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Abstract

Video Temporal Grounding (VTG) aims to localize relevant segments in untrimmed
videos based on natural language queries and has seen notable progress in recent
years. However, most existing methods suffer from two critical limitations. First,
they are prone to learning superficial co-occurrence patterns—such as associating
specific objects or phrases with certain events—induced by dataset biases, which
ultimately degrades their semantic understanding abilities. Second, they typically
assume that relevant segments always exist in the video, an assumption misaligned
with real-world scenarios where queried content may be absent. Fortunately, causal
inference offers a natural solution to the above-mentioned issues by disentangling
dataset-induced biases and enabling counterfactual reasoning about query relevance.
To this end, we propose Causal VTG, a novel framework that explicitly integrates
causal reasoning into VTG. Specifically, we introduce a causality-aware disentan-
gled encoder (CADE) based on front-door adjustment to mitigate confounding
biases in visual and textual modalities. To better capture temporal granularity, we
design a multi-scale temporal perception module (MSTP) that reconstructs query-
conditioned video features at multiple resolutions. Additionally, a counterfactual
contrastive learning objective is employed to help the model discern whether a
query is truly grounded in a video. Extensive experiments on five widely-used
benchmarks demonstrate that Causal VTG outperforms state-of-the-art methods,
achieving higher localization precision under stricter IoU thresholds and more
accurately identifying whether a query is truly grounded in the video. These results
demonstrate both the effectiveness and generalizability of proposed CausalVTG.
The code is available at https://github. com/MxLearner/CausalVTG.

1 Introduction

With the development of modern Internet and the popularity of video-sharing platforms, videos
have surged exponentially, providing a vital medium for information exchange in entertainment,
education, and news. This rapid expansion has given rise to challenges in efficient video browsing and
retrieval. Video Temporal Grounding (VTG), which aims to localize video segments that semantically
correspond to natural language queries, has become a core task in vision-language understanding [1, 2].
It encompasses two representative sub-tasks: Moment Retrieval (MR) [3, 4, 5], which focuses on
predicting precise temporal boundaries of the target segment, and Highlight Detection (HD) [4, 6],
which estimates frame-wise saliency scores to identify the most informative and representative video
portions. The applications of VTG enhance video content utilization and satisfy the escalating
demands for efficient video content acquisition [4, 7, 8].

Moment-DETR is the pioneer work proposed for jointly solving MR and HD tasks along with a
unified evaluation benchmark QVHighlights constructed by the authors [4]. Building upon these
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Figure 1: Qualitative examples illustrating two key limitations of existing temporal grounding models.
Queryl: a successful video grounding example for both VGT models. Query2: a minor rephrasing of
the query leads to incorrect localization of R2-Tuning due to reliance on superficial co-occurrence
cues (e.g., “kitchen”). Query3: the of R?-Tuning-Tuning model erroneously predicts a segment for a
query describing an unseen action, reflecting its inability to assess query relevance. The proposed
Causal VTG, better captures temporal causal structures and abstains when appropriate.

efforts, a number of subsequent studies have further advanced the field, notably by leveraging
large-scale pre-trained models [4, 5, 9] and incorporating adapter-based techniques [10] to enhance
cross-modal alignment. However, the majority of efforts remain centered on improving video-
text alignment through increasingly elaborate fusion strategies [11, 12, 13], often overlooking
inherent biases embedded in training datasets [4, 14]. These biases include stylistic variations,
such as visual decoration patterns and linguistic phrasings [15]. Such factors can lead models to
overfit to dataset-specific cues—for instance, correlating background styles or frequent wordings
with particular events—rather than learning genuine semantic associations. This spurious reliance
ultimately compromises the robustness and generalization ability of temporal grounding systems. For
example in Figure 1, given Queryl “A person is washing their hands in the sink,” the existing model
successfully retrieves the correct moment. Yet, a minor rephrasing as “A person washes their hands
in the kitchen sink” leads to incorrect localization of R?-Tuning [10] model on a later segment where
the person is drying their hands. This failure illustrates how the model can be misled by superficial
visual-textual cues (e.g., “kitchen”) instead of reasoning about the actual temporal causal structure of
events. Moreover, most existing models operate under the assumption that relevant segments always
exist in the video, making them incapable of identifying when a query is actually ungrounded. Given
Query3 “A person turns on a light,” the R?-Tuning model still returns the above segment based on the
presence of a light source, even though the described action does not occur. These limitations reflect
a common underlying issue: current approaches are fundamentally correlation-driven and lack the
ability to reason about causality, which is essential for robust video temporal grounding.

