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Abstract

We study online learning of feedforward neural networks with the sign activation
function that implement functions from the unit ball in R? to a finite label set
Y ={1,...,Y}. First, we characterize a margin condition that is sufficient and
in some cases necessary for online learnability of a neural network: Every neu-
ron in the first hidden layer classifies all instances with some margin v bounded
away from zero. Quantitatively, we prove that for any net, the optimal mistake
bound is at most approximately TS(d, ), which is the (d, v)-totally-separable-
packing number, a more restricted variation of the standard (d, )-packing number.
We complement this result by constructing a net on which any learner makes
TS(d, ) many mistakes. We also give a quantitative lower bound of approxi-
mately TS(d,~) > max{1/(yv/d)%,d} when v < 1/2, implying that for some
nets and input sequences every learner will err for exp(d) many times, and that
a dimension-free mistake bound is almost always impossible. To remedy this
inevitable dependence on d, it is natural to seek additional natural restrictions to be
placed on the network, so that the dependence on d is removed. We study two such
restrictions. The first is the multi-index model, in which the function computed by
the net depends only on k£ < d orthonormal directions. We prove a mistake bound
of approximately (1.5/7)*¥*2 in this model. The second is the extended margin
assumption. In this setting, we assume that all neurons (in all layers) in the network
classify every ingoing input from previous layer with margin v bounded away from
zero. In this model, we prove a mistake bound of approximately (log Y') /v,
where L is the depth of the network.

1 Introduction

We study online learning of feedforward neural networks with sign activation functions that implement
functions from the unit ball in R?, denoted by B (Rd), to the label set Y = {1,...,Y} where Y > 2.

In more detail, we consider the following setting. An adversary Adv and a learner Lrn are rivals in
a repeated game played for some unbounded number of rounds 7". In each round ¢, Adv sends an
instance z; € B (Rd) to Lrn, and Lrn sends back a predictio 9 € Y. Lrn then receives the true
label y; € Y from Adv, and suffers the loss 1[§; # y:]. The goals of Lrn and Adv are opposite: Lrn’s
goal is to minimize the mistake bound 3, ) 1§+ # y:|, and Adv’s goal is to maximize it.

Our results and analysis focus on the realizable setting, where there exists an unknown target function
®*: B(R?) — Y implementable by some neural network, such that yy; = ®*(z;) in every round ¢.
In this setting, we denote the mistake bound of Lrn on a sequence of instances S = x1,zo, ...,z
by M(Lrn, S) = 3,7y 1[0 # ®*(21)]. As we explain in the sequel, the agnostic case in which the

adversary is allowed to respond with y; # ®*(x;) is handled by the agnostic-to-realizable reduction

'We focus on deterministic learners.
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of [Hanneke et al.| [2023al] to obtain a regret bound of 0) (\/ M T) , where M is the mistake bound
guaranteed when realizability is enforced, and 7' is the number of rounds.

To the best of our knowledge, the task of online learning neural networks was not extensively explored
in the literatureﬂ However, we do believe that this is an important task for a variety of reasons:

1. Many learning tasks are not well captured by an i.i.d. assumption and fit well as an online
learning model. This includes weather prediction, financial prediction, ad click prediction
etc. Given the prominent role of neural networks in various learning and prediction tasks, it
is natural to study online learning algorithms for neural networks.

2. The online learning setting is adversarial, difficult, and general. Therefore, online learning
mistake bounds often have implications in other settings of learning. A non-exhaustive
list of examples include PAC-learning (by using online-to-batch conversions) [Littlestone}
1989], private learning [Alon et al., 2022al], and transductive learning [Hanneke et al., 2023b,
2024]).

3. This is a natural task, and as our work shows, standard and natural learning techniques
reveal connections between online learning of neural networks to a known geometric
quantity known as the totally-separable-packing number (see Section[2.T), and to the widely
practically applied paradigm of pruning neural networks [Blalock et al., 2020, (Cheng et al.
2024 (see Section[3:3).

4. Some learning tasks related to transformers use an autoregressive learning model, which is
closely linked with online learning: The recent work [Joshi et al., [2025] shows that learning
with reasonable sample complexity in an autoregressive model is impossible for some
PAC-learnable function classes. However, all online learnable classes are also learnable in
the autoregressive model. Our work suggests that under certain assumptions on the target
network and the input, autoregressive learning of neural networks could be possible with
reasonable sample complexity.

As mentioned, we focus our study on neural networks with sign activation functions. While this
activation function is not used in practical applications of neural networks, there are a number of
good reasons for studying online learning with this activation:

It is simple and classic. The sign function is simple and classic, and many classic theoretical
analyzes use sign as the activation function. For example, such expressivity results can be found in
[Shalev-Shwartz and Ben-David, [2014])), and sample complexity bounds may be found in [Anthony
and Bartlett, 2009]. Furthermore, online algorithms for neural networks with sign activation function
can be seen as generalizations of the classic perceptron algorithm [[Rosenblatt, |1958]] for the multi-
layer case.

It is used in binarized neural networks. The sign activation function is widely used in binarized
neural networks (BNNs) [Hubara et al 2016], as such networks are restricted to having binary
activations and weights. The study of BNNs is motivated by the need to deploy deep learning
paradigms on low-power devices, such as mobile phones, industrial sensors, and medical equipment,
where computational and energy resources are limited. Such devices often lack the infrastructure
required to train standard neural networks, which typically rely on powerful hardware. Moreover, the
learning tasks these devices perform are often online in nature: they make real-time predictions based
on a continuous stream of incoming data.

It implies results for other activation functions. Beyond the motivations discussed above, we
argue that our results extend, to some extent, to more common activation functions. Consider the
following very simple classification network: a single input neuron and a single output neuron.
In this setting, the target function is ®: [—1,1] — {=£1}. The output neuron computes a real
value r € [—1, 1] based on the input, and the final prediction is given by sign(r). Even in this
minimal setting, a learner can be forced to make an unbounded number of mistakes unless additional
assumptions are made. A standard assumption is that the prediction margin is bounded away from
zero. That is, |r| > ~ for all values r computed by the output neuron, for some v > 0. Under

Some related work we did find is mentioned and compared to in Section



this margin assumption, the sign function can be replaced by any activation function o that agrees
with sign whenever |r| > =, including smooth activation functions, that are more commonly used
in practice. The assumptions we make throughout the paper are of a similar nature to the margin
assumption described above, and analogous arguments can be used to extend our results to other
activation functions. For example, see Section 3.1 where we compare some of our results to results of
[Rakhlin et al., | 2015]], who considered more general activation functions.

2  Main results

The following sections assume some familiarity with standard definitions from online and neural
network learning. For completeness of the main body of the paper, we provide the formal setting
that we consider in the following paragraph. For other relevant definitions, the reader may refer to
Section[A] which introduces all the necessary background in a self-contained manner.

Online learning is a repeated game between a learner and an adversary. The learner’s goal is to
classify with minimal error a stream of instances x1, ..., z7 € X. Each round ¢ of the game proceeds
as follows.
(1) The adversary picks an instance x; € X', and sends it to the learner.
(i1) The learner predicts a value ; € ).
(iii) The adversary picks y; € ) and reveals it to the learner. The learner suffers the loss 1[j; #
h(ze)].

We focus on the realizable case, where there exists an unknown target function h: X — ) taken
from a known concept class H, such that y; = h(z;) for all t € [T]. In this work, H is a class of
functions implementable by neural networks of some architecture. In the following subsections, we
describe the results proved in this work.

2.1 Characterization

We prove that the optimal mistake bound of learning a sequence of instances S = z1 ..., zp € X
labeled by a target network A/* with input dimension d is nearly characterized by the (d, y1 (N*, S))-
totally-separable packing number (or TS-packing number, for short), denoted by TS(d, 1 (N*, S)),
where 71 := 1 (N*, S) is defined as the minimal distanceE] between a neuron in the first hidden
layer of A/* to an instance in S. By “nearly characterized", we mean that there is an upper bound
quantitatively controlled by TS(d, ;) for all d, N*, S, and that a lower bound of TS(d, 1) is attained
for some networks N'* and sequences S.

For any d, ¢, TS(d, €) is the maximal size T of a subset {1, ...,z7} C B(R?) such that for any two
distinct points x;, z; there exists a hyperplane (w,b) € B(R?) x [—1, 1] satisfying:
1. (w,b) linearly separates x; from ;.

2. For all k € [T}, the Euclidean distance between (w, b) and xy, is at least e.

We prove the following bounds.
Theorem 2.1. There exists a learner Lrn such that for any target network N'* with input dimension d

and realizable input sequence S'
~ (TS(d
M(Lrn,S) = O((,y;%))
1

Furthermore, for any learner Lrn, and for any € > 0,d > 1/¢2, there exists a network with input
dimension d and a realizable input sequence S such that v, > € and

M(Lrn, S) = Q(TS(d, €) + 1/€).

The upper bound is proved under the assumption that v, is known to the learner in advance. This is
also the case in the next two upper bounds, stated in the following two subsections (with ; replaced

3 Assuming all neurons’ weight vectors in the first hidden layer of A™* are normalized to have unit £2-norm.



by the relevant margin definition appearing in the statement). In Section [2.4] we discuss how this
assumption may be removed by a variation of the doubling trick [|Cesa-Bianchi et al.l|1997], in the
cost of a polynomial degradation in the mistake bound.

We prove Theorem [2.T]in Section[C] Note that the difference between the upper and lower bounds
is roughly quadratic in the worst case. Furthermore, the bounds on TS(d, €) given in Theorem|G.1
imply that when =, is sufficiently small, TS(d, ~y; ) is much larger than 1/+?, giving tighter bounds in
this case. When ~; is large, the dependence on 1/~% in the upper bound could be more significant,
but this is not catastrophic, as 1/47 is relatively small in this case.

Note that the mistake bound demonstrates no dependence on the size of the label set ), which is
common in multiclass online learning [Daniely et al.,|2015| Branzei and Peres, 2019} Hanneke et al.,
2023a]]. On the other hand, as stated in Theorem TS(d, €) is exponential in d for small ¢, and
even for e = 1/2 it is at least linear in d. This implies that to obtain dimension-free mistake bounds,
we must further restrict the network and input sequence. We describe two such restricted settings we
have been studying, as well as the derived results, in the following two sections.

