better than randomly selecting one exemplar code. 482

For the first condition, we analyze the results 483

from BM25 on the four datasets with different 484

LLMs including GPT3.5, Code Llama-7B, 13B, 485

and 34B. Here we do not take the results from 486

dense retrieval systems because neural models can 487

capture the potential relationship among similar 488

tokens. The numerical scores under different evalu- 489

ation metrics are shown in Appendix E. Regression 490

6

0.06 0.04 0.02 0.00 0.02 0.04 0.06Metric Score

40

30

20

10

0

10

20

30

40
MRR(%)

Code Style Similarity

0.15 0.10 0.05 0.00 0.05 0.10 0.15Metric Score

40

30

20

10

0

10

20

30

40
MRR(%)

CodeBLEU

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20Metric Score

40

30

20

10

0

10

20

30

40
MRR(%)

ROUGE-L

0.10 0.05 0.00 0.05 0.10Metric Score

40

30

20

10

0

10

20

30

40
MRR(%)

BLEU

Figure 3: Regression plots between ∆MRR(= MRRReCo −MRRGAR) and ∆MetricScore(= Metric(cq, cc)−
Metric(cq, c)) under different evaluation metrics. The data points are from BM25 results on four datasets with four
LLMs.

Dataset Random
w/ the best exemplar code

CSSim CodeBLEU ROUGE-L BLEU

CoNaLa 41.3 43.6 39.6 41.5 42.3
MBPP 24.0 26.8 25.1 23.7 24.0
APPS 14.1 15.2 14.8 14.2 14.2
MBJP 26.6 29.9 29.1 27.2 28.8

Table 2: Performance comparison of the best exemplar
code selection versus random selection for GAR across
four datasets, using the Code Llama-7B model.

plots are shown in Fig. 3. According to our first491

condition, ∆MetricScore and ∆MRR should be492

consistent, which means that points are expected493

to be scattered on Quadrant I and III. We can see494

that most of the points in CodeBLEU, ROUGE-L,495

and BLEU are scattered on Quadrant IV. In other496

words, when the rewritten codes are considered497

to be more similar to the exemplar code by these498

metrics, the performance of ReCo, on the contrary,499

drops compared with GAR. Points from Code Style500

Similarity mostly fall on Quadrant I and III and the501

regression line nearly passes through the origin.502

For the second condition, we analyze the results503

from BM25 equipped with GAR. For each query,504

we calculate the metric score between its exemplar505

codes and the true code in the codebase and then506

select the one with the highest metric score. The507

performance on four datasets after selecting the508

best exemplar code generated by Code Llama-7B509

is shown in Table 2. We can observe that compared510

with random selection, the improvement brought by511

CodeBLEU, ROUGE-L, and BLEU is not signifi-512

cant generally. On the contrary, Code Style Similar-513

ity outperforms other settings. To better understand514

the preference of different evaluation metrics, we515

also conduct case studies in Appendix D.516

In conclusion, our findings indicate that exist-517

ing metrics for measuring code style similarity fall518

short when subjected to two contradictory condi-519

tions. Conversely, Code Style Similarity (CSSim)520

CoNaLa MBPP APPS MBJP

UniXcoder 77.2 69.3 8.3 73.2
UniXcoder + ReCo 85.1 86.2 27.3 83.4

w/o original query&code 83.1 84.4 26.8 78.1

UniXcoder-ft 84.8 81.2 24.3 81.6
UniXcoder-ft + ReCo 87.1 88.0 48.8 85.4

w/o original query&code 85.5 84.8 39.0 80.3

Table 3: Comparative performance analysis of using
exclusively LLM-generated codes versus a combination
of LLM-generated codes, original queries, and codes.
“UniXcoder-ft” represents UniXcoder after fine-tuning.

demonstrably satisfies these criteria, highlighting 521

its superior effectiveness in quantifying stylistic 522

similarities in code. Furthermore, we observe 523

a clear positive correlation between code style 524

similarity as measured by CSSim and improve- 525

ment in MRR for code search, thereby validating 526

ReCo’s motivation that style normalization is ad- 527

vantageous. 528

Using only LLM-generated codes To further 529

demonstrate that the exemplar code and rewritten 530

code are similar in style, we conduct experiments to 531

only use these LLM-generated codes in the retrieval 532

system. In other words, we use exemplar code to 533

retrieve rewritten codes. The results of UniXcoder 534

under fine-tuning and zero-shot settings on four 535

datasets are shown in Table 3. We can see from 536

the results that only using LLM-generated codes 537

can reach competitive performance compared with 538

additionally using original queries and codes, and 539

even outperform the setting only using original 540

queries and codes, which indicates that the consis- 541

tent style in exemplar code and rewritten code have 542

made retrieval easier. 543

Impact of Different LLMs We explore the ef- 544

fect of using different LLMs in ReCo. The results 545

on BM25 are shown in Table 4. The full results 546

including other retrieval models are in Appendix E. 547

GPT3.5’s number of parameters is not released pub- 548

7

CoNaLa MBPP APPS MBJP

BM25 52.6 12.6 11.6 11.3
w/ Code Llama-7B 14.2 14.0 7.8 15.4
w/ Code Llama-13B 29.8 26.3 8.1 28.4
w/ Code Llama-34B 20.4 14.7 4.7 15.8
w/ GPT3.5 75.8 70.8 22.6 65.3

