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ABSTRACT

The rapid evolution of large language models (LLMs) holds promise for reforming
the methodology of spatio-temporal data mining. However, current works for
evaluating the spatio-temporal understanding capability of LLMs are somewhat
limited and biased. These works either fail to incorporate the latest language
models or only focus on assessing the memorized spatio-temporal knowledge. To
address this gap, this paper dissects LLMs’ capability of spatio-temporal data into
four distinct dimensions: knowledge comprehension, spatio-temporal reasoning,
accurate computation, and downstream applications. We curate several natural
language question-answer tasks for each category and build the benchmark dataset,
namely STBench, containing 15 distinct tasks and over 70,000 QA pairs. Moreover,
we have assessed the capabilities of 13 LLMs, such as GPT-4o, Gemma and Mistral.
Experimental results reveal that existing LLMs show remarkable performance on
knowledge comprehension and spatio-temporal reasoning tasks, with potential for
further enhancement on other tasks through in-context learning, chain-of-though
prompting, and fine-tuning. The code and datasets of STBench are released on
https://anonymous.4open.science/r/STBench-14C2.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) has opened up new possibilities across
various domains (Wang et al., 2024; Thirunavukarasu et al., 2023; Zhao et al., 2023). One promising
direction is enhancing spatio-temporal data analysis with the ability of LLMs (Li et al., 2024b; 2023;
Manvi et al., 2023). Spatio-temporal data, characterized by both spatial and temporal dimensions,
encompasses a variety of datasets crucial for many fields such as geography, meteorology, trans-
portation, and epidemiology. Despite LLMs’ remarkable proficiency in language-related tasks, their
applicability and effectiveness in handling spatio-temporal data remain relatively unexplored.

Existing evaluations of spatio-temporal data fall in two categorizes. The first category (Shi et al.,
2022; Mirzaee & Kordjamshidi, 2022; Li et al., 2024a) focus on evaluating the spatial analysis
capability of LLMs and design QA pairs of spatial reasoning such as asking “Is the yellow apple to
the west of the yellow watermelon?”. The QA pairs are constructed in toy environments without
temporal information, which is insufficient to assess the ability of LLM on real spatio-temporal
tasks. The second category (Gurnee & Tegmark, 2023; Yamada et al., 2023) aims to evaluate the
spatio-temporal analysis capability but only assesses the abilities of LLMs’ in one specific dimension.
For example, the most recent work (Gurnee & Tegmark, 2023) tends to evaluate the memory ability
of spatio-temporal knowledge. For a comprehensive evaluation, we argue that the abilities of LLMs
in spatio-temporal analysis should contain not only the memory ability but also other dimensions,
such as reasoning and knowledge comprehension.

To achieve this goal, we propose a framework, namely STBench, for evaluating the spatio-temporal
capabilities of LLMs. As shown in Figure 1, STBench dissects the LLMs’ capacity into four distinct
dimensions: knowledge comprehension, spatio-temporal reasoning, accurate computation, and
downstream applications. Knowledge Comprehension examines the model’s capacity to understand
and interpret the underlying meaning and context of spatio-temporal information. Spatio-Temporal
Reasoning evaluates the ability to understand and reason about the spatial and temporal relationships
between entities and events. Accurate Computation handles the precise and complex calculations of
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Figure 1: Overview of STBench. It consists of 15 distinct tasks covering four dimensions: knowledge
comprehension, spatio-temporal reasoning, accurate calculation and downstream applications.

spatio-temporal data. Moreover, we also employ some Downstream Applications such as trajectory
anomaly detection and trajectory prediction to assess the ability of LLMs on practical tasks.

For each evaluated dimension, we design several tasks and construct QA pairs to assess the ability of
LLMs qualitatively. We have curated a benchmark dataset, STBench, which contains over 70,000
QA pairs and 15 distinct tasks covering the four dimensions. Furthermore, we evaluated the latest 13
LLMs, including GPT-4o1, Gemma (Mesnard et al., 2024), Llama2 (Touvron et al., 2023), and provide
a detailed report that quantitatively assesses the four dimensional abilities of LLMs. Our experimental
results reveal that existing LLMs show remarkable performance on knowledge comprehension and
spatio-temporal reasoning tasks, but the performance across most models is generally low for accurate
computation tasks and downstream application tasks. We also conduct experiments to investigate if in-
context learning, chain-of-thought prompting and supervised fine-tuning can enhance the performance
of LLMs on spatio-temporal reasoning. The results demonstrate the great potential of LLMs in
spatio-temporal data analysis. While numerous benchmarks for knowledge comprehension (Wang
et al., 2019), commonsense reasoning (Sakaguchi et al., 2021) and mathematical calculation (Cobbe
et al., 2021) have indeed become targets for LLMs to excel and improve upon, the critical area of
spatio-temporal data analysis is overlooked. A dedicated benchmark like STBench will not only
facilitate the assessment of current models but also encourage further research on spatio-temporal
capabilities while developing new LLMs.

