

---

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COUPLED TRANSFORMER AUTOENCODER FOR DISENTANGLING MULTI-REGION NEURAL LATENT DY- NAMICS

Anonymous authors

Paper under double-blind review

## ABSTRACT

Simultaneous recordings from thousands of neurons across multiple brain areas reveal rich mixtures of activity that are shared between regions and dynamics that are unique to each region. Existing alignment or multi-view methods neglect temporal structure, whereas dynamical latent-variable models capture temporal dependencies but are usually restricted to a single area, assume linear read-outs, or conflate shared and private signals. We introduce Coupled Transformer Autoencoder (CTAE)—a sequence model that addresses both (i) non-stationary, non-linear dynamics and (ii) separation of shared versus region-specific structure, in a single framework. CTAE employs Transformer encoders and decoders to capture long-range neural dynamics, and explicitly partitions each region’s latent space into orthogonal shared and private subspaces. We demonstrate the effectiveness of CTAE on two high-density electrophysiology datasets of simultaneous recordings from multiple regions, one from motor cortical areas and the other from sensory areas. CTAE extracts meaningful representations that better decode behavior variables compared to existing approaches.

## 1 INTRODUCTION

The advent of high-density electrophysiology probes, e.g., Neuropixels, and volumetric calcium imaging has enabled recording large-scale, high-resolution, multi-region neuronal datasets. This shift from single-area recordings to *distributed circuits* reveals both globally coordinated signals and region-specific specialization (Jun et al., 2017; Machado et al., 2022). Individual neurons both receive input from and project to multiple distant areas; behaviorally relevant codes are hypothesized to be broadcast across widespread circuits rather than confined to a canonical locus (Machado et al., 2022). This perspective challenges conclusions drawn from single-area studies and raises the question of which computations are local, which are distributed, and how global brain states are coordinated. Disentangling the *shared* components that mediate inter-area interactions from *private* signals unique to each region is therefore essential—both for mechanistic insight and for designing causal experiments such as targeted optogenetic inactivation or electrical stimulation of an upstream circuit.

Thus, recent work has focused on analyzing *distributed circuits* to recover latent activity patterns both within and across regions. A successful multi-region latent model faces three simultaneous challenges: (i) latent trajectories must evolve smoothly in time to respect neural autocorrelation; (ii) they must accommodate the non-stationary, nonlinear dynamics that real circuits display; and (iii) they must separate shared from region-specific structure without a parameter explosion as the number of areas grows.

Even within a single brain region, recordings of neural population activity reveal a mixture of structured responses and substantial trial-to-trial variability, introducing a challenge when interrogating the behavior of neural circuits (Cunningham & Yu, 2014). A widely adopted framework—neural latent dynamics (Vyas et al., 2020; Churchland & Shenoy, 2024)—proposes that these high-dimensional responses reflect the evolution of a consistent, low-dimensional trajectory, supported by stable patterns of co-variability across neurons. Classical PCA or factor analysis (FA) uncover low-dimensional structure (Cunningham & Yu, 2014) but ignore time. Moreover, because observed spikes are subject

---

054 to high Poisson noise, the resulting latents can exhibit high-frequency dynamics that are difficult to  
055 interpret and may not reflect meaningful underlying processes. Consequently, latent variable models  
056 that incorporate temporal smoothness or dynamical constraints have been developed, based on either  
057 linear Gaussian Process (GP) models (Yu et al., 2009) or nonlinear deep learning models (Pandarinath  
058 et al., 2018; Ye & Pandarinath, 2021). Yet, when these single-area tools are applied naïvely to  
059 multi-area data, e.g., by concatenating the recordings, they often fail. Inter-area delays warp the latent  
060 space, differences in correlation structure cause shared factors to absorb private variance, and the  
061 larger or more active region can dominate the mixture weights. To address these challenges, recent  
062 studies have investigated both predictive models (Zandvakili & Kohn, 2015; Semedo et al., 2019;  
063 Perich et al., 2018) and joint latent variable (Gokcen et al., 2022;?) approaches for inter-regional  
064 activity. These efforts reveal that only a selective subset of latent dimensions actively participates  
065 in inter-area communication. Such findings motivate extensions to the latent dynamics framework,  
066 proposing that communication is mediated through a persistent, low-dimensional subspace—referred  
067 to as a communication subspace (Semedo et al., 2019)—that is distinct and orthogonal to private,  
068 region-specific dynamics Fig. 1.

069 More recently, joint latent variable models inspired by canonical correlation analysis (CCA) have  
070 been developed to capture correlated latent dynamics across regions while simultaneously learning  
071 region-specific latent components. One approach focused on neural data has been *linear* approaches  
072 that generalize GP-based models to the multi-region setting (Gokcen et al., 2022; 2023; 2024; Li  
073 et al., 2024). Alternatively, nonlinear autoencoder-based disentangling methods (Lee & Pavlovic,  
074 2021; Koukuntla et al., 2024) have been developed to analyze multiview point cloud data and partition  
075 latents into shared and private factors. However, these treat time points as i.i.d. samples and therefore  
076 discard dynamics.

077 **This work.** We introduce the *Coupled Transformer Autoencoder* (CTAE), an end-to-end framework  
078 for modeling simultaneous recordings from multiple brain areas. Transformer-based (Vaswani et al.,  
079 2017) encoders and decoders act as flexible priors capable of capturing non-stationary, long-range  
080 neural dynamics; each region’s latent space is split into *orthogonal shared and private subspaces*,  
081 with reconstruction losses preserving region-specific information and a lightweight alignment loss  
082 matching the shared representations. Because the latents are behaviour-agnostic, downstream decod-  
083 ing—whether kinematics, forces, or cognitive variables—can be carried out on the same embedding  
084 without retraining. Our contributions are as follows:

- 085 • **Non-stationary multi-region modelling.** CTAE extracts shared and private representations that  
086 capture long-range, nonlinear dynamics absent.
- 087 • **Scalable architecture.** A mixing weight allows the shared subspace to extend trivially beyond  
088 two regions without an exponential increase in parameters.
- 089 • **Generic downstream utility.** The behaviour-agnostic latent space supports diverse decoding  
090 tasks (e.g. position, velocity, cognitive state) using simple linear read-outs.
- 091 • **Empirical validation.** On neural recordings from M1–PMd (Utah Arrays) and SC-ALM (Neu-  
092 ropixel Probes), CTAE achieves higher shared-variance capture than existing works, while  
093 revealing interactions consistent with anatomy.

095 **2 RELATED WORK**

098 **Single-region latent-variable models.** Linear techniques—including PCA (Pearson, 1901) and  
099 FA (Harman, 1976) are widely used to analyze large-scale recordings (Cunningham & Yu, 2014).  
100 Gaussian-Process Factor Analysis (GPFA) adds a smooth GP prior to FA to enforce temporal  
101 continuity (Yu et al., 2009). GPFA’s stationarity and linear read-out assumptions are relaxed by  
102 Latent Factor Analysis via Dynamical Systems (LFADS) (Pandarinath et al., 2018) and the Neural  
103 Data Transformer (NDT) (Ye & Pandarinath, 2021), which exploit nonlinear recurrent generators  
104 or self-attention to capture non-stationary and nonlinear dynamics. Subsequent efforts pursued  
105 identifiability with switching LDS (Linderman et al., 2016; Glaser et al., 2020), GP-SLDS (Hu et al.,  
106 2024), locally linear manifold models in DFINE (Abbaspourazad et al., 2024), and variational neural  
107 state-space models such as VIND (Hernandez et al., 2018) and S4-based sequence layers (Gu et al.,  
2022).