2.2 Improved bound in the multi-index setting

In the multi-index model, we assume that the target function ®*: B(R%) — ) calculated by the
target network is restricted in the following way. There exist k < d many unknown orthonormal
signals s ... s(®) ¢ R and a function ¢*: B(R¥) — Y such that for every z € B(R?), we
have ®*(z) = ¢*((sM,z), ..., (s z)). In simple words, while the domain of ®* is B(R?), the
value of ®*(z) is not arbitrary but depends only on an unknown k-dimensional projection of x.

The motivation of studying this setting lies in the following conjectured phenomenon: There are
natural learning tasks with seemingly high-dimensional input, that in fact hides a low-dimensional
structure explaining their behavior [Goldt et al.| 2020]]. This conjectured phenomenon might partly
explain why deep learning mechanisms do well on some high-dimensional learning tasks, with low
sample complexity that does not match the high-dimensional input. Consequently, this model has
gained significant interest in the community, and is extensively studied in the past few years, especially
in the context of stochastic optimization [Arous et al.||2021] |Ba et al., [2022} Bietti et al., 2022} 2023
Damian et al.l 2024, Dandi et al., 2024, [Lee et al.,|[2024, |Arnaboldi et al., 2024} |Cornacchia et al.,
2025].

We study online learning of neural networks in this so-called multi-index model. We prove that
even though the signals s(), ..., s(*) are unknown and k < d, it turns out that the upper bound of
Theorem [2.1|holds*| with k replacing d, assuming a multi-index model.

Theorem 2.2. In the multi-index model with k many unknown signals, there exists a learner Lrn such
that for any target network with input dimension d and realizable input sequence S':

M(Lrn, S) = 0<TS(5%"”)>

We prove Theorem [2.2]in Section [D] Theorem |[G.1]implies TS(k,v1) < (1.5/71)*. Therefore, if
k is, say, some universal constant, then Theorem implies a guaranteed mistake bound of only

poly(1/71).

The proof idea of Theorem is that while the (d, €)-TS-packing number of the domain of ®* does
not change, the labeling of large packings made by ®* cannot be too complicated, and in fact behaves
as if the labeling was made by a function with the domain B(RF).

2.3 Improved bound with a large margin everywhere

It is natural to study the mistake bound as a function of y := (N™*, S), which is the minimal margin
over all neurons and all input instances. In more detail, for every neuron and any input instance z,
the neuron classifies the input coming from the previous layer, and this classification also has the
same natural definition of margin as in the first layer. The minimal margin + is the minimal margin
observed in all neurons and input instances. When + is large, a significantly better mistake bound
than of Theorem 2.1 can be proved.

“The lower bound trivially holds.



Theorem 2.3. There exists a learner Lrn, such that for any d € N, for any target network with input
dimension d, and for any realizable input sequence S':

M(Lrn, S) = O(IOg y'),

AAL+2
where L is the depth of the network.

We prove Theorem [2.3|in Section [El A lower bound of 2(min{1/+?,d}) for some networks and
input sequences is easily implied by the well-known lower bound for online linear classification.
Therefore, when L is small, the bound of Theorem [2.3]is fairly good.

To illustrate the significance of this result over the worst-case characterization (Theorem @, let’s
consider a prototypical case of a network with a single hidden layer and one output neuron. In such a
network, the difference between the set of neurons in the first layer considered in Theorem@] and
the entire set of neurons is only the output neuron. However, the bound of Theorem [2.3]in this case
depends only polynomially on 1/, and does not depend on the input dimension. Thus, it suffices
that the margin in the output neuron is not extremely small for the bound of Theorem [2.3]to be much
better than the bound of Theorem 2.11

Determining whether the exponential dependence on L is necessary remains open. The proof of
Theorem [2.3]uses a method to significantly reduce (when - is large) the number of neurons in the
target network, which is, to the best of our knowledge, novel. Our method relies on the celebrated
uniform convergence theorem [Vapnik and Chervonenkis| [1971]]. See Section[4.4]for more details.

2.4 Adaptive learning

Suppose that a learner has a mistake bound of 1/+” guaranteed by one of the theorems presented
above, where + is the relevant definition of margin and b is the relevant exponent. We note here that
the algorithms used to prove the upper bounds described so far assume that ~, b are known and given
in advance. In Section[F} we show how to remove this assumption, in the price of some polynomial
degradation in the mistake bound. We stress that a standard doubling trick (which usually causes
only a constant degradation in the mistake bound) is insufficient here, since there are two unknown
parameters.

As a by-product, not assuming knowledge of v, b in fact allows us to not even know which of
Theorem [2.2] or Theorem [2.3| guarantees a better mistake bound, and still achieve it, up to polynomial
factors.

Theorem 2.4. For some target network N* and input sequence S, let My, Ms be the mistake
bounds guaranteed by the non-adaptive algorithms providing the mistake bounds of Theorem[2.2|and
Theorem respectively. Then, there exists an algorithm, that without any prior knowledge on N'*
or S enjoys a mistake bound of

M(Lrn, S) = O((min{M, Mz})*).

This result is obtained by simply executing a multiclass version of the Weighted Majority algorithm
of [Littlestone and Warmuth| [1994]] (described in Section[A.5.T)) on the adaptive version (described
in Section [F) of the algorithms providing the mistake bounds of Theorem [2.2]and Theorem [2.3]as
experts.

2.5 Agnostic learning

Our results and analysis focus on the realizable case, but can be adopted to the agnostic setting, where
the adversary is allowed to “lie" and provide responses not perfectly matching to the target network.
A different, and perhaps more common point of view on agnostic learning is that the adversary never
lies, but the true labels do not match any target function. Since the expressivity of neural networks is
very strong, we adopt the first point of view which is somewhat more natural in our context. That
is, we assume that there exists a target network producing the labels, but the adversary changes the
correct label to a different label in some of the rounds. The identity and number of rounds in which
Adv tampers with the data is unknown. Our goal is to minimize the learner’s regret, defined as

Reg(Lm, S) =E [M(Lm, S) = > 1[@*(z1) # el |,

t=1



for any (not necessarily realizable) input sequence S. The expectation is taken over Lrn’s randomness.
In contrast to the realizable case, in the agnostic case we must allow the learner to randomize its
predictions in order to achieve o(T') regret [Cover, |1965]. The following regret bound is obtained by
applying the agnostic-to-realizable reduction of [Hanneke et al.,[2023a].

Proposition 2.5. There exists a learner Lrn, such that for any (not necessarily realizable) input
sequence S of length T > 2M that has a guaranteed mistake bound M by a learner Lrn' in the
realizable case (without any labels being altered by the adversary):

Reg(Lm, S) = O(\/W)

The proof of the proposition is given by closely following the proof of Theorem 4 of [Hanneke et al.|
2023al], and just replacing the Littlestone dimension with M.

3 Related work

We overview and compare to previous work generally related to online learning of neural networks
in Section [3.1] Our results, especially Theorem [2.1] and Theorem [2.2] are strongly related to the
TS-packing number. Finding bounds on the TS-packing number is a geometric problem which is
interesting on its own right. We overview some known results related to it in Section[3.2} Our bounds
also rely on the possibility to identify a small set of “important" neurons in the target net, and then
use only on those neurons when learning the target function. This technique reminds us of the known
“pruning” methodology which is extensively studied in the literature. We overview related work on
pruning in Section 3.3}

3.1 Previous work on online learning of neural networks

In [[Sahoo et al.| |2017]], an online learning algorithm for neural networks is proposed, and tested
experimentally. Theoretical analysis of regret bounds for randomized neural networks was performed
by [Chen et al., [2023| Wang et al., 2024]).

Most related to our work, the work of [Rakhlin et al.,|2015]] gave regret bounds for online learning
of neural networks when the activation is Lipschitz and the loss function is convex and Lipschitz
(by joining Theorem 8 and Proposition 15 in [Rakhlin et al.l |2015]). Although this is still quite
different from our setting, which assumes sign activation and the 0/1 loss (which is usually used
in classification problems), we may compare their regret bound to the bound obtained in this work
under the extended margin assumption. Specifically, if the depth of the network is L, the output is

binary, and a margin of ~ is assumed for all neurons, a regret bound of O (\/T / VO(L)) is obtained

by joining Theorem [2.3] and Proposition 2.5] The regret bound of [Rakhlin et al. 2015] in this
~ O(L)
setting is O(Cg\/T logd(%) ), where C) is the Lipschitz constant of the loss function, d

is the input dimension and B is an upper bound on the 1-norm of the weight vectors. To see
this, note that the actual bound given by [Rakhlin et al., 2015, Theorem 8 and Proposition 15] is
O(C’Z\/ Tlogd(B - C’a)O(L)) where C, is the Lipschitz constant of the activation, but the margin
assumption allows us to replace sign with a C,-Lipschtiz function for some C,, > 1/~. Although the
result of [Rakhlin et al.,|2015] applies to a more general setting, our bound has a few advantages:

1. It does not depend on the input dimension nor the 1-norm of the weight vectors, which could
a priori depend on the network’s width.
2. Itis given by an explicit algorithm rather than a minimax analysis.

3. Tt applies to the non-convex 0/1 loss function. An analogue result for linear classifiers was
proved in [Ben-David et al.| 2009, Section 5].

4. It is given by an agnostic-to-realizable reduction (Proposition [2.3). Therefore, it is finite
(independent of T') in the realizable case (Theorem[2.3)).

3.2 Related geometric results

The bounds in Theorem [2.T] and Theorem [2.2] are given in terms of the TS-packing number. The
investigation of totally separable packing problems in geometry literature dates back to the 40’s



[Goodman and Goodmanl, (1945, Hadwiger, [1947]], and the totally-separable notion is due to Erdds,
who has made some conjectures with respect to those problems, according to [Goodman and Goodman),
1945]). The works [T6th and Téth) (1973 Kertész, |[1988] proved bounds on the density of TS-packing
of circles (2-dimensional balls) and balls (3-dimensional balls), respectively. The packings considered
in those works are very similar to our TS-packings, with the main difference being that we are more
interested in high dimensions, as this is the typical case when dealing with neural networks. The
interested reader may refer to the recent thorough survey on separability in discrete geometry [Bezdek
and Langi}, 2024] for more information.