The contributions of this paper are summarized as following:

• This paper presents STBench, a comprehensive benchmarking framework designed to
evaluate the spatio-temporal analysis capabilities of LLMs. STBench is both user-friendly
and highly extensible, allowing users to effortlessly reproduce experimental results across 13
LLMs and 15 tasks with a single script. Its modular design facilitates the seamless addition
of new LLMs, tasks, or datasets.

• For a comprehensive evaluation, STBench categorizes spatio-temporal abilities into four
dimensions, each with multiple tasks tailored to various data types, including POI, trajectory,
region and traffic flow. STBench further incorporates multiple enhancement methods,
including in-context learning, chain-of-thought and supervised fine-tuning, to investigate
the potential of LLMs in spatio-temporal analysis.

• Extensive experiments are conducted and the results highlight the remarkable performance
of LLMs in knowledge comprehension and spatio-temporal reasoning tasks, while also
identifying areas for improvement in accurate computation and downstream applications. It
reveals the great potential of LLMs in spatio-temporal analysis.

1https://platform.openai.com/docs/models/gpt-4o
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2 RELATED WORK

The rapid development of large-scale language models has attracted widespread interest from various
communities (Zhang et al., 2024b; Jin et al., 2023; Zhang et al., 2024a; Kasneci et al., 2023). Many
researchers studied the capabilities of LLMs (Chang et al., 2023; Chen et al., 2021; 2024) and some
of them investigated the potential in spatio-temporal mining.

Spatial analysis capabilities. (Mirzaee et al., 2021) proposed a question-answering (QA) benchmark
for spatial reasoning with natural language texts. (Shi et al., 2022) presented a QA dataset to evaluate
language models’ capability of multi-hop spatial reasoning. (Mirzaee & Kordjamshidi, 2022)
provided two datasets about spatial question answering and spatial role labeling problems. (Li et al.,
2024a) further improved a previous benchmark to provide a more accurate assessment. However,
these works only focus on spatial reasoning in toy environments. They ignore the temporal dimension
and are far from the real scenarios of spatio-temporal applications.

Spatio-temporal analysis capabilities. (Ji & Gao, 2023) evaluated the ability of LLMs to represent
geometric shapes and spatial relationships. (MOONEY et al., 2023) examines the performance of
ChatGPT in a geographic information systems exam to evaluate its spatial literacy. (Roberts et al.,
2023a) investigates the geographic capabilities of GPT-4 (OpenAI, 2023) through a series of qualita-
tive and quantitative experiments. (Gurnee & Tegmark, 2023) analyzes the learned representations
of several spatial and temporal datasets by training linear regression probes. (Yamada et al., 2023)
evaluates the ability of LLMs to represent and reason about spatial structures, such as squares and
hexagons. (Hochmair et al., 2024) assesses four closed-source LLMs on a set of tasks, primarily
focusing on coding capabilities, such as code interpretation and code generation. These works either
only analyze a specific model or only examine the capabilities of a specific aspect, failing to provide
a comprehensive evaluation of the latest closed-source and open-source LLMs. There are two most
relevant works and one of which is (Roberts et al., 2023b), which assesses the geographic and geospa-
tial capabilities of multimodal LLMs. Their tasks are completely designed for multimodal models
and are not applicable to single-modal large language models. The other one is (Feng et al., 2024),
which design 7 tasks in 2 categories of perception-understanding and decision-making to evaluate
the capability of LLMs. To comprehensively assess the spatio-temporal ability of LLMs, in this
paper, we categorize the spatial-temporal abilities into four dimensions: knowledge comprehension,
spatio-temporal reasoning, accurate computation and downstream applications. Based on this, we
propose a benchmark consisting of 15 tasks and over 70,000 QA pairs. We benchmarked 13 latest
LLMs to assess their capabilities and to investigate their potential in spatio-temporal mining.

3 PRELIMINARY

In spatio-temporal data mining, concepts such as Point of Interest (POI) and trajectory play a funda-
mental role in representing and analyzing spatio-temporal data. Before presenting the construction
methodology of our benchmark, we formally define these concepts in this section.