108 **Multi-region latent models.** Multi-region methods relying on GP models include Delayed Latents  
 109 Across Groups (DLAG) (Gokcen et al., 2022), its multi-population generalization mDLAG (Gokcen  
 110 et al., 2023), multi-view GPFA extensions (Gokcen et al., 2024), and Multi-Region Markovian  
 111 Gaussian Process (Li et al., 2024). These inherit smooth-GP assumptions and linear read-outs that  
 112 struggle with non-stationary or long-range dependencies. Classical multiset CCA (Hotelling, 1936)  
 113 and tensor-decomposition methods (Cichocki et al., 2015) have also been applied to multi-area  
 114 recordings, however these are linear techniques. Current-Based Decomposition (CURBD) (Perich  
 115 et al., 2020) infers directed currents between many regions from data-constrained RNNs, yet it does  
 116 not model explicit shared-private split. Similarly, multi-modal models have been recently developed  
 117 to jointly analyze neural recordings and behavior Vahidi et al. (2025); Gondur et al. (2024); Yi et al.  
 118 (2025). These models could potentially be adapted to analyze multi-region recordings, however we  
 119 expect Multimodal GP-VAE Gondur et al. (2024) and Shared-AE Yi et al. (2025) to scale poorly to  
 120 more than 2 regions due to exponential growth in experts or pairwise loss terms. Both also operate on  
 121 i.i.d. samples or short windows rather than full neural time series.  
 122

122 **Multiview autoencoders** Multi-view representation learning has progressed beyond classical CCA  
 123 by incorporating additional losses and constraints to more effectively identify shared latent represen-  
 124 tations. However, these methods often require adaptation to account for the specific statistical and  
 125 temporal properties of neural data. Correlation-based alignments—canonical correlation analysis  
 126 (CCA) and its deep variant (DCCA) (Andrew et al., 2013)—maximise instantaneous correlation  
 127 but provide no guarantee of capturing *all* shared variance; Deep CCA Autoencoders (DCCAE) add  
 128 reconstructions at the risk of mixing private with shared information (Wang et al., 2016). Repre-  
 129 sentative examples include Deep Coupled Auto-encoder Networks (Wang et al., 2014), Coupled  
 130 Autoencoders for domain adaptation (Wang & Breckon, 2023), Correlated Autoencoders for audio-  
 131 visual retrieval (Feng et al., 2014), Deep Correlation Autoencoders (DCCAE) (Wang et al., 2016),  
 132 Split-brain Autoencoders (Zhang et al., 2017), shared-private domain adaptation AEs (Bousmalis  
 133 et al., 2016) and cycle-consistent multiview AEs (Wu et al., 2018). SPLICE (Koukuntla et al.,  
 134 2024) extends this line with measurement-network penalties to sharpen disentanglement, however it  
 135 scales poorly—its auxiliary *measurement networks* grow exponentially with region count—while  
 136 DMVAE assumes one global shared component across *all* views, precluding subset-specific latents.  
 137 Multimodal VAE (MVAE) (Wu & Goodman, 2018), Disentangled Multimodal VAE (DMVAE) (Lee  
 138 & Pavlovic, 2021), Joint Multimodal VAE (Sutter et al., 2021), Mixture-of-Experts MVAE (Shi et al.,  
 139 2019) learn shared/private factors across images, text and audio but treat each sample independently,  
 140 ignoring sequential dependencies.  
 141

140 Across these categories, no existing method jointly satisfies (i) non-stationary nonlinear dynamics,  
 141 (ii) temporal continuity and (iii) scalability to more than two regions without incurring a parameter  
 142 explosion as the number of areas increases.  
 143

### 144 3 PROBLEM FORMULATION

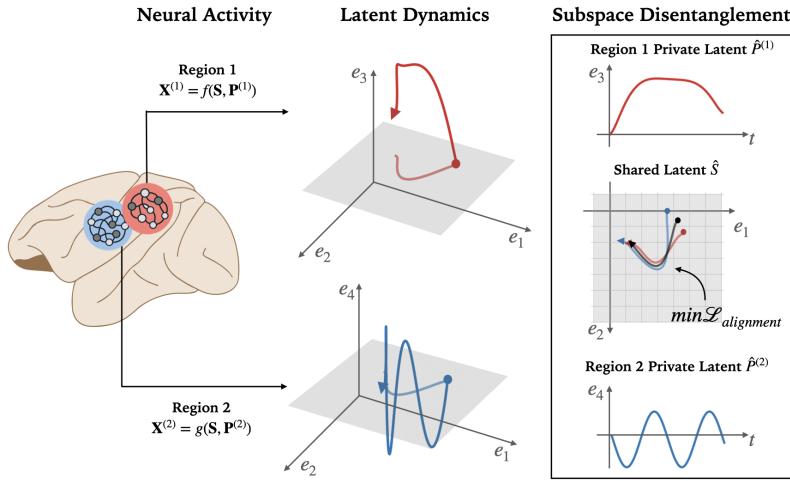
145 Let  $\mathbf{X}^{(1)} \in \mathbb{R}^{N_1 \times T}$ ,  $\mathbf{X}^{(2)} \in \mathbb{R}^{N_2 \times T}$  denote simultaneous neural population recordings from two  
 146 brain regions, each acquired over  $T$  time steps and,  $N_1$  and  $N_2$  channels respectively (generalization  
 147 to more than 2 regions is in Appendix B). We assume that the observed neural activity at each  
 148 time step  $t$  is a nonlinear transformation of latent variables (Fig.2), which include: (i) shared latent  
 149 dynamics within a communication subspace (Semedo et al., 2019) spanned by neural trajectories that  
 150 are correlated across regions, and (ii) private latent dynamics that capture region-specific processes  
 151 lying in subspaces orthogonal to the shared component. To effectively capture the temporal structure  
 152 of neural activity, we model these latent variables as functions of the entire observed neural activity.  
 153

$$154 \quad \mathbf{X}_t^{(1)} = f(\mathbf{S}_{1:t}, \mathbf{P}_{1:t}^{(1)}), \quad \mathbf{X}_t^{(2)} = g(\mathbf{S}_{1:t}, \mathbf{P}_{1:t}^{(2)}) \quad \text{for } t \in \{1, \dots, T\} \quad (1)$$

155 where  $1 : t$  denotes the sequence of indices between 1 and  $t$ ,  $\mathbf{S}_t \in \mathbb{R}^{d_s}$  represents the *shared* dynamics  
 156 between the two regions at time  $t$ , and  $\mathbf{P}_t^{(1)} \in \mathbb{R}^{d_1}$  and  $\mathbf{P}_t^{(2)} \in \mathbb{R}^{d_2}$  capture dynamics specific to  
 157 regions 1 and 2, respectively, and  $d_s$ ,  $d_1$ , and  $d_2$  denote the dimensionalities of the shared and private  
 158 representations.  
 159

160 Our goal is to recover the shared and private latent dynamics  $\mathbf{S}$ ,  $\mathbf{P}^{(1)}$ , and  $\mathbf{P}^{(2)}$  given the observed  
 161 neural activity  $\mathbf{X}^{(1)}$  and  $\mathbf{X}^{(2)}$ .

162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177



178 Figure 1: Observed neural activity across time from two brain regions, denoted as  $\mathbf{X}^{(1)}$  and  $\mathbf{X}^{(2)}$ ,  
179 is modeled as a nonlinear function of underlying latent dynamics specific to each region. In the  
180 illustration,  $[e_1, e_2, e_3]$  span the latent subspace for region 1 and  $[e_1, e_2, e_4]$  for region 2. Inter-  
181 regional communication is mediated by shared latent trajectories  $S$  within the common subspace  
182  $[e_1, e_2]$ , which drive correlated population activity. Following the output-null/potent hypothesis,  
183 we assume shared and private dimensions are orthogonal, allowing clear recovery of shared dynamics  
184 from region-specific processes.

185  
186  
187  
188  
189  
190

**Notations.** Bold upper-case letters denote matrices (e.g.,  $\mathbf{X}$ ), bold lower-case denote latent vectors  
187 (e.g.,  $\mathbf{w}$ ), and  $\hat{\cdot}$  indicates reconstructions. Let  $\mathbf{1}_n$  denote a vector of all-ones of length  $n$  and let  $\mathbf{0}_n$   
188 denote a vector of all zeros of length  $n$ .  $\|\cdot\|_F$  denotes the Frobenius norm.  $\odot$  denotes element-wise  
189 multiplication. Expectation is over batches of trials unless stated otherwise.