3.3 Neural networks pruning

Pruning is a popular practical paradigm used to reduce the number of computation elements in a
neural network, which is useful in practice for a variety of reasons, such as reducing infrastructure
costs. There is extremely vast literature on the pruning paradigm: more than three thousand papers
just between 2020 and 2024, according to [[Cheng et al.}[2024]]. We refer the interested reader to the
surveys [Blalock et al., 2020, |Cheng et al.| [2024]] for more information and references.

The pruning method in our work is a bit different from standard, practically used pruning techniques.
In standard pruning, the net is pruned and then trained again as is to recover its precision (this is
sometimes called “fine-tuning"). In this work, we identify a (desirably small) subset of the neurons
that is necessary to compute the target function calculated by the network, and then learn the target
function, possibly without relying on the actual architecture of the original network.

4 Overview of proof techniques

In this section, we informally describe the main ideas used to prove our results. We start by describing
a general approach that is common to quite a few of the proofs in this paper. A similar approach was
also taken in [Khalife et al.|[2024]]. We think of a neural network as a pipeline with two stations:

1. The first station, implemented by the first hidden layer, partitions the unit ball to 2¢ many
regions (which some of them might be empty), where ¢ is the number of neurons in the
first hidden layer, denoted with £. Each region is specified by a region-specifying vector
r:= ) € {£1}%. That is, the region of a point z € B(R?) is specified by 7 if for every
i € [¢] it holds that r; = sign({v;, z) + b;), where (v;, b;) is the i’th neuron of L.

2. The second station uses all other layers to implement some function f: {£1}¢ — ).

For any point 2 € B(R?), we denote the region-specifying vector of = by 7(z). The function ®*
calculated by the target network is thus the composition f o r. That is, ®*(z) = f(r(z)) for all
x € B(R?).

The above point of view is at the heart of the high-level strategy used to prove the mistake bounds in
this paper:

1. Learn the partition of B(R?) to regions.

2. Learn the label of every region.

To implement this strategy, we first describe a meta-learner that uses a multiclass version of the
Weighted Majority algorithm of [Littlestone and Warmuth, [1994]], which has good guarantees if
executed with an appropriate expert class. Then, we provide specific expert classes to run the
meta-learner with, for the sake of obtaining the stated mistake bounds.

Naively, the number of mistakes made when learning the partition of B(R?) into regions might
depend on ¢. Since ¢ might be very large, this could be a significant bottleneck of the mistake bound.
Therefore, a main idea in most of the bounds is to reduce the number of neurons in the net such that
only neurons which are required to properly partition B(R?) to regions are considered.

Section organization. In Section[d.I|we overview our meta-learner for learning neural networks
online. This algorithm is the main framework used to prove the mistake bounds in this paper. In
Sectionfd.2] we describe how to use the meta-learner in order to prove the upper bound of Theorem 2.}



and we also include a brief explanation of the lower bound. In Section[4.3| we explain how to improve
the upper bound of Theorem [2.1]in the multi-index model, and in Section 4.4 we explain how to
improve it when an extended margin assumption holds.

4.1 The Meta-learner

The meta-learner executes a multiclass version the weighted majority (WM) algorithm of [Littlestone
and Warmuthl [1994]]. This algorithm aggregates predictions of a class £ of experts, to a unified
prediction strategy with a mistake bound that depends logarithmically on the size of the class, and
linearly on the mistake bound of a best expert. In our case, each expert from £ implements some
partition of B(R?) to regions and a labeling function labeling those regions. To obtain good bounds,
we need to make sure that:

1. &€ is not too large.

2. At least one expert does not make too many mistakes.

In a nutshell, we are able to make sure that both items hold in the instances of the meta-learner we
use, by:

1. Showing that there are not too many possible partitions of the input sequence S C B(R%)
to different regions in B(R?).

2. Making sure that every possible partition of the input sequence S C B(R?) to regions is
implemented by some expert F, and that the labeling function of an expert with the correct
partition to regions is accurate enough as well.

The first item enables £ to be reasonably small, and the second item is necessary so that at least one
expert E* will perform well in the task of predicting the labels of S. We use three different instances
of the meta-learner, for three different setups: general (Theorem [2.1)), multi-index (Theorem[2.2), and
everywhere-margin (Theorem [2.3)).

4.2 Quantitative general characterization
4.2.1 Upper bound

In Theorem [2.1] we show that the optimal mistake bound for every target net N* with input dimension
d, and for every input sequence S, is not much larger than TS(d, ;). In order to prove this bound,
we use the fact that in any partition of B(R?) to regions implemented by N'*, at most TS(d, v;)
regions actually contain points from .S, otherwise S induces a (d, 1 )-TS-packing which is larger
than TS(d, 1), and this is a contradiction. Armed with this argument, we can also prove that there
exists an important set of neurons G of size at most TS(d, 7). This allows us to construct a good
enough expert class £ to execute the meta-learner with.

4.2.2 Lower bound

The lower bound follows from the “two stations" point of view explained in the beginning of the
section. We take a (d, ¢)-TS-packing of size TS(d, €) as the input sequence .S, and show that for every
{0, 1}-1abeling of S there exists a network A'* realizing it, such that y; > €. The neurons in the
first hidden layer of N'* are the hyperplanes induced by the TS-packing S. The second hidden layer
consists of neurons determining which regions induced by the first hidden layer are labeled 0, and
which are labeled 1. This implies a lower bound of TS(d, 71).

4.3 The multi-index model

The proof of the mistake bound for the multi-index model (Theorem follows the same lines
of the proof of the upper bound in the general characterization result. The main difference is that
since ®* in fact depends only on £ < d orthonormal directions, the arguments outlined for the
general case actually hold with & replacing d. We show that if this is not the case, we can construct a
(K, v1)-TS-packing of size larger than TS(k, 7 ), which is of course a contradiction.



4.4 Large margin everywhere

In this section, we explain the proof technique of Theorem[2.3] Let us focus on the case where the
target net has a single hidden layer and calculates a binary function ®*: B(RY) — {£1}. In this
case, the extended margin -y is the minimal margin over all neurons in the hidden layer and in the
single output neuron. Recall that the margin of a neuron (v, b) is mingc s (v, ) + b|, where « is the
input that (v, b) receives from the previous layer when the input to the network is x. If «y is large,
a significantly better mistake bound can be proved, compared to the case where y; (the minimal
margin in the hidden layer) is large but the minimal margin of the output neuron is small. Below,
we briefly explain what makes such an improvemnt possible. We use known terms and results from
VC-theory. The unfamiliar reader may refer to Section[A]for a formal background, before reading the
next paragraph.

For simplicity, in the following paragraph we assume that all neurons in £ are homogeneous (have
bias b = 0). For every x € S, define a function h,: £ — {£1}, given by h, = sign({z,v)) for
every v € L. Note that |(x,v)| > ~ forall z € S,v € L. Using the mistake bound of the known
Perceptron algorithm [Rosenblatt, |1958, [Novikoff] |1962] and the online learnability characterization
of [Littlestone} [1988]], this implies that the VC-dimension of the class H = {h, : © € S} is at
most 1/v%. Therefore, we may use the celebrated uniform convergence theorem of [Vapnik and
Chervonenkis, [1971]] to obtain a small “representing set" of £ with respect to any distribution D
of our choice. It remains to choose D in a way that communicates the result of the output neuron
for any « € 9, using only the neurons in the representing set. We show that this is possible with a
representing set of size only 0(1 /~*), by choosing the probabilities of D to be proportional to the
weights in the weight vector of the output neuron.

To extend this result to general networks, we first extend the result to a network of arbitrary depth
that calcultes a single output neuron, by applying the explanation above from the output neuron
backwards, up to the first hidden layer. This is where the exponential dependence on the network’s
depth in Theorem [2.3|comes from. To handle any label set ), we use the same idea on every one of the
log || output neurons separately. This is where the logarithmic dependence on |)| in Theorem
comes from.

5 Open questions and future work

5.1 Open questions

Quantitative gaps in mistake bounds. There are some quantitative gaps in the mistake bounds
that it will be nice to remove.

In Theorem 2.1} there is a multiplicative gap of approximately min{1/+%, TS(d, 1)} between the
upper and lower bound. Can we find the correct optimal mistake bound?

Theorem exhibits an exponential dependence on the depth of the target net. Is this dependence
inevitable? For example, [Khalife et al.|[2024] show how to reduce the number of hidden layers in a
network with sign activations to only two. Perhaps this idea could be used to improve the exponential
dependence on the network’s depth.

Better adaptive algorithm. Our adaptive algorithm Adap (Figure |4) has a polynomially worse
mistake bound than the non-adaptive learner given to it as input. This is in contrast with other
online learning problems, where adaptiveness costs only a constant factor, or even less than that
[[Cesa-Bianchi et al., [1997, Filmus et al., 2023 2024, |(Chase and Mehalel, |2024]]. Does a better
adaptive algorithm exist for online learning neural networks? More broadly, given an online learner
with mistake bound a’ on the input sequence S, that requires knowledge of both @ and b, is there an
adaptive version of Lrn with mistake bound O(a®) that does not require the knowledge of neither a
nor b?

5.2 Future work

Better bounds on the TS-packing number. We prove (Theorem that the optimal mistake
bound of learning an input sequence S realizable by a neural network N™* with input dimension



d is controlled by TS(d,v1(N*, S)). However, we are not aware of any bounds on TS(d, €) for a
high dimension d, except for a trivial upper bound given by an upper bound on the standard packing
number, and a relatively straightforward lower bound we prove in Theorem [G.T] Besides having a
clear application in mistake bound analysis for neural networks, finding tighter bounds on TS(d, €) is
an interesting problem in its own right. A similar problem was pointed out also in a recent survey on
the topic [Bezdek and Langi, [2024]. In a somewhat different direction, it would also be interesting to
understand if there are efficient methods to approximate TS(d, €) for given d, e.

Computationally efficient learning. Our meta-learner described in Section [B|uses a set of more
than g9 experts that need to be queried and updated in every round, where g is the size of the set
of “important" neurons in the target net. Even in the most optimistic settings of Section [D] and

1/v
Section|E| it holds that g > 1/, which means that more than (%) experts are maintained by the

meta-learner. If ~ is small, this is very inefficient in terms of computation. Can we achieve good
mistake bounds with computationally efficient algorithms?