Table 4: Performance of ReCo on BM25 when using dif-
ferent LLMs to generate exemplar and rewritten codes.

licly but is estimated at around 175 billion. Gener-549

ally, we observe that larger LLMs yield greater im-550

provements. However, a decrement in performance551

is noted with the application of Code Llama-34B.552

This decrement is attributed to the model’s propen-553

sity to generate code not only for the prompted fifth554

example but also for the initial four in-context ex-555

amples. Consequently, the generated code is often556

truncated due to output length limitations.557

Impact of Number of Generated Codes We558

also explore the effect of the numbers of gener-559

ated exemplar codes and rewritten codes in ReCo.560

The outcomes of BM25 on CoNaLa and MBPP are561

depicted in Fig. 4, while a comprehensive compila-562

tion of results, inclusive of other retrieval models563

and datasets, can be found in Appendix E. Our ob-564

servations indicate a marginal enhancement when565

LLMs are tasked with generating more codes. We566

discern that the multiple codes generated exhibit567

similarities, with minor variations, attributable to568

the self-consistent style of each LLM. To address569

this, our future work will investigate controlled570

prompts that steer LLMs towards generating code571

with controlled stylistic variations, thereby enhanc-572

ing the diversity of code generation. Fig. 4 also573

illustrates that the improvement tends to diminish574

as the quantity of generated codes increases. In575

practical applications, it is essential to weigh the576

trade-off between performance enhancement and577

the incremental costs associated with generation.578

7 Discussion579

Broader Impact As we stated, the key motiva-580

tion behind ReCo is to normalize the code style581

between exemplar code and original code. Indeed,582

there exist code normalization methods, but they583

only focus on superficial formatting such as the584

usage of indentation and naming convention (e.g.,585

from camelCase to snake_case). In this paper, we586

discuss code style normalization from a deeper per-587

spective, implementation logic, and preference for588

variable naming or API invocation. We believe that589

1 2 3 4
Number of Generated Codes

20

30

40

50

60

70

M
RR

CoNaLa

Code Llama-7b
Code Llama-13b
Code Llama-34b
GPT3.5

1 2 3 4
Number of Generated Codes

20

30

40

50

60

70

M
RR

MBPP

Code Llama-7b
Code Llama-13b
Code Llama-34b
GPT3.5

Figure 4: Performance of BM25 + ReCo with different
numbers of generated codes.