191  
192

## 4 COUPLED TRANSFORMER AUTOENCODERS FOR TWO REGIONS

193  
194  
195  
196  
197  
198

Our model is comprised of a coupled autoencoder built on transformer models, that disentangles  
194 shared and private representations. We have designed loss functions to recover latents that maximally  
195 represent the neural activity, where the shared representations are aligned across all regions, and each  
196 disentangled sub-space is orthogonal to the others. For clarity, we describe the two-region case in the  
197 main text; the extension to an arbitrary number of regions is provided in Appendix B.

199  
200

### 4.1 MODEL ARCHITECTURE

201  
202  
203  
204  
205  
206  
207  
208  
209

We design separate causal Transformer-based encoder–decoder pairs, denoted by  $(E_\theta^{(1)}, D_\phi^{(1)})$  and  
201  $(E_\theta^{(2)}, D_\phi^{(2)})$ , for each of the two brain regions. Each encoder is a Transformer stack with *self-attention*  
202 layers that capture long-range, nonlinear temporal dependencies within a region. The recorded spike  
203 trains are Gaussian-smoothed to obtain continuous firing-rate estimates which are the inputs to the  
204 encoder. Each decoder employs standard Transformer *cross-attention* to reconstruct the original  
205 firing rates from its region’s latents. Processing the full multichannel time series from each session,  
206 the encoders produce latent representations partitioned into two distinct components: shared latent  
207 sequences capturing dynamics common to both regions and private latent sequences specific to each  
208 region:

$$\mathbf{Z}^{(1)} = E_\theta^{(1)}(\mathbf{X}^{(1)}), \quad \mathbf{Z}^{(2)} = E_\theta^{(2)}(\mathbf{X}^{(2)}), \quad \mathbf{Z}^{(1)}, \mathbf{Z}^{(2)} \in \mathbb{R}^{D \times T} \quad (2)$$

210  
211  
212  
213

Here  $D$  is the total number of latent dimensions. To indicate which of the latent dimensions correspond  
210 to shared and private representations, we introduce weight vectors  $\mathbf{w}_1$  and  $\mathbf{w}_2 \in \{0, 1\}^D$ .

214  
215

**Region-specific weight masks.** Let the latent dimension be partitioned as  $D = d_s + d_1 + d_2$ .  
214 Define three contiguous index sets  $\mathcal{I}_s = \{1, \dots, d_s\}$ ,  $\mathcal{I}_1 = \{d_s + 1, \dots, d_s + d_1\}$ , and  $\mathcal{I}_2 = \{d_s + d_1 + 1, \dots, D\}$ . We then construct binary weight vectors that indicate which subset of the

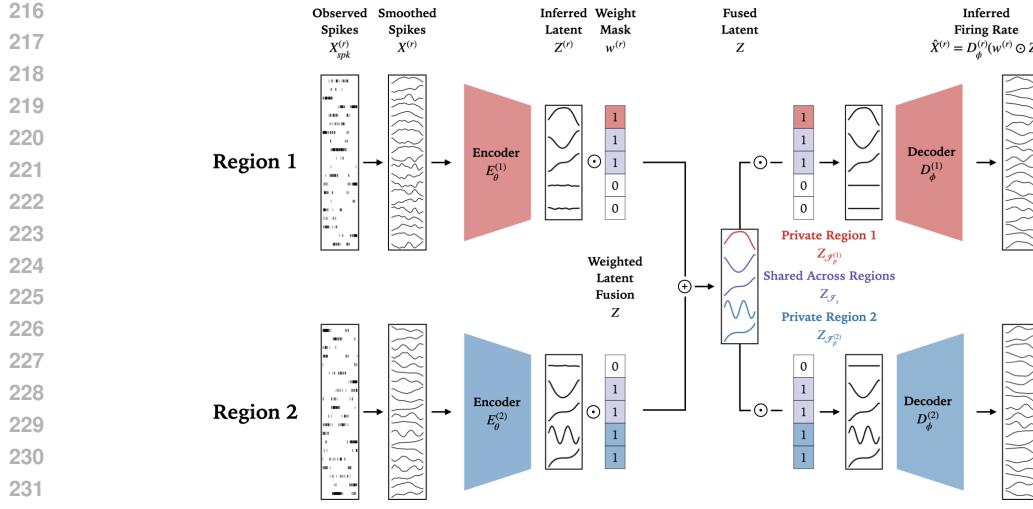


Figure 2: **CTAE architecture.** CTAE is composed of a coupled autoencoder, where the encoders and decoders are causal transformers designed to reconstruct neural activity for each region  $r$ . The inputs to the network are estimated spike rates from each region. A weight mask per region  $w^{(r)}$  is used to disentangle the shared representation (violet) from the region-specific latents (red and blue) in the encoder outputs  $Z^{(r)}$ . The latents are recovered via end-to-end training.

latent dimensions correspond to the shared or to region-private. Define  $\mathbf{w}_1, \mathbf{w}_2 \in \{0, 1\}^D$  as

$$\mathbf{w}_1 = \left[ \underbrace{\mathbf{1}_{d_s}}_{\mathcal{I}_s}, \underbrace{\mathbf{1}_{d_1}}_{\mathcal{I}_1}, \underbrace{\mathbf{0}_{d_2}}_{\mathcal{I}_2} \right]^\top, \quad \mathbf{w}_2 = \left[ \underbrace{\mathbf{1}_{d_s}}_{\mathcal{I}_s}, \underbrace{\mathbf{0}_{d_1}}_{\mathcal{I}_1}, \underbrace{\mathbf{1}_{d_2}}_{\mathcal{I}_2} \right]^\top. \quad (3)$$

so that  $\mathbf{w}_1$  activates the shared and region-private of region 1 dimensions, whereas  $\mathbf{w}_2$  activates the shared and region-private dimensions of region 2. Throughout the paper we treat  $\mathbf{w}_r$  as fixed; the latent space dimensions ( $d_s, d_1, d_2$ ) are treated as hyper-parameters and tuned on a validation set. Importantly, these masks do not hard-code the actual interaction structure: they only specify an *upper bound* on how many shared or private latents the model may allocate. During training, dimensions unsupported by the data naturally collapse to negligible variance. While fixed masks provide clarity and control in the two-region setting, they could also be initialized from anatomical priors or made learnable so that the model itself infers which latents are shared versus private. We leave these scalable extensions to future work.

**Weighted latent fusion.** Broadcasting the masks across time, we aggregate the two latent trajectories dimension-wise via a masked average for each dimension  $d$  in the latent:

$$\mathbf{Z}_t[d] = \frac{\mathbf{w}_1[d]\mathbf{Z}_t^{(1)}[d] + \mathbf{w}_2[d]\mathbf{Z}_t^{(2)}[d]}{\mathbf{w}_1[d] + \mathbf{w}_2[d]}. \quad (4)$$

Equation equation 4 leaves the private blocks unchanged (they receive weight 1 from only their own region)

$$\hat{\mathbf{P}}^{(1)} = \mathbf{Z}_{\mathcal{I}_1} = \mathbf{Z}_{\mathcal{I}_1}^{(1)}, \quad \hat{\mathbf{P}}^{(2)} = \mathbf{Z}_{\mathcal{I}_2} = \mathbf{Z}_{\mathcal{I}_2}^{(2)}. \quad (5)$$

while averaging the shared block across regions:

$$\hat{\mathbf{S}} = \mathbf{Z}_{\mathcal{I}_s} = \frac{1}{2}(\mathbf{Z}_{\mathcal{I}_s}^{(1)} + \mathbf{Z}_{\mathcal{I}_s}^{(2)}). \quad (6)$$

This design will implicitly force alignment of the shared latents of both regions, via minimizing the reconstruction losses we define in the next section.