Study of other activation functions. This work studies the sign activation function, which is basic
and natural. However, modern neural networks often use other activations, such as ReLU or its
variations. It will be interesting to study similar questions in the presence of more popular activations
such as ReLU. We do not see how to extend our analysis to the ReLU activation, which might require
a fundamentally different approach from the one taken in this work.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claims are proved in the paper.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims

made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Each result applies to the specified setting for which it is proved.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13



Answer: [Yes]

Justification: Complete proofs of all results are included in the paper (either in the main text
or appendix).

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: Theory paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: Theory paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: Theory paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: Theory paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: Theory paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Theory paper.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Theory paper.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Theory paper.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Theory paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Theory paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Theory paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Theory paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
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A Definitions and technical background

A.1 Standard Notation

We use [n] = {1,...,n}. We define the sign function for all x € R as sign(z) = 1 if x > 0 and
sign(z) = —1 otherwise. For a natural d, let B,.(R?) be the ball of radius 7 in R centered at the
origin. Denote B(R?) := B;(R?). The euclidean distance between 1,25 € R is dist(x1,z2).
The ¢ norm of x; is ||z1||. The unit vector in direction ¢ € [d] is denoted by e;. Matrices are
denoted by bold capital letters like W, and vectors by bold lowercase letters like w. The entries
are denoted by subscript indices such as w = wy, ..., wq for w of dimension d. W ; is the value
in row ¢ and column 5 of the matrix W. For two vectors u, v of dimension d, their dot product is

<u,’u> = Zie[d] U V5.

A.2 Concept classes

Let X be a (possibly infinite) domain, and ) be a finite label set. A pair (z,y) € X x ) is called an
example, and an element x € X is called an instance. A function h: X — ) is called a hypothesis
or a concept. A hypothesis class, or concept class, is a non-empty set H C Y. A labeled input
sequence of examples {(x;,y;)}1_, is said to be realizable by H if there exists h € H such that
h(z;) =y forall 1 < i < T. We say that such h is consistent with the labeled input sequence, or

realizes it. An unlabeled sequence of instances S = z1, ...,z is called an input sequence. An
input sequence S = x1, ...,z and a function h € H naturally defines the realizable labeled input
sequence (z1, h(z1)),. .., (x1, h(zT)).

The concept classes we will consider in this paper will usually (but not always) be all functions
computable by some neural network, as formally defined in Section[A.4]

A.3 VC-theory and Uniform Convergence

In the proof of Theorem [2.3] we use VC-theory, and specifically the fact that VC-classes enjoy the
uniform convergence property.

Let Y = {#1}, and let H C Y be a concept class. A set z1,...,zq € X is shattered by H if for
all y1,...,yq € Y, there exists h € H such that f(x;) = y; for all i € [d]. The VC-dimension of H,
denoted by VC(#H), is defined as the maximal size of a shattered set. If there is no such maximal
size, then VC(H) = oo. If VC(H) < oo, we say that H is a VC-class.

Let D be a probability distribution over X. For any i € H, and for any sample S = z1,..., 2, of
instances from X, define

_ {x e S:h(z)=+1} —|{z €S :h(x)=—-1}
5] '

We will use the uniform convergence theorem of [Vapnik and Chervonenkis}, |1971]].

Qp(h) =Esep[h(@)],  Qs(h)

Theorem A.1 (Uniform convergence [Vapnik and Chervonenkis, |1971]). We have

Pr |sup |Qp(h) — Qs(h)| > €| < 8(em/ VC(H))VCH) e=me* /32,
S=z1,..xm~D | heH

where the notation S = x1, ... %y, ~ D indicates that the sample S = x1, . .. T, is drawn i.i.d from

D.

A.4 Neural networks

Let us formally define a neural network. We mostly follow the notation of [Petersen and Zech 2024]],
as described below. Let L € N, dy, ...,dr+1 € N. We denote also d = dg and dyy¢y = dy41. In this
paper, a neural network with the architecture dy, . .. ,dr+1 is a function ® : B(R%) — {£1}dc+
such that there exist weight matrices W®) ¢ R+1%de and bias vectors b®) e R+1 for all
¢ € {0,..., L}, for which the following holds. Let ° = z, and ® = sign(W ¢V g¢-1) 1
b(e_l)) for ¢ € [L + 1], where the sign function is applied separately for each row. That is,
29 = sign((W¢=19 =D 4 p)) where W €19 denotes the i’th row of W*~1)_ Then,

21



®(z) = X+ for all € R For technical reasons, it will be convenient to assume that the sign
function generating 2(® is normalized (multiplicatively) by 1 /+/dy. For simplicity of notation, we
will also usually assume (unless stated otherwise) that all bias vectors are the all-0 vector. Whenever
this is assumed, it is clear that the arguments apply also when this is not the case.

Each row W %9 in W) is called a neuron. In many cases, we will fix ¢ and consider the rows
of W &%) a5 a sequence of separate neurons denoted by wy, . . . , waq, - We relate to those as the
neurons in the (¢ 4+ 1)’th hidden layer. We further assume that for every neuron w: ||w| = 1. We
use the notation N := N (W(O)7 R W(L)) to refer to the neural network itself, as an ordered
collection of weight matrices used to calculate the appropriate function ® as described above.

A.5 Online learning

Online learning is a repeated game between a learner and an adversary. The learner’s goal is to
classify with minimal error a stream of instances 1, ...,z € X'. Each round ¢ of the game proceeds
as follows.

(1) The adversary picks an instance x; € X', and sends it to the learner.
(ii) The learner predicts a value §; € ).

(iii) The adversary picks y; € ) and reveals it to the learner. The learner suffers the loss 1[j; #
h(ze)].

We focus on the realizable case, where there exists an unknown target function h: X — ) taken
from a known concept class , such that y; = h(z;) for all ¢ € [T]. In this work, Y = {41} %out
and H := H(d,dyy) is the class of all functions ® : B(RY) — ) implementable by a neural
network A/ with architecture satisfying dr, 11 = do: and dy = d. We may also relate to ) as the set
[Y] = [2%ut], where each y € ) has a binary representation in {41} %out,

We model learners as functions Lrn: (X' x y)* x X — ). The input of the learner has two parts:
a feedback sequence F € (X x y)*, and the current instance x € X. The feedback sequence is
naturally constructed throughout the game: in the end of every round ¢, the learner appends (¢, y;)
to the feedback sequence. The prediction of Lrn in round ¢ + 1 is then given by Lrn(F, x41), where
F is the feedback sequence gathered by the learner in rounds 1, . .., ¢.

Given a learning rule Lrn and a labeled input sequence of examples S = (z1,41),- .., (7, yr), we
denote the number of mistakes that Lrn makes on S by

T
M(Lrn; S) Z 1[g: # v1).
i=1

This quantity is called the mistake bound of Lrn on S. Our goal is to design learners who minimize
M(Lrn; S) for everyE] input sequence S.

It is worth noting that fixing .S beforehand is usually linked with an oblivious adversary setting, in
which the adversary cannot pick the examples on the fly. However, when the learner is deterministic,
the adversary can simulate the entire game on its own, since we assume that the learning algorithm is
known to all. Thus, oblivious and adaptive adversaries are in fact equivalent, and we will refer to the
adversary as being either adaptive or oblivious, depending on whichever is more convenient in the
given context.

All of our algoritms are conservative. Those are algorithms that change their working hypothesis
only when making a mistake. Therefore, rounds where the algorithm makes a correct prediction may
be ignored, and we assume that the number of rounds 7" is exactly the number of mistakes. However,
it is understood that the number of rounds may in fact be unbounded.

*In traditional online learning, one often requires a uniform bound M on M(Lrn; S) that applies to all
realizable sequences S. This is not possible when learning neural networks, even for the simplest single-layer
perceptron with input dimension 1. The interested reader may refer to [[Alon et al.,|2022b]] for a unified theory
handling with such cases.
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WM(E)
Input: A set of experts £ = {E1, ..., E,}.
Initialize: Set w)(E) = 1forall E € €.
fort=1,...,T:
1. Receive expert predictions F;(t) € Y for all i € [n].

2. Predict »

N ¢ ‘

U = I;lea))}(- Z w'(E;).

i€[n]:E;(t)=y
3. Receive y;.
4. Ifyp = g2 set w(E;) = w® (E;) forall i € [n].
5.0f gy # 9 set wD(E) = w®(E;)/2 for all i so that E;(t) # v, and
w D (E;) = w® (E;) for all other i € [n].

Figure 1: The multiclass weighted majority algorithm.

A.5.1 Multiclass weighted majority

The algorithms we present use a conservative, straightforward multiclass extension of the well-
known binary weighted majority (WM) algorithm of [Littlestone and Warmuth| [1994]]. To the best
of our knowledge, this simple extension does not appear in the literature, so we include it here
for completeness, and it is described in Figure |l} The WM algorithm is executed with a family
& ={E,...,E,} of n many experts. Similarly to the standard online learning setting presented
in Section the setting in which WM is executed is a repeated game between a learner and an
adversary, where in the beginning of each round ¢ every expert E; gives its prediction E;(t) € ).
The learner’s goal is to make as few as possible prediction mistakes compared to L, the minimal
number of mistakes made by a single expert.

The multiclass extension of the weighted majority algorithm has the same mistake bound as the
standard binary version of the algorithm.

Proposition A.2. WM(E) makes at most 3(L + logn) many mistakes where L is the number of
mistakes made by an expert with a minimal number of mistakes, and n = |&|.