To address these limitations, we resort to causal inference to tackle these challenges. By explicitly
modeling the underlying data-generating process, causal inference methods can disentangle spurious
correlations and enable counterfactual reasoning—allowing models to focus on genuine semantic
causality and assess whether a query is truly grounded in a video. Causal inference [16, 17] has
shown promise across machine learning tasks, including image recognition [18, 19], visual question
answering [20, 21], and vision-and-language navigation [22, 15]. These methods typically construct
a structural causal model [23] to explicitly represent the relationships among variables, and apply
causal tools such as the do-operator, which simulates interventions to estimate causal effects beyond
observational correlations. In addition, techniques like front-door and back-door adjustments are
used to control for latent confounders—either by leveraging mediating variables that transmit causal
influence, or by blocking spurious dependencies introduced by common causes. These mechanisms
enable the model to better capture true causal relationships, rather than being misled by stylistic
artifacts or co-occurrence patterns. Motivated by these successful applications, we investigate how
causal principles can be leveraged in VTG, particularly under stylistic variation and uncertain query
relevance, two scenarios where conventional methods struggle.

To accomplish these goals, we firstly design a structural causal model (SCM) specifically tailored
to the VTG task to reveal in-depth causal relations, as illustrated in Figure 2. In this model, we
explicitly identify stylistic variations, such as visual decoration patterns or linguistic phrasing, as
confounding factors that simultaneously influence both visual and textual modalities. To mitigate their



impact, we introduce latent mediators that encode core semantic information from both modalities.
These mediators enable the application of front-door adjustment, which reduces the influence of
confounding biases by leveraging the causal pathway from inputs to grounding outcomes through
the mediators. Secondly, building on SCM, we design a causality-aware disentangled encoder
(CADE) that performs modality-specific front-door adjustments [16] on video and query features.
CADE employs mediator-guided attention mechanisms to extract causally disentangled and unbiased
representations for each modality, encouraging the model to find out true semantic causalities
rather than superficial co-occurrence patterns. Thirdly, to further enhance temporal reasoning,
we incorporate a multi-scale temporal perception module (MSTP), which reconstructs video
representations conditioned on the query and projects them across multiple temporal resolutions. This
design enables the model to capture both fine-grained and long-range event dynamics, improving
localization performance for events of varying durations. Lastly, we introduce a counterfactual
contrastive learning objective [16] to complement the standard VTG training paradigm. This
objective enforces discrimination between observed and counterfactual representations at the video
level, allowing the model to determine with greater reliability whether a query is semantically
grounded in the video. Taken together, these components form a principled and interpretable
framework for moment retrieval and highlight detection, offering enhanced robustness against
confounding biases and linguistic variations.

Our main contributions are summarized as follows:

* We formulate a structural causal model for VTG that identifies stylistic variations in visual
and textual modalities as confounders. By introducing latent mediators and applying front-
door adjustment to block spurious dependencies between video/query input and grounding
outcomes, our approach establishes a principled causal foundation that improves model
robustness and generalization.

* Building on this causal formulation, we design CausalVTG, a unified framework that jointly
addresses moment retrieval and highlight detection. Central to our architecture is a causality-
aware disentangled encoder which applies front-door adjustment to learn unbiased and
semantically meaningful representations for video and query modalities independently.
Additionally, we propose a multi-scale temporal perception module to capture hierarchical
temporal dynamics, and incorporate a counterfactual contrastive learning objective that
enables the model to reliably determine query relevance, improving its ability to reject
ungrounded queries.

* We conduct extensive experiments on five widely-used benchmark datasets, demonstrating
that Causal VTG consistently outperforms state-of-the-art baselines. Our method achieves
significantly higher localization precision under strict IoU thresholds and exhibits superior
robustness in discerning whether queries are truly grounded in videos, validating both the
effectiveness and generalizability of our causal modeling approach.

2 Related Work

Video Temporal Grounding VTG focuses on identifying video segments corresponding to nat-
ural language queries, encompassing two primary sub-tasks: Moment Retrieval [3, 4, 24, 14, 5]
and Highlight Detection [4, 6, 9, 5]. The introduction of the QVHighlights benchmark [4] unified
the evaluation of MR and HD tasks and provided a baseline method, Moment-DETR. Subsequent
approaches, such as UniVTG [9] and UMT [5], leveraged large-scale vision-language pre-training
to enhance model performance. Methods like QD-DETR [11] and CG-DETR [13] emphasized
sophisticated cross-modal fusion strategies to improve semantic alignment between video and textual
inputs. Approaches including UnLoc [25] and R2-Tuning [10] utilized fine-tuning and transfer
learning to adapt CLIP-based models specifically for VTG tasks, whereas LLMEPET [26] integrated
large language model encoders into traditional VTG architectures. Recognizing the unrealistic as-
sumption of always-grounded queries, the Charades-RF and ActivityNet-RF datasets [27] introduced
scenarios with potentially irrelevant queries. A robust transformer-based framework RaTSG [27] is
proposed to explicitly address these false-query situations. However, these models remain fundamen-
tally correlation-driven, vulnerable to confounding biases arising from subtle linguistic and stylistic
variations.