DEFINITION 1 (Point of Interest): A point of interest (POI) is a specific geographic location
p =< ip, latp, lonp, cp,Mp >, where ip is the ID number, latp is the latitude, lonp is the longitude,
cp denotes the category of this POI and Mp = {m1,m2, · · · } is a set of comments about this POI.

DEFINITION 2 (Trajectory): Each trajectory t =< t1, t2, · · · > is a sequence of points, where each
point ti =< lati, loni, timei > is a triplet of latitude, longitude and timestamp.

DEFINITION 3 (Region): A region is a defined area that is distinct from its surroundings. Each
region r =< br, cr,Pr > is characterized by its boundary lines br and the region function category
cr. The set Pr = {p1, p2, · · · } denotes the POIs that fall in this region.

DEFINITION 4 (Inflow/Outflow): The inflow Iri and outflow Or
i are defined as the number of

trajectories entering and leaving a specific region r within the i-th time interval, respectively.
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Table 1: A prompt template of the samples in STBench. The blue texts describe the question. The
brown texts are the options. The teal texts denote the guidance that constrains the output of LLMs.

Question: Below is the coordinate information and related comments of a point of interest: · · · .
Please answer the category of this point of interest.
Options: (1) xxxx, (2) xxxx, (3) xxxx, · · · .
Please answer one option.
Answer: The answer is option (

4 BENCHMARK CONSTRUCTION

In this section, we propose a benchmark, STBench, to assess the ability of LLMs in spatio-temporal
analysis. We will begin by presenting the considerations that guide the design of STBench. Subse-
quently, we will delve into a detailed exposition of the construction of STBench.

4.1 OVERVIEW

To construct a benchmark for assessing the ability of LLMs in spatio-temporal data, we should first
consider the evaluation tasks and the data format.

Ability Categories. Choosing or designing appropriate tasks is crucial for assessing the ability of
LLMs in spatio-temporal data mining. Real-world applications often require a mixture of multiple
abilities, e.g., the POI recommendation task requires both the knowledge comprehension ability to
understand the semantics of different POI categories and the spatio-temporal reasoning ability to infer
the mobility patterns. Thus it is difficult to separately evaluate each capability dimension of LLMs
and analyze their strengths and weaknesses solely based on real-world tasks. Therefore, to provide
a comprehensive evaluation, we categorize the requisite abilities into four dimensions: knowledge
comprehension, spatio-temporal reasoning, accurate computation, and downstream applications. For
each category, we design several tasks for assessment.

Data Format. Another important question is what data format we should adopt. There are some
problems if we directly ask the model through dialogue and allow open-ended answers. Firstly, the
response of LLMs is uncontrolled. For instance, models may only apologize for not being able to
provide an accurate answer, rather than directly responding to our question. Moreover, open-ended
answers make it difficult to identify the final answer of LLMs, e.g., LLMs may reply with a lot of
explanation or even some unrelated content. Therefore, we have LLMs complete the input texts,
rather than asking LLMs through dialogue. As shown in Table 1, each data sample in STBench
consists of three parts: the question, the options and the guidance. The LLMs should continue the
guidance text, i.e., they should generate an option number, thus the output is controllable. Note that
some chat models do not support text completion, thus we instruct these models to complete the texts
through system prompts. The details are in Appendix A in the supplementary material.

4.2 KNOWLEDGE COMPREHENSION

The model’s capacity to understand and interpret the underlying meaning and context of spatio-
temporal information is important. This involves the ability to comprehend the semantic nuances
within the data and the knowledge of relevant spatio-temporal concepts and entities, e.g., under-
standing and distinguishing different POI categories. We provide valuable insights into LLMs’
spatio-temporal knowledge comprehension capabilities through four tasks: POI category recognition,
POI identification, urban region function recognition, and administrative region determination.

POI Category Recognition (PCR). The semantics of POI are crucial in various applications
such as POI recommendation, thus we design this task to evaluate LLM’s understanding of POI
semantics. Data samples of this task are generated based on the public Yelp dataset2. Specifi-
cally, we randomly sample some POIs from the Yelp dataset for data construction. For each POI
p =< ip, latp, lonp, cp,Mp >, we randomly select two comments mi1 ,mi2 from the comment

2https://www.yelp.com/dataset.
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set Mp. Then, LLMs are asked to predict the category cp of the POI according to its coordinates
< latp, lonp > and the selected comments < mi1 ,mi2 >. The POI category cp and four other
randomly sampled POI categories are provided as options.

