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Abstract

Mixture-of-Experts (MoEs) can scale up beyond traditional deep learning models by employ-
ing a routing strategy in which each input is processed by a single “expert” deep learning
model. This strategy allows us to scale up the number of parameters defining the MoE
while maintaining sparse activation, i.e., MoEs only load a small number of their total
parameters into GPU VRAM for the forward pass depending on the input. In this paper,
we provide an approximation and learning-theoretic analysis of mixtures of expert MLPs
with (P)ReLU activation functions. We first prove that for every error level ε > 0 and every
Lipschitz function f : [0, 1]n → R, one can construct a MoMLP model (a Mixture-of-Experts
comprising of (P)ReLU MLPs) which uniformly approximates f to ε accuracy over [0, 1]n,
while only requiring networks of O(ε−1) parameters to be loaded in memory. Additionally,
we show that MoMLPs can generalize since the entire MoMLP model has a (finite) VC
dimension of Õ(L max{nL, JW}), if there are L experts and each expert has a depth and
width of J and W , respectively.

1 Introduction

With the advent of large foundation models, scaling deep learning models beyond the capacity of a single
machine has become increasingly important. Mixture of Experts (MoE) models offer a solution to this
challenge through a sparse activation strategy. In MoEs, each input is first routed to one of many expert
deep learning models and then processed by that expert. This approach allows MoEs to scale effectively
while maintaining a low or constant computational cost during the forward pass, as only a subset of the
overall model needs to be loaded into GPU video random-access memory (VRAM) for a given input. This
has led to MoEs such as Mixtral (Jiang et al., 2024), Gemini (Google, 2023), and several others, e.g. (Jacobs
et al., 1991; Jordan & Xu, 1995; Meila & Jordan, 2000; Shazeer et al., 2017; Guu et al., 2020; Lepikhin
et al., 2021; Fedus et al., 2022; Barham et al., 2022; Majid & Tudisco, 2024), to become a viable solution in
scaling up large language models (Radford et al., 2018; Brown et al., 2020). However, the analytical and
statistical foundations of MoEs in deep learning are relatively less understood compared to their empirical
investigations.

This paper adds to the theoretical understanding of this subject by studying MoEs whose experts are (small)
multilayer perceptrons (MLPs) with (P)ReLU activation function (MoMLPs). A key feature of MoEs is that
they can maintain a small/fixed computational cost during the forward pass, for any given input x ∈ [0, 1]n,
even if the overall model complexity may be large. Our main result (Theorem 4.1) analyzes the complexity
of MoEs when uniformly approximating an arbitrary Lipschitz (Lebesgue) almost-everywhere continuously
differentiable function f : [0, 1]n → Rm by an MoMLP with (P)ReLU activation function to any prespecified
error ε > 0. We focus on the trade-off between the maximum number of parameters loaded into VRAM
by any expert model {f̂l}ℓ

l=1 while predicting from any given input, against the total number of experts
required to maintain that constant number of activated parameters in the forward pass. Summarized in
Table 1, our main result shows that a constant active complexity in the forward pass can be maintained
amongst all experts, but at the cost of an exponentially large number of locally-specialized experts {f̂}ℓ

l=1
and regions of specialization {Cl}ℓ

l=1. Our complexity estimates are approximately optimal as they nearly
match the Vapnik-Chervonenkis (VC) lower bounds derived in Shen et al. (2021). That is, the uniform
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Table 1: No. Parameters and VC-Dimension of MoMLP with no. experts-to-expert-complexity parameter
r ∈ (−∞, 2

n
]; performing an 0 < ε ≤ 1 approximation of an α-Hölder function f : [0, 1]n → R; n ∈ N. When r ≥ 0

more model complexity is distributed across many “small experts”. When r < 0, fewer experts define the MoE
and, as a result, each expert MLP must depend on more parameters such that the entire MoE obtain an accurate
approximation of the target function. We also record the total number of parameters defining the MoMLP, including
those which are not loaded in the forward pass but can be stored offline.

Parameter Estimate

No. Parameters Per Expert O(max{1, ε−r})
No. Experts O

(
max{1, ε2r/n−1/α}

)
Parameters MoMLP (Offline) O

(
max{1, ε−r} max{1, ε2r/n−1/α}

)
VC Dimension MoE Õ

(
max{1, ε2r/n−1/α} max{ε2r/n−1/α, ε−r}

)
approximation of an arbitrary such f on [0, 1]n, with an an error of ε > 0, requires at least Ω(ε−n/2) total
model parameters (Yarotsky, 2018; Kratsios & Papon, 2022; Shen et al., 2021; 2022b). It is here where MoEs
have an advantage since not all of these parameters need to be loaded into active memory for any given input;
thus MoEs are genuinely sparsely activated.

From the statistical learning perspective, a key property of MoEs (e.g. the top MoMLP model) is that they
can maintain a given level of activation in the forward pass while the entire MoE model can maintain a finite
VC-dimension (Theorem 4.2). This is key, for instance, in classification applications, as the fundamental
theorem of PAC learning (see e.g. (Shalev-Shwartz & Ben-David, 2014, Theorem 6.7) or the results of Blumer
et al. (1989); Hanneke (2016); Brukhim et al. (2022)) implies that such a machine learning model generalizes
beyond the training data if and only if it has finite VC dimension.

Summary of Contributions Table 1 summarizes our main contributions, both to the approximation
theory and learning theory of MoE models, in the context of the toy mixture of (P)ReLU MLP models. All
results illustrate the trade-off between individual (expert) complexity and the complexity shared across the
set of experts when uniformly approximating a target α-Hölder function; 0 < α ≤ 1.

Our approximation theorem (Theorem 4.1) records the number of parameters required to perform a uniform
approximation on a high-dimensional Euclidean space on [0, 1]n. The first result juxtaposes the complexity
of each expert (PReLU MLP) against the total number of experts required to achieve a given level of
approximation accuracy. The user controls the number of experts vs. the complexity of each expert using a
hyperparameter r ∈ R. As shown in Table 1. Small values of r < 0 encode the “few large experts regime”,
whereas large values of 0 ≤ r capture the “many small experts regime”.

Our statistical learning guarantee result (Theorem 4.2) yields a bound on the VC dimension of the entire
class of MoEs with just enough approximation power to perform this approximation. As summarized in
Table 1, the result quantitatively shows the degradation of model generalization as the number of experts
increases; i.e. r becomes large.

Observe that, setting r = 2
n in Table 1, yields for ReLU MLPs derived in Yarotsky (2017); the optimality

of which is expressed in terms of VC dimension in Shen et al. (2022b). Likewise, the VC dimension of the
MoMLP is roughly equal to that of ReLU MLPs computed in Bartlett et al. (2019).

2 Related Work

Deep Learning Models with Few Parameters in Active Memory. Deep learning models with
highly oscillatory “super-expressive” activation functions (Yarotsky & Zhevnerchuk, 2020; Yarotsky, 2021;
Zhang et al., 2022) are known to achieve dimension-free approximation rates, thus effectively require a
(relatively) feasible number of parameters to be loaded into VRAM during the forward pass. As we will see in
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Proposition 4.4, many of these models have an infinite VC dimension even when they are restricted to having a
bounded depth and width; see Jiao et al. (2023, Lemma 3.1) for ReLU-Sin-2x-networks. Their unbounded VC
dimension implies that the classifiers implemented by these models do not generalize on classification problems.
Thus, the real performance of these models does not need to achieve the approximation-theoretic optima
since they can only learn from a finite number of noisy training instances. Alternatively, a feasible number of
parameters in deep learning models with standard activation functions may be guaranteed by restricting classes
of well-behaved target functions such as Barron functions (Barron, 1993), functions of mixed-smoothness
(Suzuki, 2019), highly smooth functions (Mhaskar, 1996; Galimberti et al., 2022; Gonon et al., 2023; Opschoor
et al., 2022), convex functions (Bach, 2017), functions with compositional structure (Mhaskar et al., 2017), or
other restricted classes. However, there are generally no guarantees that a target function encountered in
practice has the necessary structure for these desired approximation theorems to hold.

Universal Approximation in Deep Learning. Several results have recently considered the expression
power of deep learning models. These include universal approximation guarantees for MLPs (Cybenko, 1989;
Hornik et al., 1989; Lu et al., 2017; Suzuki, 2019; Yarotsky, 2017; 2018; Voigtlaender & Petersen, 2019;
Bolcskei et al., 2019; Gühring et al., 2020; De Ryck et al., 2021; DeVore et al., 2021; Daubechies et al., 2022;
Kratsios & Zamanlooy, 2022; Zhang et al., 2022; Opschoor et al., 2022; Zamanlooy & Kratsios, 2022; Shen
et al., 2022b; Cuchiero et al., 2023; Voigtlaender, 2023; Benth et al., 2023; Mao & Zhou, 2023; Yang & Zhou,
2024), CNNs (Petersen & Voigtlaender, 2020; Yarotsky, 2022), spiking neural networks (Neuman & Petersen,
2024), residual neural networks (Tabuada & Gharesifard, 2021), transformers (Yun et al., 2019; 2020; Kratsios
& Papon, 2022; Fang et al., 2023), random neural networks (Gonon et al., 2023), recurrent neural network
models (Grigoryeva & Ortega, 2018; Gonon & Ortega, 2021; Hutter et al., 2022; Galimberti et al., 2022; hoon
Song et al., 2023), and several others. In each these cases, one typically considers the expressivity of a single
“expert” model and not a mixture thereof. Our analysis can be customized to any of these settings to yield
analogues of Theorem 4.1.

