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Abstract

Theory of Mind (ToM), the ability to understand people’s minds based on their be-
havior, is key to developing socially intelligent agents. Current approaches to ToM
reasoning either rely on prompting Large Language Models (LLMs), which are
prone to systematic errors, or use handcrafted, rigid agent models for model-based
inference, which are more robust but fail to generalize across domains. In this work,
we introduce AutoToM, an automated agent modeling method for scalable, robust,
and interpretable mental inference. Given a ToM problem, AutoToM first proposes
an initial agent model and then performs automated Bayesian inverse planning
based on this model, leveraging an LLM backend. Guided by inference uncertainty,
it iteratively refines the model by introducing additional mental variables and/or
incorporating more timesteps in the context. Across five diverse benchmarks,
AutoToM outperforms existing ToM methods and even large reasoning models.
Additionally, we show that AutoToM can produce human-like confidence estimates
and enable online mental inference for embodied decision-making.
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1 Introduction

To successfully engage in rich and complex social interactions such as cooperation, communication,
and social learning, humans must adequately understand one another’s mental states (e.g., goals,
beliefs, desires). This ability is termed Theory of Mind (ToM) [49]. Prior works have demonstrated
that like human interactions, Theory of Mind is also crucial for the success of human-Al interactions
[7, 114} 28]. To safely and productively interact with humans in an open-ended manner, Al systems
need to interpret humans’ mental states from observed human behavior [5} 1451 144} 311 (33} 1530151} 211].

There are two primary approaches to developing machine Theory of Mind in recent works. First,
with the rapid progress of large language models (LLMs), there has been an increasing interest in
directly applying LLMs to reason about people’s mental states with prompting strategies such as
perspective-taking [48l 37, 22], change-tracking [18]], and temporal-spatial reasoning [17]. However,
even with these advanced prompting techniques, state-of-the-art LLMs still make systematic errors in
complex scenarios [20]]. Second, cognitive studies have demonstrated that model-based inference,
in particular, Bayesian inverse planning (BIP), can reverse engineer human-like theory of Mind
reasoning [4} 43| 3, 52]). BIP relies on Bayesian Theory of Mind (BToM) models [3] to approximate
rational agent behaviors. Inspired by this, recent works have proposed to combine BIP and LLMs to
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Figure 1: An overview of AutoToM. X% are observable variables, V*s** are latent mental variables,
and q is the query (in this case, a mental variable vf € VY. t, : t denotes timesteps from ¢, to ¢ in the
context that are considered for inference. Variables s, of, b?, a?, g* represent state, observation, belief,
action, and goal, respectively, with solid arrows indicating dependencies defined in the models. Given
a question, we extract the observable variables (information extraction) and propose an initial agent
model. This is followed by automated Bayesian inverse planning and iterative model adjustment.
When the model utility is high enough, we will produce the final answer based on the inference result.

achieve scalable yet robust model-based ToM inference [20,39]. While these methods significantly
outperform LLMs in specific domains, they typically require manual specification of agent models,
including necessary mental variables (e.g., goals, beliefs) for answering a given ToM question.
Therefore, they lack the required generalizability for open-ended Theory of Mind.

In this work, we aim to develop a fully automated model-based Theory of Mind method. That is
a unified method that can be applied to robustly infer any given mental variable in any domain.
Achieving this aim requires addressing two critical questions: (1) How can we ensure that our
approach is flexible enough to adapt across contexts, robust enough to model diverse human behaviors,
and scalable enough to tackle increasingly complex scenarios? (2) How can we avoid manual model
specifications and instead automate agent modeling for model-based mental inference?

To address these challenges, we introduce AutoToM, a general framework for model-based Theory of
Mind. It automates every aspect of Bayesian inverse planning, including the proposal and adjustment
of model structures, the identification of relevant timesteps, the generation of hypotheses, and the
execution of Bayesian inference. It is designed to operate in any context, infer any mental state,
reason about any number of agents, and support any order of recursive reasoning, which represents
our vision of an open-ended and robust machine Theory of Mind.

Figure|l|provides an overview of AutoToM, which consists of two main components: First, Auto-
mated Bayesian Inverse Planning conducts Bayesian inference based on any given agent model
(in the form of a Bayesian network) using an LLM as a computational backend. Unlike prior works
that leverages LLLMs for Bayesian inverse planning, it has no assumptions about model structure or
variable representations. Second, Automated Agent Model Discovery iteratively constructs and
adjusts an agent model most suitable a given ToM inference problem, eliminating the need for manual
model specifications typically required by prior works on model-based ToM inference.

Our main contributions include: (1) a unified formulation of model-based ToM inference; (2) the first
approach of automated agent model discovery, AutoToM, for scalable model-based ToM; and (3) a
systematic evaluation of AutoToM on multiple ToM benchmarks, cognitive studies, and embodied
assistance tasks. The results show that AutoToM outperforms state-of-the-art LLMs and large
reasoning models, establishing a scalable, robust, and interpretable framework for machine ToM.

2 Related Works

Enhancing LLMs’ Theory of Mind. While LLMs remain limited in achieving robust Theory of
Mind inference [42} 38, |10], recent studies have introduced various prompting techniques to enhance



this ability: SimToM [48]] encourages LLMs to adopt perspective-taking, PercepToM [22]] improves
perception-to-belief inference by extracting relevant contextual information, and Huang et al. [[18]
employ an LLM as a world model to track environmental changes and refine prompts. Explicit
symbolic frameworks also contribute: TimeToM [17] constructs a temporal reasoning framework to
support inference, SymbolicToM [37] uses graphical representations to track characters’ beliefs, and
thought-tracing [24]] traces multiple hypotheses over time. However, these approaches still exhibit
systematic errors in handling long contexts, complex behaviors, and recursive reasoning scenarios.

Among these works, thought-tracing is closely related to ours, as it also maintains hypotheses of
mental variables. Compared to thought-tracing [24], AutoToM performs explicit agent modeling:
it constructs Bayesian networks over mental variables and their causal dependencies, rather than
tracking only the queried mental variables. This yields higher robustness to wording or superficial
story changes (e.g., no need for wording changes in AutoToM), and improves interpretability, as
errors can be analyzed through the model structure. Moreover, AutoToM adaptively minimizes
inference complexity by expanding models only when beneficial, preventing under-/over-modeling
and improving efficiency on tasks with longer contexts , more agents, and deeper recursion. By
contrast, thought-tracing reweights hypotheses without adjusting model structure or temporal depth.

Model-based Theory of Mind inference. Model-based Theory of Mind inference, particularly
Bayesian inverse planning (BIP) [4, 143} 13} 152], explicitly constructs representations of agents’ mental
states and models how these mental states guide behavior through probabilistic agent models. These
methods can reverse engineer human ToM inference in simple domains [e.g.,[3} 29} 40]]. Recent works
combine BIP with LLMs to improve ToM inference in more realistic settings [20,|39]]. However, they
require manual specification of the agent models as well as rigid, domain-specific implementations of
Bayesian inference, limiting their adaptability to open-ended scenarios. To overcome this, we propose
AutoToM, a method for automated agent modeling and mental inference across diverse domains.

Automated Modeling with LLMs. There has been an increasing interest in integrating LLMs with
inductive reasoning and probabilistic inference for automated modeling. Piriyakulkij et al. [32]]
combine LL.Ms with Sequential Monte Carlo to perform probabilistic inference about underlying
rules. Qiu et al. [34] further enhance LLM-based inductive reasoning by iteratively proposing,
selecting, and refining textual hypotheses of rules. Li et al. [27]] employ LLMs to construct, critique,
and refine statistical models represented as probabilistic programs for data modeling. Wang et al.
[46] prompt LLMs to generate natural language hypotheses that are then implemented as verifiable
programs for inductive reasoning. Hypothetical minds [6] leverage LLMs to propose and evaluate
agent strategies for multi-agent planning, but do not specifically infer individual mental variables.
Our method also aims to achieve automated modeling with LLMs. Unlike prior works, we propose a
novel automated model discovery approach for Bayesian inverse planning, where the objective is to
confidently infer any mental variable given any context by constructing a suitable agent model.

3 AutoToM

3.1 Preliminaries: A Unified Formulation of Model-based ToM

Bayesian Inverse Planning (BIP) is a computational framework for model-based ToM inference [4].
It assumes that the agent acts rationally according to a generative agent model [3], which specifies
how internal variables lead to observable actions in a Bayesian network (e.g., the example models on
the bottom panels in Figure 2. Using inverse inference, BIP inverts this generative process to assess
what latent mental variables can lead to observed agent behavior. This probabilistic inference reasons
about how agents make decisions, serving as a robust solution to ToM challenges.

There have been different instantiations of BIP in prior works [e.g., 4} 43 130,|19]. Here we formally
define BIP in a unified manner. We denote the observable variables at time ¢ describing the envi-
ronment and an agent’s behaviors as X! = {z!},c ., where N is the set of observable variables
and xﬁ is a particular variable (state, action, or utterance) at t. We can extract the values of these
observable variables from the context provided in a ToM problem. We denote an agent’s latent mental
variables at time ¢ as V' = {v!};cn, , where Ny is the set of mental variables and v! is a particular
mental variable (e.g., goal, desire, belief) at ¢. BIP formulates an agent model as a Bayesian network
that defines P(V'*, X*), which indicates how the mental variables drive an agent’s behavior. Given



(a) AutoToM constructs appropriate agent models tailored to different scenarios
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Figure 2: Overview of AutoToM’s capacities and applications evaluated in this work. (a) Example
questions (top panels) and the necessary agent model for model-based inference (bottom panels) in
diverse Theory of Mind benchmarks. Questions in these benchmarks encompass different mental
variables, contexts, numbers of agents, the presence or absence of utterances, wording styles, and
modalities. (b) AutoToM can produce human-like confidence estimation in classic cognitive studies.
(c) AutoToM can also be used for online goal inference to enhance embodied assistance, where it
sequentially updates the inference of a main agent’s goal to inform a helper agent’s assistance.

this model, BIP infers the latent mental variables for the current step ¢:
PV XY = PVt Xt/ Yo P(V, Xt oc P(VE XY, )

In many real-world scenarios, past observations (such as actions taken at the previous steps) are often
valuable for inferring the mental variables at the current step. Suppose the context from step ¢, to
step t is relevant for the current mental variable inference, then the inference becomes:

P(vtsit|XtS:t) o P(Vts:t,th:t). (2)

In a ToM problem, there is a query concerning a specific target variable ¢ to be inferred. We can
answer the query via P(q|X*=*). Typically, the query asks about a latent mental variable ¢ = v} € V',
the posterior probability is obtained by marginalizing over other latent variables Vfi:t which is the
subset of V= excluding v}:

P(vﬂth:t) x Zij:t P(’U;ﬁ7 Visiit, th:t). 3)

t+1.

i .