Causal Inference in Video Understanding Causal inference has emerged as an influential framework
for improving generalization in visual understanding by explicitly modeling the underlying data-
generating processes and mitigating spurious correlations [16, 23]. Compared to traditional debiasing
methods [28, 29], causal approaches leverage counterfactual reasoning to robustly handle domain
shifts and biases. In recent computer vision research, causal inference techniques have been applied
across tasks such as image classification [18, 19, 30, 31, 32], visual question answering [20, 21, 33],
and vision-language navigation [22, 15]. Specifically within the VTG context, DCM [14] utilized
back-door adjustments to mitigate temporal biases in video data, while IVG [24] employed both
back-door intervention and dual contrastive learning strategies to disentangle misleading visual-
textual associations. Beyond VTG, causal inference has also demonstrated effectiveness in video
summarization [34] and video captioning [35]. These causal modeling strategies underpin the
development of structured causal frameworks for robustly addressing confounding factors such as
stylistic variations and irrelevant query relevance in video grounding tasks.

3 Preliminary

3.1 Task Formulation

Given an input video V = {vi}iL:“1 composed of L, clips, where each clip v; € RP» is represented

by a D,-dimensional feature vector, and a natural language query Q = {qi}f:ql consisting of L,
tokens, each with dimension D, the VTG task comprises three sub-tasks:

Moment Retrieval The model predicts temporal segments in the video that semantically align with
the query. Since multiple segments may match a single query, the output is a set of predicted moments
represented as {(Ds i, be i, ¢;) } 7, where b ; and b, ; denote the start and end timestamps of the i-th
moment, respectively, and c; is the associated confidence score for ranking.

Highlight Detection The model estimates the semantic relevance between each clip v; and the query
Q by assigning a saliency score s; € [0, 1]. Higher values indicate greater relevance.

Query Relevance Prediction (QR) To handle scenarios where the query may not correspond to any
content within the video, the model further predicts a query-level relevance score r € [0, 1]. This
score quantifies the confidence that the query is grounded in the video, with higher scores indicating
higher certainty of relevance, and lower scores reflecting ambiguity or irrelevance.

3.2 Structural Causal Model of VTG

As illustrated in Figure 2, we formulate a structural causal @

model [16] tailored for the VTG task. Specifically, we «-""" . V) Video
denote the input video as V), the natural language query as 4 N

Q, and the grounding outcome as )/, collectively defining M, \\\ Q) Query
inputs as X = {V, Q}. In this directed acyclic graph, Y) () 6rounding
edges represent causal relationships, with input variables w ~

X causing grounding predictions ). Traditional VTG vl @ Confounder
methods predominantly model observational distributions > R e M) Mediator
P(Y|X), neglecting confounding biases introduced via ) \@

back-door paths X <— Z — ). Confounders (Z), such as

subtle stylistic variations (e.g., visual decoration patterns Figure 2: Illustration of the structural
in videos and linguistic phrasing variations in queries), causal model of VTG.

simultaneously influence both the input data distribution and grounding outcomes. The presence
of these confounding factors inevitably creates spurious correlations, adversely impacting model
robustness and generalization.

Since confounders typically comprise intricate and difficult-to-explicitly characterize patterns, we
introduce intermediate mediator variables M, establishing explicit front-door causal pathways
X — M — Y. This enables effective causal intervention and mitigates the influence of unobserved
confounders. The detailed mechanisms for causal adjustment are described in subsequent sections.
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Figure 3: Overview of the CausalVTG framework. Given a video and natural language query,
modality-specific encoders extract features and perform front-door adjustment via a causality-aware
disentangled encoder to mitigate confounding bias. A query-guided refinement module fuses con-
textual signals, followed by a multi-scale temporal perception module that captures hierarchical
dynamics. Prediction heads jointly perform highlight detection, moment retrieval, and query rele-
vance estimation under a counterfactual training paradigm.

4 Methodology

4.1 Causality-Aware Disentangled Encoder

Traditional VTG models typically learn the observational distribution P(Y|X = z) by directly
modeling the correlation between input X = {V, Q} and output ). This process can be expressed as:

POIX =z)= > PQVIM=m)P(M=m|X =z), ()

M=m

where M denotes a set of latent mediators that encode high-level semantic information [36] from
X. However, such observational modeling fails to eliminate the influence of confounders Z, which
introduce spurious correlations via back-door paths X < Z — ).

To mitigate this, we adopt a front-door adjustment based on causal intervention using the do-
operator[16]. Specifically, we introduce a causality-aware disentangled encoder that generates
mediators through modality-specific encoders. For each modality (video or text), the encoder
computes the mediator representation m = f(x) using a self-attention module [37], which extracts
high-level semantic features. Subsequently, the front-door adjustment leverages these mediators to
isolate the influence of confounders, enabling the model to focus on genuine causal effects. This
constructs a causal path X — M — ) that permits front-door estimation of the interventional
distribution:

P(Y|do(X =1z)) = Z P(Y|do(M =m))P(M = m|do(X = z))

M=m
= > P@) > PM=m|X =x)PYV|X =2 M=m)
X=xz' M=m
= EX:@'EM:m|X:zP(y|X = xlvM = m)7 (2)

where x’ denotes inputs sampled from the empirical training distribution via K-means [38], and m is
the mediator representation computed from the current input x.