Foundations of MoEs. MoE models have been heavily studied since their inception. Most results have
focused on identifying the correct expert to best route any given input to (Teicher, 1960; 1963; Wang et al.,
1996), the construction of effective routing mechanisms (Wang et al., 2017) selection (Wang et al., 1996),
MoE training (Larochelle et al., 2009; Akbari et al., 2024), statistical convergence guarantees for classes
of MoEs (Chen, 1995; Ho et al., 2022), robustness guarantees for such models (Puigcerver et al., 2022),
amongst several other types of guarantees. However, to our knowledge, there are no available approximation
guarantees for MoE or VC-dimension bounds for deep-learning-based MoEs. Thus, our results would be
adding to the approximation theoretic foundations of MoE models as well as to the statistical foundations of
deep-learning-based MoEs.

Prototypes and Partitioning. Each region in our learned partition of the input space is associated
with a representative point therein called a prototype. Prototypes (also called landmarks) are routinely
used in image classification (Mensink et al., 2012), few-shot learning (Snell et al., 2017; Cao et al., 2020),
dimensionality reduction (Law et al., 2019), in complex networks (Keller-Ressel & Nargang, 2023), and
geometric deep learning (Ghadimi Atigh et al., 2021) to tractably encode massive structures. They are
also standard in classical clustering algorithms such as K-medoids or K-means, wherein the part associated
with each medoid (resp. centroid) defines a Voronoi cell or Voronoi region (Voronoi, 1908). Moreover,
while partitioning is commonly employed in deep learning for various purposes, such as proving universal
approximation theorems (Yarotsky, 2017; Lu et al., 2021b; Gühring & Raslan, 2021) or facilitating clustering-
based learning (Zamanlooy & Kratsios, 2022; Trask et al., 2022; Ali & Nouy, 2023; Srivastava et al., 2022),
existing approaches typically involve loading the entire model into VRAM. Our approach, however, differs by
relying on a learned partition of the input space, where each part is associated with a distinct small neural
network. Importantly, the complete set of networks forming the MoMLPs does not need to be simultaneously
loaded into VRAM during training or inference.

Paper Overview. Our paper is organized as follows. Section 3 contains preliminary notation, definitions,
and mathematical background required for the formulation of our main results. Section 4 contains our main
approximation (Theorem 4.1) and learning theoretic (Theorem 4.2) guarantees. Section 5 dives into the details
of why MoEs can achieve arbitrary precision while maintaining a feasible active computational complexity by
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explaining the derivation of our main approximation theorem; the details of which are relegated to Appendix B.
A technical version (Theorem 5.3) of our main approximation guarantee is then presented, which allows for
the approximation of continuous functions of arbitrarily low regularity and for the organization of the experts
defining the MoMLP via a decision tree implementing the indicator function to a Voronoi diagram of [9, 1]d.
Section 6 contains technical derivations of our main results as well as experimental elucidation of the benefit
of MoEs, and specifically the toy MoMLP model.

3 Preliminaries

We standardize our notation, define the necessary mathematical formalisms to state our main results and
define our toy MoE Model.

Notation We use the following notation: for any f, g : R → R, we write f ∈ O(g) if there exist x0 ∈ R
and M ≥ 0 such that for each x ≥ x0 we have |f(x)| ≤Mg(x0). Similarly, we write f ∈ Ω(g) to denote the
relation g ∈ O(f). The ReLU activation function is given for every x ∈ R by ReLU(x) = max{x, 0}. For
each n ∈ N+ and C ⊆ Rn, the indicator function IC of C is defined by: for each x ∈ Rn set IC(x) = 1 if
x ∈ C and is 0 otherwise.

3.1 Background

Multi-Layer Perceptrons We will consider MLPs with trainable PReLU activation functions.
Definition 3.1 (Trainable PReLU). We define the trainable PReLU activation function σ : R× R→ R for
each input x ∈ R and each parameter γ ∈ R as follows:

σγ(x) def.= σ(x, γ) def.=
{

x if x ≥ 0,

γx otherwise.

PReLU generalizes ReLU since ReLU(x) = σ0(x), and it makes the hyperparameter γ of a Leaky ReLU
learnable. We will often be applying our trainable activation functions component-wise. For positive integers
n, m, we denote the set of n×m matrices by Rn×m. More precisely, we mean the following operation defined
for any N ∈ N, γ̄ ∈ RN with ith entry denoted as γ̄i, and x ∈ RN , by

σγ̄ • x
def.=
(
σγ̄i

(xi)
)N

i=1 .

We now define the class of multilayer perceptions (MLPs), with trainable activation functions. Fix J ∈ N and
a multi-index [d] def.= (d0, . . . , dJ+1), and let P ([d]) =

∑J
j=0 dj(dj+1 + 2). We identify any vector θ ∈ RP ([d])

with
θ ↔

(
A(j), b(j), γ̄(j))J

j=0 and (A(j), b(j), γ̄(j)) ∈ Rdj+1×dj × Rdj × Rdj . (1)

We recursively define the representation function of a [d]-dimensional network by

RP ([d]) × Rd0 ∋ (θ, x) 7→ f̂θ(x) def.= A(J) x(J) + b(J),

x(j+1) def.= σγ̄(j) • (A(j) x(j) + b(j)) for j = 0, . . . , J − 1

x(0) def.= x.

(2)

We denote by NN σ
[d] the family of [d]-dimensional multilayer perceptrons (MLPs), {f̂θ}θ∈RP ([d]) described by

equation 2. The subset of NN σ
[d] consisting of networks f̂θ with each γ̄

(j)
i = (1, 0) in equation 2 is denoted by

NNReLU
[d] and consists of the familiar deep ReLU MLPs. The set of ReLU MLPs with depth J and width

W is denoted by NN σ
J,W :n,m = ∪[d]NN σ

[d], where the union is taken over all multi-indices [d] = [d0, . . . , dJ̃ ]
with n = d0, m = dJ+1, d0, . . . , dJ+1 ≤W , and J̃ ≤ J .
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VC dimension Let F be a set of functions from a subset X ⊆ Rn to {0, 1}; i.e. binary classifiers on X .
The set F shatters (in the classical sense) a k-point subset {xi}k

i=1 ⊆ X if F can represent every possible set
of labels on those k-points; i.e. if # {(f̂(xi))k

i=1 ∈ {0, 1}k : f̂ ∈ F} = 2k.

As in Shen et al. (2022b), we extend the definition of shattering from binary classifiers to real-valued functions
as follows. Let F be a set of functions from [0, 1]n to R. The set F is said to shatter a k-point set {xi}k

i=1 ⊆ X
if

{I(0,∞) ◦ f : f ∈ F} (3)

shatters it, i.e. if all possible classifiers on {xi}k
i=1 are implementable in the sense that {I(0,∞) ◦ f : f ∈ F} =

{0, 1}{xi}k
i=1 ; here I(0,∞)(t) = 1 if t > 0 and equals to 0 otherwise. Denoted by VC(F), the VC dimension of

F is the cardinality of the largest k-point subset shattered by F . If k is unbounded, then we say that F has
an infinite VC dimension (over X ). One can show, see Bartlett et al. (2019), that the VC-dimension of any
such F is roughly the same as the pseudo-dimension of Pollard (1990) for a small modification of F .

VC dimension measures the richness of a class of functions. For example, in Harvey et al. (2017, Theorem
1), the authors showed that the set of MLPs with ReLU activation function with L ∈ N+ layers, width and
W ∈ N+ satisfying W > O(L) > C2, where C ≥ 640, satisfies

VC(NN σ
W,L) ∈ Ω

(
WL log2(W/L)

)
. (4)

Nearly matching upper bounds are in Bartlett et al. (2019).

Load Network Attributed
to Nearest Prototype to x

 

Figure 1: 1) The distance from each input
x to all prototypes p1, . . . , p8 (ℓ = 8) is
queried. 2) The network (f̂2 in the figure) as-
signed to the nearest prototype (p2), is loaded
onto the GPU and used for prediction.

Definition: Our Toy Mixture of Experts Model We
study the following toy MoE model, where each expert (P)ReLU
MLP specializes in a distinct region of the input domain [0, 1]n.
Informally, these regions C1, . . . , Cℓ correspond to the sets
of closest points (Voronoi cells) from a finite set of proto-
types/landmarks p1, . . . , pℓ in [0, 1]n, as illustrated in Figure 1.
Associated to each region Ci is a single expert MLP f̂i with
(P)ReLU activation function responsible for approximating the
target function only thereon. Here, the sparse gating proce-
dure which routes any given input x ∈ [0, 1]n to the expert
corresponding to the nearest prototype pi is implemented by
a (finite) routing tree T = (V, E) whose nodes V are points in
[0, 1]n and leaves (terminal nodes) are the points p1, . . . , pℓ.