P(x§+l|Xt5:t) o thszt P(vtszt7x§+1’XtS:t). (4)

This can also be extended to predicting a future observable variable ¢ = x

To conduct BIP in different scenarios, we must formulate the mental variables and their causal
relationships with agent behavior using suitable agent models. Each model M is uniquely defined by
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Figure 3: (a) Given an agent model, AutoToM samples hypotheses for each latent variable (o and b
in this example), remove spurious hypotheses, and conduct Bayesian inference based on estimated
local conditionals. (b) Given any ToM inference problem, AutoToM refines the agent model by
alternating between variable adjustment (introducing belief in this example) and timestep adjustment.

the observable variables and the latent mental variables, i.e., M = (Vi Xt) Let s' € S be the
state at time ¢, and a’ € A be the action taken by the agent at time ¢. The current state and action
determines the next state s**'. When the agent has an explicit goal g € G, this setup constitutes a
Markov Decision Process (MDP). If the agent only has a partial observation of the state, the model
becomes a Partially Observable Markov Decision Process (POMDP) [23]]. In POMDP, the agent
receives a partial observation ot of the true state st, maintains a belief b* over the possible states,
and selects its action a’ based on this belief and goal. When there is high-order recursive reasoning
between two agents (¢ and j), we can adopt an Interactive POMDP (I-POMDP) [12], where the belief
of state at level [ > 0 for agent ¢ will become the belief of interactive state is* = (s,b;,-1,9;),
where b;;_1 is the belief of agent j at the lower level [ — 1 and g; is agent j’s goal.

3.2 Overview of AutoToM

As shown in Figure [I] AutoToM aims to construct a suitable agent model for Bayesian inverse
planning to confidently infer any target variable. There are several key challenges in achieving this:
First, different ToM inference problems require different agent models (as illustrated in Figure 2h).
Second, our method must determine which timesteps in the context are relevant. Third, there is no
predefined hypothesis space for each variable, and each space could be infinite. Last, to infer mental
variables in any context, we must flexibly represent them without manual specifications.

AutoToM addresses these challenges in the two key components: (1) automated Bayesian inverse
planning (Section [3.3), which conducts BIP given a specified agent model, and (2) automated agent
model discovery (Section [3.4), which proposes and adjusts the agent model based on the question
and the inference results. These two components form a self-improvement loop to iteratively update
the agent model and the corresponding inference result. More details are provided in Appendix

3.3 Automated Bayesian Inverse Planning

Given an agent model, M, including the necessary latent mental variables V' and the observable
variables X *+**, we integrate LLMs as the computational backend to implement every aspect of the
Bayesian inverse planning. In particular, the hypothesis sampling module suggests a small set of
possible values of latent variables. The Bayesian inference module then computes the posterior
distribution of the target variable in the query based on Eqn. (3 or Eqn.([).

Hypothesis Sampling. Conventional BIP assumes a manually defined hypothesis space and rep-
resentation for each latent mental variable. Our hypothesis sampling module instead leverages an
LLM to propose only a small set of quality hypotheses for each latent variable in V%!, This is
akin to amortized inference 35, [19]]. To ensure that the sampled hypotheses are relevant to the ToM
inference, we guide the sampling process with both the question and the observable variables X st
To remove spurious hypotheses generated by the LLM, we further apply hypothesis reduction to
eliminate unlikely hypotheses and reduce the hypothesis space. Unlikely hypotheses are identified by
evaluating the local conditionals. For instance, we discard observation hypotheses with low likelihood
conditioned on the state as shown in Figure [3a]



Bayesian Inference. As shown in Figure[3a] we estimate each local conditional in P(Vtsit, Xts:t)
using an LLM. After marginalizing the joint distribution over non-target latent variables via explicit
calculation, we then produce the posterior probabilities of the target variable, i.e., Eqn. (3. This also
applies to predicting a future observable variable, i.e., Eqn. {@).

Our automated BIP greatly generalizes prior methods that combine BIP and LLMs, such as BIP-ALM
[20] and LIMP [39]]. Specifically, prior methods assume a fixed model structure defined for a specific
ToM problem and require handcrafted, domain-specific representations for physical and mental states.
They also cannot propose hypotheses for non-target latent variables. For instance, to infer an agent’s
goal, BIP-ALM conducts a manual belief update while LIMP has no explicit belief update at all. In
contrast, AutoToM can conduct any ToM inference based on any agent model structure and consider
multiple non-target latent variables simultaneously. Additionally, unlike prior methods, our Bayesian
inference can work with arbitrary levels of recursion for high-order ToM inference.

3.4 Automated Agent Model Discovery

Prior works on model-based ToM inference rely on manually designed agent models, limiting their
applicability to domain-specific scenarios. In contrast, the Automated Model Discovery component
automatically proposes a model and dynamically adjusts it to ensure both the effectiveness of the
model—confidently inferring agents’ mental states—and the efficiency of the inference by minimizing
model complexity. To achieve this, we formulate the utility of a model M = (V=i X*s:) used for
answering a given query ¢ as

U(Ma CI) - R(Ma Q) - C(M)a )

where R(M, q) assesses the model’s confidence in answering the query, and C(M) is its computa-
tional cost. In this work, the reward is defined as R(M,q) = —H (P(q|X'*")), where P(g|X"*") is
the probability distribution of the target variable based on Eqn. (3) or Eqn. , and H () is its entropy.
This is designed to decrease the uncertainty in the inference. To minimize the compute needed for
the inference, we define the cost of the model as C(M) = «|M]|, where |M| denotes the model’s
complexity, measured by the number of latent mental variables, and a > 0 is a weighting factor. The
cost increases with complexity, encouraging parsimonious models with lower compute.

There are three modules for Automated Model Discovery:

Information Extraction. This module extracts the values of observable variables X ' from the
context, including states (s?), actions (a'), and utterances (u!), organized along a timeline (the number
of timesteps is determined by the number of actions and utterances). When there are multiple agents,
we identify whose mental state the question is asking about (i.e., the target agent), and then construct
the timesteps based on the target agent’s actions and/or utterances. The extraction is performed once
using an LLM and used for model proposal and Bayesian inverse planning.

Initial Model Proposal. We employ an LLM to propose an initial agent model based on X' and
the query. This initial model has minimal complexity, containing only the essential mental variables
needed to answer the question. This initial proposal also assesses the level of recursive reasoning
necessary for higher-order ToM inference. Note that we always begin with only considering the
last timestep in context, i.e., t; = t. Following this model, we conduct automated Bayesian inverse
planning, as described in Section If the model utility exceeds a threshold U;,, we accept the
inference result as the final answer. Otherwise, we use the model utility to guide model adjustments.

Model Adjustment. We iteratively adjust the proposed model to maximize the utility by considering
two types of model adjustments: variable adjustment (Figure 3b) and timestep adjustment (Figure [3b)):

Variable Adjustment. We refine the model structure at a specific timestep by iteratively introducing
new, relevant latent variables into the model to address uncertainty in the inference. These variables
include goal, belief, observation, and interactive state as summarized in Table E]in Appendix@ This
follows the typical causal structures introduced in prior decision-making models [e.g., 23] 13} 43} [12].
Such restricted variable adjustment helps reduce the model space and ensures the proposed models
can explain human behavior. For each adjustment, we compute the updated model utility and accept
the modification that offers the biggest increase in utility. This iterative process continues until
no further significant improvements are possible. Note that our method can still propose diverse
models beyond standard MDP, POMDP, and I-POMDP, even with this restricted model adjustment.
Appendix provides more details on the model space.



Table 1: Results of all methods on ToM benchmarks, grouped by model types: LLMs, ToM prompting,
large reasoning models, and model-based inference. “—” indicates that the domain-specific method
is not applicable to the benchmark. The best results are shown in bold.

Method | ToMi | BigToM | MMToM-QA | MuMA-ToM | Hi-ToM | All

Llama 3.1 70B 72.00 77.83 43.83 55.78 35.00 56.89
GPT-40 77.00 82.42 44.00 63.55 50.00 63.39
Gemini 2.0 Flash 66.70 82.00 48.00 55.33 52.50 60.91
Gemini 2.0 Pro 71.90 86.33 50.84 62.22 57.50 65.76
SymbolicToM 98.60 — — — 44.50 —

SimToM 79.90 77.50 51.00 47.63 71.00 65.41
DeepSeek-R1 89.40 86.25 49.67 63.44 56.50 69.05
Gemini 2.0 Flash Thinking | 78.00 82.83 54.00 82.56 73.50 74.18
03-mini-high 73.10 86.92 64.67 70.00 75.00 73.94
BIP-ALM 55.60 50.33 56.17 33.90 14.50 42.10
LIMP 44.60 61.67 55.33 76.60 6.50 48.94
AutoToM (w/ GPT-40) 88.30 86.92 83.00 81.44 72.50 82.43

Timestep Adjustment. If model utility remains low and no significant improvement can be achieved
via variable adjustment within the current timesteps ¢ : ¢, we incorporate an additional step, ts — 1,
to enhance context for inference. Upon adding a timestep, we first apply the initial model structure
and then adjust variables accordingly.

We iterate the variable and timestep adjustments until either the model utility exceeds the desired
threshold or no further meaningful improvement is possible.

4 Experiments

4.1 Experiment 1: Evaluation on ToM Benchmarks

Setting. We evaluated our method on multiple Theory of Mind benchmarks, including ToMi
[26], BigToM [11], MMToM-QA [20]], MuMA-ToM [39], and Hi-ToM [15]. The diversity and
complexity of these benchmarks pose significant reasoning challenges. For instance, MMToM-QA
and MuMA-ToM incorporate both vision and language inputs, while MuMA-ToM and Hi-ToM
require higher-order inference. Additionally, MMToM-QA features exceptionally long contexts, and
BigToM presents open-ended scenarios.

We compared AutoToM against state-of-the-art baselines:

e LLMs: Llama 3.1 70B [9], GPT-40 [1]], Gemini 2.0 Flash and Gemini 2.0 Pro [41]];

e ToM Prompting for LLMs: SymbolicToM [37]] and SimToM [48];

* Large Reasoning Models: DeepSeek-R1 [13], Gemini 2.0 Flash Thinking, and 03-mini-high;
¢ Model-based Inference: BIP-ALM [20]] and LIMP [39].