To approximate the front-door adjustment, we define a causal feature function modeled as a linear
combination of sampled inputs and mediators [15, 39]:

F(a',m) = ExeoBp=mix=.f(',m),  f(a',m)=h(2) + g(m), (€)
which yields the separable form:
F(2',m) = Ex—o [1(2")] + Ept=imi=alg(m)]. Q)



We estimate the two expected terms using attention-based mechanisms [40, 14]. Let z and m; be
sampled input and mediator representation from input and mediator distributions, respectively. The
expectations are computed as:

’ _2 : ) o exp(pTa:;)
Ba=ar [h($ )} B f aZh(xi)7 &= Zk eXp(pT-Tit) ®)
=3 fuglm, _exp(g'my)
EM:le:z[g(m)} - - ﬁlg(m])7 6] - Zk exp(q—rmk)v (6)

where p = p(z) and ¢ = ¢(x) are attention queries derived from the current input to guide the
aggregation of sampled features and mediators.

Through this modality-specific front-door adjustment, we obtain causally disentangled representations
for both video and language inputs. These representations are explicitly purified from dataset-induced
confounding effects, enabling the model to focus on genuine semantic structures rather than superficial
correlations. This serves as a robust foundation for downstream grounding tasks.

4.2 Multi-Scale Temporal Perception Module

To enhance the temporal modeling capacity of video features, we design a two-branch perception
module comprising: (1) a query-guided refinement and (2) a multi-scale temporal feature pyramid.

Query-Guided Refinement Given an input video embedding V = [vy,...,vy] € RT*P with T’
clips and a query embedding Q = [q1,...,qz] € RLXD with L tokens, we first compute a similarity
matrix S € R7*% between video and query features using a trilinear attention function [41]:

Sij=v,wc+ Q;WQ + (vi ©war) " qy, )
where wo, wq, Wy € RP are learnable parameters and ® denotes element-wise multiplication.

Based on the similarity matrix S, we compute context-to-query and query-to-context attention as:
L T
agQ) = Z softmax; (.S; ;) Q;, a§V> = Z softmax; (.S} ;) v;. ®)
j=1 j=1
We then enhance each video clip v; by concatenating its interactions with the attended query and
video representations:

o COHVlD( [VD 2@ v;0a@ v o agw} ) ©)

where v; € RP is the refined feature of the i-th video clip.

This query-guided refinement enables the model to highlight semantically relevant clips and suppress
irrelevant noise by embedding the query context directly into the video representation, thereby laying
a solid foundation for subsequent temporal reasoning.

Multi-Scale Temporal Feature Pyramid To capture hierarchical temporal patterns across different
time granularities, we adopt a multi-scale feature pyramid to refine video representations. Given the
query-guided video embedding V = [v1, ..., Vr] € RT*P where T is the number of video clips ,
we construct a set of temporal feature sequences at varying resolutions.

Formally, let S = {s1,s2,...,5k} denote a set of temporal strides, where each s; represents
the downsampling rate for the k-th scale. For each scale s; € S, we apply a series of temporal
convolution layers to obtain:

V®) = Conv,, (V) € RT/s:xP (10)
where V(¥) is the video representation at the k-th temporal scale.

Each temporal convolution operates along the time dimension and reduces the resolution of the
video sequence by a factor of s,. The resulting set of multi-resolution video features V,y, =
(Vv v@ V)] forms a hierarchical representation that captures both fine-grained actions
and long-term temporal dependencies.



4.3 Prediction Heads

We design three task-specific prediction heads to perform highlight detection, moment retrieval, and
query relevance prediction. These modules operate on either the refined video features V or the
multi-scale temporal representations Vpy;.

Highlight Detection To measure the semantic alignment between video clips and the query, we first
apply adaptive average pooling to the query sequence to obtain a global vector: .4, = AdaPool(Q) €
RP. Then, for each video clip v; € RP, we compute its relevance score via cosine similarity:

‘7: Qada
[9:0 - Tl
The saliency scores {s; } are trained using the SampledNCE loss [42], where positives correspond to
informative clips and negatives to unrelated clips.

i = i=1,...,T. (11)

Moment Retrieval We leverage the multi-scale video features Vyy, = {VH ..., V) (o localize

temporal moments. For each scale V(*) € RTx*P two parallel 1D convolutional heads are applied:
one for span regression and the other for foreground classification. Specifically, the Conv1Dgp,,

head predicts the relative temporal offsets bgk) = [d5", d"] for each clip i, and the Conv 1Dy, head

estimates its foreground confidence score fi(k) eR:

b{*) = ConvIDgun(V?) e B2, 1% = ConviDy,(V®) e R. (12)
The predicted span boundaries bl(»k) are supervised using L1 loss, while the foreground scores fi(k)
are optimized using focal loss [43] to distinguish query-relevant (foreground) clips from background.

Query Relevance via Counterfactual Reasoning To enable query-aware abstention when no
grounding evidence exists, we adopt a counterfactual learning strategy. During training, we construct
negative samples by pairing a video with a query that is not semantically grounded in it. For both
valid and invalid pairs, we compute a joint representation by concatenating the adaptively pooled
query and video features:

Vada = AdaPool(V), r = Sigmod(FFEN([Vada; Qada])- (13)
The predicted score r € [0, 1] indicates whether the query is relevant to the video, and is optimized
using a Dynamic Binary Cross-Entropy loss [44].