We now formally define the classes of MoMLPs.
Definition 3.2 (MoMLPs). Let J, W, L, n ∈ N and fix an acti-
vation function σ ∈ C(R). The set of MoMLPs with at-most L
leaves, depth J , and width W , denoted by NPσ

J,W,L:n,m, con-
sists of all functions f̂ : Rn → Rm satisfying f̂ =

∑L
i=1 fi ICi

where for f1, . . . , fL ∈ NNPReLU
J,W , and distinct prototypes

p1, . . . , pL ∈ Rn; inducing the Voronoi cells {Ci}L
i=1 where

Ci
def.= C̃i \

⋃
j<i

C̃j , (5)

where for i = 1, . . . , L the (non-disjoint) cells are

C̃i
def.=
{

x ∈ [0, 1]n : ∥x− pi∥ = min
j∈{1,...,L}

∥x− pj∥
}

. (6)

The Routing Trees The structure in any MoMLP is any tree with root node Rn and leaves given by the
pairs {(pi, fi)}L

i=1 or equivalently {(Ci, fi)}L
i=1. The purpose of any such tree is simply to efficiently route an

input x ∈ Rn to one of the L “leaf networks” (the experts) f1, . . . , fL using O(log(L)) queries; to identify
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which Voronoi cells {Ci}L
i=1 the point x is contained in. We leave the precise set of queries executed by the

routing tree T abstract so as to allow for maximal design freedom. However, we do ask that T encodes a
decision tree executing a sequence of queries at each node along a branch which implements the following
function, routing any x ∈ [0, 1]d to its nearest cell in the disjoint Voronoi cells {C̃l}; i.e. T implements

Rd ∋ x 7→
L∑

l=1
l Ix∈Cl

∈ [L]. (7)

Example 1 (Toy Implementation of equation 7 on Real Line). Set d = 1, consider the prototypes
{1/8, 3/8, 5/8, 7/8}, and queries q1,1(x) def.= I(|x− 1/4| < |x− 3/4|), q2,1(x) def.= I(|x− 1/8| < |x− 3/8|), and
q2,2

def.= I(|x− 5/8| < |x− 7/8|). The decision tree in Algorithm 1 implements equation 7.
Remark 3.3 (Partitioning in equation 5 in classical computer science). The partitioning technique used to
define equation 5 is standard, see e.g. Krauthgamer et al. (2005, Proof of Lemma 1.7; page 846). It is employed
to ensure disjointness of the Voronoi cells; this guarantees that no input is assigned to multiple prototypes.
To keep notation tidy, we use NPσ

J,W,L (resp. N σ
W,L), to abbreviate NPσ

J,W,L:n,m (resp. N σ
W,L:n,m) whenever

n and m are clear from the context.

4 Main Results

Algorithm 1: Routing Tree from Exam-
ple 1.

1 if q1,1 = 1 then
2 if q2,1 = 1 then
3 Index← 1
4 else
5 Index← 2
6 end if
7 else
8 if q2,2 = 1 then
9 Index← 2

10 else
11 Index← 3
12 end if
13 end if

We first present our main approximation theoretic guarantee,
which gives complexity estimates for mixtures of MLPs with
trainable PReLU activation functions when uniformly approx-
imating arbitrary locally-Hölder function on the closed unit
ball of Rn, defined by Bn(0, 1) def.= {x ∈ Rn : ∥x∥ ≤ 1}.

Our rates depend on a “number of experts-to-expert complex-
ity trade-off parameter” r ∈ R which determines how fast the
overall MoE complexity scales, in terms of the number of ex-
perts and the complexity of each expert, as the approximation
error becomes small. Setting r < 0 implies that more model
complexity will be loaded into each expert MLP and there will
be fewer experts defining the MoE. In contrast, setting r > 0
loads less complexity in each expert MLP at the cost of more
experts in the MoE. In particular, when r = 0, each expert
will have constant complexity even when the approximation
error becomes arbitrarily small.
Theorem 4.1 (Trade-Off: No. Expert vs. Expert Complexity). Suppose that σ satisfies Definition 3.1. Fix an
“number of experts-to-expert complexity trade-off parameter” r ∈ R. For every α-Hölder map f : Bn(0, 1)→ Rm

with 0 < α ≤ 1 and each approximation error ε > 0, there is a p ∈ N+, a binary tree T def.= (V, E) with leaves
L def.= {(vi, θi)}L

i=1 ⊆ Bn(0, 1)× Rp and a family of MLPs with (P)ReLU activation function {f̂θi}L
i=1 defined

by p parameters and mapping Rn to Rm satisfying:

max
x∈Bn(0,1)

min
(vi,θi)∈L

∥x− vi∥ ∈ Θ
(
ε1/α−2r/n

)
and for each x ∈ Bn(0, 1) and i = 1, . . . , L, if ∥x− vi∥ < δ then

∥f(x)− fθi
(x)∥ < ε.

The depth and width of each f̂θi and the number of leaves, height, and number of nodes required to build the
binary tree are all recorded in Table 1.

A more general version of Theorem 4.1 is presented below as Theorem 5.3. In this version of our main
approximation theorem, the target function can be any arbitrary continuous function defined on a non-empty
compact subset of Rn, and the routing tree can be ν-ary for any natural number ν ≥ 2.
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Next, we demonstrate that the MoMLP model can generalize and generate functions that are PAC-learnable,
thanks to its finite VC dimension. This property, however, breaks down in MLP models with super-expressive
activation functions.
Theorem 4.2 (VC-Dimension Bounds for MoMLPs - MoMLPs Can Generalize). Let J, W, L, n ∈ N+. Then
VC

(
NNPReLU

J,W,L:n,1
)

is of
O
(
L log(L)2 max{nL log(L), JW 2 log(JW )}

)
(8)

In particular, VC(NPReLU
J,W,L:n,1) <∞.

4.1 Discussion

Trade-off between Number of Experts and Expert Complexity. Our results suggest that, theoretically,
successful MoE models may not need each expert to be highly overparameterized if there are enough experts.
This hypothesis is ablated experimentally in Section 6 in the context of irregular function approximation in
low-dimension space; which is equivalent to high-dimensional regular function approximation (see Appendix C
for a discussion on this later point).

Pruning. Additionally, one might consider the option of pruning a sizable model, conceivably trained on a
GPU with a larger VRAM, for utilization on a smaller GPU during inference as an alternative to our method.
Nevertheless, in frameworks like PyTorch, pruning does not result in a reduction of operations, acceleration,
or diminished VRAM memory usage. Instead, pruning only masks the original model weights with zeros.
The reduction in model size occurs only when saved in offline memory in sparse mode, which, in any case, is
not a significant concern.

Logarithmic number of queries via trees. For many prototypes, as in our main guarantee, the MoMLPs
only need to evaluate the distance between the given input and a logarithmic number of prototypes—specifically,
one for each level in the tree—when using deep binary trees to hierarchically refine the Voronoi cells. Thus, a
given machine never processes the exponential number of prototypes, and only ν⌈logν(K)⌉ prototypes are
ever queried for any given input; when trees are ν-ary (as in Theorem 5.3), and where K denotes the number
of prototypes. Since we consider that prototypes are queried separately and before loading MoMLPs, we do
not take them into account when counting the number of learnable parameters. Moreover, the size of our
prototypes is negligible in our experiments.

4.2 Application: Controlling The Complexity in VRAM maintaining a Finite VC Dimension

Super-Expressive Activation Functions Have Infinite VC-Dimension. We complement the main
result of Bartlett et al. (2019) by demonstrating that the class of unstable MLPs (Shen et al., 2022a) possesses
infinite VC dimension, even when they have finite depth and width. Thus, while they may serve as a gold
standard from the perspective of approximation theory, they should not be considered a benchmark gold
standard from the viewpoint of learning theory.

We consider a mild extension of the super-expressive activation function of Shen et al. (2022a). This parametric
extension allows it to implement the identity map on the real line as well as the original super-expressive
activation function thereof.
Definition 4.3 (Trainable Super-Expressive Activation Function). A trainable action function σ : R×R→ R
is of super-expressive type if for all γ ∈ R

σγ : R ∋ x 7→ γx + (1− γ)σ⋆(x)

where σ⋆ : R→ R is given by

σ⋆(x) def.= |x mod(2)|Ix∈[0,∞ + x

|x|+ 1Ix∈(−∞,0) (9)

Proposition 4.4 (MLPs with Super-Expressive Activation Do Not Generalize). Let F be the set of MLPs with
activation function in Definition 4.3, depth at-most 15, and width at-most 36n(2n + 2). Then VC(F) =∞.

The VC dimension bounds for the standard MLP model, MLP with a super-expressive activation function as
proposed by Shen et al. (2022a), and the MoMLP model are summarized in Table 2.
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Table 2: VC Dimension of the MoMLPs, ReLU MLP, and MLP model with Super-Expressive Activation function of
Shen et al. (2022a). All models have depth J , width W , and (when applicable) L leaves; where J, W, L, n ∈ N+.

Model VC Dim Ref.

MoMLPs O
(
L log(L)2 max{nL log(L), JW 2 log(JW )}

)
Thrm 4.2

ReLU MLP O
(
JW 2 log(JW )

)
Bartlett et al. (2019)

Super-Expressive ∞ Prop 4.4

5 Overview of Derivation

We now overview the proof of our main result and its full technical formulation. These objectives require us
to recall definitions from the analysis of metric spaces, which were not required in the statement of our main
result but which are required when overviewing our proof.

5.1 Technical Definitions

The metric ball in (X , d) of radius r > 0 at x ∈ X is denoted by Ball(X ,d)(x, r) def.= {z ∈ X : d(x, z) < r}. A
metric space (X , d) is called doubling, if there is C ∈ N+ for which every metric ball in (X , d) can be covered
by at most C metric balls of half its radius. The smallest such constant is called (X , d)’s doubling number,
and is here denoted by C(X ,d). Though this definition may seem abstract at first, Heinonen (2001, Theorem
12.1) provides an almost familiar characterization of all doubling metric spaces; indeed, K is a doubling metric
space if and only if it can be identified via a suitable invertible map1 with a subset of some Euclidean space.
Every subset of Rn, for any n ∈ N+, is a doubling metric space; see Robinson (2011, Chapter 9) for details.
Example 2 (Subsets of Euclidean Spaces). Fix a dimension n ∈ N+. The doubling number of any subset of
Euclidean space is2at most 2n+1.