**Region-specific decoding.** Each decoder receives only the latent dimensions relevant to its own region:

$$\hat{\mathbf{X}}^{(r)} = D_\phi^{(r)}((\mathbf{w}_r \mathbf{1}_T^\top) \odot \mathbf{Z}), \quad (7)$$

270 where  $(\mathbf{w}_r \mathbf{1}_T^\top) \in \mathbb{R}^{D \times T}$  is an outer product such that each weight is duplicated for each dimension  
 271 along all time points. Thus, the element-wise product zeroes out unrelated latents, forcing decoder  $r$   
 272 to rely exclusively on the subset of dynamics meaningful for its region.

273 This architecture (i) aligns both regions in a common latent space of dimension  $D$ , (ii) preserves  
 274 region-specific structure via fixed relevance masks, and (iii) enforces cross-region consistency through  
 275 the fusion rule in Eq. equation 4. The loss function balancing reconstruction accuracy and alignment  
 276 objectives is detailed in Section 4.2. We illustrate our architecture in Fig. 2.

## 278 4.2 TRAINING OBJECTIVE 279

280 We use four loss functions to recover the shared and private latent representations with CTAE:

281 **Reconstruction loss.** The first loss is a reconstruction loss, so that each transformer autoencoder  
 282 faithfully reproduces its own region’s activity:

$$284 \quad \mathcal{L}_{\text{rec}} = \sum_{r=1}^2 \|\widehat{\mathbf{X}}^{(r)} - \mathbf{X}^{(r)}\|_F^2. \quad (8)$$

287 **Shared-only reconstruction.** To ensure that *all* structure common to both regions is routed into the  
 288 shared block, we define a loss such that each decoder reconstructs the neural activity from its region  
 289 using *only* the shared representations. Let  $\mathbf{w}^{(s)} = \mathbf{w}_1 \odot \mathbf{w}_2 = [\mathbf{1}_{d_s}, \mathbf{0}_{d_1}, \mathbf{0}_{d_2}]^\top$  be the intersection  
 290 mask that selects only the shared dimensions. The loss is

$$292 \quad \mathcal{L}_{\text{shared}} = \sum_{r=1}^2 \|D_\phi^{(r)}((\mathbf{w}^{(s)} \mathbf{1}_T^\top) \odot \mathbf{Z}) - \mathbf{X}^{(r)}\|_F^2, \quad (9)$$

295 where  $\mathbf{w}^{(s)}$  zeroes out all private coordinates from the inputs to the decoder, thus forcing the model  
 296 to encode every cross-region regularity inside the shared subspace. Without this constraint, shared  
 297 information can shift into private subspaces, leading to inaccurate representation.

298 **Alignment loss.** The shared latents are meant to capture only dynamics common to both regions.  
 299 To enforce this, we align each encoder’s shared output to their average, ensuring consistency across  
 300 regions and preventing region-specific variance from leaking into the shared space:

$$302 \quad \mathcal{L}_{\text{align}} = \sum_{r=1}^2 \|(\mathbf{w}_r \mathbf{1}_T^\top) \odot \mathbf{Z} - (\mathbf{w}_r \mathbf{1}_T^\top) \odot \mathbf{Z}^{(r)}\|_F^2. \quad (10)$$

305 **Orthogonality loss.** To encourage each latent coordinate to capture distinct, non-redundant structure,  
 306 we penalize correlations between *all* rows of the fused latent matrix  $\mathbf{Z} \in \mathbb{R}^{D \times T}$ . Let  $\mathbf{G} = \frac{1}{T} \mathbf{Z} \mathbf{Z}^\top$   
 307 denote the empirical Gram matrix of latent trajectories, whose off-diagonal entries encode row-wise  
 308 correlations. We drive only the *off-diagonal* entries of  $\mathbf{G}$  towards zero,

$$309 \quad \mathcal{L}_{\text{orth}} = \|\mathbf{G} - \text{diag}(\mathbf{G})\|_F^2, \quad (11)$$

310 so that every pair of latent dimensions—shared or private—becomes approximately orthogonal,  
 311 promoting global disentanglement.

313 Finally, the complete objective minimizes the weighted sum of the four losses:

$$314 \quad \mathcal{L} = \mathcal{L}_{\text{rec}} + \lambda_{\text{align}} \mathcal{L}_{\text{align}} + \lambda_{\text{shared}} \mathcal{L}_{\text{shared}} + \lambda_{\text{orth}} \mathcal{L}_{\text{orth}}. \quad (12)$$

315 The weights  $\lambda_{\text{shared}}$ ,  $\lambda_{\text{align}}$ ,  $\lambda_{\text{orth}}$  are selected on a held-out validation set. Methodology for training  
 316 the architecture is summarized in Algorithm 1.

## 318 5 EXPERIMENTS 319

321 We analyze two real-world datasets of simultaneous neural recordings from a motor circuit and from a  
 322 multisensory circuit. We demonstrate the efficacy of CTAE in extracting shared and private dynamics  
 323 in comparison to DLAG (Gokcen et al., 2022). We also provide a comparison to Deep CCA (Andrew  
 et al., 2013) in Appendix G. Implementation details for each experiment are in the appendix.

---

324 5.1 MOTOR CIRCUIT: M1-PMD  
325

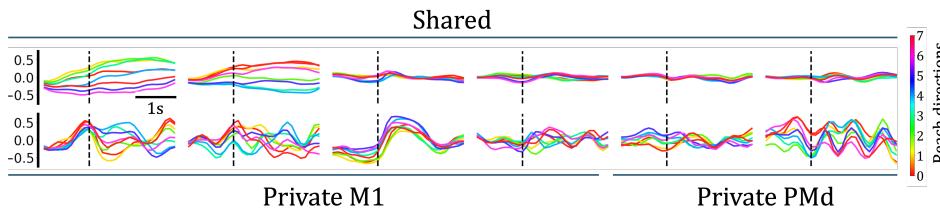
326 We applied CTAE to simultaneous neural recordings from dorsal premotor cortex (PMd)  
327 and primary motor cortex (M1) in macaque monkeys performing a standard delayed center-out  
328 reaching task with eight outward targets (Perich et al., 2018), additional details in Appendix D.1. The dataset  
329 consisted of 208 total trials across 8 reach conditions, with spike-sorted data from 66 and 52 putative neurons  
330 in PMd and M1, respectively, recorded via 64-channel Utah arrays. Each trial spanned 3s, with spikes  
331 and behavioral variables (e.g., position) binned in 100 ms bins, resulting in 30 time points per trial.

332 Historically, PMd and M1 have been jointly analyzed due to their complementary roles in movement  
333 preparation and execution. During the instructed delay period between stimulus onset and the go  
334 cue, both regions exhibit preparatory activity without inducing muscle output (Kaufman et al., 2014;  
335 Churchland & Shenoy, 2024), potentially representing task goals—i.e., target identity (Byron et al.,  
336 2010; Lara et al., 2018). Following the ‘go’ cue, both PMd and M1 generate execution-related activity  
337 that descends to motor neurons and enables decoding of continuous hand kinematics, including  
338 position and velocity (Churchland & Shenoy, 2024; Elsayed et al., 2016; Gilja et al., 2012; Byron  
339 et al., 2010).

340 We applied CTAE to the dataset for unified modeling of joint latent subspaces and identified:

341

342
- A shared subspace of dimension  $d_s$ , capturing correlated dynamics across PMd and M1.
343
- Private subspaces of dimensions  $d_{\text{PMd}}$  and  $d_{\text{M1}}$ , capturing region-specific activity.

344 Fig. 3 visualizes a subset of the CTAE inferred neural latent dynamics (the set of all latents is in  
345 Fig. 11). Each panel shows a distinct latent dimension evolving over time. The shared latent subspace  
346 captures both condition-invariant and condition-dependent structure, encoding aspects such as reach  
347 direction and temporal progression. Region-specific latents display more complex dynamics, likely  
348 reflecting local circuit processes.