Proof. Fory € Y, let

wi =3 w®E), ad WO =W
i€[n]:E;(t)=y yey

In simple words, W?,(,t) is the sum of weights of all experts predicting % in round ¢, and W () is the
sum of weights of all experts in round ¢. By the prediction rule, in any round ¢ we have Wéf ) < W/2.
Indeed, by definition of ¢, we have Wy(f ) < W;f) Therefore if Wéf) > W,/2 then we have
Wy(f) + Wy(f) > W,, which is a contradiction. Therefore, it holds that W®) — szf) >w® /2. So
by the update rule, we have WD < W, — L. W /2 < 31/7(H), On the other hand, in every
round ¢ we have W > 1 / 2L Therefore, since W) = n, for any number of mistakes 7" we have:
1/28 < W) < n-(3/4)T. Solving this inequality for T" gives the stated upper bound. O

B A meta online learner for neural networks

In this section, we describe a meta-learner for online learning neural networks, used to prove our upper
bounds. Generally speaking, the meta-learner’s main theme is to execute WM(E) on an appropriate
class of experts €.
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Neuron,,

Input: p € {0,1}7.
Initialize: A d-ary all-0 vector w.
fort=1,...,T:

1. Compute g = sign({w, ¢)).
2. Ifpy = 1:
(a) If g < 0, update w := w + x4.
(b) If gy > 0, update w := w — x;.
3. Return ;.

Figure 2: A perceptron with updates given by the “manual” vector p.

Let &*: B(Rd) — ) be the target function, calculated by some neural network N'* called the farger

net. Fix the input sequence S = x1,...,x7 € B(]Rd), For any neuron W (&) in N*, let
Y ew (S) = min (W ED 20D,
m(l):mGS

This quantity is called the margin of W (4% with respect to S. We assume w.l.0.g that for all £, i,
W D is a maximum margin classifier for S. That is, there is no other hyperplane W such that
Yw (S) > Yyp-ce.00 (S), and both have the same sign on every input from previous layer, for all z € S.
In this section, we will only care about the margin of the neurons in the first hidden layer. Namely,
denote

1 (N*7 S) = iren[idn] Yy (0,9 (S).
When the identity of A™* or S (or both) is clear, we may omit them from the notation.

We may now describe the meta-learner in more detail. As mentioned, the main idea of the learner is
to execute WM(E), where £ is chosen to be sufficiently “good". What makes a class of experts £
“good"? In a nutshell:

1. The set £ should not be too large.
2. At least one expert in £ will not make too many mistakes.

If we have both guarantees with good enough numeric values, Proposition[A.2]implies a good mistake
bound.

How can we satisfy both guarantees? Each expert in the class & is an algorithm of type Expert;
described in Figure[3] which, as suggested by its notation, is parametrized by a sequence of algorithms
G, and a function L. The algorithms in G are instances of the algorithm Neuron, described in
Figure 2] who simulate a neuron, where each instance of it is parametrized by a different vector
p € {£1}7, where T is the mistake bound of the meta-learner when executed with € (or, simply the
number of rounds in the game, as WM is conservative). The binary vector p functions as a “manual”
for Neuron,, telling which hyperplane it should converge to. This idea is inspired by the technique
of [Ben-David et al., [2009]].

The function L is a labeling function from the set of regions in B(R?) induced by intersections
of halfspaces defined by the neurons in G, to ). The idea is therefore to use G to partition B(R?)
to different regions, and then identify the correct label for every region. In order to satisfy the first
guarantee above, we will have to show that the “correct” labeling function L can be defined for a
relatively small G.

B.1 Meta mistake bound

We would now analyze a meta mistake bound to be used in our instances of the meta algorithm. We
first define some additional notation, formalizing the idea of partitioning B(R?) to regions based
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ExpertG}LG

Input: A sequence G = (pi,...,py) of g many vectors in {0,1}7; A labeling function
Lg: {£1}9 = ).
fort=1,...,T:

1. Construct € {£1}9 such that for all ¢:

ri = sign((gi, 71)),
where g; is the hyperplane maintained by Neurony, .
2. Send Lg(r) to the meta-algorithm as the expert’s prediction.
3. Retrieve y; from the meta-algorithm.
4. If p; = 0 for every neuron p € G, update L (1) = y;.

Figure 3: An expert parametrized by a sequence of neurons.

on G. For a sequence G = (w1,...,wy) of hyperplanes, we can partition the unit ball to a set
of distinct regions (where some of them may be empty) by region-specifying vectors of the form
{£1}9, where the 7’th bit is the sign of the i’th hyperplane. For a region-specifying vector r(G) for
G, we denote the region of r(&) by R(r(%)), which is the set of all € B(R?) agreeing with the
signs defined by r(&) . If the identity of the sequence of hyperplanes G is clear, we omit the (@)
superscript. Note that for any two distinct region-specifying vectors, their appropriate regions are
disjoint as they lie in different sides of at least one hyperplane. We use the notation r(x) for the
region-specifying vector of x. That is, for all ¢ € [g], we have sign({w;, z)) = r;(z). We may also
abbreviate R(x) := R(r(z)). Another useful notation is S(7) := R(r) N S.

Fix the input sequence S and let y; := 1 (N*, S). Let G* = (w1, . .., wy) be a sequence of neurons
taken from the first hidden layer of the target net, such that there exists a function f: {+1}9 — ),
satisfying that for every x € S it holds that f(r(x)) = ®*(x). Note that taking the entire first
hidden layer must satisfy this condition, and the challenge is to find smaller sequences satisfying
it. For an expert E' := Expert; ., denote the number of mistakes it makes on the input sequence
Sby M(E) = M;(E) + My(E), where M;(F) is the number of mistakes in which the x € S
misclassified by F satisfies (&) (z) # r(G") (). That is, this is the type of mistakes that occur
because the region of x is not correctly identified by . We call those mistakes of the first type. The
mistakes of the second type counted in My (E) are all other mistakes. Namely, for an 2 misclassified
because of a mistake of the second type, it holds that (&) (z) = (") (2) but L () # f(x). That
is, the mistake is caused by a local incorrect choice of L. We now define the type of expert classes
that we use, accompanied with two propositions showing why they are “good".

Definition B.1. For a number of neurons g and number of rounds 7', an expert class £ of experts
of type Experts 1, is (g, T')-representing if for every collection P of size g of vectors p € {0, 137
with at most 1/+7 many 1’s, there exists an expert Expert 1, € € such that the vectors of G are
precisely those of P.

Proposition B.2. For all g, T larger than a universal constant, there exists a (g, T)-representing
class € such that

2 g9

€] < (Tl/% +g> :
Proof. We choose £ who satisfies the requirements of Definition of minimal size: Let P C
{0,1}7 be the set of all {0, 1}-valued vectors with at most 1/9? many 1’s, and let G = {G C P :

|G| = g}, where here G C P denotes a collection taken from P (possibly with repetitions), arbitrarily
ordered as a sequence. Let £ = {Expertg 1, : G € G} where L is some labeling function. Then:

T
€] < <(§1/“/§) + 9) < (1'% 4 )"

as required. O
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Proposition B.3. Let g be the size of G*, let T be the number of rounds, and let € be a (g,T)-
representing class. Then there exists Experts |, € & such that:

M, (Expertg 1) < 9/7i-

Furthermore, in every round t in which Expertg, 1, . makes a mistake, the mistake is of the first type if
and only if there exists p € G such that p, = 1.

Proof. Consider an execution of the known perceptron algorithm of [Rosenblatt, |1958]] on the labeled
input sequence S(w;) = (z1,sign({wj, 1)), ..., (xr,sign((w;, zr))), for some w; € G*. By
the perceptron’s mistake bound guarantee [Novikoff, 1962], it will make at most 1/+7 many mistakes.
Therefore, there exists a vector p € {0,1}7 with at most 1/9? many 1’s, such that p, = 1 if
and only if the perceptron algorithm errs on round ¢ when executed on the input sequence S(w;).
Therefore, for that p, algorithm Neuron,, classifies S(w;) correctly everywhere except for rounds
t with p; = 1. Thus, there exists an expert Expert; ;. such that G = (P1,---,Pg) is a sequence
of vectors in {0, 1}7 satisfying the following: There exists a permutation p: [g] — [g], such that
for any j € [g], sign((wp(jy, 1)) = sign({(g;,x:)) for all t € [T except for at most 1/~7, where
q; is the hyperplane maintained by Neuron,, . The role of the permutation p is simply to match
between the indices of G* and the indices of G. By summing over all neurons, the total number of
rounds where 7(G) () # r®(G) (z,) is at most g/~2, where the superscript p(G*) means that the
region specifying vector’s entries are according to the order induced by the permutation p. The same
discussion implies also the “furthremore" part of the lemma. O

C A quantitative characterization of online learning neural networks

In this section, we describe an instance of our meta-learner that has mistake bound close to optimal,
when no special assumptions on the target network are assumed. Unfortunately, while this mistake
bound is close to optimal, it might be very large. In the following sections, we will place further
natural restrictions on the input sequence and/or the target function, and obtain better mistake bounds.
We first introduce a geometric definition that will play an important role in the proved bounds.
Definition C.1. A (d, €)-totally-separable packing, or (d, €)-TS-packing, for short, is a set of distinct
points x1,...,z7 € B(R?) satisfying the following. For all distinct i, € [T] there exists a
hyperplane w € R? such that:

L. w| = 1.

2. sign((w, z;)) = —sign((w, z,)).
3. mingepr{[(w, )|} > €.

For simplicity, we did not mention that in the formal definition, but any hyperplane is allowed to

have a non-zero bias. The (d, ¢)-totally-separable packing number, or (d, €)-TS-packing number, for

short, denoted as TS(d, €) is the maximal number 7" such that there exist distinct 21, . . ., o7 € B(R?)
which form a (d, €)-TS-packing.

In simple words TS(d, ¢) is the maximal number of disjoint d-dimensional e-balls that can be packed
in By, .(R?) such that the interiors of every two balls are separated by a hyperplane that does not
intersect with any of the interiors of other balls. We may now prove Theorem 2.1}

C.1 Upper bound of Theorem 2.1

Theorem C.2. There exists a learner Lrn such that for any target function ®* computed by a target
net N'*, and any realizable input sequence S:

M(Lrn,S) = O(TS(d7 'yl)/'yf).

The following lemma is central in the proof of Theorem [C.2]

Lemma C.3. There exists a subsequence G = (w1, ..., wq) of the neurons in the first hidden layer
of N*, such that:
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1. g <|Z| <TS(d,71), where Z = {r(&) € {£1}9: S(r) # 0}.

2. There exists a function f: {£1}9 — Y, satisfying that for every x € S it holds that
f(r(z)) = ©*(x).

Before we can prove lemma we prove an auxiliary lemma. We say that , v’ € {£+1}9 are
j-neighbors if r; = r, <= i # j. Let g be the minimal number for which the conditions in
Lemma @]holds. Note that g is well-defined, since in the worst case it is the size of the entire
collection of neurons in the first hidden layer of N'*.