this task has great potential as it could not only ben- 590

efit code search but also many other code-related 591

tasks like code review and code translation. 592

In this paper, we adopt LLMs to achieve the 593

goal of style normalization by first summarizing 594

the code snippet and then generating code based 595

on the summary. This is because we find directly 596

asking LLMs to rewrite the code results in very 597

similar outputs. In the process of summarize-then- 598

generate, models are expected to have great code 599

intelligence hence there is no loss of information, 600

as described in the theoretical insights of ReCo. Yet 601

we are aware of the huge cost brought by LLMs. To 602

decrease the cost, one promising solution is to train 603

models specifically used for code style normaliza- 604

tion. These models are considered to have much 605

fewer parameters since much general knowledge in 606

LLMs is not needed. To push forward the research 607

of code style normalization, we propose a suitable 608

evaluation metric, dubbed Code Style Similarity. 609

In our future work, we plan to train such models to 610

improve the efficiency of ReCo. 611

Conclusion In this paper, we propose ReCo, an 612

LLM-augmented code search framework built on 613

GAR, that additionally rewrites the code in the 614

code base to normalize the code style between ex- 615

emplar code and code in the codebase. We evaluate 616

ReCo on several code search models across vari- 617

ous search scenarios with different programming 618

languages. Experimental results demonstrate the 619

effectiveness of ReCo by significantly boosting 620

the performance of models. To encourage further 621

research works on code style normalization and ex- 622

plain the effect of ReCo, we propose an evaluation 623

metric Code Style Similarity. In our future work, 624

based on this metric, we may develop new mod- 625

els that can more efficiently normalize the code 626

style. The source code and data are available at 627

https://anonymous.4open.science/r/ReCo. 628

8

https://anonymous.4open.science/r/ReCo

Limitations629

There are mainly two limitations of this work. First,630

although ReCo does not require any additional com-631

putation in real-time search compared with GAR,632

both GAR and ReCo rely on the real-time gen-633

eration of exemplar codes. Therefore, ReCo and634

GAR may have limitations when applied to tasks635

that demand low latency. The latency of generat-636

ing exemplar codes depends on the time cost of637

LLM inference. As stated in research works focus-638

ing on GAR, over the years the cost of hardware639

has decreased a lot and there are many works pro-640

posed to improve the inference efficiency of LLMs641

(Gao et al., 2022; Wang et al., 2023). We believe642

the efficiency problem of GAR and ReCo will be643

addressed in the future. The second limitation is644

that we do not evaluate ReCo on some extremely645

large-scale codebases like CodeSearchNet (Husain646

et al., 2019). This is due to the time burden of gen-647

erating exemplar codes and rewriting codes. For648

example, according to our estimation, there are649

1,005,474 queries in total in CodeSearchNet hence650

generating one exemplar code for them costs more651

than two months. To address this limitation, we652

evaluate ReCo on several search scenarios covering653

coding challenge competence, online programming654

community, and general programming problems to655

show the effectiveness of ReCo.656

References657

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,658
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin659
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al.660
2022. Multi-lingual evaluation of code generation661
models. arXiv preprint arXiv:2210.14868.662

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten663
Bosma, Henryk Michalewski, David Dohan, Ellen664
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.665
Program synthesis with large language models. arXiv666
preprint arXiv:2108.07732.667

Tom Brown, Benjamin Mann, Nick Ryder, Melanie668
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind669
Neelakantan, Pranav Shyam, Girish Sastry, Amanda670
Askell, et al. 2020. Language models are few-shot671
learners. Advances in neural information processing672
systems, 33:1877–1901.673

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik674
Sen, and Satish Chandra. 2019. When deep learning675
met code search. In Proceedings of the 2019 27th676
ACM Joint Meeting on European Software Engineer-677
ing Conference and Symposium on the Foundations678
of Software Engineering, pages 964–974.679

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 680
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 681
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 682
Greg Brockman, et al. 2021. Evaluating large 683
language models trained on code. arXiv preprint 684
arXiv:2107.03374. 685

Aryaz Eghbali and Michael Pradel. 2022. Crystalbleu: 686
precisely and efficiently measuring the similarity of 687
code. In Proceedings of the 37th IEEE/ACM Interna- 688
tional Conference on Automated Software Engineer- 689
ing, pages 1–12. 690

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 691
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 692
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 693
bert: A pre-trained model for programming and nat- 694
ural languages. In Findings of the Association for 695
Computational Linguistics, pages 1536–1547. 696

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. 697
2022. Precise zero-shot dense retrieval without rele- 698
vance labels. arXiv preprint arXiv:2212.10496. 699

Jian Gu, Zimin Chen, and Martin Monperrus. 2021. 700
Multimodal representation for neural code search. In 701
2021 IEEE International Conference on Software 702
Maintenance and Evolution (ICSME), pages 483– 703
494. 704

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. 705
Deep code search. In 2018 IEEE/ACM 40th Interna- 706
tional Conference on Software Engineering, pages 707
933–944. 708

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming 709
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross- 710
modal pre-training for code representation. In Pro- 711
ceedings of the 60th Annual Meeting of the Asso- 712
ciation for Computational Linguistics, pages 7212– 713
7225. 714

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 715
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy- 716
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun 717
Deng, Colin B. Clement, Dawn Drain, Neel Sundare- 718
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021. 719
Graphcodebert: Pre-training code representations 720
with data flow. In 9th International Conference on 721
Learning Representations. 722

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 723
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 724
Samir Puranik, Horace He, Dawn Song, et al. 2021. 725
Measuring coding challenge competence with apps. 726
arXiv preprint arXiv:2105.09938. 727

Emily Hill, Lori Pollock, and K Vijay-Shanker. 2011. 728
Improving source code search with natural language 729
phrasal representations of method signatures. In 2011 730
26th IEEE/ACM International Conference on Auto- 731
mated Software Engineering, pages 524–527. 732

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, 733
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan. 734
2021. Cosqa: 20, 000+ web queries for code search 735

9

and question answering. In Proceedings of the 59th736
Annual Meeting of the Association for Computational737
Linguistics and the 11th International Joint Confer-738
ence on Natural Language Processing, pages 5690–739
5700.740

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis741
Allamanis, and Marc Brockschmidt. 2019. Code-742
searchnet challenge: Evaluating the state of semantic743
code search. arXiv preprint arXiv:1909.09436.744

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-745
bastian Riedel, Piotr Bojanowski, Armand Joulin,746
and Edouard Grave. 2021. Unsupervised dense in-747
formation retrieval with contrastive learning. arXiv748
preprint arXiv:2112.09118.749

Haochen Li, Chunyan Miao, Cyril Leung, Yanxian750
Huang, Yuan Huang, Hongyu Zhang, and Yanlin751
Wang. 2022a. Exploring representation-level aug-752
mentation for code search. In Proceedings of the753
2022 Conference on Empirical Methods in Natural754
Language Processing, pages 4924–4936.755

Haochen Li, Xin Zhou, Luu Anh Tuan, and Chunyan756
Miao. 2023. Rethinking negative pairs in code search.757
arXiv preprint arXiv:2310.08069.758

Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu,759
Hang Zhang, Bolun Yao, Weizhen Qi, Daxin Jiang,760
Weizhu Chen, and Nan Duan. 2022b. Coderetriever:761
Unimodal and bimodal contrastive learning. arXiv762
preprint arXiv:2201.10866.763

Xiaonan Li, Daya Guo, Yeyun Gong, Yun Lin, Ye-764
long Shen, Xipeng Qiu, Daxin Jiang, Weizhu Chen,765
and Nan Duan. 2022c. Soft-labeled contrastive pre-766
training for function-level code representation. arXiv767
preprint arXiv:2210.09597.768

Chin-Yew Lin. 2004. Rouge: A package for automatic769
evaluation of summaries. In Text summarization770
branches out, pages 74–81.771

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-772
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.773
2021. Pyserini: A python toolkit for reproducible774
information retrieval research with sparse and dense775
representations. In Proceedings of the 44th Inter-776
national ACM SIGIR Conference on Research and777
Development in Information Retrieval, pages 2356–778
2362.779

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-780
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,781
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:782
Empowering code large language models with evol-783
instruct. arXiv preprint arXiv:2306.08568.784

Yuetian Mao, Chengcheng Wan, Yuze Jiang, and785
Xiaodong Gu. 2023. Self-supervised query re-786
formulation for code search. arXiv preprint787
arXiv:2307.00267.788

Yuning Mao, Pengcheng He, Xiaodong Liu, Ye- 789
long Shen, Jianfeng Gao, Jiawei Han, and Weizhu 790
Chen. 2020. Generation-augmented retrieval for 791
open-domain question answering. arXiv preprint 792
arXiv:2009.08553. 793

Collin McMillan, Mark Grechanik, Denys Poshyvanyk, 794
Qing Xie, and Chen Fu. 2011. Portfolio: finding 795
relevant functions and their usage. In Proceedings 796
of the 33rd International Conference on Software 797
Engineering, pages 111–120. 798

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xi- 799
aochen Li. 2016. Query expansion based on crowd 800
knowledge for code search. IEEE Transactions on 801
Services Computing, 9(5):771–783. 802

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan 803
Wang, Yingbo Zhou, Silvio Savarese, and Caiming 804
Xiong. 2022. Codegen: An open large language 805
model for code with multi-turn program synthesis. 806
arXiv preprint arXiv:2203.13474. 807

OpenAI. 2023a. Chatgpt. 808

OpenAI. 2023b. Gpt-4 technical report. ArXiv, 809
abs/2303.08774. 810

Benjamin Paaßen. 2018. Revisiting the tree edit dis- 811
tance and its backtracing: A tutorial. arXiv preprint 812
arXiv:1805.06869. 813

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 814
Jing Zhu. 2002. Bleu: a method for automatic evalu- 815
ation of machine translation. In Proceedings of the 816
40th annual meeting of the Association for Computa- 817
tional Linguistics, pages 311–318. 818

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, 819
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu, 820
Donald Metzler, Xuanhui Wang, et al. 2023. 821
Large language models are effective text rankers 822
with pairwise ranking prompting. arXiv preprint 823
arXiv:2306.17563. 824

Mohammad Masudur Rahman and Chanchal K Roy. 825
2021. A systematic literature review of automated 826
query reformulations in source code search. arXiv 827
preprint arXiv:2108.09646. 828

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, 829
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio 830
Blanco, and Shuai Ma. 2020. Codebleu: a method 831
for automatic evaluation of code synthesis. arXiv 832
preprint arXiv:2009.10297. 833

Eric Sven Ristad and Peter N Yianilos. 1998. Learning 834
string-edit distance. IEEE Transactions on Pattern 835
Analysis and Machine Intelligence, 20(5):522–532. 836

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 837
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 838
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 839
Code llama: Open foundation models for code. arXiv 840
preprint arXiv:2308.12950. 841

10

https://chat.openai.com
https://api.semanticscholar.org/CorpusID:257532815

Abdus Satter and Kazi Sakib. 2016. A search log mining842
based query expansion technique to improve effec-843
tiveness in code search. In 2016 19th International844
Conference on Computer and Information Technol-845
ogy, pages 586–591.846

Ensheng Shi, Wenchao Gub, Yanlin Wang, Lun Du,847
Hongyu Zhang, Shi Han, Dongmei Zhang, and Hong-848
bin Sun. 2022. Enhancing semantic code search with849
multimodal contrastive learning and soft data aug-850
mentation. arXiv preprint arXiv:2204.03293.851

Jianhang Shuai, Ling Xu, Chao Liu, Meng Yan, Xin852
Xia, and Yan Lei. 2020. Improving code search with853
co-attentive representation learning. In Proceedings854
of the 28th International Conference on Program855
Comprehension, pages 196–207.856

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier857
Martinet, Marie-Anne Lachaux, Timothée Lacroix,858
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal859
Azhar, et al. 2023a. Llama: Open and effi-860
cient foundation language models. arXiv preprint861
arXiv:2302.13971.862