4.4 Training & Inference

The model is jointly trained with three task-specific objectives. For the HD task, we supervise the
clip-wise saliency scores {s; } using the SampledNCE loss [42] Lpq. For the MR task, the predicted

boundary offsets {bgk)} are optimized with L1 loss Ly, while the foreground confidence scores

{ fi(k)} are trained with focal loss [43] Ls,. For the QR task, we use a Dynamic Binary Cross-Entropy
loss [44] L to supervise the scalar prediction  that indicates whether the query is grounded in the
video. The overall loss is:

L= /\hd['hd + )\mr['mr + Afgﬁfg + >\qr£qr- (14)

During inference, the saliency scores {s; } directly indicate clip-level highlight relevance. For MR,

(k)

each predicted span b;"’ is converted into a temporal interval (bs ;, b. ;) with confidence score

¢ = o fi(k)); we perform Non-Maximum Suppression (NMS) [45] to obtain final ranked results.
The query relevance score € [0, 1] determines whether to output any grounding result, enabling the

model to abstain in irrelevant cases.

S Experiments

5.1 Datasets & Evaluation Metrics

Experiments are conducted on five benchmarks: QVHighlights [4] annotated for both MR and HD,
serving as a comprehensive benchmark for multi-task evaluation; Charades-STA [3] and ActivityNet-



Table 1: Performance comparison on the QVHighlights test set for joint MR and HD tasks.

MR HD
Method

R1@0.5 R1@0.7 mAP Avg. mAP@0.5 mAP@0.75 mAP HIT@1

MCN [48] 11.41 2.72 10.67 24.94 8.22 - -

CAL [49] 25.49 11.54 9.89 23.40 7.65 - -
XML [50] 41.83 30.35 32.14 44.63 31.73 3449 55.25
XML+ [4] 46.69 33.46 34.90 47.89 34.67 35.38 55.06
Moment-DETR [4] 52.89 33.02 30.73 54.82 29.40 35.69 55.60
UMT [5] 56.23 41.18 36.12 53.83 37.01 38.18 59.99

MomentDiff [51] 58.21 41.48 36.84 54.57 37.21 - -
QD-DETR [11] 62.40 44.98 39.86 62.52 39.88 3894 62.40
MH-DETR [12] 60.05 42.48 38.38 60.75 38.13 38.22 60.51
UniVTG [9] 58.86 40.86 35.47 57.60 35.59 38.20 60.96
TR-DETR [52] 64.66 48.96 42.62 63.98 43.73 3991 63.42
CG-DETR [13] 65.43 48.38 42.86 64.51 45.77 40.33  66.21
R2-Tuning [10] 68.03 49.35 46.17 69.04 47.56 40.75 64.20
CausalVTG (Ours) 68.87 52.53 49.63 70.70 51.77 40.66 65.63

Caption [46] annotated with precise temporal segments for MR; and Charades-RF and ActivityNet-
RF [27] extend their original datasets by introducing false-query scenarios for evaluating whether the
query is grounded.

For evaluation metrics, we follow previous work [10, 9]. On QVHighlights, we report performance
on both MR and HD. For the MR task, we use mean Average Precision (mAP) at Intersection-
over-Union (IoU) thresholds 6,y € {0.5,0.75}, mAP averaged over thresholds from 0.5 to 0.95
(with a step size of 0.05), and Recall@1 at fj,y € {0.3,0.5,0.7}. For the HD task, we adopt mAP
and HIT@1, considering a clip as positive if it is labeled as “Very Good”. On Charades-STA and
ActivityNet-Caption, we evaluate MR performance using Recall@1 at 0,y € {0.3,0.5,0.7} and
mean IoU (mloU). On Charades-RF and ActivityNet-RF, we follow the dataset splits defined in [27]
and use Recall@1 at O,y € {0.3,0.5,0.7}, mIoU, and grounding accuracy (Acc) to measure both
localization quality and the model’s ability to identify whether a query is truly grounded in the video.

5.2 Implementation Details

All models are implemented using PyTorch and trained for 50 epochs on a single NVIDIA RTX 4070
SUPER GPU (12GB VRAM, 32GB RAM). InternVideo2-CLIP [47] serves as the unified backbone
for both video and text encoding, with all hidden dimensions set to 256. The temporal stride set
for the multi-scale feature pyramid is S = {1, 2,4, 8} for standard-length videos, and extended to
{1,2,4,8,16} for longer videos in ActivityNet-Caption and ActivityNet-RF. The training objective
is a weighted combination of four losses, with coefficients Ayg = 0.1, Apr = 0.2, e = 1.0, and
Agr = 0.1. Training on the QVHighlights dataset takes approximately 50 minutes.

5.3 Comparison with State-of-the-Arts

Joint Moment Retrieval and Highlight Detection on QVHighlights We evaluate our model on
the QVHighlights test set for the joint tasks of MR and HD, with results summarized in Table 1.
Causal VTG achieves state-of-the-art performance across all MR metrics, including notable improve-
ments in R1@0.7 and mAP@0.75, indicating stronger robustness under strict temporal alignment.
We attribute these gains to our causal modeling design, which mitigates the influence of spurious
correlations. Our method also performs competitively on HD, demonstrating the effectiveness of
unified, causally grounded temporal grounding.