378 Figure 3: M1-PMd dataset. CTAE shared (top) and region-private (bottom) latents. Dotted vertical  
379 line indicates the “go” cue in each trial.

380 To interpret the latent dynamics—shared  $Z^s$ , and private  $Z^{(\text{PMd})}$ ,  $Z^{(\text{M1})}$ , we evaluated the inferred  
381 latents using two decoding tasks with simple linear decoders:

382 **Continuous decoding hand position:** Predict hand position at each time point after go-cue (last 2  
383 seconds for each trial) using linear regression:  $v_t^{\text{hand}} = W\mathbf{z}_t$ . We plot in Figure 4A the predictions  
384 from neural activity, from CTAE latents and from DLAG latents.

385 **Discrete decoding target condition:** Classify the reach condition (one of 8 targets) using multi-  
386 class logistic regression:  $\hat{y}_i = \frac{\exp(\mathbf{w}_i^\top \mathbf{z} + b_i)}{\sum_{j=1}^C \exp(\mathbf{w}_j^\top \mathbf{z} + b_j)}$  for  $i = 1, \dots, C$ . We present in Figure 4B the  
387 confusion matrices across conditions for neural activity, CTAE and DLAG latents.

388 We hypothesized that the shared latent space would encode the majority of behaviorally relevant  
389 information—particularly target identity—while PMd might contribute higher-order planning signals,  
390 and M1 reflect finer temporal structure related to movement execution.

391 Our results confirmed that CTAE’s shared latent factors accounted for the majority of variance  
392 associated with reaching behavior (Fig. 4 a). In other words, the shared PMd–M1 subspace captured  
393 the dominant task-relevant signals. In contrast, DLAG tends to distribute behaviorally relevant  
394 variance across private PMd and private M1 latents in a directionally anisotropic manner. This  
395 is reflected in both private latents predicting certain movement directions but not others, and also

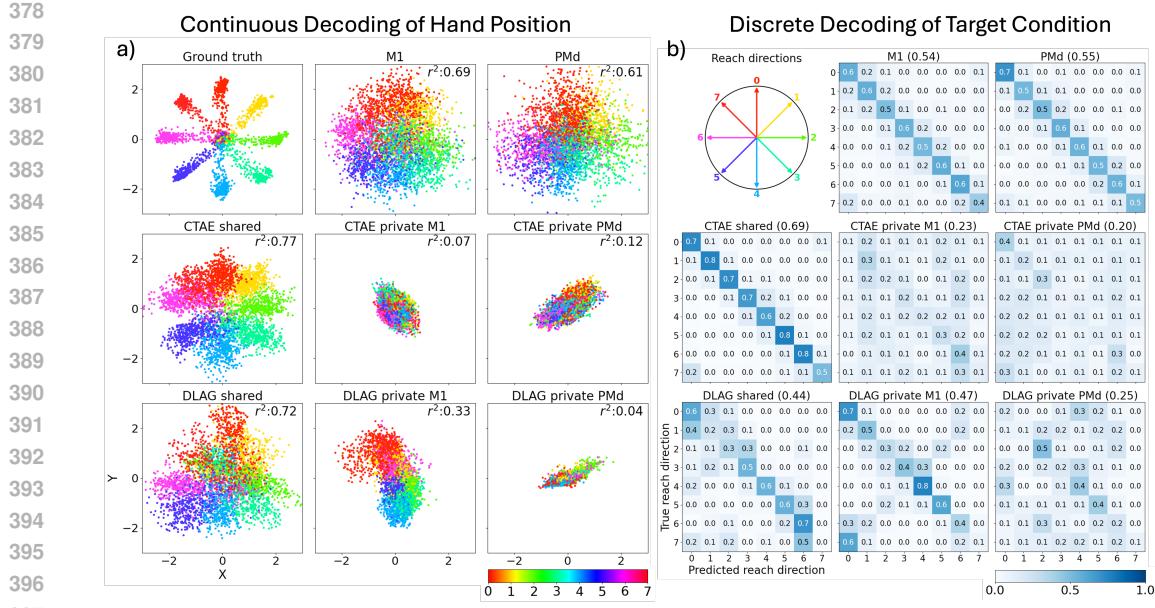


Figure 4: M1-PMd dataset. a) Ground truth hand position in top-left corner. Hand position decoding from neural activity in M1 and PMd (top), from CTAE latents (middle) and from DLAG (bottom). b) Confusion matrices for reach direction classification (order of plots is same as in A). Classification accuracy in parentheses.

discrete target classification showing high accuracy for only a subset of reach directions. Such direction-specific "fragmentation" of kinematic information across private latents is inconsistent with established findings that both PMd and M1 encode reach kinematics through a coherent, low-dimensional manifold. This pattern suggests that DLAG may inadvertently leak shared information into private subspaces, whereas CTAE's mask structure and regularization prevent such leakage. We also compare to DeepCCA in Appendix G, and to analyzing the concatenation of data from both regions with a single Transformer AE in Appendix H, and demonstrate that both baselines have significantly lower continuous and discrete prediction accuracy than both CTAE and DLAG shared latents. These findings demonstrate that CTAE can simultaneously decode continuous behavioral trajectories Fig. 4 a. and classify discrete behavioral states Fig. 4 b. more effectively than prior approaches.

We present time-wise prediction of the reach in Fig. 16. Importantly, our results support the view that motor planning and execution signals are largely embedded in shared population dynamics across PMd and M1, while private activity may facilitate flexible, context-dependent processing—such as adaptation to perturbations—without interfering with ongoing execution.

**Ablation study:** To evaluate the contribution of the individual loss functions to the CTAE model we perform an ablation study (full details in Appendix E) and report the prediction accuracy in Tab. 1. We demonstrate that removing any of the three loss functions results in decreased performance.

| Model                                        | Shared      | Private M1  | Private PMd |
|----------------------------------------------|-------------|-------------|-------------|
| CTAE                                         | 0.69 (0.03) | 0.22 (0.02) | 0.21 (0.03) |
| CTAE without alignment loss                  | 0.61 (0.02) | 0.16 (0.02) | 0.2 (0.02)  |
| CTAE without orthogonality loss              | 0.31 (0.02) | 0.28 (0.02) | 0.29 (0.02) |
| CTAE without shared only reconstruction loss | 0.34 (0.01) | 0.36 (0.01) | 0.37 (0.01) |

Table 1: Ablation study of CTAE loss functions. Each entry indicates the model's accuracy in predicting the reach direction. The values in the brackets indicate standard deviation across 5-folds.

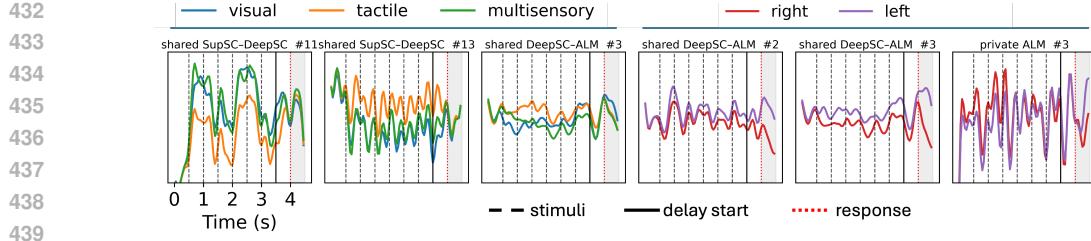


Figure 5: SC-ALM dataset. Representative latents. Each panel shows the condition-averaged time course of one latent (title = subspace and latent index). Left panels: stimuli—visual (blue), tactile (orange), multisensory (green). Right panels: target side—right (red), left (purple).