In what follows, all logarithms will be taken base 2, unless explicitly stated otherwise, i.e. logv is base v for a
given v ∈ N+ and log def.= log2. As in Petrova & Wojtaszczyk (2023, page 762), the radius of a subset A ⊆ Rn,
denoted by rad(A), is defined by

rad(A) def.= inf
x∈Rn

sup
a∈A
∥x− a∥. (10)

The diameter of any such set A, denoted by diam(A), satisfies the inequality diam(A) ≤ 2 rad(A).

Finally, let us recall the notion of a uniformly continuous function. Fix n, m ∈ N+ and let X ⊂ Rn. Let
ω : [0,∞)→ [0,∞) be a monotonically increasing function which is continuous at 0 and satisfies ω(0) = 0.
Such an ω is called a modulus of continuity. A function f : X → Rm is said to be ω-uniformly continuous if

∥f(x)− f(y)∥ ≤ ω
(
∥x− y∥

)
holds for all x, y ∈ X . We note that every continuous function is uniformly continuous if X is compact and
that its modulus of continuity may depend on X . Furthermore, we note that every (α, L)-Hölder function is
uniformly continuous with modulus of continuity ω(t) = L tα.

5.2 Helping to Explain MoEs via Proof Sketch

Lemma 5.1 (Size of a Tree Whose Nodes Form a δ-net of a Compact Subset of Rn). Let K be a compact
subset of Rn whose doubling number is C. Fix v ∈ N with v ≥ 2, and 0 < δ ≤ rad(K). There exists an v-ary
tree T def.= (V, E) with leaves L ⊆ K satisfying

max
x∈K

min
v∈L
∥x− v∥ < δ. (11)

1So called quasi-symmetric maps, see Heinonen (2001, page 78).
2See Robinson (2011, Lemma 9.2) and the brief computations in the proof of Robinson (2011, Lemma 9.4).
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Furthermore, the number of leaves L
def.= #L, height, and total number of nodes #V of the tree T are

(i) Leaves: at most L = v

⌈
c log(C)

(
1+log(δ−1 diam(K))

)⌉
,

(ii) Height:
⌈
c log(C)

(
1 + log(δ−1 diam(K))

)⌉
,

(iii) Nodes: At most v⌈c log(C)(1+log(δ−1 diam(K)))⌉+1−1⌈
c log(C)

(
1+log(δ−1 diam(K))

)⌉
−1

where c
def.= 1/ log(v).

At each node of the tree, we will place an MLP which only locally approximates the target function on a little
ball of suitable radius (implied by the tree valency v and height h) of lemma 5.1. I.e. by the storage space we
would like to allocate to our MoMLP model. The next step of the proof relies on a mild extension of the
quantitative universal approximation theorem in Shen et al. (2022a); Lu et al. (2021a) to the multivariate
case, as well as an extension of the multivariate approximation result of Acciaio et al. (2023, Proposition
3.10) beyond the Hölder case.
Lemma 5.2 (Vector-Valued Universal Approximation Theorem with Explicit Diameter Dependence). Let
n, m ∈ N+ with n ≥ 3, K ⊆ Rn be compact set of radius δ ≥ 0, f : K → Rm be uniformly continuous with
strictly monotone continuous modulus of continuity ω. Let σ be an activation function as in Definitions 4.3
or 3.1. For each ε > 0, there exists an MLP f̂θ : Rn → Rm with trainable activation function σ satisfying the
uniform estimate

sup
x∈K
∥f(x)− f̂θ(x)∥ ≤ ϵ.

The depth and width of f̂ are recorded in Table 3.

Table 3: Complexity of the MLP f̂θ in Lemma 5.2. See Table 7 in Appendix A for more detailed estimates.

Activation σ Super Expressive 4.3 PReLU 3.1

Depth (J) O(1) O
(
(δ/ω−1(ε))n/2)

Width (maxj dj) O(1) O(1)

Combining Lemmata 5.1 and 5.2 we obtain Theorem 4.1. We now present the technical version of Theorem 4.1.
This result allows distributed neural computing using ν-ary trees and allows for the approximation general
uniformly continuous target functions.
Theorem 5.3 (Trade-Off: No. Expert vs. Expert Complexity - Technical Version of Theorem 4.1). Suppose
that σ satisfies Definition 3.1. Let K be a compact subset of Rn whose doubling number is C. Fix an “number
of experts-to-expert complexity trade-off parameter” r ∈ R and a “valency parameter” ν ∈ N with ν ≥ 2.
For every uniformly continuous map f : K → Rm with modulus of continuity ω and each approximation error
ε > 0, p ∈ N+, there is an ν-ary tree T def.= (V, E) with leaves L def.= {(vi, θi)}L

i=1 ⊆ K × Rp and a family of
MLPs with (P)ReLU activation function {f̂θi

}L
i=1 defined by p parameters mapping Rn to Rm satisfying:

max
x∈K

min
(vi,θi)∈L

∥x− vi∥ <
ε−2r/n

2 ω−1
(

ε

131 (nm)1/2

)
and for each x ∈ K and i = 1, . . . , L, if ∥x− vi∥ < δ then

∥f(x)− fθi(x)∥ < ε.

The depth and width of each f̂θi
and the number of leaves, height, and number of nodes required to build the

ν-ary tree are all recorded in Table 1.
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6 Does one Need Overparameterized Experts if there are Enough Experts?

We evaluate our approach in two standard machine learning tasks: regression and classification. We
experimentally show that MoMLPs, which distribute predictions over multiple neural networks, are competitive
with a single large neural network containing as many model parameters as all the MoMLPs combined. This
is desirable in cases where the large neural network does not fit into the memory of a single machine. On
the contrary, the MoMLP model can be trained by distributing each MoMLP on separate machines (or
equivalently serially on a single machine). Inference can then be performed by loading only a single MoMLP
at a time into the GPU.

6.1 Regression

We first consider regression, where the goal is to approximate non-convex synthetic functions often used for
performance test problems. In particular, we choose 1-dimensional Hölder functions, as well as Ackley (Ackley,
1987) and Rastrigin (Rastrigin, 1974) functions, whose formulations are detailed in Appendix D.1.

1D Hölder Functions. We illustrate our primary finding, as encapsulated in Theorem 4.1, by leveraging
1-dimensional functions characterized by very low regularity. This choice is motivated by the jagged structure
inherent in such functions, necessitating an exponentially higher sampling frequency compared to smooth
functions for achieving an accurate reconstruction. Indeed, this crucial sampling step forms the foundation of
many quantitative universal approximation theorems (Yarotsky, 2017; Shen et al., 2021; Kratsios & Papon,
2022). As elaborated in Appendix C, approximating a well-behaved (Lipschitz) function in d dimensions
poses a challenge equivalent to approximating a highly irregular function (1/d-Hölder) in a single dimension.
A visual representation of a 1/d-Hölder function is presented in Figure 2, exemplified by the trajectory
of a fractional Brownian motion with a Hurst parameter of α = 1/d. A formal definition is available in
Appendix C.

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Comparison of Functions of Low vs. High Hölder ( ) Regularity

: 9
10  (Hig Reg. - Smooth)

: 12  (Brownian Motion)

: 1
10  (Low Reg. - Rough)

Figure 2: Visual Comparison of Functions with High (α ≈ 1) vs. Low (α ≈ 0) Hölder regularity. If α ≈ 1, the function
(green) is approximately differentiable almost everywhere, meaning it does not osculate much locally and thus is
simple to approximate. If α ≈ 0, the function may be nowhere differentiable and jagged; its extreme details make it
difficult to approximate.

2D and 3D Functions. We select the Ackley and Rastrigin functions, with their respective 2D representations
showcased in Figure 3, as widely recognized benchmarks in the field of optimization.

Evaluation protocol. We consider the setup where the domain of a function that we try to approximate is
the n-dimensional closed set [a, b]n. For instance, we arbitrarily choose the domain [0, 1] when n = 1, and
[−1, 1]n when n ≥ 2. Our training and test samples are the sn vertices of the regular grid defined on [a, b]n.
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(a) Ground Truth Ackley (b) Ground Truth Rastrigin

(c) Predicted Ackley (d) Predicted Rastrigin

(e) log MSE (f) log MSE

Figure 3: Comparison of ground truth and predicted results for 2D Ackley and Rastrigin functions over the domain
[−1, 1]2.

At each run, 80% of the samples are randomly selected for training and validation, and the remaining 20%
for testing.

During training, for a given and fixed set of K prototypes p
def.= (p1, . . . , pK), we assign each training sample

x to its nearest prototype pk and associated neural network f̂k. We learn the prototypes as explained in
Appendix D.2. For simplicity, we set the number of prototypes to K = 4; we also set s = 10, 000 if n = 1,
s = 150 if n = 2 (i.e., 1502 = 22, 500 samples), and s = 30 if n = 3 (i.e., 27, 000 samples). More details can
be found in Appendix D.