POI Identification (PI). In this task, the coordinates and comments of two POIs are pro-
vided and LLMs are asked to determine if they are the same POI or not. For a POI p =<
ip, latp, lonp, cp,Mp > in the Yelp dataset, we construct a positive sample (i.e., the answer
is ”Yes”) and a negative sample based on it. For the positive sample, we ask the model if
< latp, lonp,mi1 ,mi2 > and < latp + ϵ1, lonp + ϵ2,mi3 ,mi4 > describe the same POI, where
mij , 1 ≤ j ≤ 4 are comments sampled from the comment set Mp and ϵ1, ϵ2 ∼ U(0.0004, 0.0008)
are minor disturbances to the coordinates. For negative samples, we construct a KD-Tree and sample
another POI p′ =< ip′ , latp′ , lonp′ , cp′ ,Mp′ > from the nearest five neighbors of p. Then, the
negative sample is constructed based on < latp, lonp,mi1 ,mi2 > and < latp′ , lonp′ ,mi5 ,mi6 >,
where mi5 ,mi6 are comments sampled from the comment set Mp′ .

Urban Region Function Recognition (URFR). This task requires LLMs to predict the urban region
function according to the boundary lines and the POIs located in the region, which evaluates LLMs’
understanding of urban regions. To construct data samples, we first match POIs in the Yelp dataset and
regions in the New Orleans region dataset3, removing POIs that do not fall in any region and regions
that contain no more than one POI. After that, for each region r =< br, cr,Pr >, we randomly select
two POIs {pk =< ipk

, latpk
, lonpk

, cpk
,Mpk

> |k = i1, i2} from its POI set Pr. For each pk, two
comments mpk

1 ,mpk

2 are sampled from the comment set Mpk
, where k ∈ i1, i2. Then, we ask LLMs

to predict the region function cr according to its boundary lines br, the coordinates and comments of
the selected POIs, i.e., {< latpk

, lonpk
,mpk

1 ,mpk

2 > |k = i1, i2}. We provide the region function cr
and four other region function categories as options.

Administrative Region Determination (ARD). This task refers to determining which administrative
region a coordinate is located in, which involves relevant knowledge of the administrative regions and
the ability to associate it with geographical coordinates. For a POI p =< ip, latp, lonp, cp,Mp > of
the Yelp dataset located in cityp, LLMs are asked to answer which city < latp, lonp > is located in.
cityp along with other four cities in the same state are provided as options.

4.3 SPATIO-TEMPORAL REASONING

Spatio-temporal reasoning encompasses the ability to understand and reason about the spatial and
temporal relationships between entities and events. For example, given a POI and some regions, LLMs
should determine which region the POI falls in according to their coordinates and boundary lines.
We design four tasks to assess the spatio-temporal reasoning ability of large language models: point-
trajectory relationship detection, point-region relationship detection, trajectory-region relationship
detection and trajectory identification.

Point-Trajectory Relationship Detection (PTRD). The task is to determine whether a trajectory
passes through a point. To generate a data sample, we downsample the trajectory in the public
Xi’an dataset4 into a shorter trajectory t = {t1, · · · , tn} and construct five points as options. We
take < (lati + lati+1)/2, (loni + loni+1)/2 > as the true option, where < lati, loni > and
< lati+1, loni+1 > are two adjacent points in the trajectory. To construct an error option, we sample
a point tj =< latj , lonj , timej > from the trajectory and perturb its coordinates with Gaussian
noise, i.e., the error option is < latj + ϵ1, lonj + ϵ2 >, where ϵ1, ϵ2 ∼ N (0.01, 0.001).

Point-Region Relationship Detection (PRRD). Given a point and several regions, this task aims
to infer which region the point falls in. To generate a data sample, we select i regions {r1, · · · , ri}
located in the same city from the EULUC dataset Gong et al. (2020). Then, a region rj is chosen
from these i regions and we randomly selected a point p in region rj . The coordinates of point p and
the boundary lines of i regions are used to generate the question texts, and all i regions are provided
as options. We construct four sub-datasets by varying the value of i from 2 to 5.

Trajectory-Region Relationship Detection (TRRD). Given a trajectory and some regions, this task
aims to determine which regions the trajectory has passed through chronologically. To construct a
data sample, we randomly select five regions {r1, · · · , r5} located in the same city from the EULUC

3https://catalog.data.gov/dataset/zoning-district-9939c
4https://gaia.didichuxing.com/
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dataset and generate a trajectory t by a random walk. The region sequence that t passes through and
four randomly generated region sequences are provided as options. We construct five sub-datasets by
setting the length of t to 2, 4, 6, 8 and 10, respectively.