Lemma C.4. Forevery j € [g] there exist j-neighbors v, v’ € {£1}9 so that:
1. Both S(r) and S(r') are non-empty.
2. f(r) # f(r).

Proof. Suppose that for some j € [g], for all j-neighbors 7,7’ € {£1}9 one of the following
conditions holds:

1. Atleast one of S(r), S(r’) is empty.
2. f(r) = f(r").

Then, we show that we may remove w; from G and define a new function f’: {+1}9=! — Y
instead of f (as defined in Lemma as follows. For r € {£1}9, let r\{j} € {£1}97! be the
vector which is identical to r without the j’th entry. Let » € {£1}? such that S(r) # . Define
f'(r\{j}) = f(r). By assumption, either that S(r’) = ) or that f(r’) = f(r), where 7’ is the
j-neighbor of r and therefore using the value of f(r) for the vector r\{j} does not violate the
requirements from f. We now only consider region-specifying vectors of length ¢ — 1, and for all
r € S we have f/'(r&\wit(z)) = &*(z). This contradicts the minimality of g. O

We note that in this section we do not need the second item of Lemma[C.4} but it will be useful in the
following section, when proving an improved bound for the multi-index model. Let Z be as defined
in Lemma and denote Z = | Z|. In order to prove Lemma we will lower and upper bound
Z, starting with the lower bound.

Lemma C.5. We have Z > g + 1.

Proof. By Lemma for every j € [g] there exists an unordered pair of region-specifying vectors
P; = {r@,+)T(j,—)} Where the j’th entry of r(; y) is +1, the j’th entry of r(; _) is —1, both
agree on all other entries and both are in Z. Therefore, it suffices to show that |[U| > g + 1
where U = ;¢ P5 = {ra,+),7a,—):-- - T(g,4)> T(g,—) }- Denote the distinct objects of U by

{ur, .. um}.

We define an undirected graph @) with the set of vertices being U = {u, ..., u,} and the set of
edges P, ..., P,. First, note that () is a simple graph. Indeed, by definition of (), for any j, we have
T(j,4+) 7 T(j,—) and therefore @ contains no self-loops. Furthermore, for all 4, j € [g], P; # P; and
therefore () contains no parallel edges. We now argue that () contains no cycles and therefore is a
forest. To show that fact, we argue that for any two different vertices u, v such that there exists a
simple path of k edges connecting them, we have Ham(u, v) = k, where Ham(u, v) is the hamming
distance between u,v. Let P;,, ..., P;, be the edges of the path. Since () is simple and the path
is simple, all 41, ..., i; are distinct. Therefore, precisely the bits of indices i1, ..., ¢ are flipped
between v and v. We now use that claim to prove that ) contains no (simple) cycles. Suppose that
Uy, Usg, . .., Uk, u; is a simple cycle of length k£ > 3. Then, the path ug, . .., ug, u; is a simple path
of length k — 1, and thus Ham(ugy, u1) = k — 1. On the other hand, that path w;, us is a simple path
of length 1, and thus Ham(ug,u1) = 1. It holds that 1 # k — 1 for all & > 3, and thus we have
reached a contradiction.

To conclude, @ is a forest with g many edges. It is well-known that the number of vertices in a forest
with g many edges is at least g + 1, proving the stated bound. As a side note, the bound holds as
equality in the case where @ is a tree. O

27



Lemma C.6. We have Z < TS(d,~1).

Proof. 1t suffices to construct a (d, 1 )-TS-packing of size Z. We construct such a packing as follows.
Denote Z = {ry,...7rz}. We define the set P = {x1,...,2z} where for all i € [Z], x; € S(r;)
is chosen arbitrarily from the (non-empty) set S(r;). The set P is well-defined by definition of Z.
Let us show that P is a (d,~y1)-TS-packing of size Z. It is clear that | P| = Z and all points in P
are in B(R?), since every instance is taken from a different region in B(R?). To prove all other
conditions, let 7, j € [Z] distinct. So z; € S(r;),z; € S(r;). Therefore, there exists an index k

that r;, r; disagree on, which means that sign((ws, z;)) = —sign((wg, ;)). In addition, ||wg| =1
by definition of the target net, and min;c p{|{(wg, 2;)|} > 1 since P C S and by the definition of
Y1- O
Proof of Lemma|C.3] Immediate from the jointing of Lemma [C.5]and Lemma|C.6| O

We use a minimal size (g, T')-representing class € as defined in Definition|[B.1} with g = TS(d, v1)
and Lg = 1 forall G.

Lemma C.7. There exists an expert E € £ who makes at most 2TS(d, 1) /~? many mistakes.

Proof. By Lemma and Proposition [B.3| there exists an expert E' := Expert; 1, such that
My(E) < T8(d, ) /7i-
We now bound M5 (FE). Let ¢ be a round in which F makes a mistake of the second type. By the

“furthermore" part of Proposition we may assume that p, = 0 for all p € GG. By definition of
Expert 1, in such rounds Expert.; ;. updates Lg(r(®) = y,. By definition of a mistake of the

second type, we have (%) (z;) = r(P(G") (1) (where #P(G™)) is defined as in Proposition|B.3),
which means that f(r(%)(z;)) = v, for f defined in Lemma Therefore, for any other round
t' such that (%) (z,/) = () () and E does not make a mistake of the first type, E will predict
y: for x4, which is correct. Therefore, E' will make at most Z = | Z| mistakes of the second type,
one for each region 7 such that S(r) # ). Therefore, M>(E) < TS(d, 1), by Lemmal|C.3] The total
number of mistakes made by FE is thus at most

That completes the proof. O
Lemma C.8. We have

M(WM(E), 8) < max{16 - TS(d, 1) /i - log(TS(d,1)/7), C},

where C'is a universal constant.

Proof. First, by Proposition[B.2] we have
€] < (17 4 T(d, 32)) P,

By Lemma there exists an expert who makes at most 2TS(d, 1) /7% many mistkaes. By the
mistake bound of WM(&) in Proposition we have:

2T T
TS3< Sg’%)+ S(j;%)1ogT+TS(dm)logTS<dm))-
1 1

For any T > 15 - TS(d,~1)/7? - log(TS(d,v1)/7?), the above inequality is a contradiction if
TS(d,v1)/~? is larger than a universal constant. Othrewise, the above inequality is a contradiction

for any T larger than a universal constant. This proves the stated bound. O
Proof of Theorem Immediate from Lemma|[C.8 O
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C.2 Lower bound of Theorem

The idea is similar to universality and expressivity results for neural networks (see, e.g., [Shalev{
Shwartz and Ben-David, 2014]). Concretely, the lower bound relies on showing that every binary
function on a (d, y; )-TS-packing can be expressed without violating the minimal ; margin constraint
in the first hidden layer of the target net.

Theorem C.9. For any learner Lrn, and for any € > 0,d > 1/£2, there exists a network with input
dimension d and a realizable input sequence S such that v, > € and

M(Lrn, S) = Q(TS(d, €) + 1/€).

Proof. The dependence on 1/¢? is implied by the known lower bound showing that the Perceptron
algorithm is optimal.

Let us concentrate in the dependence on TS(d, €). Let x1, .. ., x7 be a maximal (d, ¢)—TS-packing.
For simplicity of notation, we prove the lower bound for the case where all induced separating
hyperplanes for x1, . .., x are homogeneous, and the same argument works when this is not the case.
The adversary uses S = x1, ...,z as the input sequence of instances, and forces a mistake on the
learner in every round. It remains to show that for every binary labeling y1, ..., yr € {£1} of S there
exists a network AV* of input dimension d who realizes it with v; > €. Let G = (w®),... w(®))
be a sequence of separating hyperplanes induced by the TS-packing S, and let yq, ...,y € {£1}
be a binary labeling of S. We construct a net A'* with two hidden layers as follows. The first
hidden layer consists of all hyperplanes in G. The second hidden layer is constructed as follows. Let
f:{£}9 — {41} be a binary function such that for every ; € S, f(r(%)(z)) = ;. The neurons
in the second hidden layer are all r € {£1}9 such that f(r) = 1, multiplicatively normalized by
1/,/9, and with an added bias of - — 1. The output layer consists of a single output neuron with all

weights being 1/+/dz (recall that d2 is the width of the second hidden layer). The bias of the output
neuron is 1 — 1/ds.

Clearly, v; > €. It remains to show that ®*(z;) = y; for all x; € S, where ®* is the function
computed by N*. Let z; € S, and let us calculate ®*(z;). First note that the input for the second
hidden layer is precisely %r(xt). Now, for every neuron (g(7), i — 1) in the second hidden layer

added for some r € {+1}9 in the first hidden layer, we have

. 1 1 1 r=r(n),
sign r), —r(x -1+
(ot o) -1+ 55) = {1y 12N
Therefore, if y; = 0, then the output of every neuron in the second hidden layer is —1/1/dy and
therefore the output neuron will get the value

si n(d1 1+11>si n(l)l
Ve Ve T ) T e T

Otherwise, if y; = 1, then the output of every neuron in the second hidden layer is —1/+/d2, except
for the neuron with weights g(7(x)) which exists by the definition of the network. Therefore the
output neuron will get the value

sin(—(al—l)1 L ! - +1—1>—sin<1>—1
T Ve Ve Ve T a) T ) T

completeing the proof. O

Applying the lower bound on TS(d, ¢) from Theorem to the lower bound on the mistake bound
proved above shows that the mistake bound can be exponential in d for small 1, and linear in d even
for constant ;. This inevitable dependence on d requires further assumptions on the target net and
the input sequence in order to get dimension-free mistake bounds. We study such assumptions in the
next sections.
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D The multi-index model

In this section, we prove Theorem [2.2] For that matter, we prove variations of the lemmas proved in
Section|C] but with d replaced by k. The core idea allowing this is the fact that a labeling made by ¢*
(as defined in Sectlonn 2.2)) for a (d, €)-TS-packing induces a labeling of a (k, €)-TS-packing, and thus
its level of complication depends on & rather than on d.