Test performance. In Table 4, we present the mean squared error obtained on the test set across 10 random
initializations and various splits of the training/test sets. The baseline consists of a single neural network
with the same overall architecture as each MoMLP but possesses as many parameters as all the MoMLPs
combined. In all instances, the MoMLP model demonstrates a significant performance advantage compared
to the baseline. Figure 3 illustrates the predictions generated by our MoMLPs, showcasing the capability of
our approach to achieve a good approximation of the ground truth functions.

Table 4: Test mean squared error (average and standard deviation) for the different functions of the regression task.

1D Hölder 2D Ackley 3D Ackley 2D Rastrigin 3D Rastrigin

MoMLPs (ours) 0.057 ± 0.085 0.00015 ± 0.00006 0.00068 ± 0.00010 0.0480 ± 0.0073 1.0062 ± 0.0446
Baseline 0.128 ± 0.012 0.08723 ± 0.01059 0.09303 ± 0.03156 3.0511 ± 0.3581 8.0376 ± 4.0499
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6.2 Classification

Datasets. We evaluate classification on standard image datasets such as CIFAR-10 (Krizhevsky & Hinton,
2010), CIFAR-100, and Food-101 (Bossard et al., 2014), which consist of 10, 100, and 101 different classes,
respectively. We use the standard splits of training/test sets: the datasets include (per category) 5,000
training and 1,000 test images for CIFAR-10, 500 training and 100 test images for CIFAR-100, and 750 and
250 for Food-101.

Training. Our MoMLP model takes as input latent DINOv2 encodings (Oquab et al., 2023) of images from
the aforementioned datasets. Each sample x ∈ R768 corresponds to a DINOv2 embedding (i.e., n = 768).
Additionally, we set the prototypes as centroids obtained through the standard K-means clustering on the
DINOv2 embedding space. The replacement of our original prototype learning algorithm is sensible in this
context, as we operate within a structured latent space optimized through self-supervised learning using
large-scale compute and datasets.

Table 5: Test classification accuracy using DINOv2 features as input (average and standard deviation).

Dataset CIFAR-10 CIFAR-100 Food-101

Ours (weighted) 98.40 ± 0.05 90.01 ± 0.11 91.86 ± 0.10
Ours (unweighted) 98.42 ± 0.04 89.62 ± 0.25 91.79 ± 0.16
Baseline 98.45 ± 0.06 89.85 ± 0.17 91.45 ± 1.09

Due to the potential class imbalance in the various Voronoi cells formed by the prototypes, we utilize two
variations of the cross-entropy loss for each MoMLP f̂k. The first variation, termed unweighted, assigns
equal weight to all categories. The weighted variation assigns a weight that is inversely proportional to the
distribution of each category in the Voronoi cell defined by the prototype pk.

Test performance. We present the test classification accuracy over 10 different runs (with random
initialization) of both the baseline and our MoMLPs in Table 5. The weighted version performs slightly better
on datasets with a large number of categories. Nonetheless, our approach achieves comparable results with
the baseline (i.e., no difference with statistical significance), effectively decomposing the prediction across
multiple smaller models while requiring less VRAM per neural network.

6.3 Discussion

Our experiments in the above subsections demonstrate that MoMLPs can outperform or match the performance
of a single large neural network with the same overall architecture and an equivalent total number of parameters,
which aligns with our theoretical insights. This advantage is particularly significant in scenarios where a single
large neural network cannot be stored on a given machine or cluster due to its high VRAM requirements, a
common challenge in the context of large language models and other recent large-scale models. While this
work focuses on smaller-scale experiments, we believe our theoretical framework represents an important initial
step toward addressing and understanding these challenges from a mathematically principled perspective.

The concept of decomposing a single large neural network into multiple smaller models that run in parallel has
been successfully applied in domains such as computer vision, as demonstrated in works like (Ren et al., 2024;
Song et al., 2024). However, existing studies in the literature are largely empirical and application-focused,
lacking the theoretical approximation rates provided by our work.

7 Conclusion

We presented approximation-theoretic and statistical foundations for MoEs by analysing the MoMLP model.
We found that MoMLPs can achieve arbitrary uniform approximation accuracy of continuous functions on
compact subsets of Euclidean space while maintaining a feasible number of parameters in active VRAM
memory (Theorem 5.3). However, this naturally comes at the cost of requiring an exponential number of
experts. We obtain upper bounds on the VC dimension of the MoMLP model (Theorem 4.2), akin to the
results of Bartlett et al. (2019) for ReLU MLPs, showing that deep-learning-based MoEs can generalize.
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A Detailed Tables And Rates

Table 6: Complexity of Feedforward Neural Network f̂θ and the ν-ary routing tree in Theorem 5.3. Here c
def.= log(v)−1.

See Table 8 in Appendix A for more detailed estimates.

Parameter Estimate

Depth (J) O(max{1, ε−r})
Width (maxj dj) O(1)
No. Experts O

(
max{1, ε2r/n/ω−1(ε)}

)
Routing Complexity O

(
max{1, log(ε2r/n/ω−1(ε))}

)
Table 7: Complexity of the MLP f̂θ in Lemma 5.2.

Activation σ Super Expressive 4.3 PReLU 3.1

Depth (J) 15m m

(
19 + 2n + 11

⌈(
δ 23/2n1/2

(n+1)1/2ω−1
(

ε/(131
√

n m)
))n/2

⌉)
Width (maxj dj) 36n(2n + 1) + m 16 max{n, 3}+ m

Table 8: Complexity of Feedforward Neural Network f̂θ and the ν-ary tree in Theorem 5.3. Here c
def.= log(v)−1.

Parameter Estimate

Depth (J) m (19 + 2n + 11⌈ε−r⌉)
Width (maxj dj) 16 max{n, 3}+ m

No. Experts (No. Leaves) O
(

v

⌈
c log(C)

(
1+log(ε2r/n diam(K))/

(
2 ω−1

(
ε

131 (nm)1/2

)))⌉
,
)

Height (Routing Complexity)
⌈
c log(C)

(
1 + log(ϵ2r/n diam(K)/

(
2ω−1( ε

131 (nm)1/2

))
)
)⌉

Nodes O

(
v

⌈c log(C)(1+log(ε2r/n diam(K)/

(
2ω−1( ε

131 (nm)1/2 )
)

))⌉+1
−1⌈

c log(C)
(

1+log( ε2r/n

2 diam(K))/ω−1

(
ε

131 (nm)1/2

))⌉
−1

)

B Appendix: Proofs

B.1 Proof of Theorem 4.1

Proof of Lemma 5.1. Since K is a doubling metric space then, (Acciaio et al., 2023, Lemma 7.1), for each
δ > 0, there exist x1, . . . , xN ∈ K satisfying

max
x∈K

min
i=1,...,Nδ

∥x− xi∥ < δ and Nδ ≤ C⌈log(diam(K)/δ)⌉.

In particular, since the doubling number of K is C, we have the upper-bound

Nδ ≤ C C log(δ−1 diam(K)). (12)

An elementary computation shows that the complete v-ary tree of height h has leaves L and total vertices/nodes
V given by

L = vh and V = vh+1 − 1
h− 1 . (13)
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Taking the formulation of L given in equation 13, to be the least integer upper bound of the right-hand side
of equation 12, which is itself an upper-bound for Nδ, and solving for h yields:

h =
⌈

logv(C)
(
1 + log(δ−1 diam(K))

)⌉
, (14)

where the integer ceiling was applied since h must be an integer.

Let L be any set vh points in K containing the set {xi}Nδ
i=1. Let T def.= (V, E) be any complete binary tree

with leaves L; note that, L ⊆ V . By construction, and the computation in equation 13, T has vh leaves and
Lv−1
h−1 nodes.

For completeness, we include a minor modification of the proof of Acciaio et al. (2023, Proposition 3.10),
which allows for the approximation of uniformly continuous functions of arbitrarily low regularity. The
original formulation of that result only allows for α-Hölder function.

Proof of Lemma 5.2. If f(x) = c for some constant c > 0, then the statement holds with the neural network
f̂(x) = c, which can be represented as in equation 2 with [d] = (n, m), where Aj is the 0 matrix for all j, and
the “c” in equation 2 is taken to be this constant c. Therefore, we henceforth only need to consider the case
where f is not constant. Let us observe that, if we pick some x⋆ ∈ K, then for any multi-index [d] and any
neural network f̂θ ∈ NN σ

[d], f̂θ(x)− f(x⋆) ∈ NN σ
[d], since NN σ

[d] is invariant to post-composition by affine
functions. Thus, we represent f̂θ(x)− f(x⋆) = f̂θ⋆(x), for some θ⋆ ∈ RP ([d]). Consequently:

sup
x∈K

∣∣∣∥(f(x)− f(x⋆))− f̂θ⋆(x)∥ − ∥f(x)− f̂θ(x)∥
∣∣∣ = 0.

Therefore, without loss of generality, we assume that f(x∗) = 0 for some x∗ ∈ K. By Benyamini &
Lindenstrauss (2000, Theorem 1.12), there exists an ω-uniformly continuous map F : Rn → Rm extending f .

Step 1 – Normalizing f̃ to the Unit Cube: First, we identify a hypercube “nestling” K. To this end, let

rK
def.= diam(K)

√
n

2(n + 1) . (15)

By Jung’s Theorem (see Jung (1901)), there exists x0 ∈ Rn such that the closed Euclidean ball
Ball(Rn,dn) (x0, rK) contains K. Therefore, by Hölder’s inequality, we have that the n-dimensional hy-
percube [x0 − rK1̄, x0 + rK1̄] 3contains B(Rn,dn) (x0, rK), where 1̄ = (1, . . . , 1) ∈ Rn. Consequently,
K ⊆ [x0− rK1̄, x0 + rK1̄]. Let f̃

def.= F |[x0−rK1̄,x0+rK1̄], then f̃ ∈ C([x0− rK1̄, x0 + rK1̄],Rm) is an ω-uniformly
continuous extension of f to [x0 − rK1̄, x0 + rK1̄].