Trajectory Identification (TI). In this task, we ask LLMs to determine if two point sequences
t′ and t′′ are sampled from the same trajectory. We propose two strategies to construct positive
samples (i.e., samples with the answer “Yes”) and two strategies to construct negative samples.
Specifically, for a trajectory t =< t1, t2, · · · > in the Xi’an dataset, we construct two positive
samples through downsampling and staggered sampling. For instance, the downsampling strategy
use t′ =< t1, t2, t3, · · · > and t′′ =< t1, t3, t5, · · · > to generate the question, while the staggered
sampling strategy use t′ =< t1, t3, t5, · · · > and t′′ =< t2, t4, t6, · · · > to generate the question. To
construct negative samples, we downsample a trajectory t into t′ and add temporal offsets or spatial
offsets to t′ to obtain t′′.

4.4 ACCURATE COMPUTATION

In the context of handling spatial-temporal data, accurate computation plays a pivotal role. It focuses
on the model’s capability to perform precise and complex calculations related to spatial-temporal
data. We include three tasks that challenge the model’s accuracy in spatial-temporal computations for
assessment: direction determination, navigation and trajectory-trajectory relationship detection.

Direction Determination (DD). This task is to determine the direction between two geographical
points. To create a data sample, two POIs are randomly chosen from the Yelp dataset, and the model
is asked to calculate the corresponding azimuth and to determinate their relative direction based
on the calculation result. Eight options are provided for all data samples: north, south, west, east,
northeast, northwest, southeast and southwest.

Navigation (NAV). In this task, LLMs are asked to plan a shortest route from a source point to a
destination point based on a given road network. To construct a data sample, we randomly selected n
points p1, · · · ,pn from a given region, interconnect them to form a complete graph, and subsequently
apply Kruskal’s algorithm (Kruskal, 1956) to derive the minimum spanning tree G from this complete
graph. We add edges to G so that we can obtain a connected graph G′ with 1.5n edges. We randomly
sample two points ps and pd as the source point and destination point, and ask LLMs which edge
connecting to ps is on the shortest path. All edges connecting to ps are provided as options. There are
two sub-datasets, i.e., edges with weights and edges without weights, where LLMs need to minimize
the length or hop count of the route, respectively.

Trajectory-Trajectory Relationship Analysis (TTRA). This task is to calculate the number of
times two trajectories encounter each other. To construct a data sample, we generate two trajectories
t =< t1, · · · , tn > and t′ =< t′1, · · · , t′n > through random walks within a certain area. We count
it as an encounter if titi+1 and t′jt

′
j+1 intersect in space and overlap in time, where 1 ≤ i, j ≤ n− 1.

We provided the ground truth and other four wrong answers as options.

4.5 DOWNSTREAM APPLICATIONS

Downstream tasks require the model to not only understand the spatial-temporal context but also apply
this understanding to practical applications. We assess this aspect of LLMs through four downstream
tasks: flow prediction, trajectory anomaly detection, trajectory classification and trajectory prediction.

Flow Prediction (FP). This task requests LLMs to predict the future inflows and outflows based on
the historical inflows and outflows. Specifically, to construct a data sample, we randomly select a
region r and a timestamp t from TaxiBJ (Zhang et al., 2017) and ask LLMs to predict Irt+i and Or

t+i
(1 ≤ i ≤ 6) of the next 6 time intervals according to the historical inflows Irt−j and outflows Or

t−j
(0 ≤ j ≤ 12) over the past 12 time intervals.

Trajectory Anomaly Detection (TAD). In order to detect anomalous trajectories, LLMs should
infer the underlying route and shape from trajectory data. We consider trajectories in Xi’an dataset
as normal and perform detours to generate anomalous samples. Specifically, given a trajectory
t =< t1, · · · , tn >, we identify the direction perpendicular to the line connecting t1 and tn, and
move the middle one-third of the trajectory along this direction to generate an anomalous sample.

6
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Trajectory Classification (TC). This task requires the model to comprehensively consider the
coordinates, length, speed and other relevant information to distinguish different trajectories. We
construct dataset for this task based on the Geolife dataset5. Due to the input length limitation of
LLMs, we downsample each trajectory and ask LLMs to infer what generates the trajectory. Three
options are provided: bike, car and pedestrian.

Trajectory Prediction (TP). This task is to predict the next point based on the historical points of
a trajectory, which involves the ability to model the trajectory patterns and the moving speed. We
construct data samples for this task based on the trajectories in the Xi’an dataset. Specifically, we
first downsample the each trajectory with a time interval of 30 seconds. Then, for each trajectory
t =< t1, t2, · · · , tn >, we ask LLMs to predict the coordinates of tj according to the historical
points < t1, · · · , tj−1 >, where 3 ≤ j ≤ n. Note that we do not provide options in this task.