We use GPT-40 as the LLM backend for AutoToM and all ToM prompting and model-based inference
baselines to ensure a fair comparison. For multimodal benchmarks, MMToM-QA and MuMA-ToM,
we adopt the information fusion methods proposed by Jin et al. [20] and Shi et al. [39] to fuse
information from visual and text inputs, respectively. The fused information is in text form. We
ensure that all methods use the same fused information as their input.

Results. The main results are summarized in Table[I} AutoToM demonstrates the strongest overall
performance among all methods, including large reasoning models. Specifically, it outperforms its
LLM backend, GPT-40, by a large margin. This is because AutoToM is more robust for inferring
mental states given long contexts with complex environments and agent behavior. It is also more
adept at recursive reasoning, which is key to higher-order inference. Compared to prior model-based
methods, it exhibits superior generalization across different domains. This is enabled by our agent
model discovery and the automated BIP.
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Figure 4: Comparison of AutoToM and large reasoning models across various conditions (summa-
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“Level 2 Goal” refers to the Belief of Goal inference in MuMA-ToM.

Story: Noor is working as a barista at a busy coffee shop. Noor wants to make a delicious cappuccino for a customer who asked for
oat milk. Noor grabs a milk pitcher and fills it with oat milk. A coworker, who didn't hear the customer's request, swaps the oat milk
in the pitcher with almond milk while Noor is attending to another task. Noor makes the cappuccino using the milk in the pitcher.

Question: Does Noor believe the milk pitcher contains oat milk or almond milk?
(a) Noor believes the milk pitcher contains almond milk.
(b) Noor believes the milk pitcher contains oat milk. (Correct Answer)

@ Information[ statet ] [ The milk pitcher contains no milk. ] [ The milk pitcher contains almond milk. ]
Extraction

P(X%1) [ action! ] [Noor grabs a milk pitcher and fills it with oat milk. ] [ Noor makes the cappuccino using the milk in the pitcher. ]

@ Initial Model Proposal Adjusted Model
(2 HoHr (=]
@ Model
Adjustment
sl ol b! al |  Tommmmmmeees >
@ Bayesian Inference ® Bayesian Inference
P(b'|s",a!) x Z P(b*[b% 0")P(0*|s)P(b%) P(bl|st, at) Z P(a'|bY, g)P(b|b°, 01)P (ot |s1)P(B2)P(g)
bO0t bOolg
P(bi =almond | X°*) = 0.5 Model Utility low P(bi = almond | X") = 0.1 Model Utility high
P(b} =oat | X*1) = 0.5 X (Uncertain) P(b} =oat | X*1) = 0.9 (Confident)

Figure 5: A qualitative example of AutoToM’s model adjustment and inference process in a false-
belief scenario from BigToM [[11]]. We show the results from each key model step. It demonstrates
how AutoToM adjusts the agent model to increase inference confidence. Detailed procedures of
Bayesian inference for both the proposed and adjusted models are provided in Appendix @

We also compared the performance of AutoToM with large reasoning models across different
conditions, summarized over all benchmarks. These include question types, the context length,
the number of agents, and the level of recursion. As shown in Figure @] AutoToM demonstrates
robust scalability and exhibits a much lower degree of volatility under different conditions than large
reasoning models. We provide additional results and evaluations in Appendix [C.2]and [C.3]

We further report the token cost and inference time comparison on MMToM-QA in Appendix [C.1}
AutoToM achieves higher reasoning performance with comparable or lower computational cost,
highlighting its efficiency and scalability.

Figure 5] depicts a qualitative example of how model discovery and adjustment can improve inference
for a false-belief question in BigToM. Users can use such interpretable explanations to diagnose and
identify sources of model errors, and consequently correct model mistakes. Appendix [B]shows an
example of human feedback improving the model using a user interface developed with AutoToM.

Ablation Study. We evaluated the following variants of AutoToM for an ablation study: no hypothesis
reduction (w/o hypo. reduction); always using POMDP (w/ POMDP); always using the initial model
proposal without variable adjustment (w/o variable adj.); only considering the last timestep (w/ last



Table 2: Performance comparison on MMToM-QA. LLM indicates the model itself; AutoToM
represents our method with the corresponding model as the backend.

LLM AutoToM

GPT-40 44.0 83.0
Qwen3-235b-a22b-2507 45.0 67.5
DeepSeek-chat-v3-0324 34.8 71.1

Gemini-2.5-Flash (thinking disabled) 44.7 71.7

timestep); and considering all timesteps without timestep adjustment (w/ all timesteps). The results
in Figure [6] show that the full AutoToM method constructs a suitable agent model, enabling rich
ToM inferences while reducing compute. In particular, key model components, including hypothesis
reduction, variable adjustment, and timestep adjustment, optimize efficiency without sacrificing
performance. Full ablation results are provided in Appendix [C.4}

Sensitivity to LLM Backends. To test AutoToM’s per-

formance sensitivity to LLM backends, we conducted a2 *
additional experiments using alternative models. Note
that we used the same prompt for each backend LLM.
Specifically, we replace the GPT-40 backend with Qwen3-
235B (open-sourced), DeepSeek-V3 (open-sourced), and
Gemini-2.5-flash (thinking disabled) on the most challeng-
ing MMToM-QA benchmark. Notably, AutoToM with
any LLM as the backend outperforms the corresponding
LLM performance by a large margin (Table[2). Crucially,
we achieve this without extra prompt engineering. 3 10 12 14 16 18
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Statistical Reliability. To assess result stability, we addi-
tionally ran multiple trials on the most challenging bench-
mark, MMToM-QA. Across three different random seeds,
AutoToM achieved a mean accuracy of 82.56% with a
standard error of 0.45%, which is consistent with the 83.00% reported in Table E} Similarly, 03-mini-
high achieved a mean accuracy of 65.94% with a standard error of 0.59%. These results indicate that
the evaluation is stable across runs, and our conclusions remain robust.

Figure 6: Averaged performance and
compute of AutoToM (star) and its vari-
ants (circles) on all benchmarks.

4.2 Experiment 2: Evaluation on Classic Cognitive Studies

Setting. AutoToM produces posterior distributions over the hypothesis space, offering uncertainty
estimates. This allows us to compare the model uncertainties with human judgments. We adapted
two well-known cognitive studies on human ToM: online goal inference in [4] and desire and belief
inferences in the food truck scenarios [3]]. As shown in Figure[Zp, in each study, participants were
shown agent behavior in a 2D gridworld and asked to judge the agent’s goal in [4] and desires and
beliefs in [3]. A capable model needs to sequentially update multiple hypotheses with varying degrees
of confidence that closely resemble human judgment.

In this experiment, we generated captions for the frames in both tasks and evaluated AutoToM on all
available types of scenarios, using the posterior probabilities from AutoToM as its confidence. For
baseline, we asked GPT-40 and 03-mini-high to produce confidence scores for each hypothesis in all
trials, given the same captions. Implementation details are provided in Appendix [D.2]

Results. We computed the correlation between model responses and human judgments reported in
the original studies. As shown in Table 3] AutoToM aligns well with human confidence judgments on
all three tasks. In particular, AutoToM demonstrates a substantially higher correlation with humans
than GPT-40 and 03-mini-high in more complex tasks with a partially observable environment. The
results indicate that AutoToM is able to produce nuanced confidence estimates that closely mirror
human inference patterns in different environments. We provide additional results in Appendix

4.3 Experiment 3: Embodied Assistance



Table 3: Pearson correlation coefficients and p-values between model and human judgments. Strong
and significant correlations are bolded. *: p < .05, **: p < .001. “obs.” indicates observability.

Task AutoToM GPT-40 03-mini-high
Online goal inference (full obs.) in [4] 0.93** 0.81** 0.97**
Desire inference (partial obs.) in [3] 0.88** 0.30 0.52*
Belief inference (partial obs.) in [3] 0.73** 0.04 0.03

Setting. As recent cognitive studies have suggested, hu-

mans routinely utilize ToM to improve our decision mak- 30

ing in multi-agent settings [47,[16]]. To evaluate whether ~ —~

AutoToM can help improve multi-agent decision making, S 20

we further evaluated it in an embodied assistance bench- ~ 5°

mark, Online Watch-And-Help (O-WAH) [33], wherea g

helper agent must simultaneously observe a main agent’s & 10 I

actions, infer its goal, and assist it to reach the inferred

goal faster in realistic household environments. In these 0

tasks, a ToM model must update its inference of the main Random GPT-40 AutoToM

agent’s goal based on the latest observations in an online

manner. Given the goal inference at each step, we adopted ~ Figure 7: Averaged speedup of Au-
the uncertainty-aware helping planner proposed in [33] toToM and baselines .on.the O-WAH
to generate helping actions accordingly. There are 4 task benchmark. Error bars indicate standard
categories (setting the table, putting groceries in the fridge, €ITOIS.

preparing a simple meal, washing dishes). We evaluated each method across 20 episodes, with 5
episodes in each task category. To reduce variance, the results are reported as the average over 3 runs
per episode.

As shown in Figure [2c, we applied AutoToM to online goal inference. Specifically, AutoToM con-
structs an agent model at each step and maintains the goal hypotheses and corresponding probabilities
using Sequential Monte Carlo (SMC) [i8]. We also paired the same planner with two baseline goal
inference methods: Random Goal (i.e., randomly sampling a goal) and GPT-4o for online goal
inference. We did not evaluate any large reasoning models due to their slow inference speed (more
than 1 minute per timestep), which makes it impractical for online embodied assistance tasks.

Results. As shown in Figure [/| the Random Goal baseline achieves a 6.3% speedup, but with
high variance and negative speedup in 50% of the episodes. GPT-40 achieves a similar but more
stable speedup of 6.8%. In contrast, AutoToM achieves the highest speedup of 27.7%, significantly
outperforming all baselines. This is because AutoToM can produce more accurate uncertainty
estimation of goal hypotheses based on observed actions, which is key to generating robust and useful
helping plans. Additional details are provided in Appendix [E]

5 Conclusion

We have proposed AutoToM, a novel framework for scalable model-based Theory of Mind. Given
any ToM inference problem, AutoToM can automatically construct a suitable agent model and
conduct automated Bayesian inverse planning with an LLM backend. Our experimental results have
demonstrated that AutoToM can answer different Theory of Mind questions in diverse scenarios,
significantly outperforming baselines. We have also shown that AutoToM can produce human-like
confidence estimation about mental inferences in classic cognitive studies, and conduct online goal
inference for enhancing embodied assistance in complex household scenarios. AutoToM suggests a
promising direction toward cognitively grounded ToM modeling that is scalable and robust.