Moment Retrieval on Charades-STA and ActivityNet-Caption We conduct moment retrieval
experiments on Charades-STA and ActivityNet-Caption, with results shown in Table 2. CausalVTG
achieves the best performance across all metrics on both datasets. Notably, on Charades-STA, where
each video segment is annotated with multiple queries exhibiting diverse linguistic expressions—our
model demonstrates substantial improvements. We attribute this to the causal modeling framework,



Table 2: Moment retrieval results on Charades-STA and ActivityNet-Caption test sets.

Method Charades-STA ActivityNet Captions

R1@0.3 RI1@0.5 R1@0.7 mloU R1@0.3 R1@0.5 R1@0.7 mloU
VSLNet [53] 67.47 54.62 35.43 49.37 62.12 43.76 25.64 44.54
SeqPAN [54] 70.70 59.14 41.02 52.32 63.71 45.31 26.69 45.73
TCN+DCM [14] - 55.8 34.4 48.7 - 449 27.7 433
DORi [55] 72.72 59.65 40.56 53.28 57.89 41.35 26.41 42.79
EAMAT [56] 74.25 61.18 41.72 54.53 62.20 41.60 24.14 44.15
ADPN [57] 71.24 56.88 39.73 51.96 61.46 41.49 24.78 44.12
QD-DETR [11] 70.32 58.92 38.54 50.62 62.20 41.60 24.14 44.15
UniVTG [9] 71.62 60.06 33.34 49.92 61.78 43.34 22.59 42.71
R2-Tuning [10] 7091 59.78 37.02 50.86 - - - -
RaTSG [27] 74.19 56.61 37.47 53.02 61.46 42.36 24.74 43.72

CausalVTG (Ours)  81.37 70.89 49.25 5996 64.44 45.62 26.28  45.74

Table 3: Performance comparison on Charades-RF and ActivityNet-RF datasets.

Method Charades-RF ActivityNet-RF

Acc R1@0.3 R1@0.5 R1@0.7 mloU Acc R1@0.3 R1@0.5 R1@0.7 mloU
VSLNet [53] 50.00 33.74 2731 17.72  24.69 50.00 31.06 21.88  12.82 22.27
UniVTG [9] 50.00 3581 30.03 16.67 2496 50.00 30.89 21.67 11.29 21.35
QD-DETR [11] 50.00 35.16 2946 19.27 2531 50.00 2650 19.15  11.07 18.99
ADPN [57] 50.00 35.62 2844  19.87 2598 50.00 30.72 20.74 1238 22.05
SeqPAN [54] 50.00 3535 29.57  20.51 26.14 50.00 31.85  22.65 13.34  22.86
EAMAT [56] 50.00 37.12  30.59  20.86 27.27 50.00 31.10 20.80  12.07 22.07
VSLNet™* 7194 6140 56.77 49.65 54.67 81.60 66.15 5837  50.64 58.65
UniVTG*H+ 71.94 6258 5855 48.79 54.65 81.60 66.15 5836 4946 58.00
QD-DETR** 7194 62.18 5820 5096 55.13 81.60 6243  56.13  49.27 5597
ADPN*+ 7194 6226 5723 51.16 5541 81.60 6585 5741 50.28 58.47
SeqPANTT 71.94 62.12  58.01 51.61 5549 81.60 66.77 5898 51.11 59.11
EAMAT++ 7194 6355 59.17 5196 56.23 81.60 66.13 5736 4993 5845
RaTSG [27] 76.85 68.17 6191 54.19 59.93 84.27 69.02 60.68 52.88 61.15

CausalVTG (Ours) 84.78 76.22 71.07 61.03 67.86 89.20 7270 63.62 54.64 63.82

which effectively mitigates the impact of stylistic variations and enhances temporal grounding
accuracy.

Moment Retrieval with Query Relevance on Charades-RF and ActivityNet-RF We evaluate
our model on Charades-RF and ActivityNet-RF, which introduce ungrounded queries to test model
robustness. As prior methods assume all queries are grounded, they yield a chance-level accuracy
of 50% under the balanced (1:1) positive-negative split. For fair comparison, we implement the +-+
versions of baselines by equipping them with a trivial relevance discriminator following previous
studies [27]. RaTSG represents the current state-of-the-art. As shown in Table 3, Causal VTG
outperforms all baselines by a large margin across both accuracy and localization metrics. These
improvements highlight the effectiveness of our causal modeling in identifying true grounding
conditions and rejecting spurious matches.

5.4 Ablation Study

To thoroughly evaluate the contribution of each component in Causal VTG, we conduct a comprehen-
sive ablation study on the QVHighlights validation set. The analysis decomposes Causal VTG into its
four core modules: the Causality-Aware Disentangled Encoder (CADE), Query-Guided Refinement
(QGR), Multi-Scale Temporal Perception (MSTP), and Query Relevance Module (QRM). Starting
from a baseline model without these modules, we progressively integrate each component individually
and jointly. As shown in Table 4, CADE and MSTP yield the most significant gains, demonstrating
the effectiveness of causal disentanglement and temporal multi-scale modeling. The addition of



QGR further enhances video-language alignment, while QRM improves the model’s ability to handle
irrelevant queries. These results validate the complementary benefits of each proposed module.