5 EXPERIMENTS

We conduct extensive experiments on STBench to evaluate the spatial-temporal ability of LLMs and
to investigate if in-context learning, chain-of-thought and fine-tuning can improve the performance.

5.1 EXPERIMENTAL SETUP

Evaluated models. We evaluate the performance of two closed-source model, i.e., ChatGPT and
GPT-4o, and a set of open-source models: Llama-2 (Touvron et al., 2023), Vicuna6, Gemma (Mes-
nard et al., 2024), Phi-2, ChatGLM2, ChatGLM3, (Du et al., 2022; Zeng et al., 2023), Mis-
tral (Jiang et al., 2023), Falcon (Almazrouei et al., 2023), Deepseek (Bi et al., 2024), Qwen (Bai
et al., 2023) and Yi (Young et al., 2024). More introduction to these models can be found in Appendix
B.1 in the supplementary material.

Metrics. We adopt accuracy for tasks other than trajectory prediction and flow prediction. For
trajectory prediction, we report absolute error, i.e., the distance in meters between the predicted
coordinates and ground truth. For flow prediction, we adopt MAE and RMSE as the metrics.

Experimental details. In our experiments, we adopt the precision of FP32 for all LLMs. For all tasks
except trajectory prediction, LLMs are expected to answer an option or “Yes”/“No”, thus we set the
max new tokens to 15, i.e., the maximum length of the generated new tokens is 15. For trajectory
prediction and flow prediction, we set the max new tokens to 50. For other hyperparameters, we
adopt the default value of each model. All experiments of open source models are conducted on two
NVIDIA H100.

5.2 MAIN RESULTS

To investigate the spatio-temporal ability of LLMs, we conduct experiments to evaluate the perfor-
mance of all models on each task. The main results are shown in Table 2 and Table 3. More detailed
results and analysis, e.g., results regarding each sub-dataset, can be found in Appendix B.2 in the
supplementary material.

Model size is important for knowledge comprehension. For knowledge comprehension, GPT-4o
performs better than ChatGPT on all tasks, and ChatGPT outperforms other models on most tasks.
Take PCR as an example, GPT-4o achieved an accuracy of 95.88% and ChatGPT achieved an accuracy
of 79.26%, while the accuracy of other open-source LLMs is below 50%. The possible reason is
that LLMs rely on sufficient parameters to compress and store knowledge, and ChatGPT/GPT-4o
has more parameters than other evaluated open-source models. We also observe that Gemma-2B
performs poorly on all knowledge comprehension tasks, while Gemma-7B, with the same technology
but more parameters, achieves higher performance. It also supports the conclusion that model size is
important for knowledge comprehension.

The evaluated models have difficulty in multi-step reasoning. The performance of most models
on point-region relationship detection is much higher than trajectory-region detection. For instance,

5https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
6https://lmsys.org/blog/2023-03-30-vicuna/
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Table 2: The performance of ACC on knowledge comprehension and spatio-temporal reasoning tasks
(bold: best closed-source LLM; underline: best open-source LLM). ‘-’ denotes the model failed to
answer most questions.

Knowledge Comprehension Spatio-temporal Reasoning
PCR PI URFR ARD PTRD PRRD TRRD TI

ChatGPT 0.7926 0.5864 0.3978 0.8358 0.7525 0.9240 0.0258 0.3342
GPT-4o 0.9588 0.7268 0.6026 0.9656 - 0.9188 0.1102 0.4416
ChatGLM2 0.2938 0.5004 0.2661 0.2176 0.2036 0.5216 0.2790 0.5000
ChatGLM3 0.4342 0.5272 0.2704 0.2872 0.3058 0.8244 0.1978 0.6842
Phi-2 - 0.5267 - 0.2988 - - - 0.5000
Llama-2-7B 0.2146 0.4790 0.2105 0.2198 0.2802 0.6606 0.2034 0.5486
Vicuna-7B 0.3858 0.5836 0.2063 0.2212 0.3470 0.7080 0.1968 0.5000
Gemma-2B 0.2116 0.5000 0.1989 0.1938 0.4688 0.5744 0.2014 0.5000
Gemma-7B 0.4462 0.5000 0.2258 0.2652 0.3782 0.9044 0.1992 0.5000
DeepSeek-7B 0.2160 0.4708 0.2071 0.1938 0.2142 0.6424 0.1173 0.4964
Falcon-7B 0.1888 0.5112 0.1929 0.1928 0.1918 0.4222 0.2061 0.7072
Mistral-7B 0.3526 0.4918 0.2168 0.3014 0.4476 0.7098 0.0702 0.4376
Qwen-7B 0.2504 0.6795 0.2569 0.2282 0.2272 0.5762 0.1661 0.4787
Yi-6B 0.3576 0.5052 0.2149 0.1880 0.5536 0.8264 0.1979 0.5722