## 5.2 MULTISENSORY CIRCUIT: SC-ALM

We evaluated CTAE on a new dataset of simultaneous recordings from the superior colliculus (SC) and anterolateral motor cortex (ALM) in mice trained on a multisensory discrimination task (see Appendix D.2 for task details). Using high-density Neuropixels probes, neural activity was recorded from superficial and deep layers of SC together with ALM while animals integrated visual and tactile stimuli to identify the target side (left vs. right). We fit our multi-region CTAE ( $R > 2$ ; Appendix B) to this three-region dataset (superficial SC, deep SC, ALM). This multi-region analysis infers a wide range of multi-region interactions: shared-across-all, pairwise-shared, and region-private (Fig. 5).

SC and ALM are key components of a cortico-subcortical loop implicated in linking sensory inputs to motor planning. SC integrates visual and tactile information and contributes to orienting behavior (Stein & Meredith, 1993; Cang & Feldheim, 2013), whereas ALM encodes preparatory and choice-related activity during decision-making tasks (Guo et al., 2014; Li et al., 2015). We hypothesized that shared subspaces across superficial and deep SC layers and between deep layers of SC and ALM would preferentially capture task-relevant features, such as stimulus type and target side, thereby mediating the transformation from multisensory evidence accumulation to decision making.

Figure 6 shows decoding performance of stimuli and target side across private and shared subspaces. For the raw neural activity, Deep SC best discriminates both stimulus and target. Superficial SC activity correctly distinguishes target side but poorly distinguishes between stimulus type for visual and multisensory trials, and poorly distinguishes between target sides for tactile trials. In contrast, ALM activity correctly distinguishes target side but poorly distinguishes between stimulus type for tactile and multi-sensory trials, and poorly distinguishes between target sides for visual trials. However, with CTAE we identify shared dynamics between regions that better identify stimulus and target. The shared subspaces between superficial and deep SC, and between deep SC and ALM, yielded higher decoding accuracy than region-private latents. The shared subspace between superficial SC and ALM has little shared dynamics meaningful for discrimination. Our results indicate that deep SC plays a more central role in this circuit, with shared dynamics reflecting

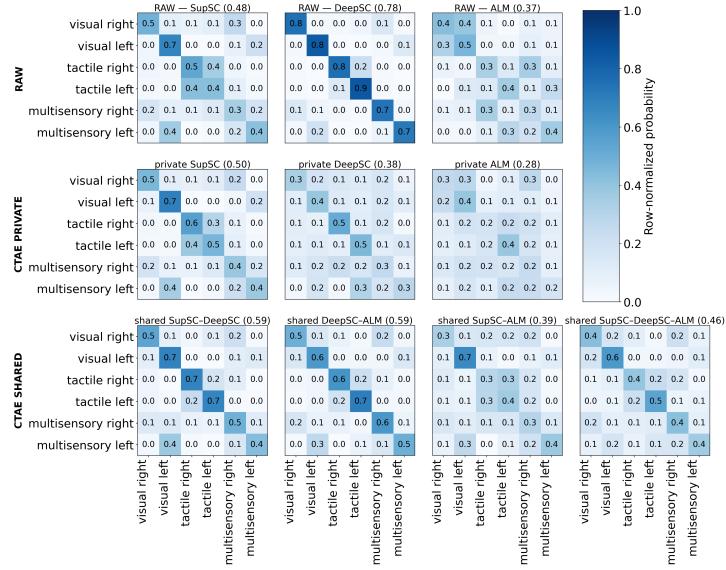


Figure 6: Row-normalized confusion matrices for decoding stimulus  $\times$  target side. (top) Raw activity from SupSC, DeepSC, ALM; (middle) CTAE private: region-specific latents; (bottom) CTAE shared latents (pairwise and 3-way). Panel titles show mean 5-fold accuracy. The shared subspaces between superficial and deep SC, and between deep SC and ALM, yielded higher decoding accuracy than region-private latents. The shared subspace between superficial SC and ALM has little shared dynamics meaningful for discrimination. Our results indicate that deep SC plays a more central role in this circuit, with shared dynamics reflecting

---

486 evidence accumulation with superficial SC and choice with ALM (Fig. 15). Overall, these findings  
487 highlight a role for inter-regional subspaces in integrating sensory inputs within SC and propagating  
488 them to ALM to support decision-related processes.  
489

490 **6 CONCLUSIONS**  
491

492 In this paper, we presented a new approach for recovering shared and private latents from multi-  
493 region neural recordings. Our framework relies on a Transformer-based autoencoder architecture for  
494 nonlinear modeling of the relationship between neural activity and latent dynamics, and loss functions  
495 designed to recover orthogonal private and shared latents that maximally capture the information in  
496 the shared activity between the brain regions. By explicitly separating shared and private sources  
497 of variability, CTAE facilitates more robust comparisons across contexts and offers a foundation  
498 for addressing deeper questions about how distributed neural populations collectively drive flexible  
499 behavior and adapt through experience (Perich et al., 2018). This work demonstrates effective joint  
500 latent inference across cortical areas and establishes a foundation for future studies on generalizable,  
501 population-level neural computations across behavioral contexts.

502 There are multiple exciting future directions building on our proposed CTAE model. First, while our  
503 paper focuses on neural recordings, our coupled-transformer autoencoder design is not specific to  
504 neural data and can be applied to general multiview time series data. Particularly, it can be applied  
505 to analyze neural and behavioral recordings to identify features shared between neural activity and  
506 behavior, and neural features that are not reflected in behavior and vice versa. Second, currently  
507 our approach is scalable to more than two regions by generalizing the orthogonality loss to pairs  
508 of brain regions. By making the disentanglement weight vector *learnable*, the dimensions of each  
509 of the subspaces can be identified from the training data. Finally, training CTAE directly on spikes  
510 with a Poisson/dispersion-aware observation model, i.e. incorporating a likelihood loss matched to  
511 spike generation (e.g., Poisson or negative-binomial) will enable directly analyzing unsmoothed spike  
512 counts.

513 **REFERENCES**  
514

515 Hamidreza Abbaspourazad, Eray Erturk, Bijan Pesaran, and Maryam M. Shanechi. Dynamical  
516 flexible inference of nonlinear latent factors and structures in neural population activity. *Nature  
517 Biomedical Engineering*, 8(1):85–108, 2024. doi: 10.1038/s41551-023-01106-1. URL <https://doi.org/10.1038/s41551-023-01106-1>. Epub 2023-12-11.  
519

520 G. Andrew, R. Arora, J. Bilmes, and K. Livescu. Deep canonical correlation analysis. In *Proc. of the  
521 30th International Conference on Machine Learning*, pp. 1247–1255, 2013.  
522

523 Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan.  
524 Domain separation networks. *Advances in neural information processing systems*, 29, 2016.  
525

526 M Yu Byron, Gopal Santhanam, Maneesh Sahani, and Krishna V Shenoy. Neural decoding for  
527 motor and communication prostheses. In *Statistical Signal Processing for Neuroscience and  
528 Neurotechnology*, pp. 219–263. Elsevier, 2010.  
528

529 Jianhua Cang and David A Feldheim. Developmental mechanisms of topographic map formation and  
530 alignment. *Annual review of neuroscience*, 36(1):51–77, 2013.  
531

532 Mark M Churchland and Krishna V Shenoy. Preparatory activity and the expansive null-space. *Nature  
533 Reviews Neuroscience*, 25(4):213–236, 2024.  
534

535 Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin Zhao, Cesar Caiafa,  
536 and Huy Anh Phan. Tensor decompositions for signal processing applications: From two-way to  
537 multiway component analysis. *IEEE signal processing magazine*, 32(2):145–163, 2015.  
538

539 John P. Cunningham and Byron M. Yu. Dimensionality reduction for large-scale neural recordings.  
540 *Nature Neuroscience*, 17(11):1500–1509, 2014. doi: 10.1038/nn.3776. URL <https://doi.org/10.1038/nn.3776>.

---

540 Gamaleldin F Elsayed, Antonio H Lara, Matthew T Kaufman, Mark M Churchland, and John P  
541 Cunningham. Reorganization between preparatory and movement population responses in motor  
542 cortex. *Nature communications*, 7(1):13239, 2016.