Limitations and Future Work. AutoToM currently requires a separate process to first fuse infor-
mation from different modalities into text before inference. In the future, we intend to investigate
a natively supported multimodal capacity. Additionally, model adjustments may sometimes fail
to recognize the relevance of certain mental variables, resulting in an insufficient model. In the
future, we intend to further improve the robustness of AutoToM while reducing its inference cost by
exploring the possibility of implicit model proposal and Bayesian inference.
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Algorithm 1 AutoToM

Require: Question @, terminate threshold Upin
1: > Automated Bayesian inverse planning
2: function BIP(M = (V' X' q)
3 Sample hypotheses for latent variables V%<
4 Conduct Bayesian inference via LLMs to compute P(q |*#*) > Based on Eqn. (3 or Eqn. @
5 return P(q | X*")
6: end function
7
8
9

: > Automated Model Discovery
: Extract query g from Q)
. Extract observable variables X ¢ from Q
10: ts ¢
11: whilets > 1 do
12: Propose initial ¢
13: M <+ (Vi xteity
14:  P(q| X**) « BIP(M,q)
15: Compute the model utility U (M, q)

16: while V*s does not contain all mental variables do

17: Undw = Argmax, gy, U(M + v, q) > Based on results from BIP(M + v, q)
18: if U(M + vlg,,q) > U(M, q) then

19: M « M + vls,

20: P(q| X' <« BIP(M,q)

21: else

22: Exit loop

23: end if

24 end while
25: if U(M, q) > Upnin then

26: Exit loop
27: else

28: ts +—ts— 1
29: end if

30: end while
31: Return the answer A <— arg max, P(q | X***)

A AutoToM Implementation Details

A.1 Algorithm

We summarize the overall AutoToM algorithm in Algorithm[I] Automated Bayesian Inverse Planning
(Section[3.3)) corresponds to Lines 2-6. Automated Agent Model Discovery (Section[3.4) corresponds
to Lines 8-30: Information Extraction in Lines 8-9, Initial Model Proposal in Lines 12—13, and
Model Adjustment in Lines 11-30.

A.2 Automated Bayesian Inverse Planning

Hypothesis Sampling. At each timestep, hypotheses for the latent variables are generated using
a Large Language Model (LLM) as the backend, guided by the observed variables. Specifically,
when the state is not explicitly provided, the LLM acts as a world model, tracking state changes in
the story based on the previous state and current actions. For an agent’s observation, the LLM is
prompted to adopt the perspective of a character, simulating what that character might see, know, or
hear in the given environment (e.g., inside a closed room). If no new observation is available at a
specific timestep, we neither generate new observations nor update the belief. Additionally, the LLM
proposes plausible hypotheses for the agent’s belief and goal based on the available information.

Hypothesis reduction. We examine all local conditional probabilities involving a single uncertain
variable with multiple hypotheses and eliminate those hypotheses that result in significantly low
likelihood values. For example, in P (o' | st), where s’ represents a determined state, any observation
hypothesis that yields a low likelihood for this term is discarded. This approach reduces the computa-
tional cost of estimating P(b® | of,b*~1). Similarly, the same principle is applied to P(a | b?, g*)
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Table 4: Potential variable adjustments, including introducing goal, belief, observation, and interactive
state (for high-order ToM). We show the corresponding local conditionals before and after introducing
the new variables.

New Var. | Before | After
M| R
b P(a" | b°,9)P(g
Goal ’

Pla! | s 9)P()

P(a" | ', g)P(9)
. al \ st P(a® | b")P(b" | s, b"71)
Belief g PO | 86

( t | s 79) P(a
Observation | P(b" | s*,b""") | P(b" | 0", 0" ")P(o" | s")
‘ b(is")

Interactive State | b(s")

and P(u' | bt, g*), where unlikely belief hypotheses are removed to further reduce computational
complexity.

A.3 Automated Agent Model Discovery

During model adjustment, AutoToM iteratively adjust the proposed model by considering two types
of model adjustments: variable adjustment and timestep adjustment. Table ] summarizes possible
variable adjustments at each timestep.

Given a ToM problem and context, when exploring different models during agent model discovery,
AutoToM can reuse extracted information, proposed hypotheses about certain mental variables, and
local conditionals from previously computed models to avoid redundant computation.

In Algorithm [T} we configure the hyperparameters as follows: & = 0.02, Upin = —0.693.

A.4 Recursive Reasoning

Interactive Partially Observable Markov Decision Process (I-POMDP) extends POMDP to multi-
agent settings by introducing the concept of interactive states, which include agent models into the
state space to capture the recursive reasoning process [12l]. We denote ¢s; ; as the interactive state of
agent 7 at level [. For two agents ¢ and j, where agent i is interacting with agent 7, the interactive
states at each level are defined as:

* Level 0: 55, 1 = s
* Level 1: is; 1 = (s, b;,0,9;) where b; o is a distribution over j’s interactive state at level 0,
isj,O

The framework provides a generative model for agents: given agent ¢’s belief of interactive state
b(is; 1), its action policy will be 7(a;|is;,, g;), and its utterance policy will be 7 (u;]is;,, ;).

In our implementation, we sample one possible state based on b(s) at level [ to approximate the state
at level [ — 1 as imagined by the agent at level [. We can recursively apply this process until reaching
level 0. Based on the state sampled for level 0, we can then conduct the typical automated BIP based
on the model structure at that level. This approach can be conveniently applied to arbitrary levels of
recursive reasoning, allowing us to answer higher-order Theory of Mind questions using the same
method.

A.5 Agent Model Space

To apply Bayesian Inverse Planning (BIP) across various scenarios, we define the mental variables
and their causal relationships with agent behavior using a family of probablistic agent models. These
models accommodate different levels of complexity in how agents behave and reason about their
environment.
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At each timestep ¢, the observable variables are represented by:
X' ={2!}ieny, where Ny = {s',a",u’}

Here, the state s* always appear in X ¢, while either a’ (action) or u? (utterance) is included at timestep
t, depending on whether physical motion or verbal communication is presented. In some cases, a’
is only used to update the state and does not affect the inference of beliefs or goals, while in other
scenarios it can be crucial for inferring hidden mental states (e.g., an agent’s belief or goal).

The latent variables are denoted by

V= {vi}ien, , where Ny = {o',b", g}

Here, the observation o? is only included when the agent’s belief b is part of the model, as it updates
bt. The goal g is included only if it influences action and is relevant to inference. In cases of
higher-order recursive reasoning among multiple agents, the belief over the state b*(s?) extends to
belief over an interactive state b’ (is).

Combining these choices at each timestep yields a model space with 30 possible configurations:

* Action/Utterance: which one is included (2 options).

* Belief/Observation: no belief, belief of state, belief of interactive state, belief of state, or
belief of interactive state + observation (5 options).

 Action(Utterance)/Goal: no goal (action(utterance) irrelevant), action(utterance) only, or
action(utterance) + goal (3 options).

Over a time interval from ¢, to ¢, this scales to 30°~*s+! possible models.

Examples. In addition to the Markov Decision Process (MDP), Partially Observable Markov Decision
Process (POMDP), and Interactive POMDP (I-POMDP) models introduced in Section@ we present
additional examples of models from the BToM model space:

* Observation Update Model: Used in the ToMi benchmark (see Figure[Zh), this model focuses
on how observations update beliefs. Actions are present but only serve to update states and
are irrelevant to the inference questions. This model is well-suited for passive scenarios
where the focus is on understanding how hidden states produce observable evidence and
how the agent updates its beliefs about the world.

* POMDP Variant without Goal: A partially observable scenario in which goals are trivial or
irrelevant. This variant emphasizes how partial observability affects belief formation and
action selection, without explicit goal-driven behavior.

B AutoToM: Model Improvement from Human Feedback

AutoToM provides strong interpretability and can improve with human feedback. We built a de-
bugging tool, a simplified version displayed in Figure |8| that shows an example of incorporating
human-in-the-loop feedback with AutoToM. For a given question, the interactive interface provides
clear reasoning justifying its choice. The model lists the mental state variables and actions of agents,
which were extracted or sampled with the highest probability. Using this information and the highest
calculated probabilities, the model explains its reasoning. After the user understands AutoToM’s
reasoning, they can identify potential faulty reasoning and provide feedback. Providing human
feedback can help improve model reasoning.

In the example BigToM problem in Figure [8] the model initially extracts the wrong mental state
variables for Kofi. The user can easily identify this error from the model explanation and give
feedback. The user reflects on the model about the lack of details needed for Kofi’s goal and Kofi’s
incorrect observation. AutoToM can use this updated feedback to clarify essential information,
update its reasoning, and improve its accuracy.
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Kofi is a chef at a popular Ghanaian restaurant. Kofi wants to prepare a traditional groundnut soup for the dinner menu. Kofi
adds a small container of peanut butter to the soup pot on the stove. An apprentice chef mistakenly thinking it was a seasoning
paste removes the peanut butter from the soup and replaces it with tomato paste. Kofi continues cooking the soup.

Strong Interpretabilit
& P v L : Does Kofi believe the soup contains peanut butter or tomato paste?

X

&9 : Kofi believes that the soup contains tomato paste.

L : Explain why.
o : Based on Kofi’s observation of tomato paste in the soup, it is highly probable that Kofi
believes the soup has tomato paste. Kofi’s action of continuing to cook the soup aligns
with this and Kofi’s goal of preparing a traditional groundnut.

Human-in-the-loop Feedback : We don’t know if Kofi sees tomato paste. Kofi’s goal lacks the

needed detail that he wants peanut butter in the soup.

&y : Recomputing with human feedback > Kofi believes the soup contains peanut bM

Despite Kofi’s undetermined observation, Kofi continuing cooking the soup aligns
strongly with his goal that he wants to prepare a traditional groundnut soup with peanut
butter and belief that the soup contains peanut butter.

Figure 8: A debugging platform showcasing AutoToM’s interpretable explanations for its model
choice and learning from human feedback to correct its decision for a sample BigToM backward
belief problem.

Table 5: Token cost and inference time comparison on MMToM-QA (lower is better). “K” denotes
thousands of tokens, and “s” denotes seconds.