Since K has at least two distinct points, then rK > 0. Hence, the affine function

T : Rn ∋ x 7→ (2rK)−1(x− x0 + rK1̄) ∈ Rn

is well-defined, invertible, not identically 0, and maps [x0 − rK1̄, x0 − rK1̄] to [0, 1]n. A direct computation
shows that g

def.= f̃ ◦ T −1 is also uniformly continuous, whose modulus of continuity ω̃ : [0,∞) → [0,∞) is
given by

ω̃(t) def.= ω(2rK t) (16)
for all t ∈ [0,∞). Furthermore, since for each i = 1, . . . , m, define pji : Rm ∋ y 7→ yi ∈ R. Since each pji is
1-Lipschitz then, for each i = 1, . . . , m, the map gi

def.= pji ◦g : [0, 1]n → R is also ω̃-uniformly continuous.
By orthogonality, we also note that g(x) =

∑m
i=1 gi(x) ei, for each x ∈ Rn, where e1, . . . , em is the standard

orthonormal basis of Rm; i.e. the ith coordinate of ej is 1 if and only if i = j and 0 is otherwise.

Step 2 – Constructing the Approximator: For i = 1, . . . , m, let f̂θ(i) ∈ NN σ
[d(i)] for some multi-index

3For x, y ∈ Rn we denote by [x, y] the hypercube defined by
∏n

i=1[xi, yi].
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[d(i)] = (d(i)
0 , . . . , d

(i)
J ) with n-dimensional input layer and 1-dimensional output layer, i.e. d

(i)
0 = n and

d
(i)
J = 1, and let θ(i) ∈ RP ([d(i)]) be the parameters defining f̂θ(i) . Since the pre-composition by affine functions

and the post-composition by linear functions of neural networks in NN σ
[d(i)] are again neural networks in

NN σ
[d(i)], we have that gθ(i)

def.= f̂θ(i) ◦ T −1 belongs to NN σ
[d(i)]. Denote the standard basis of Rm by {ei}m

i=1.
We compute:

sup
x∈K

∥∥∥∥∥f(x)−
m∑

i=1
f̂θ(i)(x)ei

∥∥∥∥∥
= sup

x∈K

∥∥∥∥∥f̃(x)−
m∑

i=1
f̂θ(i)(x)ei

∥∥∥∥∥
≤ sup

x∈[x0−rK1̄,x0+rK1̄]

∥∥∥∥∥f̃(x)−
m∑

i=1
f̂θ(i)(x)ei

∥∥∥∥∥
= sup

x∈[x0−rK1̄,x0+rK1̄]

∥∥∥∥∥f̃ ◦ T −1 ◦ T (x)−
m∑

i=1
f̂θ(i) ◦ T −1 ◦ T (x)ei

∥∥∥∥∥
= sup

u∈[0,1]n

∥∥∥∥∥
m∑

i=1
gi(u) ei −

m∑
i=1

gθ(i)(u)ei

∥∥∥∥∥
≤
√

m max
u∈[0,1]n

max
1≤i≤m

|gi(u)− gθ(i)(u)| . (17)

Fix ε̃ > 0, to be determined below. For each i = 1, . . . , m, depending on which assumption σ satisfies, (Shen
et al., 2022b, Theorem 1.1) (resp. (Shen et al., 2022a, Theorem 1) if σ is as in Definition 9) imply that there
is a neural network with activation function σ⋆ : R→ R satisfying

max
u∈[0,1]n

|gi(u)− gθ(i)(u)| < ε̃. (18)

Furthermore, the depth and width of these MLPs can be bounded above on a case-by-case basis as follows:

(i) If σ satisfies Definition 4.3 then, setting each γ = 0 implies that σ0(x) = σ⋆(x), as defined in
equation 9; thus

J (i) ≤ 11 and max
1≤j≤J(i)

dj ≤ 36n(2n + 1)

In this case, we set ε̃
def.= ε/

√
m; we have used Shen et al. (2022a, Theorem 1).

(ii) If σ satisfies Definition 3.1 then, setting each γ = 1 implies that σ0(x) = ReLU(x) def.= max{0, x};
yielding

J (i) ≤ 18 + 2n + 11
⌈( 2rK

ω−1
(
ε/(131

√
n m)

))n/2⌉
and max

1≤j≤J(i)
dj ≤ 16 max{n, 3}

in this case, we have employed Shen et al. (2022b, Theorem 1.1).

In either case, the estimate in equation 17 yields

max
x∈K

∥∥∥∥∥f(x)−
m∑

i=1
f̂θ(i)(x)ei

∥∥∥∥∥ < ε.
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Step 3 – Assembling into an MLP: Let g1 • g2 denote the component-wise composition of a univariate
function g1 with a multivariate function g2.

If the activation function σ is either in Definitions 4.3 or 3.1, then it trivially implements the identity IR on R
by setting γ = 0; i.e. σ1 = IR. Consequentially, for any k ∈ N+, if Ik denotes the k × k-identity matrix, then
Ikσ1 • Ik ∈ NN σ

[dk] with P ([d]) = 2k, and Ikσ1 • Ik = 1Rk . Therefore, mutatis mutandis, NN σ
[·] satisfies the

c-identity requirement with4 c = 2, as defined in Cheridito et al. (2021, Definition 4). From there, mutatis
mutandis, we may apply Cheridito et al. (2021, Proposition 5). Thus, there is a multi-index [d] = (d0, . . . , dJ )
with d0 = n and dJ = m, and a network f̂θ ∈ NN σ

[d] implementing
∑m

i=1 f̂θ(i)ei, i.e.

m∑
i=1

f̂θ(i)ei = f̂θ,

such that f̂θ’s depth and width are bounded-above, on a case-by-case basis, by

(i) If σ satisfies Definition 4.3 then, setting each γ = 0

J ≤15 m

and max
1≤j≤J(i)

dj ≤36n(2n + 1) + m.

In this case, we set ε̃
def.= ε/

√
m.

(ii) If σ satisfies Definition 3.1 then, setting each γ = 0 yields

J ≤m

(
19 + 2n + 11

⌈( 2rK

ω−1
(
ε/(131

√
n m)

))n/2⌉)
and max

1≤j≤J(i)
dj ≤16 max{n, 3}+ m.

Incorporating the definition of rK in equation 15 and employing the inequality diam(K) ≤ 2 rad(K) completes
the proof.

Lemma B.1 (Trade-Off: No. Expert vs. Expert Complexity). Let K be a compact subset of Rn whose
doubling number is C and a uniformly continuous map f : K → Rm with modulus of continuity ω.

Fix v ∈ N with v ≥ 2, 0 < δ ≤ rad(K), and ε > 0. Suppose that σ satisfies Definition 3.1. There exists a
p ∈ N+ and a v-ary tree T def.= (V, E) with leaves L def.= {(vi, θi)}L

i=1 ⊆ K × Rp satisfying

max
x∈K

min
(vi,θi)∈L

∥x− vi∥ < δ. (19)

Furthermore, for each x ∈ K and each i = 1, . . . , L, if ∥x− vi∥ < δ then

∥f(x)− fθi(x)∥ < ε.

We have the following estimates:

(i) Depth. Depth of each f̂θi
is m

(
19 + 2n + 11

⌈(
δ23/2n1/2

(n+1)1/2ω−1
(

ε/(131
√

n m)
))n/2⌉)

(ii) Width. Width of each f̂θi
is 16 max{n, 3}+ m

(iii) Leaves: at most L = v

⌈
c log(C)

(
1+log(δ−1 diam(K))

)⌉
,

4Formally, it satisfies what is the 1-identity requirement, thus it satisfies the c-identity requirement for all integers c ≥ 2.
However, the authors of Cheridito et al. (2021) do not explicitly consider the extremal case where c = 1.
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(iv) Height:
⌈
c log(C)

(
1 + log(δ−1 diam(K))

)⌉
,

(v) Nodes: At most v⌈c log(C)(1+log(δ−1 diam(K)))⌉+1−1⌈
c log(C)

(
1+log(δ−1 diam(K))

)⌉
−1

where c
def.= log(v)−1.

Proof of Lemma B.1. Consider the tree T̃ given by Lemma 5.1. For each leaf vi of T̃ , we apply Lemma 5.2 to
deduce the existence of an MLP f̂θi

with explicit depth and width estimates given by that lemma, satisfying
the uniform estimate

max
∥x−vi∥≤δ

∥f(x)− f̂θi(x)∥ < ε. (20)

Let T be the same tree as T̃ with leaves identified with {(vi, θi)}L
i=1.

We now prove our main technical version, namely Theorem 5.3, which directly implies the special case
recorded in Theorem 4.1.

Proof of Theorem 5.3 (and this Theorem 4.1). Applying Lemma B.1 with δ given as the solution of( δ23/2n1/2

(n + 1)1/2ω−1(ε/131 (nm)1/2)

)n/2
≤
( δ23/2n1/2

(2n1/2ω−1(ε/131 (nm)1/2)

)n/2
= ε−r. (21)

Solving equation 21 for δ implies that it is given by

δ = ε−2r/n

2 ω−1
(

ε

131 (nm)1/2

)
.