543

544 Fangxiang Feng, Xiaojie Wang, and Ruifan Li. Cross-modal retrieval with correspondence au-  
545 toencoder. In *Proceedings of the 22nd ACM international conference on Multimedia*, pp. 7–16,  
546 2014.

547

548 Vikash Gilja, Paul Nuyujukian, Cindy A Chestek, John P Cunningham, Byron M Yu, Joline M Fan,  
549 Mark M Churchland, Matthew T Kaufman, Jonathan C Kao, Stephen I Ryu, and Krishna V Shenoy.  
550 A high-performance neural prosthesis enabled by control algorithm design. *Nature Neuroscience*,  
551 15(12):1752–1757, 2012.

552

553 Joshua Glaser, Matthew Whiteway, John P Cunningham, Liam Paninski, and Scott Linderman. Recur-  
554 rent switching dynamical systems models for multiple interacting neural populations. In *Advances  
555 in Neural Information Processing Systems*, volume 33, pp. 14867–14878. Curran Associates, Inc.,  
556 2020.

557

558 E. Gokcen, J. H. Macke, and B. M. Yu. Disentangling the flow of signals between populations of  
559 neurons with delayed latents across groups. *Nature Computational Science*, 2:441–452, 2022.

560

561 Evren Gokcen, Anna Ivic Jasper, Alison Xu, Adam Kohn, Christian K. Machens, and Byron M. Yu.  
562 Uncovering motifs of concurrent signaling across multiple neuronal populations. In *Advances  
563 in Neural Information Processing Systems 36 (NeurIPS 2023)*, pp. 24283–24295, 2023. URL  
564 <https://openreview.net/forum?id=u39QQh5L8Q>.

565

566 Evren Gokcen, Anna I Jasper, Adam Kohn, Christian K Machens, and Byron M Yu. Fast multi-group  
567 gaussian process factor models. *arXiv preprint arXiv:2412.16773*, 2024.

568

569 Rabia Gondur, Usama Bin Sikandar, Evan Schaffer, Mikio Christian Aoi, and Stephen L Keeley.  
570 Multi-modal gaussian process variational autoencoders for neural and behavioral data. In *The  
571 Twelfth International Conference on Learning Representations*, 2024.

572

573 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modelling long sequences with structured  
574 state spaces. In *International Conference on Learning Representations*, 2022.

575

576 Zengcai V Guo, Nuo Li, Daniel Huber, Eran Ophir, Diego Gutnisky, Jonathan T Ting, Guoping Feng,  
577 and Karel Svoboda. Flow of cortical activity underlying a tactile decision in mice. *Neuron*, 81(1):  
578 179–194, 2014.

579

580 Harry H Harman. *Modern factor analysis*. University of Chicago press, 1976.

581

582 Daniel Hernandez, Antonio Khalil Moretti, Ziqiang Wei, Shreya Saxena, John Cunningham, and  
583 Liam Paninski. Nonlinear evolution via spatially-dependent linear dynamics for electrophysiology  
584 and calcium data. *arXiv preprint arXiv:1811.02459*, 2018.

585

586 H. Hotelling. Relations between two sets of variates. *Biometrika*, 28(3/4):321–377, 1936.

587

588 Amber Hu, David M. Zoltowski, Aditya Nair, David Anderson, Lea Duncker, and Scott W. Linderman.  
589 Modeling latent neural dynamics with gaussian process switching linear dynamical systems. In  
590 *Advances in Neural Information Processing Systems (NeurIPS)*, 2024. URL <https://arxiv.org/abs/2408.03330>.

591

592 J. J. Jun, N. A. Steinmetz, J. H. Siegle, et al. Fully integrated silicon probes for high-density recording  
593 of neural activity. *Nature*, 551:232–236, 2017. doi: 10.1038/nature24636.

594

595 Matthew T Kaufman, Mark M Churchland, Stephen I Ryu, and Krishna V Shenoy. Cortical activity  
596 in the null space: permitting preparation without movement. *Nature Neuroscience*, 17(3):440–448,  
597 2014.

598

599 S. Koukuntla, J. B. Julian, J. C. Kaminsky, et al. Unsupervised discovery of the shared and private  
600 geometry in multi-view data. *arXiv preprint*, 2024.

594 Antonio H Lara, Gamaleldin F Elsayed, Andrew J Zimnik, John P Cunningham, and Mark M  
595 Churchland. Conservation of preparatory neural events in monkey motor cortex regardless of how  
596 movement is initiated. *elife*, 7:e31826, 2018.

597

598 M. Lee and V. Pavlovic. Private–shared disentangled multimodal variational autoencoder for learning  
599 hybrid latent representations. *Proceedings of the IEEE/CVF conference on computer vision and*  
600 *pattern recognition*, 2021. arXiv:2012.13024.

601 Nuo Li, Tsai-Wen Chen, Zengcai V Guo, Charles R Gerfen, and Karel Svoboda. A motor cortex  
602 circuit for motor planning and movement. *Nature*, 519(7541):51–56, 2015.

603

604 Weihan Li, Chengrui Li, Yule Wang, and Anqi Wu. Multi-region Markovian Gaussian process:  
605 An efficient method to discover directional communications across multiple brain regions. In  
606 *International Conference on Machine Learning*, pp. 28112–28131. PMLR, 2024.

607

608 Scott W. Linderman, Andrew C. Miller, Ryan P. Adams, David M. Blei, Liam Paninski, and Matthew J.  
609 Johnson. Recurrent switching linear dynamical systems, 2016. URL <https://arxiv.org/abs/1610.08466>. arXiv preprint.

610

611 T. A. Machado, I. V. Kauvar, and K. Deisseroth. Multiregion neuronal activity: the forest and the  
612 trees. *Nature Reviews Neuroscience*, 23(11):683–704, 2022. doi: 10.1038/s41583-022-00634-0.

613

614 C. Pandarinath, D. J. O’Shea, J. Collins, et al. Inferring single-trial neural population dynamics using  
615 sequential auto-encoders. *Nature Methods*, 15:805–815, 2018.

616

617 Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. *The London,*  
618 *Edinburgh, and Dublin philosophical magazine and journal of science*, 2(11):559–572, 1901.

619

620 Matthew G Perich, Juan A Gallego, and Lee E Miller. A neural population mechanism for rapid  
621 learning. *Neuron*, 100(4):964–976, 2018.

622

623 Matthew G Perich, Charlotte Arlt, Sofia Soares, Megan E Young, Clayton P Mosher, Juri Minxha,  
624 Eugene Carter, Ueli Rutishauser, Peter H Rudebeck, Christopher D Harvey, and Kanaka Rajan.  
625 Inferring brain-wide interactions using data-constrained recurrent neural network models. *BioRxiv*,  
626 pp. 2020–12, 2020.

627

628 João D Semedo, Amir Zandvakili, Christian K Machens, Byron M Yu, and Adam Kohn. Cortical  
629 areas interact through a communication subspace. *Neuron*, 102(1):249–259.e4, 2019.

630

631 Yuge Shi, Brooks Paige, Philip Torr, et al. Variational mixture-of-experts autoencoders for multi-  
632 modal deep generative models. *Advances in neural information processing systems*, 32, 2019.

633

634 Barry E. Stein and M. Alex Meredith. *The Merging of the Senses*. MIT Press, Cambridge, MA, 1993.

635

636 Thomas M Sutter, Imant Daunhauer, and Julia E Vogt. Generalized multimodal elbo. *International*  
637 *Conference on Learning Representations*, 2021.

638

639 Parsa Vahidi, Omid G Sani, and Maryam M Shanechi. Braid: Input-driven nonlinear dynamical  
640 modeling of neural-behavioral data. *arXiv preprint arXiv:2509.18627*, 2025.

641

642 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz  
643 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*  
644 *systems*, 30, 2017.

645

646 Saurabh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation through  
647 neural population dynamics. *Annual review of neuroscience*, 43(1):249–275, 2020.