Model Avg. #Tokens per Question (K) Avg. Inference Time (s)
AutoToM 8.0 8.5
03-mini-high 10.9 21.6
Gemini 2.0 Flash Thinking 8.8 6.1

C More Results and Implementation Details for Experiment 1

C.1 Token Cost and Inference Time Comparison

We evaluate the computational efficiency of AutoToM compared to large reasoning models in terms
of token cost and inference time. Table [3] reports the average number of consumed tokens per
question and the average inference time on the MMToM-QA benchmark, which is computationally
demanding due to its long contexts. Results show that AutoToM achieves substantially higher
reasoning performance with comparable or lower computational cost.

C.2 Per-type Accuracy on All Benchmarks

In Tables [6] - [I0] we present the results of AutoToM and baselines on each question type of all
benchmarks. Here we compare general methods that can be applied to all benchmarks.

C.3 Additional Benchmarks

We evaluated AutoToM on additional benchmarks, FANToM [235] for its challenging scenarios and
OpenToM [50] for its affective Theory of Mind questions.

C.3.1 Evaluations on FANToM

To further demonstrate AutoToM s ability to solve false-belief tasks in more complex scenarios, we
tested AutoToM on FANToM. We randomly selected a subset of 200 false-belief first-order questions
with short contexts due to budget constraints.
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Table 6: Detailed accuracy for ToMi.

Question Type | First order | Second order | Reality | Memory | All
Llama 3.1 70B 73.75 56.25 100.00 100.00 72.00
GPT-40 80.25 62.25 100.00 100.00 77.00
Gemini 2.0 Flash 58.50 58.25 100.00 100.00 66.70
Gemini 2.0 Pro 75.00 54.75 100.00 100.00 71.90
SymbolicToM 98.75 98.25 100.00 98.00 98.60
SimToM 84.75 65.00 100.00 100.00 79.90
DeepSeek-R1 90.75 82.75 100.00 100.00 89.40
Gemini 2.0 Flash Thinking 83.25 61.75 100.00 100.00 78.00
03-mini-high 79.50 53.25 100.00 100.00 73.10
BIP-ALM 58.00 56.25 56.00 43.00 55.60
LIMP 43.50 44.50 44.00 50.00 44.60
AutoToM (w/ GPT-40) 95.00 77.50 93.00 100.00 88.30

Table 7: Detailed accuracy for BigToM.

Question Type | Forward TB | Forward FB | Backward TB | Backward FB | All
Llama 3.1 70B 93.75 81.00 57.00 60.50 77.83
GPT-40 96.00 88.50 63.50 62.00 82.42
Gemini 2.0 Flash 94.25 87.50 77.50 51.00 82.00
Gemini 2.0 Pro 96.00 93.75 70.00 68.50 86.33
SimToM | 9250 | 9000 | 2500 | 7500 | 77.50
DeepSeek-R1 89.75 90.50 74.50 82.50 86.25
Gemini 2.0 Flash Thinking 94.75 91.50 77.50 47.00 82.83
03-mini-high 93.25 90.75 78.50 75.00 86.92
BIP-ALM 71.75 32.50 69.50 24.00 50.33
LIMP 40.75 77.75 43.00 90.00 61.67
AutoToM (w/ GPT-40) 91.25 93.75 73.00 78.50 86.92

Table 8: Detailed accuracy for MMToM-QA.

Question Type | Belief | Goal | All
Llama 3.1 70B 51.33 | 36.33 | 43.83
GPT-40 55.67 | 32.33 | 44.00
Gemini 2.0 Flash 62.67 | 33.33 | 48.00
Gemini 2.0 Pro 57.00 | 44.67 | 50.84
SimToM | 75.67 | 26.33 | 51.00
DeepSeek-R1 63.00 | 36.33 | 49.67
Gemini 2.0 Flash Thinking | 73.33 | 34.67 | 54.00
03-mini-high 88.67 | 40.67 | 64.67
BIP-ALM 64.33 | 48.00 | 56.17
LIMP 60.00 | 50.67 | 55.33
AutoToM (w/ GPT-40) 96.67 | 69.33 | 83.00

Results. AutoToM, with a GPT-40 backend, achieved 72.7%, outperforming the GPT-40 baseline,
which achieved 57.5%. AutoToM, with a Gemini 2.5 Flash backend, achieved 77.9%, outperforming
the Gemini 2.5 Flash baseline, which achieved 38%. With either model as the backend LLM,
AutoToM improves upon the original baselines.

Analysis. AutoToM is able to solve false belief questions by extracting the essential variables. In
FANToM, AutoToM extracts the state of the conversation (the agents in the conversation, if the main
agent is currently in the conversation, and the topics discussed), utterances, and observation of the
main agent (depending on whether they are in the conversation or not) to infer belief. In contrast,
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Table 9: Detailed accuracy for MuMA-ToM.

Question Type | Belief | Goal | Belief of Goal | All

Llama 3.1 70B 68.67 | 51.33 47.33 55.78

GPT-40 85.33 | 57.00 48.33 63.55

Gemini 2.0 Flash 68.33 | 50.67 47.00 55.33

Gemini 2.0 Pro 63.00 | 66.67 57.00 62.22

SimToM | 5460 | 43.50 | 4480 | 47.63

DeepSeek-R1 74.67 | 53.33 62.33 63.44

Gemini 2.0 Flash Thinking | 95.33 | 79.00 73.33 82.56

03-mini-high 74.00 | 67.67 68.33 70.00

BIP-ALM 41.20 | 34.10 30.60 33.90

LIMP 93.40 | 67.70 68.70 76.60

AutoToM (w/ GPT-40) 88.33 | 77.00 79.00 81.44

Table 10: Detailed accuracy for HiToM.

Question Type | Order 0 | Order1 | Order2 | Order3 | Order4 | All
Llama 3.1 70B 65.00 47.50 22.50 20.00 20.00 35.00
GPT-40 92.50 65.00 40.00 27.50 25.00 50.00
Gemini 2.0 Flash 95.00 70.00 50.00 27.50 20.00 52.50
Gemini 2.0 Pro 100.00 62.50 50.00 37.50 37.50 57.50
SymbolicToM 62.50 57.50 25.00 32.50 45.00 44.50
SimToM 100.00 77.50 60.00 60.00 57.50 71.00
DeepSeek-R1 95.00 80.00 55.00 35.00 17.50 56.50
Gemini 2.0 Flash Thinking 100.00 85.00 72.50 50.00 60.00 73.50
03-mini-high 100.00 72.50 65.00 60.00 77.50 75.00
BIP-ALM 10.00 17.50 10.00 20.00 15.00 14.50
LIMP 5.00 10.00 7.50 2.50 7.50 6.50
AutoToM (w/ GPT-40) 95.00 75.00 70.00 67.50 55.00 72.50

the two baselines struggle to accurately extract and track the agent’s observation throughout the
conversation.

C.3.2 Evaluations on Affective Reasoning in OpenToM.

We evaluated AutoToM’s affective ToM by extending the causal structure to include attitude and
preference (all other components unchanged) and testing on all 596 OpenToM attitude questions.

Results. Following OpenToM [50], we used Macro-F1 as the evaluation metric. The random baseline
is 0.33. GPT-40 achieved 0.48, while AutoToM with GPT-40 backend outperformed it with a score of
0.56. AutoToM also approached the performance of the large reasoning model 03-mini-high (0.60),
indicating its strong affective reasoning capability.

Analysis. Answering the attitude questions does not require inverse planning, since the model can
just directly perform forward estimation of attitude based on observed events and preference. This
explains why AutoToM performed similarly compared to o3-mini-high. This is consistent with
results for other question types that do not require inverse planning, such as level 0 (no ToM) and
level 1 action questions shown in Figure 4a. However, even in the case where inverse planning is not
required, AutoToM still scores higher than its backend LLM (GPT-40). We attribute this to AutoToM
’s ability to extract and focus on variables that are causally relevant to the task, while filtering out
spurious cues by design (see [50], Section 2.5) that may mislead GPT-4o.

C.4 Full Results of the Ablation Study

Table[T1]shows the performance of ablated methods compared to the full AutoToM method on all
benchmarks.

20



Table 11: Results of ablated methods compared to the full AutoToM method.

Method | ToMi | BigToM | MMToM-QA | MuMA-ToM | Hi-ToM | All
w/o hypo. reduction | 87.60 | 86.17 80.83 81.67 69.50 | 81.15
w/ POMDP 76.00 | 86.50 82.67 50.78 67.00 | 72.59
w/o variable adj. | 85.80 | 78.25 79.00 77.89 66.50 | 77.49
w/ last timestep | 68.40 | 77.83 76.50 78.33 44.50 | 69.11
w/ all timesteps | 86.00 | 79.09 76.17 79.33 69.00 | 77.92
AutoToM | 8830 | 8692 | 8300 | 8144 | 7250 | 8243

Table 12: Comparison of ablated models and the full model on the averaged number of tokens per
question (in thousands). Lower is better.

Method | ToMi | BigToM | MMToM-QA | MuMA-ToM | Hi-ToM | All

w/o hypo. reduction | 15.8 6.8 8.9 24.4 204 15.3
w/ POMDP 14.9 5.5 6.2 20.0 18.8 13.1
w/o variable adj. 8.5 6.1 8.0 14.0 10.0 9.3
w/ last timestep 7.8 6.1 39 11.6 4.0 6.7
w/ all timesteps 14.2 1.7 44.5 16.4 12.4 19.0
AutoToM | 98 | 65 | 8.0 | 13.6 | 120 | 100

Table 13: Comparison of ablated models and the full model on the averaged number of API calls at
inference per question. Lower is better.

Method | ToMi | BigToM | MMToM-QA | MuMA-ToM | Hi-ToM | All
w/o hypo. reduction | 38.91 13.99 21.72 70.73 72.58 43.59
w/ POMDP 36.25 8.32 12.89 42.10 51.73 30.26
w/o variable adj. 2291 12.99 17.51 35.76 29.81 23.80
w/ last timestep 21.60 12.76 7.72 28.39 9.39 15.97
w/ all timesteps 39.83 15.95 101.28 43.25 36.27 47.32
AutoToM | 32.23 | 13.81 | 17.60 | 35.08 | 3645 | 27.03

In Table[12]and [I3] we compare the ablated methods and the full model on the averaged number of
tokens per question (in thousands) and the averaged number of API calls at inference per question.

C.5 Detailed Inferences

Figure [0 shows the detailed procedures of Bayesian inferences for the qualitative example in Figure[5]

C.6 Qualitative Results

Among general methods, AutoToM achieves state-of-the-art results across all benchmarks. We
provide two qualitative examples to illustrate the effect of variable adjustment (example 1) and
timestep adjustment (example 2). These examples also demonstrate the interpretability of AutoToM,
as the constructed model offers us insights into how the method is modeling the agent behavior for
the inference.