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-863
bert, Amjad Almahairi, Yasmine Babaei, Nikolay864
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti865
Bhosale, et al. 2023b. Llama 2: Open founda-866
tion and fine-tuned chat models. arXiv preprint867
arXiv:2307.09288.868

Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. 2018.869
Representation learning with contrastive predictive870
coding. arXiv e-prints, pages arXiv–1807.871

Liang Wang, Nan Yang, and Furu Wei. 2023.872
Query2doc: Query expansion with large language873
models. arXiv preprint arXiv:2303.07678.874

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH875
Hoi. 2021. Codet5: Identifier-aware unified876
pre-trained encoder-decoder models for code un-877
derstanding and generation. arXiv preprint878
arXiv:2109.00859.879

Yangrui Yang and Qing Huang. 2017. Iecs: Intent-880
enforced code search via extended boolean model.881
Journal of Intelligent & Fuzzy Systems, 33(4):2565–882
2576.883

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan884
Vasilescu, and Graham Neubig. 2018. Learning to885
mine aligned code and natural language pairs from886
stack overflow. In Proceedings of the 15th interna-887
tional conference on mining software repositories,888
pages 476–486.889

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie890
Lu, Bingchao Wu, Bei Guan, Yongji Wang, and891
Jian-Guang Lou. 2022. When neural model892
meets nl2code: A survey. arXiv preprint893
arXiv:2212.09420.894

A Extended Related Works 895

Large Language Models As the model pa- 896

rameters and size of training corpora of those 897

transformer-based pre-trained models scale up to 898

billions, they appear to demonstrate remarkable in- 899

telligence in understanding and generating codes. 900

As a milestone, Codex (Chen et al., 2021) with 12 901

billion parameters indicates the beginning of the 902

Code LLM era. Meanwhile, there are a number of 903

powerful Code LLMs proposed (Zan et al., 2022), 904

though most of them are not publicly accessible. 905

Recently, ignited by OpenAI’s ChatGPT (OpenAI, 906

2023a), a bunch of excellent open-sourced mod- 907

els also contribute to the thriving of Code LLMs 908

(Roziere et al., 2023; Nijkamp et al., 2022; Luo 909

et al., 2023). Among them, Code LLaMA (Roziere 910

et al., 2023) has attracted significant attention be- 911

cause it is a collection of efficient Code LLMs 912

ranging from 7B to 34B parameters. At the same 913

time, some LLMs that are not specifically trained 914

for code exhibit surprising abilities in code intel- 915

ligence as well, such as GPT3.5 (OpenAI, 2023a) 916

and LLaMA (Touvron et al., 2023a,b). This can be 917

attributed to the inclusion of code snippets in the 918

unlabeled training corpus. 919

B Complete Prompt 920

Table 11 and Table 12 are two complete prompt 921

examples for generating exemplar codes and sum- 922

marizing original codes, respectively. Note that in 923

the second step of rewriting original codes, we also 924

adopt the prompt structure of generating exemplar 925

codes but replace the description at last with the 926

summary. 927

C Experiment Settings 928

C.1 Dataset Statistics 929

The dataset statistics are shown in Table 5. The 930

numbers here are pairs of queries and their true 931

code snippet. Code search models are asked to dis- 932

tinguish the correct code from the codes from other 933

pairs. Note that in the original APPS dataset, there 934

are 4,284 and 3,515 pairs in the training and test 935

set, respectively. Due to the huge cost of prompt- 936

ing LLMs, we randomly sample a subset for our 937

evaluation. 938

C.2 MRR Calculation 939

MRR is the average of reciprocal ranks of the true 940

code snippets for the given query, which could be 941

11

Dataset CoNaLa MBPP APPS MBJP

Train 2,379 373 1,000 374
Test 500 500 1,000 500

Table 5: Statistics of the dataset used in our experiment.

True Code

Exemplar Code 1

def find_first_duplicate(nums):
num_set = set()
no_duplicate = -1
for i in range(len(nums)):

if nums[i] in num_set:
return nums[i]

else:
num_set.add(nums[i])

return no_duplicate

def find_duplicate(my_list):
for i in range(len(my_list)):

if my_list[i] in my_list[i+1:]:
return my_list[i]

return None

def find_duplicate(my_list):
seen = set()
for num in my_list:

if num in seen:
return num

seen.add(num)
return None

Exemplar Code 2

Figure 5: Case study between Code Style Similarity and
the existing metrics. The first exemplar code is preferred
by existing metrics while the second one is preferred
by Code Style Similarity. The second exemplar code
is more similar to the true code from the perspective of
style.