We begin by stating an appropriate version of Lemma|C.3]

Lemma D.1. There exists a subsequence G = (w1, . . .
the first hidden layer of N'*, such that:

1. g <|Z| < TS(k,v1), where Z = {r(®) € {£1}9 : S(r) # 0},

, Wgq) of the hidden neurons (hyperplanes) in

2. There exists a function f: {£1}9 — Y, satisfying that for every x € S it holds that

f(r(z)) = &*().

As in Section[C] we consider g as the minimal size of a subsequence of the neurons in the first hidden
layer for which the conditions in Lemma [D.T|hold. Therefore, Lemma|C.4]and Lemma|[C.5|can be
used as is in also the multi-index setting. The proof of the improved upper bound is mainly due to the
following lemma.

Lemma D.2. We have Z < TS(k,~1).

To prove this lemma, we need an additional crucial property of the neurons in G, proved in the lemma
below. For simplicity and convenience of proof, we assume w.l.o.g until the rest of the section that
s = e; for all i € [k]. Indeed, if this is not the case, we can rotate the entire system to this state.

Lemma D.3. Forany w € G, w; =0 forall i > k.

Proof. Suppose towards contradiction that wy1 # 0 for some w € G. Suppose w.l.o.g that the
index of w in G is 1. By Lemma|[C.4] there exist r,7’ € {£1}¥ such that 7; = 1,7} = —1, and
r, = rg for all 7 # 1, and furthermore:

1. S(r), S(r") are both non-empty.
2. f(r) # f(") (for f defined in Lemma|D.1).

Therefore, also R(r), R(r’) are both non-empty. Therefore, there exists ¢ > 0 so that there exists a
ball B with the following properties:

1. w intersects with the center of B.
2. B has radius €.
3. B C R(r) UR(r).

Let ¢ be the center of B. Note that c has the following properties:

1. (w,c)=0.
2. e £1—e
Assume w.l.o.g that w41 > 0. Consider two points ¢(r), ¢(r’). The point ¢(r) is identical to ¢
/!

except that ¢(r) 1 = cgt1+€/2. The point c(r’) is identical to ¢ except that ¢(r’) 11 = cpy1 —€/2.
Note that ¢(7), ¢(r’) € B and furthermore that

(w,c(r)) >0, (w,c(r’)) <
since (w, ¢) = 0. Therefore, we have ¢(r) € R(r) and c¢(r’) € R( "), and since f(r) # f(r’) we

have
*(c(r)) # % (c(r")). @
On the other hand, ¢(r); = ¢(r’ ) for all i < k. Therefore, by the multi-index assumption

©*(c(r)) = ¢"(c(r)) = ¢*(c(r")) = ¥ (c(r")),
which contradicts (2)). O
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We may now prove Lemma|[D.2]

Proof of Lemma|D.2] 1t suffices to construct a (k,~;)-TS-packing of size Z. Denote Z =
{r1,...,rz}. Let P' = {z},..., 2%}, where for all i € [Z], z} is chosen arbitrarily from the
non-empty set S(r;. Let P = {1, ..., 2z}, where for every i € [Z], let z; be as x}, but only with
its first k indices. Let us show that P = {x1,...,xz} is a (k,y1)-TS-packing of size Z. First, for
all i, 2, € B(R?), and therefore z; € B(R¥). To show that | P| = Z, we need to show that z; #
for all distinct 4, j. Indeed, since 7, z’; are taken from distinct S(r;, S(r;, there exists w € G so
that sign((w, z)) # sign(w, x;). Therefore, 7, z; must differ in at least one index where w is not
zeroed. Recall that w; = 0 for all £ > k£ by Lemma|D.3| and thus they differ in some index smaller
than k£ + 1, and therefore ; # x;. So far, we have established that P C B(Rk) and that its size
is Z. It remains to show that total separability holds with the separation parameter ;. We define
G<y, to be the same as G, only that all indices larger than k& are removed from each vector in G
which is then scaled accordingly to have norm 1, making them all k-dimensional. For w € G, denote
the appropriate trimmed vector in G<j, by w<y,. Let i, j € [Z] be distinct indices. From the same
argument already given, there exists w<j € G<, so that sign({(w<y, z;)) # sign{w<g, ;). Finally,
we claim that min;e p |(w<g, ;)| > 1. Indeed, since P’ C S we have min;ep/ [(w, z5)| > 71,
which proves the claim. ]

Proof of Lemma Immediate from the joint of Lemma|C.5]and Lemma[D.2 O

Lemma D.4. There exists an expert who makes at most 2TS(k, 1) /vi many mistakes.

Proof. We apply the exact same arguments as in the proof of Lemma|[C.7] with the only difference of
applying Lemma [D.T]instead of Lemma|C.3|in (T). O

Lemma D.5. We have
M(WM(E), S) < max{16 - TS(k,y1)/77 - log(TS(k,11)/77), C},

where C'is a universal constant.

Proof. We apply the same arguments used in the proof of Lemma with only replacing TS(d, 1)

with TS(k, v1 ), and Lemma |C.7|with Lemma O
Proof of Theorem2.2] Immediate from Lemma[D.5] O

E Learning with large margin everywhere

Fix the input sequence S C (R? x V)". Recall the definition of a neuron’s margin from Section|C}
For any neuron W9 in A’*, let

Ywen(S) = min |<W(“),m(4)>|.
x () :xeS

We now define the minimal margin in the entire net:

N*,8) = . ] &
( ) ge{%lj.r‘l,L}ier[Iclli?l]'YW(ﬁ ) (S)

When the identity of N or S (or both) is clear, we may omit them from the notation.

We will now prove Theorem[2.3] In section [E.T| we explain how to prune the network based on its
minimal margin in the case of a network that implements binary classification and has a single hidden
layer. Then, in Section[E.2]we explain how to extend the technique to the general case. Finally, in
Section [E.3| we give the learning algorithm itself.
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E.1 Margin-based pruning with a single hidden layer and two labels

Let A'* be the target net, and suppose that N'* has a single hidden layer of width ¢, and that it
implements a binary function ®*: B(R¢) — {41} (and therefore has a single output neuron). The
collection of hidden neurons is denoted by £ = (vq ..., vg).

The main idea allowing the mistake bound of Theorem [2.3]is that the hidden layer of N'* in fact
contains only 0(1 /~*) “important" neurons. As usual, by “important", we mean that for every z € S,
®*(x) depends only on their output. This is formalized and proved in the following lemma, via
uniform convergence.

Lemma E.1. There exists a sequence G = (w1, . . . wq) taken from the £ neurons in the hidden layer
of N* such that:

1 g=0(1/7".
2. Forallz € S:

O* () = sign <Z sign({w;, x))) .

Proof. We define a binary hypothesis class H as follows. The domain of instances X is all ¢
neurons in the hidden layer of A*. The input instances S = x1,...,z define the hypothesis
class H = {hz,,...,hy.} in the natural way: For an instance z € S and a neuron v € X,
hz(v) = sign({z,v)). By assumption, |(z,v)| > v forall v € X, x € S. Therefore, the online
perceptron algorithm will make at most 1/+% many mistakes on any input sequence realizable by
‘H. It is known ,for example by [Littlestone, [1988|], that a uniform mistake bound in the standard
online setting for all realizable sequences upper bounds the VC-dimension of the class. Therefore
VC(H) < 1/42.

We now define a distribution D over X = {wv1,...,v,} (the hidden neurons). Let o be the output
neuron of N'*, and suppose w.l.o.g that all entries of o are non-negative. We define D to be
proportional to the weights of 0. Namely, for every i € [¢] define

D(’Ul) = 02/\/Z

Let () € {£1}* be the output value vector of the hidden neurons when the input instance is = € S,
and let u(r) be the real value calculated by the output neuron when 7 is the output of the hidden
neurons. The reason we chose D as the distribution above, is that Q p(x) (as defined in Section
is precisely u(r(z)) forany z € S:

u(r(x)) = Z 0; - %rl(x)

i€[{]

=" D) ()

€[]

=Y D(v;) - sign((vs, 7))
i€[f]

= Ey,~p[sign({v;, z))]

= ]EviND[hw (’U‘L)]

Theorem implies that if we draw an i.i.d sequence G of g = [1000 V(i(ZH) log(vci(zm )—‘ many
neurons (possibly with repetitions) from D, we have

Pr | sup 1Qn(he) — Oche)] > 7/2] <34,
G:‘wl,“.‘ngD hIGH

Therefore, there exists a sequence G of size g of hidden neurons such that

sup |Qp(hs) — Qc(ha)| < 7/2. ?3)
- EH

T
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Note also that ®*(x) = sign(u(r(x))). Therefore, for all z € S we have

" (x) = sign(u(r(z)))
—SIgn(Q (hz))
gn(Qc (hs))

= sign Z sign((w;, 1‘>)> )

where the third equality is due to (3) and the margin assumption: By the margin assumption and
the second equlaity, we have |Qp(hy)| = |u(r(z))| > =, and therefore for any ¢ € [Qp(hy) —

~v/2,Qp(hy) + /2], it holds that sign(q) = sign(Qp(h,)). Equation ~implies that Q¢ (h,) €
[Qp(hs)—7/2,Qp(hy)+7/2]. Recall that VC(H) = 1/+2 and thus g = O(1/~4*). That completes
the proof. O

E.2 Margin-based Pruning in the general case

We now adapt the approach from previous section that handled shallow networks and binary output
to the general case. The main building block we use to extend the pruning result from the previous

section to general networks is the function fg L {il}g — {il} where g, L € N, which we define
inductively as follows. For i € {0, .. — 1}, let f {1} S {1 “" be defined as

follows. Let r € {jzl}gL_i. For any index j of the output fg( )L(r):

—1

9-J
fgmL(r)j = sign Z T

i=g-(j—1)+1

In simple words, f 513: (r) takes every consecutive g entries in r and uses the sign of their majority as
a new entry in the output vector.

We now show how to use f 1, to extend the result from the previous section to the case of a general
network. Suppose that the target network A™* has L hidden layers.

Lemma E.2. Fix an output neuron in N*, and let o(x) € {£1} be its value when x € S is the input.
Let g be as in the proof of LemmaE Then there exists a sequence G of g~ neurons from the first
hidden layer of N'*, such that:

fo.r(r(x)) = ofx)

Sorall x € S, where v(x) is, as usual, the output vector of the neurons in G.