This completes the proof.

Proof of Theorem 4.1. Setting K = Bn(0, 1), r = 1/2, ω(t) = Lt, and thus ω−1(t) = L−1 t1/α, in Theorem 5.3
yields the conclusion. Finally, by the computation in Example 2, we have that C ≤ 2n+1; thus, log(C) =
(n + 1) log(2) ≤ 2n. Noting that c = 1/ log(2) = 1 completes the proof.

Remark B.2. The constant hidden under the big O in is 1 + max{1, log(L1/α 262(nm)1/(2α))}.

B.2 Proofs of Theorem 4.2

We use the following lemma and its proof due to Gabriel Conant.
Lemma B.3 (Conant (2023)). Fix n, L, d ∈ N+. Let H be a non-empty set of functions from Rn to {0, 1} of
VC dimension at-most d. Let CL be the set of all ordered partitions (Voronoi diagrams) (Cl)L̃

l=1 covering Rn,
where L̃ ≤ L, and for which there exist distinct p1, . . . , pL̃ ∈ Rn such that: for each l = 1, . . . , L̃

Cl
def.= C̃l \

⋃
s<l

C̃s

C̃l
def.= {x ∈ Rn : ∥x− pl∥ = min

s=1,...,L̃
∥x− ps∥}.

(22)

Let HL be the set of functions from Rn to {0, 1} of the form

f =
L̃∑

l=1
fl ICl

where L̃ ∈ N+ with L̃ ≤ L, f1, . . . , fL̃ ∈ H, and (Cl)L̃
l=1 ∈ CL. Then, the VC dimension of HL satisfies

VC(HL) ≤ 8L log(max{2, L})2 (max{d, 2(n + 1) (L− 1) log(3L− 3)}
)
.
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Proof of Lemma B.3. Let us first fix our notation. Each x0 ∈ Rn \ {0} and t ∈ R defines a halfspace in Rn

given by HSx0,t
def.= {x ∈ Rn : ⟨x0, x⟩ ≤ t} (see (Boyd & Vandenberghe, 2004, Section 2.2.1) for details). We

denote set of all halfspaces in Rn by HSn
def.= {HSx0,t : ∃x0 ∈ Rn \ {0} ∃t ∈ R}. Consider the set C(L) of all

C ⊆ Rn of the form

C =
L̃−1⋂
l=1

Xl (23)

for some positive integer 2 ≤ L̃ ≤ max{2, L} and X1, . . . , XL̃−1 ∈ HSn.

Step 1 - Reformulation as Set of Sets
By definition of the powerset 2Rn of the set Rn, each subset A ⊆ Rn can be identifies with a function
(classifier) from Rn to {0, 1} via the bijection mapping any X ∈ 2Rn to the binary classifier IX (i.e. the
indicator function of the set X). Using this bijection, we henceforth identify both H and HL with subsets of
the powerset 2Rn .

Under this identification, the class HL can be represented as the collection of subsets X of Rn of the form

X =
L̃⋃

l=1
Hl ∩ Cl, (24)

where L̃ ∈ N+ satisfies L̃ ≤ L, and for each l = 1, . . . , L̃ we have Hl ∈ H and (Cl)L̃
l=1 ∈ CL is of the

form equation 22 for some distinct points p1, . . . , pL̃ ∈ Rn.

Step 2 - VC Dimension of Voronoi Diagrams with at-most L Cells
An element of (Cl)L̃

l=1 of CL is, by definition, a Voronoi diagram in Rn and thus, Boyd & Vandenberghe (2004,
Exercise 2.9) implies that each C1, . . . , CL̃ is the intersection of L̃−1 ≤ L−1 halfspaces; i.e. C1, . . . , CL̃ ∈ C(L)
(see equation 23). Since CL = {∩L̃

l=1 Hi : ∃L̃ ∈ N+ H1, . . . , HL̃ ∈ HSn L̃ ≤ L} then Blumer et al. (1989,
Lemma 3.2.3) implies that

VC(CL) ≤2 VC(HSn) (L− 1) log(3L− 3)
≤2(n + 1) (L− 1) log(3L− 3);

(25)

the second inequality in equation 25 holds since VC(HSn) = n + 1 by Shalev-Shwartz & Ben-David (2014,
Theorem 9.3).

Step 3 - VC Dimension of The Class HL

Define H ∩ C(L) def.= {H ∩ C : H ∈ H and C ∈ C(L)}. Again using Blumer et al. (1989, Lemma 3.2.3), we
have

VC
(
H ∩ C(L)

)
≤2
(

max{VC(H), VC(C(L))}
)

2 log(6)
≤4 log(6)

(
max{VC(H), VC(C(L))}

)
≤4 log(6)

(
max{d, 2(n + 1) (L− 1) log(3L− 3)}

)
.

(26)

Consider the set H̃ def.= {∪L̃
l=1 Hl : L̃ ∈ N+, L̃ ≤ L, ∀l = 1, . . . , L̃, Hl ∈ H ∩ C(L)}. Applying Blumer et al.

(1989, Lemma 3.2.3), one final time yields

VC
(
H̃
)
≤2 VC

(
H ∩ C(L)

)
L log(3L) (27)

≤2
(

4 log(6)
(

max{d, 2(n + 1) (L− 1) log(3L− 3)}
))

L log(3L) (28)

≤8L log(max{2, L})2 (max{d, 2(n + 1) (L− 1) log(3L− 3)}
)

(29)

where equation 28 held by the estimate in equation 26. Finally, since VC(A) ≤ VC(B) whenever A ⊆ B for
any set B then since HL ⊆ H̃ then equation 27-equation 29 yields the desired conclusion.

We may now derive Theorem 4.2 by merging Lemma B.3 and one of the main results of Bartlett et al. (2019).
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Proof of Theorem 4.2. Let n, J, W, L ∈ N+ and consider the (non-empty) set of real-valued functions
NNPReLU

J,W :n,1. By definition of the VC dimension of a set of real-valued functions, given circa equation 3, we
have

VC
(
NNPReLU

J,W :n,1
) def.= VC

(
I(0,∞) ◦ NNPReLU

J,W :n,1
)

VC
(
NPPReLU

J,W,L:n,1
) def.= VC

(
I(0,∞) ◦ NPPReLU

J,W,L:n,1
)
. (30)

By Bartlett et al. (2019, Theorem 7), we have that

VC(I(0,∞) ◦ NNPReLU
J,W :n,1) ≤ D⋆ def.=

⌈
J + (J + 1) W 2 log2

(
e 4(J + 1) W log2(e2(J + 1)W )

)⌉
. (31)

Therefore, applying Lemma B.3 with H =
(
I(0,∞) ◦ NNPReLU

J,W :n,1
)

yields the estimate

VC
(
I(0,∞) ◦ NPPReLU

J,W,L:n,1
)
≤ 8L log(max{2, L})2 (max{D⋆, 2(n + 1) (L− 1) log(3L− 3)}

)
(32)

Combining equation 32 and the definition equation 30 yields the bound. In particular,

VC
(
NPPReLU

J,W,L:n,1
)
∈ O

(
L log(L)2 max{nL log(L), JW 2 log(JW )}

)
yielding the second conclusion.

B.3 Proof of Proposition 4.4

Proof. We argue by contradiction. Suppose that F has finite VC dimension VC(F). Then, Shen et al. (2022b,
Theorem 2.4) implies that there exists a 1-Lipschitz map f : [0, 1]n → R such that does not exist a strictly
positive ε ∈ (0, VC(F)−1/n/9) satisfying such that

inf
f̂∈F

sup
x∈[0,1]n

|f̂(x)− f(x)| ≤ ε. (33)

However, Shen et al. (2022a, Theorem 1) implies that, for every 1-Lipschitz function, in particular for f , and
for each ε̃ > 0 there exists a f̂ε̃ ∈ F satisfying

sup
x∈[0,1]n

|f̂ε̃(x)− f(x)| ≤ ε̃. (34)

Setting ε̃ = VC(F)−1/n/18 yields a contradiction as equation 33 and equation 34 cannot both be simultaneously
true. Therefore, F has infinite VC dimension.

C The Curse of Irregularity

We now explain why learning Hölder functions of low regularity ((1, 1/d)-Hölder) functions on the real line
segment [0, 1] is equally challenging as learning regular functions (1-Lipschitz) on [0, 1]n.

C.1 Hölder Functions

Fix n, m ∈ N and let X ⊂ Rn be non-empty and compact of diameter D. Fix 0 < α ≤ 1, L ≥ 0, and let
f : X → Rm be (α, L)-Hölder continuous, meaning

∥f(x)− f(y)∥ ≤ L∥x− y∥α

holds for each x, y ∈ X . For any L ≥ 0 and 0 < α ≤ 1, we denote set of all (α, L)-Hölder functions from X to
Rn is denoted by Cα([0, 1]n,R; L).

We focus on the class of locally Hölder functions since they are generic, i.e. universal, amongst all continuous
functions by the Stone–Weierstrass theorem. In this case, Hölder functions are sufficiently rich to paint a

25



Under review as submission to TMLR

full picture of the hardness to approximate arbitrary Hölder functions either by MLPs against the proposed
model.