the accuracy of ChatGPT is 92.40% on point-region relationship detection, with only 2.58% on
trajectory-region relationship detection. Note that trajectory-region relationship detection can be
achieved by performing point-region relationship detection for each point in the trajectory, thus it is a
multi-step reasoning task. Although models such as ChatGPT, GPT-4o, and Gemma-7B can achieve
high performance on each step, their performance on this multi-step task is poor.

Accurate computation and downstream tasks are more challenging. As shown in Table 3, the
accuracy of all models except GPT-4o is below 45% on accurate computation tasks, which is because
LLMs are mainly trained on nature language corpus and are not good at computation. We also find
that GPT-4o outperforms other LLMs by a large margin, e.g., it achieved an accuracy of 75.52%
on NAV, with a relative improvement of 72.3% compared to other LLMs. This is consistent with
the significant improvement in mathematical ability of GPT-4o. Moreover, the performance of
evaluated models is also poor on downstream tasks. For instance, the best performance on trajectory
anomaly is only 60.16%, indicating that most evaluated models can not distinguish between normal
and anomalous trajectories. The lack of expert knowledge on downstream tasks, e.g., the normal
trajectory patterns, leads to their unsatisfactory performance.

A suitable model is more important than larger parameters for spatio-temporal mining. We
observe ChatGPT and GPT-4o outperform poorer than most open-source models on TRRD and TI,
despite having a larger number of parameters. On FP, the lightweight model, Phi-2, with only 2.7B
parameteres, performs better than all models except Gemma-7B. Although LLMs have the potential
to analyze spatio-temporal data, not all models have been adequately trained on relevant corpora and
learned corresponding spatio-temporal ability, regardless of the model size. It leads to a significant
difference in performance between different models for many spatio-temporal tasks.

5.3 IN-CONTEXT LEARNING EVALUATION

Although some evaluated LLMs can perform well on certain tasks, the results in many scenarios
are poor. Since LLMs show impressive in-context few-shot learning capacity in previous works, we
conduct experiments to investigate if in-context learning can improve the performance of LLMs on
STBench. Specifically, we select six tasks where the evaluated models performed poorly and we
adopt two-shot prompting. Due to the heavier computation cost caused by the longer context, we
only evaluate one closed-source model, ChatGPT, and two open-source models with different model
sizes, i.e., Gemma-2B and Llama-2-7B. The results are shown in Fig. 2(a).
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Table 3: The performance of ACC, MAE and absolute error (in meters) on accurate computation and
downstream tasks (bold: best closed-source LLM; underline: best open-source LLM). ‘-’ denotes the
model failed to directly answer most questions.

Accurate Computation Downstream Applications
DD NAV TTRA FP TAD TC TP

ChatGPT 0.1698 0.4384 0.1048 37.33 0.5382 0.4475 -
GPT-4o 0.5434 0.7552 0.3404 43.25 0.6016 - -
ChatGLM2 0.1182 0.2924 0.1992 63.72 0.5000 0.3333 231.2
ChatGLM3 0.1156 0.2576 0.1828 59.24 0.5000 0.3111 224.5
Phi-2 0.1182 0.2912 0.0658 34.82 0.5000 0.3333 206.9
Llama-2-7B 0.1256 0.2774 0.2062 53.79 0.5098 0.3333 189.3
Vicuna-7B 0.1106 0.2588 0.1728 48.19 0.5000 0.2558 188.1
Gemma-2B 0.1972 0.2592 0.2038 41.79 0.5000 0.3333 207.7
Gemma-7B 0.1182 0.3886 0.1426 31.85 0.5000 0.3333 139.4
DeepSeek-7B 0.1972 0.3058 0.1646 56.89 0.5000 0.3333 220.8
Falcon-7B 0.1365 0.2610 0.2124 62.52 0.5000 0.3309 3572.8
Mistral-7B 0.1182 0.3006 0.1094 42.59 0.5000 0.3333 156.8
Qwen-7B 0.1324 0.3106 0.2424 53.49 0.5049 0.3477 205.2
Yi-6B 0.1284 0.3336 0.2214 52.03 0.5000 0.3333 156.2

(a) (b) (c)

Figure 2: The performance of ACC and absolute error (in meters) in (a) in-context learning evaluation,
(b) chain-of-thought evaluation, (c) fine-tuning evaluation.