Proof. The proof is by repeatedly applying Lemma [E.T| from the output neuron backwards.
Lemma [E.I] immediately implies that in the L’th hidden layer, there exists a sequence G,

(ng), cee ws(]L )) of g many neurons so that the sign of the sum of their outputs when z is the input
gives o(x) for any z € S. Now, since  is the minimal margin in the entire net, we can relate to each
w™ asan output neuron, and again by Lemma in the (L — 1)’th hidden layer, there exists a

(L_l) . w(L—l)) of g many neurons so that the sign of the sum of their

outputs when z is the input equals to the output of neuron 'w( ) when z is the input, for any = € S.
Repeating the argument all the way up to the first layer gives the stated result. O

sequence G_1 = (w;

Lemma implies that a sequence of O(l /~v*E) neurons from the first hidden layer suffices to
log |y

calculate the output of a single output neuron. Therefore, it is clear that O( |> many neurons

log |3)

suffice to calculate the output of all output neurons. It remains to learn those O( |) neurons, and

then just use f, . to calculate the output neurons. This is done by our meta-learner from Section
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E.3 Learning algorithm with margin everywhere

As mentioned earlier, since there are [log |Y|] output neurons, Lemma [E.2|implies that 0) %
5

many neurons are suffice to calculate the output of all output neurons by calculating fg/ 1, (r (@) (z))

for every sequence G of size ¢’ = O(1/~v*") of neurons that suffice to calculate the output of a
single output neuron. So we use our meta-learner with a (g, T')-representing class £ of minimal size,

withg = C - 1054—9}‘ log(1/~%), where C is some large enough universal constant, and L¢ being

the function that calculates every output neuron separately by the value of fy/ 1, on the appropriate
sequence of neurons given in Lemmal[E.2]

Lemma E.3. We have

MWM(E), §) = O(Vi‘ﬁ%).

Proof. By Proposition[B.2] we have
€l < (V7 + 9

where g = C'- 1054—@}‘ log(1/4%). By Lemma there exists an expert E' € £ for which My (E) = 0
and thus M (E) < g/~2. Therefore, the mistake bound guarantee of WM implies that

T<3(92+9210gT+glogg>.
v v

The above inequality is a contradiction for any

7> 98Vl log<10i|Ly|),

74L+2

which proves the stated bound. O

Proof of Theorem2.3] Immediate from Lemma|[E.3] O

F Adapting to the correct parameters

Our mistake bounds are of the form 1/ *yb, where v < 1 is the relevant definition of margin and b > 1
is a function of « and other parameters of the problem, like the TS-packing number, the depth of the
network, etc. Our analysis assumes that upper bounds on 1/+, b are given, and the mistake bounds
actually depend on those bounds rather than on the true correct values of those parameters. It is thus
natural to seek a solution for the case that the known bounds on 1/+, b are very loose.

In the case where only one of ~, b is known to the learner, relatively standard doubling tricks may be
used to recover the original mistake bound (up to constant factors) obtained when both are known. In
this section, we show that even if both ~, b are unknown to the learner, a mistake bound of roughly
1/~ can be obtained. It remains open to prove or disprove that the original mistake bound 1/+° is
achievable (up to constant, or even logarithmic factors) when both v, b are unknown.

The adaptive mistake bound is proven by the Adap(Lrn) algorithm given in Figure@ where Lrn is the
learner requiring knowledge of v, b. Let us briefly overview algorithm Adap(Lrn). Let v*, b* so that
M=1/ fy*b* is the guaranteed mistake bound of Lrn when ~*, b* are known. Adap(Lrn) maintains a
guess X of M, and for every guess X, it tries enough combinations of v, b so that 1/4* = X. For
any such combination, it runs Lrn and stops its execution if X + 1 mistakes are made. At first, we
have X = 2. After trying all combinations of +, b that will be shortly defined, Adap(Lrn) updates
X := X?, and starts again with the new guess of M. For every guess X of M, Adap(Lrn) does the
following: Initialize b := X, 1/ := X'/ and execute Lrn with those parameters. If X + 1 mistakes
are made, it updates b := b — 1,1/ := X1/ and try again with the new parameters. Adap(Lrn)
repeats this process until b = 1. If X + 1 mistakes are made with b = 1, it updates the guess of M
from X to X2, and repeat the process.
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Adap(Lrn)

Input: A learner Lrn requiring knowledge of ~, b.
Initialize: X :=2,b:= X,~v:=1/X°,

1. Execute Lrn with parameters ~y, b until it makes X + 1 many mistakes.
2. Ifb> 1t

(a) Seth:=b— 1.

(b) Sety:=1/X°,

(c) Repeat Item|[I]
3. Else, if b = 1:

(a) Set X = X2

(b) Setb:= X,v:=1/X'/°,

(c) Repeat Item[T]}

Figure 4: An adaptive algorithm.

Proposition F.1. Suppose that L is an algorithm with guaranteed mistake bound M = 1/+° on a
sequence S, assuming that -y is a lower bound on the relevant margin definition, and b is an upper
bound on the relevant exponent. Then Adap(Lrn) described in Figurehas mistake bound O(M*)
on S even if no such bounds vy, b are known.

Proof. Let us analyze the mistake bound of Adap(Lrn). Let X be the minimal guess of M such that
X > M, and let us assume w.l.0.g that even for the guess X, all combinations of -y, b we have tried
failed (more than X many mistakes are made by Lrn). Since X > M, and we begin with b = X
which certainly an upper bound on b* and end with b = 1 which is certainly a lower bound on b*,
there must be 0 < j < X — 2 such that the two consecutive combinations

(15,05 = (XYEX =), (17500, b50) = (X770, X —j 1)

satisfy 1/-,41 > 1/4* and b; > b*. This means that if Lrn is executed with (1/7;41, b;), at most
1/ 'y?f‘_l many mistakes are made. We argue that a combination with values at least (1/7;41,b;) will

be tried in the worst case, when the guess of M is changed from X to X 2. Indeed, let the guess
of M be X2, and let j = X2 — X + j. Then in the j”’th combination guess of 7*, b*, we will

have by = X? —j' = X —j > b*, and 1/v; = (XQ)X%# = X%, We thus require that
XX > X ¥, which is equivalent to 32~ > x—L—, which indeed holds for all j < X — 2,
which is the required range.

Therefore, in the worst case, when M = X2, Lrn will be executedl with correct upper bounds on
1/4* and b* and will make on this execution, at most (X Xiﬂ) X_] = X? < M? many mistakes,

and thus will not update the guess of v*, b* past this execution.

It remains to upper bound the number of mistakes made before this execution. By definition of the
algorithm, for every guess x of M, the number of mistakes made is at most (z + 1)z < (2 + 1)2.
Recall that in the final guess =, we have x < M? and thus (x + 1)? < 4M*. The exponential update
of X implies that the total number of mistakes throughout the entire execution is at most M4, as
required. O
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G Bounds on the TS-packing number

Theorem G.1. Forany d € Nt and ¢ < 1/2 we have:

s (o] 2 ) o =m0 < (12

Proof. The upper bound is the known upper bound for the standard (not totally separable) (d, ¢)-
packing number (see , e.g., the lecture note [Wu and Yang} 2016])).

As for the lower bound, let us start with the first expression. Consider the d-unit cube inscribed in the
d-unit ball, where the cube’s sides are parallel to the axis. The vertices of the cube are thus precisely

the set {#1/+/d}?. Supppose that ¢ < glﬁ’ as otherwise the stated bound is 1, which holds trivially

for e < 1/2. For every direction ¢ € [d], we define the following 2 {ﬁJ + 1 many hyperplanes:

1 1
e, k-2), Veed—|——=I|,...,0,....,| —=] ;-
( : { {26\/8J beﬁJ }
We denote this set of hyperplanes by D;. The sets D; define a grid inside the unit cube. We can

choose a cell in the grid by choosing for every i, j; € {f {ﬁJ N | {ﬁJ — 1}, where j;
specifies the location of the cell in the i’th direction: all points x such that sign({e;, x) + j; - 2¢) > 0
26\/3
d
many directions, the number of cells is precisely (2 {ﬁJ ) . By definition of the hyperplanes in

but sign({e;, ) + (j; + 1) - 2¢) < 0. Since we have 2 {#J many choices in each direction and d

the set D;, each cell is a d-cube with side length 2¢, and thus the inscribed d-ball in any such cube has
redius precisely 2e. Therefore, the center of any such ball has distance at least € from any hyperplane
in the sets D;. It is also straightforward to see that for two centers of different balls there exsits a
separating hyperplane in the sets D;. Therefore, the set of all centers of balls inscribed in cells in the
defined grid forms a (d, €)-TS-packing.

It remains to prove the d lower bound for any e < 1/2. Consider the d-regular simplex inscribed in
the d-unit ball. Dentoe its vertices by V' = vy, ..., v4. We claim that V is a (d, €)-TS-packing. We
construct for every v; a hyperplane (w;, b;) such that sign((w;, v;) + b;) > 0 <= j = 4, while
making sure that |(w;, v;) + b;| > 1/2. We start with v;. Consider the hyperplane v4, specified by
the same values as the point v;. We will show that sign((v1,v;)) > 0 <= j = 1. The direction
j =1 = sign((v1,v;)) > 0is trivial. For the other direction, let j # 1, and suppose towards
contradiction that sign({v1, v;)) > 0. and consider the following triangle. Two of its vertices are
simply v; and v;. The third vertex u, is the intersection of the infinite line ¢ that intersects v; and
the origin, and the infinite line that intersects v; and is also orthogonal to £. Let’s calculates the
triangle sides’ lengthes. By assumption, dist(v;,u) < 1. Therefore, also dist(v;, u) < 1. Pythagoras’

theorem now impies that dist(vq, v;) < /2. However, this contradicts Jung’s theorem, stating that
the diameter of V' is exactly 4/ ﬂdfjl) > /2, and therefore dist(vy, vj) > /2. To conclude, we

have (vq,v1) = 1 and (vq,v;) < O for all j # 1. Thus, the hyperplane (v, —1/2) satisfies our
requirements for v;. We may define a similar hyperplane for all other points in V. Therefore V' is a
(d, €)-TS-packing for all ¢ < 1/2. O
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