In contrast to smaller generic function classes, such as polynomials, Hölder functions provide more freedom
in experimentally visualizing our theoretical results. This degree of freedom is the parameter α, which
modulates their regularity. As α tends to 0 the Hölder functions become complicated and when α = 1
the Rademacher-Stephanov theorem, see Federer (1978, Theorems 3.1.6 and 3.1.9) characterizes Lebesgue
almost-everywhere differentiable functions as locally (1, L)-Hölder maps. Note that (1, L)-Hölder functions
are also called L-Lipschitz maps and, in this case, L = supx ∥∇f(x)∥op where the supremum is taken over all
points where f is differentiable and where ∥ · ∥op is the operator norm.

C.2 The Curse of Irregularity

The effect of low Hölder regularity, i.e. when α ≈ 0, has the same effect as high-dimensionality on the
approximability of arbitrary α-Hölder functions. This is because any real-valued model/hypothesis class F1
of functions on R approximating an arbitrary ( 1

d , 1)-Hölder functions By Shen et al. (2022b, Theorem 2.4),
we have the lower minimax bound: if for each ε > 0 we have “the curse of irregularity”

sup
f

inf
f̂∈F1

sup
0≤x≤1

|f(x)− f̂(x)| ≤ ε⇒ VC(F1) ∈ Ω(ε−d) (35)

where the supremum is taken over all f ∈ C1/d([0, 1],R; 1). The familiar curse of dimensionality also expresses
the hardness to approximate an arbitrary 1-Lipschitz ((1, 1)-Hölder), thus relatively regular, function on
[0, 1]n. As above, consider any model/hypothesis class F2 of real-valued maps on Rd then, again using Shen
et al. (2022b, Theorem 2.4), one has the lower-bound

sup
f

inf
f̂∈F2

sup
x∈[0,1]n

∥f(x)− f̂(x)∥ ≤ ε⇒ VC(F2) ∈ Ω(ε−d) (36)

where the supremum is taken over all f ∈ C1([0, 1]n,R; 1). Comparing equation 35 and equation 36, we
find that the difficulty of uniformly approximating an arbitrary low-regularity (( 1

d , 1)-Hölder) function on
a 1-dimensional domain is roughly just as complicated as approximating a relatively regular (1-Lipschitz)
function on a high-dimensional domain.

Incorporating these lower bounds with the lower-bound in equation 4, we infer that the minimum number layers
(L) and minimal width (W ) of each MLP approximating a low-regularity function on the low-dimensional
domain [0, 1] is roughly the same as the minimal number of layers and width of an MLP approximating a
high-regularity map on the high-dimensional domain [0, 1]n.

D Experimental details

We include here experimental details, we refer to the source code in the supplementary material for more
details. We first outline the algorithm used to train the MoMLP MoE model. We then provide details on the
trained architecture and hyperparameter details in the implementation.

D.1 Definitions of the Ackley and Rastrigin functions

Let us note x = (x1, . . . , xn)⊤ ∈ Rn the n-dimensional representation of a sample, we use the following
formulation of the Ackley function:

Ackley(x) = 20 + exp(1)− a exp

−b

√√√√ 1
n

n∑
i=1

x2
i

− exp
(

1
n

n∑
i=1

cos(2πxi)
)

(37)

where a = 20 and b = 0.2. We also use the following formulation of the Rastrigin function:

Rastrigin(x) =
n∑

i=1
x2

i + 10
(

n−
n∑

i=1
cos(2πxi)

)
(38)
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D.2 Training Algorithm

We now provide an explanation for the training algorithm. As discussed, we mitigate down the algorithm into
two parts: discovering the prototypes and training the networks. Conceptually, the prototypes define where
in the input space the networks are located, or in other words, where in the input space we expect each of
the networks to have the best performance. During inference, we will route a given input to the appropriate
network based on its nearest prototype. In essence, each network learns to approximate a specific region of
the overall input domain.

Discovering prototypes. In principle, we may not know how to partition the input space. One approach is
to utilize standard clustering algorithms like K-means, but this might be suboptimal for the downstream
task unless we are already operating in a structured latent space, such as those found in pre-trained models
(further discussion on this is available in Section 6). Another way is to learn it via gradient descent by
optimizing the location of the prototypes for a specific task by following the gradient of the downstream loss.
At the beginning of training, we have F̂ (x) def.= (f̂1(x), . . . , f̂K(x)) which contains a collection of K randomly
initialized shallow or small networks (i.e., much smaller than our MoMLPs described later). In this first step,
we assume that we are able to load all randomly initialized networks into our GPU memory. In particular,
this is true because we use small networks with few parameters, which we will later “deepen” in the next step
by adding additional hidden layers. We initialize the prototypes p

def.= (p1, . . . , pK) randomly from a uniform
distribution within the bounds of our training dataset input samples. We use the following expression to
train the location of our prototypes {pk}K

k=1 in Rn by minimizing the energy:∑
(x,y)∈D

ℓ
(

softmax
(
− ∥x− pi∥K

i=1
)⊤

F̂ (x) , y
)
. (39)

where the loss ℓ is task-specific; for example, one could use mean squared error for regression and cross-entropy
for classification. The softmax weights the importance of the prediction of each of the MoMLPs in F̂ for a
given input x, as a function of the input’s distance to the prototypes, ∥x− pi∥K

i=1
def.= (∥x− p1∥, ..., ∥x− pK∥).

Both the locations of the prototypes and the shallow randomly initialized neural networks assigned to them
are optimized.

Deepening the Networks. After the initial training phase, we enhance the networks by incorporating
additional layers. Specifically, we introduce linear layers with weights initialized to the identity matrix and
bias set to zero, just before the final output layer of each network. To encourage gradient flow in these new
layers during the subsequent training stage, we slightly perturb this initialization with small Gaussian noise.
This approach is driven by the fact that in the second training stage, each MoMLP can be optimized in a
distributed manner. Consequently, we can work with larger networks without the need to load all of them
simultaneously into our GPU, allowing for more model parameters. During the first stage, we have already
optimized our networks alongside the prototype locations, converging towards a minimum. By initializing the
networks with the new layers close to the identity, we can ensure that their output at the start of the second
stage of training is similar to that produced by the original networks. This allows us to smoothly continue
the optimization process from the point where we previously halted.

MoMLP Training. Once prototype locations have been fixed we can independently train MoMLPs
f̂1, . . . , f̂K by minimizing for all k ∈ {1, . . . , K}:∑

(x,y)∈D
k∈arg minj∈{1,...,K}{∥x−pj ∥}

ℓ(f̂k(x), y) (40)

over all the networks. We optimize the MoMLP network f̂k for training data points that are closest to
prototype pk. The training procedure is summarized in Algorithm 2.

Inference. At inference time, each test sample x is assigned to its nearest prototype pk where k ∈
arg min

j∈{1,...,K}
{∥x− pj∥} and the prediction is made by the k-th MoMLP f̂k.

Comparison to Standard Distributed Training. One can distribute the complexity of feedforward
models by storing each of their layers in offline memory and then loading them sequentially into VRAM

27



Under review as submission to TMLR

Algorithm 2: MoMLPs Training.
Require: Training data D def.= {(xj , yj)}N

j=1, no. of prototypes K ∈ N+, loss function ℓ.
Discovering Prototypes:

(F̂, p)← arg min
F̂,p

∑
(x,y)∈D

ℓ
(
softmax (x|p)⊤ F̂ (x), y

)
Deepen networks:

For k = 1, . . . , K:
f̂k ← deepen(f̂k)

MoMLP Training:
For k = 1, . . . , K:

f̂k ← arg min
f̂k

∑
(x,y)∈D

k∈arg minj {∥x−pj ∥}

ℓ(f̂k(x), y)

return MoMLP parameters {f̂k}K
k=1 and prototype locations {pk}K

k=1.

during the forward pass. This does avoid loading more than O(Width) active parameters into VRAM at
any given time, where Width denotes the width of the feedforward model. However, doing so implies that
all the model parameters are ultimately loaded during the forward pass. This contrasts with the MoMLP
model, which requires O

(
log2(K) Width2 Depth

)
to be loaded into memory during a forward pass; where

Width and Depth are respectively the largest width and depth of the MLP at any leaf of the tree defining a
given MoMLP, and K denotes the number of prototypes. However, in the forward pass, one loads O(ε−n/2)
parameters for the best worst-case MLP while only O(n log(1/ε)/ε) are needed in the case of the MoMLPs.
The number of parameters here represents the optimal worst-case rates for both models (see Table 8 and
Theorem 5.3).

D.3 Architectures and hyperparameters

Lastly, we detail the model architectures and hyperparameters used in our experiments.

D.3.1 MoMLPs

We set the width of our MoMLPs to w = 1000. In other words, each hidden layer of our MoMLPs contains a
linear matrix of size w × w.

In the regression task, our MoMLPs contain 3 hidden layers and we use a learnable PReLU as activation
function. For training, we use the Adam (Kingma & Ba, 2014) optimizer with a learning rate of 10−4 and
the default Pytorch hyperparameters.

In the classification task, we follow the setup of Oquab et al. (2023) and use AdamW (Loshchilov & Hutter,
2019) as the optimizer with a learning rate of 10−3 and the default parameters from PyTorch. Our MoMLPs
consist of four hidden layers for the classification task, and we apply BatchNorm1d before the PReLU
activation function.

D.3.2 Baseline

The baseline shares the same architecture as the MoMLPs described above. However, if we let K denote the
number of prototypes and assume that

√
K is a natural number, the width of the baseline is w

√
K, ensuring

that the total number of hidden parameters matches that of all the MoMLPs combined. In our experiments,
we set K = 4, so

√
K = 2.
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