Example 1: BigToM (Backward Belief Inference)

Story: Kavya is a florist in a vibrant Indian market. Kavya wants to create a beautiful
bouquet of fresh roses for a customer’s anniversary celebration. Kavya sees a batch of roses
in her shop that appear to be fresh and vibrant. Unbeknownst to her a mischievous monkey
sneaks into the shop and nibbles on the rose petals leaving them damaged and unsuitable for
the bouquet. Kavya starts arranging the bouquet using the roses she initially saw.
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Figure 9: Detailed procedures of how Bayesian inferences are conducted for the proposed and
adjusted models in Figure[5] In the initially proposed model, the belief inference results in uncertainty
due to ambiguous observations. In the adjusted model, where the agent’s goal is explicitly modeled,
the use of goal-conditioned action likelihood P(a® | b%, g) instead of P(a’ | b*) enables more accurate
estimation of action likelihoods and leads to improved belief inference with high certainty.

Question: Does Kavya believe the roses are fresh and perfect for the bouquet or damaged
by the monkey?

(a) Kavya believes the roses are fresh and perfect for the bouquet. (Correct Answer)

(b) Kavya believes the roses are damaged by the monkey.

Variables in the Initial Model Proposal: State, Observation, Belief

Since the scenario involves only one timestep, a single model suffices. In the initial model, the state
of the world indicates that the flowers are damaged after the monkey nibbles on them. However,
it remains unclear whether Kavya observes the true condition of the flowers. The model lacks
crucial information about Kavya’s actions, which are observable and influenced by her beliefs
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about the flowers’ state. These actions can help infer her true belief. Initially, the probability that
Kavya believes the flowers are fresh is moderate, P(Kavya believes the roses are fresh and perfect
for the bouquet| X'!) = 0.50. Without variable adjustment, the model cannot answer the question.

Variables in the Adjusted Model: State, Observation, Belief, Action, Goal

For the initial model, the reward is R(M, q) = —H(P(q|X**)) = —0.693 and the model cost is
C(M) = a|M| = 0.04, resulting in a utility U (M, q) = —0.733, which does not exceed the utility
threshold Uy, = —0.693. To address the insufficiency of the initial model’s utility relative to our
termination threshold, we propose an enhanced model incorporating state, observation, belief, action,
and goal. In this revised model, Kavya’s actions—specifically arranging the bouquet using the
roses—align with her goal of creating a beautiful bouquet. These observations allow us to infer with
high probability that Kavya believes the roses are fresh and suitable for the bouquet, increasing the
belief probability to P(Kavya believes the roses are fresh and perfect for the bouquet|X!) = 0.97.
With this revised model, the reward is R(M, q) = —H (P(q|X*+*)) = —0.135 and the model cost
is C(M) = a|M| = 0.06, resulting in a utility U(M, ¢) = —0.195, which exceeds our utility
threshold Uy, = —0.693. Based on the adjusted model, AutoToM can confidently determine the
correct answer: (a) Kavya believes the roses are fresh and perfect for the bouquet.

Example 2: MMToM-QA (Belief Inference)

Video input:

What’s inside the apartment: The apartment consists of a bedroom, kitchen, living room,
and bathroom. In the bedroom, there is a coffee table and a desk. The kitchen is equipped
with four cabinets, a fridge, a kitchen table, a microwave, and a stove. The 3rd kitchen
cabinet from the left houses a water glass and a dish bowl. Inside the fridge, there are two
apples, a salmon, a plate, and a dish bowl. The 2nd kitchen cabinet from the left contains
a water glass, a chips, a condiment bottle, and a dish bowl. The 1st kitchen cabinet from
the left holds a wineglass, a wine, and a condiment bottle. The microwave contains a
salmon, and there is a cupcake in the stove. The 4th kitchen cabinet from the left has a
plate. The living room features a cabinet, a sofa, a coffee table, and a desk. Inside the
cabinet, there are two apples and four books. A plate and a remote control are placed on
the coffee table. The bathroom is furnished with a bathroom cabinet, which is currently empty.

Actions taken by Mark: Mark is situated in the bathroom. He proceeds towards the kitchen,
making his way to the stove. He opens and then closes the stove. Subsequently, he strides
towards the 4th kitchen cabinet, opens it, and then shuts it. He then moves to the 2nd kitchen
cabinet, opens and closes it, before doing the same with the 3rd kitchen cabinet. Finally, he
heads towards the 1st kitchen cabinet, opens and closes it, and is about to open the microwave.

Question: If Mark has been trying to get a salmon, which one of the following statements
is more likely to be true?

(a) Mark thinks that the salmon is not inside the microwave.

(b) Mark thinks that the salmon is inside the microwave. (Correct Answer)

In this problem, we first fuse the information from text and video following Jin et al. [20]. The fused
information is structured into 23 timesteps, each corresponding to an action of Mark at the time. We
then propose the initial model: State, Observation, Belief, Action, Goal.

Without timestep adjustment. Bayesian inference must be performed sequentially from the first
timestep, even though most actions do not contribute to answering the final question. The model
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Table 14: Summary of the ToM benchmarks used in the experiments.

Benchmark Agent Tested concepts Size Modality Communication Generation Evaluation
num-
ber
ToMi [26] Multi First & Second Or- 1000 Text No Templates ~ Multiple
agents der belief, Reality, choice
Memory Q&A
BigToM [11]] Single Belief, Action 1200 Text No Procedural Q&A
agent generation
MMTOM-QA  Single Belief & Goal 600 Text & No Procedural ~ Multiple
[20] agent Video generation  choice
Q&A
MuMA-ToM Multi Belief, social 900 Text & Yes Procedural ~ Multiple
[39] agents goal and belief of Video generation  choice
other’s goal Q&A
Hi-ToM [15] Multi High-order beliefs 200  Text Yes Procedural ~ Multiple
agents Genera- choice
tion Q&A

will compute across all timesteps, while the most informative action is actually the last one: if Mark
wants to get a salmon but does not believe there is one inside the microwave, he will not open it.

With timestep adjustment. We begin inference from the last timestep, where the action likelihood
P(alb, g) is low when b = Mark thinks that the salmon is not inside the microwave, and high when
b = Mark thinks that the salmon is inside the microwave. After performing inference at the last
timestep, the belief probabilities corresponding to the choices are 0.998 and 0.002. The reward is
given by R(M, q) = —H(P(q|X*)) = —0.014, while the model cost is C(M) = a|M| = 0.06.
This results in a utility of U (M, ¢) = —0.074, which exceeds the threshold Uy, = —0.693, allowing
our model to determine the final answer without considering earlier timesteps.

C.7 Baseline Implementation Details

For the baselines, we use gpt-40-2024-08-06 for GPT-40, meta-1lama/Llama-3.1-70B-Inst-
ruct from Hugging Face for Llama 3.1 70B, gemini-2.0-flash for Gemini 2.0 Flash,
gemini-2.0-pro-exp-02-05 for Gemini 2.0 Pro, gemini-2.0-flash-thinking-exp-01-21
for Gemini 2.0 Flash Thinking, 03-mini-2025-01-31 for 03-mini-high, and deepseek-r1 for
Deepseek R1. Among the ToM prompting for LLM benchmarks previously tested on the BigToM
dataset, e.g., SimToM, they only tested the subset of the entire dataset with questions for forward
action and forward belief and did not test on backward belief questions. With the available SimToM
code, we tested it on the full BigToM dataset with GPT-40.

SymbolicToM maps out the agents’ beliefs throughout stories of different levels of reasoning via
symbolic graphs. However, the construction of these graphs is specifically designed for the ToMi
dataset, where there are fixed actions and sentence formats in the story. Thus it is difficult to generalize
to more open-ended scenarios (e.g., BigToM) or stories with multiple agents acting simultaneously
(e.g., Hi-ToM). Therefore, we can only evaluate SymbolicToM on ToMi (tested with GPT-40 on the
full dataset), for which it was designed.

BIP-ALM and LIMP are both models that combine BIP and LLMs to solve ToM problems. BIP-ALM
manually defines symbolic representations of observable and latent variables and assumes POMDP.
LIMP is designed to only solve two-level reasoning problems. It uses natural language to represent
variables. Both methods assume that the goals are about finding an object and the beliefs are about
the locations of that object in a household environment.

C.8 Benchmark Details

In our evaluation, we test AutoToM on BigToM [11], MMToM-QA [20], MuMA-ToM [39]], ToMi
[26] and Hi-ToM [135]]. For ToMi, we use the ToMi dataset that has disambiguated container locations
in the story and correctly labeled order of reasoning [2} 36]]. For Hi-ToM, we choose the length
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Figure 10: Comparing model and mean human mental state inferences.

1 subset consisting of 200 questions across all orders (0-4) due to the high cost of testing the full
dataset.

Table [T4] summarizes the benchmarks used to evaluate AutoToM against baselines, detailing key
features such as test concepts, input modalities, and the number of agents. The results demonstrate
that AutoToM operates across diverse contexts, infers any mental state, reasons about any number of
agents, and supports any level of recursive reasoning.

D More Results and Implementation Details for Experiment 2

D.1 More Results

We provide the scatterplot of human and model judgment fits for all three tasks in Figure

D.2 Implementation Details

Scenario Selection and Adaptation. For the online goal inference task, we selected all 6 usable
scenarios (where the human data for each scenario is displayed in the plot) from [4]. For the other
two tasks, we adapted from [3]], where the original stimuli are grouped into 7 distinct types. We
selected one representative scenario from each type, resulting in 7 unique experimental scenarios.
This selection was motivated by the fact that scenarios within the same type are highly similar (only
minor variations in agent starting positions), which posed challenges for creating clear and distinct
natural language narratives. It was also supported by the original study’s finding that desire judgments
varied minimally within scenarios of the same type.

Stimuli Translation. All selected scenarios were translated into natural language descriptions. The
generation of the captions was guided by the following principles: (1) We aimed for statements that
were complete, clear, and detailed, fully capturing the scenarios and agent trajectories. (2) We focused
on describing only what could be objectively observed (physical states, visibilities, and the agent’s
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Example Experiment Stimuli Natural Language Caption

C A 1. Andy moves closer to all objects (A, B, and C)
where C is closer.
7_ _1 2. Andy continues walking.
Online goal inference - q 1 3. Andy does not move in the direction of C but
- - walks in the direction of A and B.
3' i 3 4. Andy walks directly towards B, but not A or C.