calculated as:942

MRR =
1

|Q|

|Q|∑
i=1

1

Ranki
(12)943

where Ranki is the rank of the true code for the944

i-th given query Q.945

C.3 Implementation Details946

For neural models, they all use the same947

set of hyperparameters. The maximum input948

length of codes and queries are both set to be949

256. Models are trained by Adam and learn-950

ing rate is set to 5e-6. We adopt mean pool-951

ing to get the representation of the whole in-952

put sentence to make sure the pooling mecha-953

nism is consistent with that during pre-training.954

The representations are normalized by the L2 955

norm. UniXcoder is initialized using the publicly 956

available checkpoint at https://huggingface. 957

co/microsoft/unixcoder-base and Contriever 958

is initialized using https://huggingface.co/ 959

facebook/contriever-msmarco. CodeBERT 960

is initialized using https://huggingface.co/ 961

microsoft/codebert-base and then pre-trained 962

on the CodeSearchNet dataset (Husain et al., 2019) 963

for 10 epochs. The pre-training setting is the 964

same as in fine-tuning. All the experiments in- 965

volving model training are running with 3 random 966

seeds 1234, 12345, and 123456 and they all meet 967

p < 0.01 of significance tests. 968

D Case Study 969

We also conduct a case study to show the superi- 970

ority of Code Style Similarity. Fig. 5 shows two 971

exemplar codes generated by Code Llama-7B. The 972

true code aims to find the first duplicate element 973

in a given array of integers. Although both the 974

two exemplar codes satisfy the description, their 975

implementation style is different. The first exem- 976

plar code is preferred by CodeBLEU, ROUGE-L, 977

and BLEU while the second one is preferred by 978

Code Style Similarity. The true code uses a set 979

to collect seen elements when traversing the list, 980

which is also the logic in the second exemplar code. 981

The first exemplar code implements the function in 982

a different way by checking whether my_list[i] 983

appears in my_list[i+1:]. We think the first code 984

is preferred by existing metrics because lines 2-4 985

in the first exemplar code are very similar to lines 986

4-6 in the true code, which contributes a lot to the 987

metric score. 988

E Full Results 989

In this section, we report the full experimental 990

results. The results of MetricScore(cq, cc) and 991

MetricScore(cq, c) under different evaluation met- 992

rics are shown in Table 6. The results of BM25 993

are shown in Table 7. The results of fine-tuned 994

UniXcoder and CodeBERT are shown in Table 8 995

and Table 9, respectively. The results of UniXcoder 996

and Contriever under zero-shot setting are shown 997

in Table 10. 998

12

https://huggingface.co/microsoft/unixcoder-base
https://huggingface.co/microsoft/unixcoder-base
https://huggingface.co/microsoft/unixcoder-base
https://huggingface.co/facebook/contriever-msmarco
https://huggingface.co/facebook/contriever-msmarco
https://huggingface.co/facebook/contriever-msmarco
https://huggingface.co/microsoft/codebert-base
https://huggingface.co/microsoft/codebert-base
https://huggingface.co/microsoft/codebert-base

Metric LLM
Datasets

CoNaLa MBPP APPS MBJP

M(cq, cc) M(cq, c) ∆M M(cq, cc) M(cq, c) ∆M M(cq, cc) M(cq, c) ∆M M(cq, cc) M(cq, c) ∆M

CSSim CodeLlama-7B 0.492 0.543 -0.051 0.504 0.518 -0.014 0.493 0.498 -0.005 0.529 0.52 0.009
CodeLlama-13B 0.534 0.593 -0.059 0.547 0.565 -0.018 0.481 0.5 -0.019 0.52 0.528 -0.008
CodeLlama-34B 0.522 0.564 -0.042 0.527 0.533 -0.006 0.526 0.495 0.031 0.506 0.52 -0.014
GPT3.5 0.553 0.548 0.005 0.553 0.522 0.031 0.508 0.534 -0.026 0.502 0.496 0.006

CodeBLEU CodeLlama-7B 0.16 0.143 0.017 0.264 0.187 0.077 0.153 0.128 0.025 0.324 0.312 0.012
CodeLlama-13B 0.116 0.189 -0.073 0.348 0.249 0.099 0.171 0.13 0.041 0.311 0.375 -0.064
CodeLlama-34B 0.181 0.183 -0.002 0.184 0.208 -0.024 0.151 0.131 0.020 0.266 0.319 -0.053
GPT3.5 0.28 0.228 0.052 0.385 0.249 0.136 0.204 0.163 0.041 0.462 0.318 0.144

ROUGE-L CodeLlama-7B 0.138 0.002 0.136 0.118 0.001 0.117 0.041 0.003 0.038 0.025 0.001 0.024
CodeLlama-13B 0.193 0.002 0.191 0.13 0.001 0.129 0.046 0.003 0.043 0.038 0.001 0.037
CodeLlama-34B 0.127 0.001 0.126 0.0898 0.001 0.0888 0.03 0.003 0.027 0.027 0 0.027
GPT3.5 0.007 0.005 0.002 0.001 0.001 0 0.003 0.007 -0.004 0 0 0

BLEU CodeLlama-7B 0.017 0.012 0.005 0.081 0.029 0.052 0.017 0.018 -0.001 0.115 0.096 0.019
CodeLlama-13B 0.026 0.055 -0.029 0.143 0.07 0.073 0.019 0.023 -0.004 0.146 0.197 -0.051
CodeLlama-34B 0.026 0.025 0.001 0.054 0.03 0.024 0.021 0.01 0.011 0.109 0.136 -0.027
GPT3.5 0.145 0.099 0.046 0.195 0.065 0.13 0.048 0.036 0.012 0.309 0.171 0.138

Table 6: Full results of MetricScore(cq, cc) and MetricScore(cq, c) under different metrics. M is short for
MetricScore. ∆M = M(cq, cc)−M(cq, c).