Table 4: Comprehensive ablation study on the QVHighlights validation set. Each configuration shows
the incremental integration of CADE (Causality-Aware Disentangled Encoder), QGR (Query-Guided
Refinement), MSTP (Multi-Scale Temporal Perception), and QRM (Query Relevance Module).

. Modules Performance Metrics
Model Variant
CADE QGR MSTP QRM R1@0.5 R1@0.7 mAP@0.5 mAP@0.75 Avg. mAP
(a) 57.74 36.52 58.96 35.36 35.19
(b) v 59.94 39.55 60.22 37.43 36.47
(c) v 60.39 38.52 60.39 37.05 36.61
(d) v 67.68 51.68 69.48 51.33 47.85
(e) v 60.77 39.16 61.32 36.98 36.87
® v v 61.32 38.58 61.65 37.22 37.11
(2) v v 68.58 52.71 69.69 50.89 48.99
(h) v v 62.19 40.05 61.66 37.86 37.42
@) v v v 68.13 52.90 69.95 52.00 49.54
G) v v v 70.26 54.32 71.34 52.67 50.15
k) v v v 70.84 56.00 72.17 53.79 50.98

6 Conclusion

This paper introduces CausalVTG, a causal framework for Video Temporal Grounding that addresses
the limitations of existing correlation-driven methods. By modeling structural causal relationships
among video, query, and grounding outcomes, the framework effectively mitigates spurious correla-
tions caused by dataset biases. Key components include a causality-aware disentangled encoder for
front-door adjustment, a multi-scale temporal perception module for capturing hierarchical dynamics,
and a counterfactual contrastive learning objective for reliable query relevance estimation. Experi-
mental results across five benchmarks confirm the effectiveness and generalizability of the proposed
approach in both standard and challenging grounding scenarios.
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A Technical Appendices and Supplementary Material

A.1 Details of the Datasets

QVHighlights [4] is the only dataset supporting both moment retrieval and highlight detection. It
contains 10,148 trimmed videos spanning diverse domains such as daily vlogs, travel, and news.
A total of 10,310 queries are annotated with 18,367 disjoint temporal moments. It also includes a
private test split for benchmarking.

Charades-STA [3] augments the Charades dataset with temporal annotations. It consists of 9,848
indoor videos averaging 30.6 seconds in duration, annotated with 16,128 query-moment pairs.

ActivityNet-Captions [46] is built upon ActivityNet v1.3 and contains over 20,000 untrimmed videos
with 100,000 sentence-level annotations. Each video averages 120 seconds in length and includes
multiple annotated events. The dataset is split into 10,024 training, 4,926 validation, and 5,044 test
videos.

Charades-RF and ActivityNet-RF [27] are extensions of Charades-STA and ActivityNet-Captions
that introduce ungrounded (false) queries to evaluate query relevance prediction. Each query is either
grounded or intentionally mismatched to test the model’s abstention capability.

A.2 Sensitivity to the Number of K-means Clusters and Clustering Randomness

To investigate the robustness of the proposed CADE framework with respect to the number of
K-means clusters and clustering randomness, we conduct a systematic ablation on the Charades-
RF [27] dataset by varying the number of clusters K € {16, 32, 64,128, 256, 512, 1024, 2048}. For
each K, multiple random seeds are used to initialize the K-means algorithm, and we report the
mean =+ standard deviation of Recall@1 at IoU = 0.7 (R1@0.7), mean IoU (mloU), and grounding
accuracy (Acc).

Table 5: Ablation on the number of K-means clusters K on Charades-RF. Mean =+ std over multiple
seeds.

Metric/ K 16 32 64 128 256 512 1024 2048

R1@0.7 58.93 £1.71 60.39£0.66 61.25+0.31 60.29 £0.40 58.20 £0.41 59.12+0.89 59.25 %+ 0.53 59.06 & 0.45
mloU 65.58 £1.30 66.18 £0.68 67.16+0.07 66.44 £+ 0.37 64.36 £0.54 65.64 +0.33 65.56 & 0.16 65.15 £+ 0.43
Acc 84.25 £0.57 85.11+£0.14 85.76+0.69 84.96 +0.51 83.50 £0.15 84.37+0.28 84.00 +0.51 84.11 £0.11

As shown in Table 5, the model achieves the best overall performance when K = 64, where all three
metrics peak with low standard deviation, indicating stable behavior across different random seeds.
Using too few clusters (K < 32) leads to under-segmentation of the latent semantic space, resulting
in insufficient modeling of confounders and a notable drop in grounding performance. In contrast,
using too many clusters (K > 512) introduces noisy and overly fine-grained mediator representations,
increasing computational cost and reducing performance stability. The standard deviation remains
relatively small for K values in the range of [32, 128], which demonstrates that CADE maintains
robustness to K-means initialization randomness within this moderate range. This analysis confirms
that a balanced cluster granularity (e.g., K = 64) provides the best trade-off between semantic
coverage and stability.