= 5. Andy keeps walking.

X B y keep: &

Frame 1
< Andy is having lunch from one of the three food
. trucks: Korean, Lebanese or Mexican. Initially,
Food truck experlment L] the Korean truck is in spot A and within Andy's

(including desire and belief Frame 2 line of sight, and the Lebanese truck is in spot B,

inference) I roverrreer without Andy's line of sight. Andy walks past

the Korean truck to see what is in spot B. He

L then sees the Lebanese truck in spot B. Then,
Andy walks to the Korean truck in spot A.

Frame 3

Figure 11: Example inference task scenarios and translated captions in natural language.

actions), without making assumptions about the agent’s mental states. Please refer to Figure [IT] for
caption examples.

Rationality Assumption. We incorporated the assumption of approximately rational agents, ensuring
consistency with the original studies. This assumption was integrated into the prompts used for
estimating action likelihoods in AutoToM. To ensure a fair comparison, the identical assumption
statement was also included when testing the GPT-40 and 03-mini-high baselines.

Baseline Evaluation Details. When testing the baselines, we included the same captions with
contexts in the prompt to ask baseline models (1) generate a series of goal probabilities with regard
to time steps in task 1 (online goal inference), and (2) provide confidence ratings on a 7-point scale
for each belief/goal hypothesis in task 2 (food truck experiment). This process mirrors the judgment
task given to human participants in the original experiments.

E More Results and Implementation Details for Experiment 3

E.1 More Results

In the early stages of the episode, GPT-40 may become overly confident in certain hypotheses that
lack sufficient cues to inspire confidence. In some cases, such guesses turn out to be correct, resulting
in increased speedup. However, more often than not, these hypotheses are incorrect. This can lead to
assistance plans that are misaligned with the main agent’s goals and cause unnecessary state changes
(e.g., moving irrelevant objects), ultimately wasting the helper agent’s time and reducing the speedup.
In contrast, AutoToM recognizes these situations as uncertain and avoids taking actions.

E.2 Online Mental Inference

The ability to infer and track others’ mental states from dynamic cues is key to effective social
interactions. We show that AutoToM is inherently well-suited for online mental inference by framing
it into a sequential Monte Carlo (SMC; [8]]) approach that maintains multiple weighted hypotheses
about an agent’s hidden mental states. We first generate a set of hypotheses (Sampling) and assign
weights to each hypothesis using AutoToM (Weighting). As new observations arrive, these weights
guide the selection of promising hypotheses and the generation of new hypotheses. The retained
hypotheses carry their weights forward, while AutoToM evaluates the full past trajectories to assign
weights to the new ones (Propagation). Based on the latest observation, AutoToM then reweights
each particle. This particle-tracking method approximates the evolving posterior over mental variables
in real time, continually refining both the hypotheses and their likelihood estimates.
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E.3 Implementation Details

As shown in Figure 2k, the online mental inference with AutoToM supported the embodied decision-
making in Experiment 3, where we used the inferred goal of the main agent at each step to guide
the planning of the helper agent. Specifically, the helper began to assist once the most probable goal
hypothesis reached a sufficient confidence level (0.8 for picking an object and 0.6 for placing the
object at a location).

During online mental inference, we maintained K = 5 particles for hypotheses and set a weight
threshold of 7 = 0.1 for particle filtering. As new observations arrived, promising hypotheses with
weights greater than or equal to 0.1 were retained, and new hypotheses were generated to restore a
total of 5 particles.

F Prompts used in AutoToM

F.1 Information Extraction
We use the following prompts to extract information for each variable in a given question.

Identifying the main agent

Find the name of the character that we need to infer about in the question and choices. Only
output the name. Do not answer the question.

Question: [Question]
Choices: [Choices]
Character name:

Identifying all the agents

Extract the names of all the characters from the story and question. Provide only the names
or roles, without any additional information. Do not answer the question.
Your response should be a list containing the names, like [“namel”, “name2”].

Story: [Story]
Response:

Identifying the mental variable to be inferred

Choose the variable that best summarizes the information about the differences that the
choices contain. Only output the variable.

Variables include: [Variables]
Choices: [Choices]
Variable:

Identifying extra information in the question

If there is any assumed information in the question given (a conditional clause starting with
specific words like “if”” is contained), rewrite it as a declarative sentence. Do not include
any questions in the extra information. Do not make up details for the information. Use the
original wording.

Otherwise, output “NONE”.

Question: [Question]
Extra Information:
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Extracting actions of the main agent

Extract the actions of [Inferred_agent] in the story verbatim without changing any of the
original words, pluralizing the words, adding in [Inferred_agent] or any other name, replacing
any of the words, replacing pronouns with names or replacing any names with pronouns.
Actions of [Inferred_agent] are defined as events that will change the world state, e.g.,
[Inferred_agent] moving to a new location is an action but [Inferred_agent] being at a location
is not an action. If [Inferred_agent] says something, the whole sentence (with “replied”,
“said”) is seen as an action.

Do not change the names of any of the agents, if there is not a name and only a pronoun then
just leave the pronoun. There can be more than one agent or more than just the inferred agent.
If there are multiple actions in a sentence then they should be extracted as one single action,
without changing any of the original words, such as pluralizing the words, replacing any of
the words, replacing pronouns with names, or replacing any names with pronouns, and do
not add any words.

Do not insert actions, pronouns, or other words that are not explicitly stated in the text. Do
not separate the objects in the same action.

Do not add any pronouns. Keep the commas, if any.

Only actions that have already occurred at the time can be considered clearly stated. Again,
only extract actions performed by [Inferred_agent].

The output format should be: [“aaa.”, “bbb.”, ...]. Output only this list.

Story: [Story]
Extraction:

Extracting actions

Determine if [Character]’s action(s) is clearly stated in the story.

The action(s) cannot be the character’s inner thoughts.

Only actions of [Character] that have already occurred, or are currently taking place can be
considered clearly stated.

If it’s more like [Character]’s desire or goal, it does not count as an action. [Character]’s
utterance is considered as an action (include the verb like “said” or “replied” in the evidence
sentence, if any). Do not change any of the original wording.

Answer in the form of a list. The first element of the list contains the option A or B. A means
clearly stated, and B means not clearly stated.

If the answer is A, include sentence(s) from the original story that serves as evidence, and
place it in the second element of the list, without any kind of formatting. Note that there
could be multiple action sentences.

Otherwise, the second element can be an empty string. Do not write anything else.
Example 1: [“A”, “evidence sentence.”’]

Example 2: [“B”, *’]

Story: [Story]
Answer:

. J

Extracting beliefs

Determine if the belief of [Character] is clearly stated in the story.

Usually, belief is one’s understanding of the state of the world or the state of others. A
subjective attitude towards things does not count as belief. An action or utterance of the agent
does not count as a belief. Words like “know” or “believe” could be hints for belief.
Answer in the form of a list. The first element of the list contains the option A or B. A means
clearly stated, and B means not clearly stated.

If the answer is A, include sentence(s) from the original story that serves as evidence, and
place it in the second element of the list, without any kind of formatting.

Otherwise, the second element can be an empty string. Do not write anything else.
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Example 1: [“A”, “evidence sentence.”]
Example 2: [“B”, “”]

Story: [Story]
Answer:

Extracting goals

Determine if the goal of [Character] is clearly stated in the story.

Usually, goals refer to a person’s goals or intentions regarding a particular event. Moreover, a
sentence that shows a person has been trying to do something, or summarizes their efforts of
doing something should always be considered a goal. Helping others to achieve their goals
also counts as a person’s goal.

Answer in the form of a list. The first element of the list contains the option A or B. A means
clearly stated, and B means not clearly stated.

If the answer is A, include sentence(s) from the original story that serves as evidence, and
place it in the second element of the list, without any kind of formatting.

Otherwise, the second element can be an empty string. Do not write anything else.
Example 1: [“A”, “evidence sentence.”]

Example 2: [“B”, “”’]

Story: [Story]
Answer:

Extracting observations

Determine if the observation of [Character] is clearly stated in the story.

Observation refers to the main character’s perception of an event; it is only considered clearly
stated when the protagonist’s perception is explicitly mentioned, like if they visually see
something, visually notice something, or hear something, or any other state that can be
perceived by the agent with but not limited to their 5 senses.

A character’s utterance does not mean that their observation is clearly stated, because they
might lie.

Answer in the form of a list. The first element of the list contains the option A or B. A means
clearly stated, and B means not clearly stated.

If the answer is A, include sentence(s) from the original story that serves as evidence, and
place it in the second element of the list, without any kind of formatting.

Otherwise, the second element can be an empty string. Do not write anything else.
Example 1: [“A”, “evidence sentence.”]

Example 2: [“B”, “”’]

Story: [Story]
Answer:

Extracting states

Determine if the story contains the objective state(s) of an object or an event.

State refers to the physical condition of something or the state of the world.

No actions of agents should be involved in the state but it can be the result of an action of an
agent. For example, “A entered B” is not a state, while “A is in B” is a state.

An objective state statement should not include personal perspectives but should be objective.
If a person’s perception is involved, it is no longer considered an objective state.

Answer in the form of a list. The first element of the list contains the option A or B. A means
clearly stated, and B means not clearly stated.

If the answer is A, include sentence(s) from the original story that serves as evidence, and
place it in the second element of the list, without any kind of formatting.




If there are multiple sentences, include them all in the second element of the list.
Otherwise, the second element can be an empty string. Do not write anything else.
Example 1: [“A”, “evidence sentence(s).”]

Example 2: [“B”, “’]

Story: [Story]
Answer:

F.2 Hypothesis Sampling
We use the following prompts to sample hypotheses for the latent variables in the BToM models.

Sampling beliefs

Propose [num] hypotheses for the belief of [Character] in the story. Usually, belief is one’s
view or perspective on a state, and it represents an understanding of the physical state of the
world. Do not state any reason for the hypotheses. Do not contain any form of explanation
in the hypotheses. Output a list of hypotheses of length [num] in following form: ["aaa.",
"bbb.", ...]

Given information: [Information] Ensure that the hypotheses align with the given information
perfectly. The hypotheses could be like "[Character] believes that A is in B". First, list out all
entities in the given information. Then, formulate hypotheses using all entities. Make sure
the hypotheses starts with [Character]. Output the hypotheses in the following form: ["aaa."]
Observation Hypotheses: []

Belief Hypotheses:

Sampling goals

Propose [num] hypotheses for the goal of [Character].