13

Model LLM #gen Framework
Datasets

CoNaLa MBPP APPS MBJP

BM25

CodeLlama-7B

1
GAR 41.3 24.0 14.1 26.6
ReCo 15.0 13.4 7.4 14.1

2
GAR 44.0 25.5 14.9 28.4
ReCo 14.9 14.2 7.6 14.1

3
GAR 44.5 26.3 15.4 29.3
ReCo 14.9 14.0 7.5 14.8

4
GAR 44.5 26.4 15.2 29.7
ReCo 14.2 14.0 7.8 15.4

CodeLlama-13B

1
GAR 58.9 40.0 16.0 41.8
ReCo 28.0 24.9 7.7 14.1

2
GAR 62.7 42.1 16.5 4.4
ReCo 29.2 25.2 8.0 28.1

3
GAR 64.0 41.4 16.8 45.1
ReCo 29.9 24.6 8.0 28.6

4
GAR 63.9 42.2 17.0 45.4
ReCo 29.8 26.3 8.1 28.4

CodeLlama-34B

1
GAR 49.7 24.6 10.0 29.6
ReCo 18.5 13.0 4.6 14.6

2
GAR 53.0 24.6 10.6 30.2
ReCo 19.5 13.1 4.8 14.4

3
GAR 55.5 24.6 10.9 31.5
ReCo 20.0 14.2 4.8 15.3

4
GAR 56.8 25.7 10.9 32.3
ReCo 20.4 14.7 4.7 15.8

GPT3.5

1
GAR 65.5 30.2 16.3 30.6
ReCo 71.0 65.1 21.2 61.8

2
GAR 69.7 34.5 17.0 32.2
ReCo 74.0 68.9 21.9 65.4

3
GAR 71.0 35.3 17.3 33.1
ReCo 74.6 70.2 22.8 65.6

4
GAR 71.7 35.1 17.6 33.5
ReCo 75.8 70.8 22.6 65.3

Table 7: Full results of BM25. #gen denotes the number of generated and rewritten codes. Bold and underlined
results are the best performance of ReCo and the performance of GAR under the same setting, which are reported in
Table 1.

14

Model LLM #gen Framework
Datasets

CoNaLa MBPP APPS MBJP

UniXcoder

CodeLlama-7B

1
GAR 85.4 74.2 32.2 77.1
ReCo 72.5 76.7 51.3 81.7

2
GAR 86.7 74.8 34.0 79.1
ReCo 78.8 79.3 54.9 83.5

3
GAR 87.0 75.0 34.5 79.3
ReCo 81.7 80.2 58.1 84.1

CodeLlama-13B

1
GAR 89.2 87.9 36.3 84.9
ReCo 81.0 92.9 41.4 90.0

2
GAR 90.2 89.0 36.9 85.6
ReCo 85.1 93.2 46.1 89.6

3
GAR 90.8 89.0 38.3 85.6
ReCo 85.5 94.2 46.8 90.5

CodeLlama-34B

1
GAR 87.0 81.3 29.9 81.2
ReCo 82.3 65.2 28.4 66.9

2
GAR 87.6 83.8 31.2 83.6
ReCo 85.6 75.7 34.5 72.8

3
GAR 88.4 83.6 32.9 84.6
ReCo 87.0 78.8 38.2 76.6

GPT3.5 1
GAR 85.9 79.9 44.5 80.5
ReCo 87.1 88.0 48.8 85.4

Table 8: Full results of UniXcoder after fine-tuning. #gen denotes the number of generated and rewritten codes.
Bold and underlined results are the best performance of ReCo and the performance of GAR under the same setting,
which are reported in Table 1. Note that due to the cost of OpenAI’s API for using GPT3.5, we only generate one
exemplar code and rewrite the code once for the training set. And due to the GPU memory limit, we can set a
maximum number of #gen as 3.