A.3 Sensitivity to Temporal Strides in MSTP

We evaluate the effect of multi-scale temporal proposals (MSTP) on the QVHighlights validation set
by varying the temporal stride set used to generate proposals. We compare a model without MSTP to
configurations using strides {1}, {1, 2}, {1, 2,4}, {1,2,4,8}, and {1, 2,4, 8,16}. As summarized
in Table 6, introducing multi-scale temporal modeling substantially improves recall and average
precision; performance increases monotonically from single- to four-scale settings, indicating that
capturing a range of action durations is critical for precise event localization, with an additional
coarse scale (16) providing complementary gains.
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Table 6: Sensitivity analysis of temporal strides used in MSTP on the QVHighlights validation set.
Temporal strides R1@0.5 R1@0.7 mAP@0.5 mAP@(.75 Avg.mAP

w/o MSTP 61.35 38.00 61.40 36.75 36.29
{1} 60.84 40.58 62.15 37.81 37.56
{1,2} 67.10 48.45 67.69 45.16 43.35
{1,2,4} 70.39 53.10 70.91 50.00 48.63
{1,2,4,8} 70.84 56.00 72.17 53.79 50.98
{1,2,4,8,16} 70.19 54.97 72.33 53.76 51.88

A.4 Computational Cost and Efficiency

We evaluate computational overhead on the QVHighlights dataset using an NVIDIA A800 GPU
(80GB) with batch size 64 for 50 epochs. As summarized in Table 7, CausalVTG’s inference runtime
is slightly longer than simpler baselines yet remains competitive. Notably, prior methods such
as Moment-DETR and QD-DETR originally required up to 200 epochs, and R2-Tuning utilized
extensive GPU memory in training due to the reversed recurrent block.

Table 7: Computational cost comparison on QVHighlights.

Method GPU Memory #Parameters Training Time Inference Time
Moment-DETR [4] 1.41 GB 4.82M 9.71 min 31s
QD-DETR[11] 1.89 GB 7.58 M 13.15 min 37s
CG-DETR [13] 3.09 GB 1261 M 40.05 min 455
R2-Tuning [10] 37.24 GB 27M 544.33 min 69 s
CausalVTG 231GB 7.86 M 43.21 min 53s

A.5 More Visualizations

To further assess model behavior, qualitative comparisons are conducted on the QVHighlights [4]
validation set against the strong baseline R2-Tuning [10]. As illustrated in Figure 4, Causal VTG
yields more precise and consistent results in both moment retrieval and highlight detection across
various scenarios, reflecting better temporal alignment and semantic understanding. To analyze
failure cases, Figure 5 presents examples where both R?-Tuning and Causal VTG do not produce
accurate predictions. These often involve fine-grained visual attributes such as subtle differences in
clothing color or object type, which remain challenging due to limited perceptual cues.

A.6 Limitations & Future Work

While Causal VTG demonstrates strong performance in temporal grounding, it currently leverages
only visual and textual modalities. In certain scenarios, especially those involving speech-centric
queries or audio-specific events, incorporating audio cues could provide critical complementary
information. Moreover, the model still struggles with fine-grained distinctions such as subtle visual
attributes or small object interactions, as shown in the failure cases. Future work could explore
multimodal extensions with audio and depth signals, as well as finer perceptual modeling to improve
grounding in visually ambiguous or low-resolution settings.
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Figure 4: Qualitative results showing successful predictions by CausalVTG compared to R?-Tuning.
Causal VTG more accurately captures the target moments and saliency.
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Figure 5: Failure cases where Causal VTG struggles with fine-grained visual distinctions, such as
clothing color or object details.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction of this paper accurately reflect its contributions
and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the paper discusses the limitations of the work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper provide the full set of assumptions and a complete (and correct)
proof.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the necessary information to reproduce the main
experimental results, ensuring that the main claims and conclusions can be independently
verified.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data have been submitted as supplementary material in ZIP
format.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper provides comprehensive details on the training and test settings,
including data splits, hyperparameters.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper does not provide error bars, confidence intervals, or statistical
significance tests for the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the type of compute workers (GPUs), the size of memory and the
time of execution.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research fully adheres to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The proposed method enhances robustness in video-language understanding,
which can benefit accessibility and content summarization.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminary
	Task Formulation
	Structural Causal Model of VTG

	Methodology
	Causality-Aware Disentangled Encoder
	Multi-Scale Temporal Perception Module
	Prediction Heads
	Training & Inference

	Experiments
	Datasets & Evaluation Metrics
	Implementation Details
	Comparison with State-of-the-Arts
	Ablation Study

	Conclusion
	Technical Appendices and Supplementary Material
	Details of the Datasets
	Sensitivity to the Number of K-means Clusters and Clustering Randomness
	Sensitivity to Temporal Strides in MSTP
	Computational Cost and Efficiency
	More Visualizations
	Limitations & Future Work