The performance of ChatGPT has been greatly improved with in-context learning. For instance, its
accuracy on POI identification and direction determination has increased from 58.64% to 76.30%,
and from 16.98% to 43.16%, respectively. Moreover, the two-shot prompting also constrains the
output, e.g., ChatGPT refuses to answer the questions of trajectory prediction in Table 3, but its
absolute error is only 119.4 with two-shot prompting. Although in-context learning is effective for
ChatGPT, it is useless for Gemma-2B and Llama-2-7B, which is consistent with the phenomenon in
previous work that in-context learning is less effective for smaller LLMs (Wei et al., 2022).

5.4 CHAIN-OF-THOUGHT EVALUATION

We further conduct experiments to verify if chain-of-thought (CoT) is effective on STBench. Specif-
ically, we evaluate ChatGPT and Gemma-2B with CoT prompting on several tasks that involve
multi-step reasoning: urban region function recognition, trajectory-region relationship detection,
trajectory-trajectory relationship analysis and trajectory classification. For each task, we add two
samples with a detailed reasoning process in the context, i.e., we implement CoT by two-shot prompt-
ing. For instance, in trajectory classification, we add two samples that contain the reasoning process
of calculating the length and average speed of the trajectory. The results are shown in Fig. 2(b).

We observe the performance of ChatGPT increases significantly in all selected tasks. For instance,
its accuracy with CoT prompting is 52.20% on URFR and 61.04% on TC, much better than 39.78%
and 44.75% in Table 2 and Table 3. For Gemma-2B, the performance on all selected tasks is also
improved. For example, its accuracy increased from 19.89% to 22.55% on urban region function
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Phi-2 Gemma-2B Gemma-2B w/ SFT STID PatchTST

Inflow MAE 38.14 41.39 26.79 38.57 24.43
RMSE 42.59 45.54 30.87 43.62 28.28

Outflow MAE 31.50 42.19 25.91 36.96 23.49
RMSE 35.80 46.21 29.87 42.04 27.25

Table 4: The performance of MAE and RMSE of Phi-2, Gemma-2B, fine-tuned Gemma-2B, STID
and PatchTST.

recognition and from 33.33% to 40.05% on trajectory classification. The results demonstrate the
effectiveness of CoT prompting in spatio-temporal analysis.

5.5 FINE-TUNING EVALUATION

While in-context learning and chain-of-thought is less effective for smaller models, we conduct
experiments to investigate if fine-tuning can significantly improve the performance on STBench.
Specifically, we select several tasks and follow the construction strategies in Section 4 to generate
1,2000 samples as the training dataset for each task. We adopt QLoRA Dettmers et al. (2023) to
fine-tune the model on the training dataset for each task, with the learning rate of 2e-4, the rank
of 8 and NF4 quantization. Due to the very high computational cost and memory usage, we only
fine-tune a 2B model for evaluation, i.e., Gemma-2B. To compare the fine-tuned LLM with existing
supervised methods, we train two effective flow prediction method, i.e., STID (Shao et al., 2022) and
PatchTST (Nie et al., 2023), on the same dataset. The results are shown in Fig. 2(c) and Table 4.

The performance on all tasks in Fig. 2 is significantly improved after fine-tuning. For instance, the
accuracy on administrative region determination and direction determination increased from 19.89%
to 91.98%, and from 19.72% to 47.08%, respectively. For trajectory prediction, Gemma-2B achieves
the absolute error of 147.8 meters, which is better than all 7B models in Table 3. This confirms LLMs’
potential in spatial-temporal analysis and existing LLMs’ lack of training on relevant corpora.

As shown in Table 4, the zero-shot capability of LLMs is surprising that Phi-2 (without fine-tuning
and few-shot prompting) can surpass the supervised method STID. While Gemma-2B performs
poorer than both STID and PatchTST, it outperforms STID and achieved comparable performance to
PatchTST after supervised fine-tuning. Overall, the experimental results reveal the bright prospects
of LLMs in spatio-temporal data analysis.

6 CONCLUSION

In this work, we propose STBench to assess LLMs’ ability in spatio-temporal analysis. STBench
consists of 15 tasks and over 70,000 QA pairs, systematically evaluating four dimensions: knowledge
comprehension, spatio-temporal reasoning, accurate computation, and downstream applications.
We benchmark 13 latest LLMs and the results show their remarkable performance on knowledge
comprehension and spatio-temporal reasoning tasks. Our further experiments with in-context learning,
chain-of-thought prompting and fine-tuning also prove the great potential of LLMs on other tasks.
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