15

Model LLM #gen Framework
Datasets

CoNaLa MBPP APPS MBJP

CodeBERT

CodeLlama-7B

1
GAR 81.7 72.6 26.8 75.4
ReCo 65.5 75.6 45.5 79.7

2
GAR 84.8 73.8 28.4 75.9
ReCo 73.7 77.4 48.8 81.2

3
GAR 85.4 74.0 29.3 76.1
ReCo 77.1 78.6 51.2 81.2

CodeLlama-13B

1
GAR 87.2 87.2 29.5 82.9
ReCo 77.1 90.5 38.2 88.3

2
GAR 89.2 87.6 30.8 83.6
ReCo 81.4 91.3 40.9 88.8

3
GAR 89.8 87.7 31.6 84.1
ReCo 83.3 92.3 41.6 89.1

CodeLlama-34B

1
GAR 86.1 78.5 23.3 79.7
ReCo 78.3 59.6 22.2 61.0

2
GAR 87.4 81.1 25.2 81.8
ReCo 82.4 68.9 27.0 68.4

3
GAR 88.6 80.9 26.4 81.5
ReCo 85.0 71.3 30.8 71.7

GPT3.5 1
GAR 83.3 81.6 38.2 80.9
ReCo 82.4 83.5 43.1 81.4

Table 9: Full results of CodeBERT after fine-tuning. #gen denotes the number of generated and rewritten codes.
Bold and underlined results are the best performance of ReCo and the performance of GAR under the same setting,
which are reported in Table 1. Note that due to the cost of OpenAI’s API for using GPT3.5, we only generate one
exemplar code and rewrite the code once for the training set. And due to the GPU memory limit, we can set a
maximum number of #gen as 3.

16

Model LLM #gen Framework
Datasets

CoNaLa MBPP APPS MBJP

UniXcoder

CodeLlama-7B 4
GAR 77.2 62.5 13.2 68.4
ReCo 75.4 70.7 28.8 77.4

CodeLlama-13B 4
GAR 85.1 85.0 16.6 80.0
ReCo 82.5 92.4 25.4 87.6

CodeLlama-34B 4
GAR 81.9 75.9 9.1 78.3
ReCo 83.2 75.8 14.4 74.5

GPT3.5 4
GAR 83.9 79.7 19.6 80.0
ReCo 85.1 86.2 27.3 83.4

Contriever

CodeLlama-7B 4
GAR 54.3 50.8 14.0 44.8
ReCo 55.0 66.2 41.6 67.2

CodeLlama-13B 4
GAR 69.3 71.3 16.4 62.3
ReCo 72.0 87.4 34.4 76.6

CodeLlama-34B 4
GAR 61.3 60.3 10.1 50.1
ReCo 68.3 63.9 20.3 56.0

GPT3.5 4
GAR 75.0 65.6 17.9 58.7
ReCo 77.9 79.5 24.1 72.4

Table 10: Full results of UniXcoder and Contriever under zero-shot setting. #gen denotes the number of generated
and rewritten codes. Bold and underlined results are the best performance of ReCo and the performance of GAR
under the same setting, which are reported in Table 1.

17

Prompt

Please generate a python code snippet according to the last given description. Only output the code
snippets. Do not explain the code. I will show you four examples first.

Description: Write a python function to find the index of an extra element present in one sorted array.
Code:
def find_Extra(arr1,arr2,n) :

for i in range(0, n) :
if (arr1[i] != arr2[i]) :

return i
return n

Description: Write a function to decode a run-length encoded given list.
Code:
def decode_list(alist):

def aux(g):
if isinstance(g, list):

return [(g[1], range(g[0]))]
else:

return [(g, [0])]
return [x for g in alist for x, R in aux(g) for i in R]

Description: Write a python function to accept the strings which contains all vowels.
Code:
def check(string):

if len(set(string).intersection("AEIOUaeiou"))>=5:
return (’accepted’)

else:
return ("not accepted")

Description: Write a function to compute binomial probability for the given number.
Code:
def get_inv_count(arr, n):

inv_count = 0
for i in range(n):

for j in range(i + 1, n):
if (arr[i] > arr[j]):

inv_count += 1
return inv_count

Description:Write a function to sort a given matrix in ascending order according to the sum of its rows.
Code:

Output

def sort_matrix_by_row_sum(matrix):
row_sums = []
for row in matrix:

row_sum = sum(row)
row_sums.append(row_sum)

sorted_matrix = [x for _, x in sorted(zip(row_sums, matrix))]
return sorted_matrix

Table 11: A prompt example used for generating exemplar codes for the MBPP dataset.

18

Prompt

What is the main purpose of the fifth python code snippet? Summarize in one sentence and be
concise. I will show you four examples first.

Code:
def odd_values_string(str):

result = ""
for i in range(len(str)):

if i % 2 == 0:
result = result + str[i]

return result
Purpose: Write a python function to remove the characters which have odd index values of a given string.

Code:
from collections import defaultdict
def max_aggregate(stdata):

temp = defaultdict(int)
for name, marks in stdata:

temp[name] += marks
return max(temp.items(), key=lambda x: x[1])

Purpose: Write a function to calculate the maximum aggregate from the list of tuples.

Code:
def pos_count(list):

pos_count= 0
for num in list:

if num >= 0:
pos_count += 1

return pos_count
Purpose: Write a python function to count positive numbers in a list.

Code:
import math
def volume_tetrahedron(num):

volume = (num ** 3 / (6 * math.sqrt(2)))
return round(volume, 2)

Description: Write a function to calculate volume of a tetrahedron.

Code:
def sort_matrix(M):

result = sorted(M, key=sum)
return result

Purpose:

Output Write a function to sort a matrix (list of lists) based on the sum of each inner list.

Table 12: A prompt example used for summarizing the original codes for the MBPP dataset.

19