The goal refers to [Character]’s intentions.

Do not provide any explanation for the hypotheses. Do not propose any sentence that’s not
depicting the goal, like the action or belief of [Character].

The wording for hypotheses cannot be speculative.

The proposed goal does not have to be too specific, e.g., Andy wants to help others; Andy
wants to hinder others; Andy is indifferent towards other’s goals, etc.

Given information: [Information]

Ensure that the hypotheses align with the given information perfectly. It means that the
proposed [Character]’s goal matches what’s contained in the information.

Output the hypotheses in the following form: [“aaa.”

Goal Hypotheses: []

Sampling observations

Propose [num] hypotheses for [Character]’s observation of the world.

The observation refers to [Character]’s current perception of events or the world state. It
is only considered clearly stated when [Character]’s perception is explicitly mentioned,
like if [Character] sees something or perceives something through other senses. Do not be
speculative.

Do not provide any explanation for the hypotheses. Do not propose any sentence that’s not
depicting the observation, like the action or belief of [Character].

The wording for hypotheses cannot be speculative.

If the information contains “not”, make sure the verb for perception (e.g., “see”, 'perceives’)
goes before “not” in the hypotheses. e.g., use ’sees that A is not in B’ instead of ’does not see
that A is in B’ Otherwise, do not include “not” in your hypotheses, and make sure the verb
for perception goes first, e.g., ’sees that A is in B’.




Given information: [Information]

Ensure that the hypotheses align with the given information perfectly. It means that when the
person has the observation the person will act according to the given information.

First, list all entities in the given information. Then, formulate hypotheses using all entities.
Make sure the hypothesis starts with [Character].

Output the hypotheses in the following form: [“aaa.”

Observation Hypotheses: []

F.3 Likelihood Estimation

We use the following prompts to estimate the likelihood of different variables.

Estimating the likelihood of the observation given the state

Determine if the statement is likely, and respond with only either A or B.

State: {state}

Here is a statement of {inf_agent}’s current observation. Only evaluate current observation
of {inf_agent} based on the state. Do not imagine anything else. Think about {inf_agent}’s
location. {inf_agent} is quite likely to observe all objects and events in {inf_agent}’s
location, and is unlikely to observe states in another location. If {inf_agent} does not appear
in the state, {inf_agent} can’t observe anything. Note that the statement has to be precise in
wording to be likely. For example, the treasure chest and container are different in wording
and they’re different objects.

Determine if the following statement is likely: {statement}
A) Likely.
B) Unlikely.

Estimating the likelihood of the action given the goal and belief and belief of goal

Determine if the statement is likely, and respond with only either A or B.

{inf_agent}’s goal: {goal}

{inf_agent}’s belief: {belief}

{inf_agent}’s belief of other’s goal: {belief of goal}

{inf_agent}’s action: {action}

When {inf_agent} wants to help, {inf_agent} is likely to bring an object to other’s desired
location, and unlikely to grab an object away from other’s desired location.

When {inf_agent} wants to hinder, {inf_agent} is likely to grab an object away from other’s
desired location, and unlikely to bring an object to other’s desired location.

When {inf_agent} doesn’t know other’s goal, {inf_agent} is likely to act according to
{inf_agent}’s belief.

If {inf_agent} wants to help and {inf_agent} believes the object is placed at other’s desired
location, it’s unlikely {inf_agent} will move the object.

If {inf_agent}’s goal, {inf_agent}’s belief of goal, and {inf_agent}’s action do not align in
any way, the action is unlikely.

Determine if {inf_agent}’s action is likely.
A) Likely.
B) Unlikely.

Estimating the likelihood of the action given the social goal and belief

Determine if the statement is likely, and respond with only either A or B. If it’s not certain
but it’s possible, it’s likely.
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{inf_agent}’s social goal: {goal}

{inf_agent}’s belief: {belief}

Here is a statement of {inf_agent}’s action. Think about {inf_agent}’s goal.

{inf_agent} will perform actions according to {inf_agent}’s belief, and any action that does
not align with the belief is very unlikely, except when {inf_agent}’s goal is to hinder or to
prevent others. In this case (goal is hindering others) {inf_agent}’s action is only likely when
it’s different from {inf_agent}’s belief. If {inf_agent}’s mental states contain conditions like
“When giving information” and the action is not giving information, it’s unlikely.

Determine if the following statement is likely: {action}
A) Likely.
B) Unlikely.

Estimating the likelihood of the action given the goal and belief

Determine if the statement is likely, and respond with only either A or B. If it’s not certain
but it’s possible, it’s likely.

{inf_agent}’s social goal: {goal}

{inf_agent}’s belief: {belief}

Here is a statement of {inf_agent}’s action. The belief stands for {inf_agent}’s current
belief. {inf_agent} is likely to act according to goal and belief concerning certain objects (the
wording for objects must be same. You should ignore the correlation of different objects. e.g.,
plate and apple are two different objects.) Notice that {inf_agent}’s belief does not represent
the goal.

When belief and goal are irrelevant, and action is driven by goal, it’s likely. When belief and
goal are relevant (about exactly the same object) and they contradict with action, it’s unlikely.

Determine if the following statement is likely: {action}
A) Likely.
B) Unlikely.

Estimating the likelihood of the best action among choices given the goal and belief

Determine if the statement is likely, and respond with only either A or B. If it’s not certain
but it’s possible, it’s likely.

{inf_agent}’s belief: {belief}

{inf_agent}’s goal: {goal}

If the next immediate actions possible are: {actions}

Determine which immediate action is most possible given the information about {inf_agent}’s
goal and belief.

Determine if the following statement is likely: {action_a} is a better immediate action than
{action_b}.

A) Likely.

B) Unlikely.

Estimating the likelihood of the initial belief

Determine if the statement is likely, and respond with only either A or B. If it’s not certain
but it’s possible, it’s considered likely.

Here is a statement of the story and {inf_agent}’ initial belief.

There is an action that causes the state of the main object to change. Based on {inf_agent}’s
observations determine if {inf_agent} perceives the state of the object change.

If it is not clearly stated that {inf_agent} perceives it then we do not assume that {inf_agent}
perceived the change of state.
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If {inf_agent} perceives this change then it is highly likely that {inf_agent}’s belief aligns
with the change of state of the object.

If {inf_agent} does not perceive this change or if it is unknown if {inf_agent} perceives this
change then it is highly likely that {inf_agent}’s belief does not align with the change of state
of the object.

Story: {story}

Think about the state of the world and others actions. {inf_agent}’ belief can change
throughout time through other’s actions and what {inf agent} can observe. It is also
important to think about if {inf_agent} can observe other’s actions. If {inf_agent} can
observe the same then their belief will change and if not then their belief will remain constant.
Use this to determine {inf agent}’s beliefs.

Determine if the following statement is likely: {statement}
A) Likely.
B) Unlikely.

Estimating the likelihood of the belief given the observation and previous belief

Determine if the statement is likely, respond with only either A or B.

{inf_agent}’s previous belief: {previous_belief}

{inf_agent}’s observation: {observation}

Here is a statement of {inf_agent}’s current belief. If {inf agent}’s current belief is not
aligned with {inf_agent}’s observation, it is very unlikely.

Determine if the following statement is likely: {statement}
A) Likely.
B) Unlikely.

Estimating the likelihood of the belief given the state and previous belief

Determine if the statement is likely, respond with only either A or B.

{inf_agent}’s previous belief: {belief}

State: {state}

Here is a statement of {inf_agent}’s current belief. If {inf_agent}’s current belief is not
aligned with the state, it is very unlikely.

Determine if the following statement is likely: {statement}
A) Likely.
B) Unlikely.

Estimating the likelihood of the utterance

Determine if {inf_agent}’s utterance is likely, and respond with only either A or B.
{inf_agent}’s belief: {belief}

{inf_agent}’s goal: {goal}

{inf_agent}’s utterance: {utterance}

When {inf_agent}’s goal is to help others, {inf_agent}’s utterance is likely when it strictly
reflects {inf_agent}’s belief, and unlikely if it does not reflect {inf_agent}’s belief.

When {inf_agent}’s goal is to hinder or to prevent others from achieving their goals,
{inf_agent}’s utterance is likely when it’s different from {inf_agent}’s belief, and unlikely if
it reflects {inf_agent}’s belief.

Determine if {inf_agent}’s utterance is likely.
A) Likely.
B) Unlikely.




F.4 Initial Model Proposal

We use the following prompts to propose an initial model for a question and determine if the question
has higher-order beliefs.

Proposing the initial model

What variables are necessary to solve this question? Please provide the answer without an
explanation.

Please select from the following: [“State”, “Observation”, “Belief”, “Action”, “Goal”]
State: The true condition of the environment. This should always be included.

Observation: The observed information about the state. Include this when the agent has
partial observations of the state.

Belief: The agent’s current estimation of the true state is based on the state or its observation.
Action: A move made by the agent, informed by the state or belief. Include this only when it
is directly relevant to answering the question.

Goal: The objective the agent is trying to achieve. Include this only if “Action” is included.

Question: {example_question }
Variables: {example_answer}
Question: {question}
Variables:

Determining if the question contains a higher-order belief

Determine whether the question is about a higher-order belief.

A higher-order belief refers to a belief about another person’s belief, goal, or action.

It is not a high-order belief if it only asks about one agent’s belief.

Please respond with “Yes” or “No”.

If the answer is “Yes”, the question often ends with “Where does A think that B ...7”
Otherwise, respond “No”.

Question: [A story involving several people.] Where will Jack look for the celery?
Higher-order belief: No

Question: [A story involving several people.] Where does Jack think that Chloe searches for
the hat?

Higher-order belief: Yes

Question: {question}

Higher-order belief:
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope. Our main contributions include: (1) a unified formulation of model-
based ToM inference; (2) the first approach of automated agent model discovery, AutoToM,
for scalable model-based ToM; and (3) a systematic evaluation of AutoToM on multimodal
ToM benchmarks, cognitive studies and embodied assistance tasks. The results show that
AutoToM outperforms state-of-the-art LLMs and large reasoning models, establishing a
scalable, robust, and interpretable framework for machine ToM.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section[3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper and the code fully disclose all the information needed to reproduce
the main experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specifies all the training and test details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports information about the statistical significance of the experi-
ments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For each experiment, the paper provides sufficient information on the computer
resources needed to reproduce the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper are properly credited.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper are well documented and the documentation
is provided alongside the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: The paper describes the usage of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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