648

649 Qian Wang and Toby P Breckon. Generalized zero-shot domain adaptation via coupled conditional  
650 variational autoencoders. *Neural Networks*, 163:40–52, 2023.

651

652 W. Wang, R. Arora, K. Livescu, and J. Bilmes. On deep multi-view representation learning: Objectives  
653 and optimization. In *Proc. of the 33rd International Conference on Machine Learning*, pp. 1083–  
654 1092, 2016.

---

648 Wen Wang, Zhen Cui, Hong Chang, Shiguang Shan, and Xilin Chen. Deeply coupled auto-encoder  
649 networks for cross-view classification. *arXiv preprint arXiv:1402.2031*, 2014.  
650

651 Lin Wu, Yang Wang, and Ling Shao. Cycle-consistent deep generative hashing for cross-modal  
652 retrieval. *IEEE Transactions on Image Processing*, 28(4):1602–1612, 2018.  
653

654 Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-supervised  
655 learning. *Advances in neural information processing systems*, 31, 2018.  
656

657 Joel Ye and Chethan Pandarinath. Representation learning for neural population activity with neural  
658 data transformers, 2021. URL <https://arxiv.org/abs/2108.01210>. arXiv preprint.  
659

660 Daiyao Yi, Hao Dong, Michael James Higley, Anne Churchland, and Shreya Saxena. Shared-ae:  
661 Automatic identification of shared subspaces in high-dimensional neural and behavioral activity.  
662 In *The Thirteenth International Conference on Learning Representations*, 2025.  
663

664 B. M. Yu, J. P. Cunningham, G. Santhanam, et al. Gaussian-process factor analysis for  
665 low-dimensional single-trial analysis of neural population activity. In *Advances in Neural Information  
666 Processing Systems*, pp. 1881–1888, 2009.  
667

668 Amin Zandvakili and Adam Kohn. Coordinated neuronal activity enhances corticocortical communi-  
669 cation. *Neuron*, 87(4):827–839, 2015.  
670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

---

702 A CTAE ALGORITHM OUTLINE FOR  $R = 2$  BRAIN REGIONS  
703

704

---

**Algorithm 1:** Training Coupled Transformer Autoencoders (CTAE) for two regions

705 **Input:** Paired recordings  $\mathbf{X}^{(1)}, \mathbf{X}^{(2)}$ , encoder-decoder parameters  $\theta, \phi$ , latent dimensions  $(d_s, d_1, d_2)$ , loss  
706 weights  $\lambda_{\text{shared}}, \lambda_{\text{align}}, \lambda_{\text{orth}}$ , optimiser  $\mathcal{O}$  and learning rate  $\eta$ 

707 **Output:** Trained parameters  $\theta^*, \phi^*$ 

708  
709 1 Compute weights:  $\mathbf{w}_1 \leftarrow [\mathbf{1}_{d_s}, \mathbf{1}_{d_1}, \mathbf{0}_{d_2}]^\top$ ,  $\mathbf{w}_2 \leftarrow [\mathbf{1}_{d_s}, \mathbf{0}_{d_1}, \mathbf{1}_{d_2}]^\top$   
710 2  $\mathbf{w}^{(s)} \leftarrow \mathbf{w}_1 \odot \mathbf{w}_2$   
711 3 **while** not converged **do**  
712 | Encoder forward pass:  $\mathbf{Z}^{(1)} \leftarrow E_\theta^{(1)}(\mathbf{X}^{(1)})$ ,  $\mathbf{Z}^{(2)} \leftarrow E_\theta^{(2)}(\mathbf{X}^{(2)})$   
713 | Fuse latents:  $\mathbf{Z} \leftarrow$  (Eq. equation 4)  
714 | Extract  $\hat{\mathbf{S}}, \hat{\mathbf{P}}^{(1)}, \hat{\mathbf{P}}^{(2)}$  (Eq. equation 5)  
715 | Data reconstruction:  $\hat{\mathbf{X}}^{(1)} \leftarrow D_\phi^{(1)}((\mathbf{w}_1 \mathbf{1}_T^\top) \odot \mathbf{Z})$ ,  $\hat{\mathbf{X}}^{(2)} \leftarrow D_\phi^{(2)}((\mathbf{w}_2 \mathbf{1}_T^\top) \odot \mathbf{Z})$   
716 | Compute losses:  $\mathcal{L} \leftarrow \mathcal{L}_{\text{rec}} + \lambda_{\text{shared}} \mathcal{L}_{\text{shared}} + \lambda_{\text{align}} \mathcal{L}_{\text{align}} + \lambda_{\text{orth}} \mathcal{L}_{\text{orth}}$   
717 | (Eq. equation 8-equation 11)  
718 | Parameter update:  $\theta, \phi \leftarrow \mathcal{O}(\theta, \phi, \nabla_{\theta, \phi} \mathcal{L}_{\text{2R}}, \eta)$   
719 10 **return**  $\theta^*, \phi^*$ 


---

720

721

---

722 B EXTENDING CTAE TO  $R > 2$  BRAIN REGIONS

723 In the main text, we presented CTAE with a two-region formulation and reported results on datasets  
724 involving either two or three regions. Here, we provide the generalization of our framework to  $R \geq 3$   
725 regions.

726

---

727 B.1 PROBLEM FORMULATION (3 REGIONS)

728 For clarity, we present the formulation below for three regions. However, this construction naturally  
729 extends to more than three regions.

730 Let  $\mathbf{X}^{(1)} \in \mathbb{R}^{N_1 \times T}, \mathbf{X}^{(2)} \in \mathbb{R}^{N_2 \times T}, \mathbf{X}^{(3)} \in \mathbb{R}^{N_3 \times T}$  denote simultaneous neural population  
731 recordings from three brain regions, each acquired over  $T$  time steps with  $N_1, N_2, N_3$  channels,  
732 respectively. We assume that the observed activity in each region arises from latent dynamics that  
733 decompose into:

734 1. **Region-private dynamics**  $\mathbf{P}^{(r)}$  that capture computations unique to each region  $r \in$   
735  $\{1, 2, 3\}$ , lying in subspaces orthogonal to shared components.  
736 2. **Pairwise shared dynamics**  $\mathbf{S}^{(ij)}$  that span communication subspaces shared between  
737 each pair of regions  $(i, j) \in \{(1, 2), (2, 3), (1, 3)\}$ , reflecting coordinated activity patterns  
738 specific to that pair.  
739 3. **Globally shared dynamics**  $\mathbf{S}^{(123)}$  that capture population trajectories common to all three  
740 regions, representing fully shared circuit-level computations.

741 Formally, the neural activity at each time step  $t$  is modeled as nonlinear functions of these latent  
742 processes:

743 
$$\begin{aligned} \mathbf{X}_t^{(1)} &= f(\mathbf{S}_{1:t}^{(12)}, \mathbf{S}_{1:t}^{(13)}, \mathbf{S}_{1:t}^{(123)}, \mathbf{P}_{1:t}^{(1)}), \\ \mathbf{X}_t^{(2)} &= g(\mathbf{S}_{1:t}^{(12)}, \mathbf{S}_{1:t}^{(23)}, \mathbf{S}_{1:t}^{(123)}, \mathbf{P}_{1:t}^{(2)}), \\ \mathbf{X}_t^{(3)} &= h(\mathbf{S}_{1:t}^{(13)}, \mathbf{S}_{1:t}^{(23)}, \mathbf{S}_{1:t}^{(123)}, \mathbf{P}_{1:t}^{(3)}), \end{aligned} \quad (13)$$

744 where  $\mathbf{S}_t^{(ij)} \in \mathbb{R}^{d_{ij}}$  denotes the latent state shared between regions  $i$  and  $j$ ,  $\mathbf{S}_t^{(123)} \in \mathbb{R}^{d_{123}}$  the fully  
745 shared latent state across all three regions, and  $\mathbf{P}_t^{(r)} \in \mathbb{R}^{d_r}$  the region-private latent state of region  $r$ .

---

756 Our objective is to recover these latent representations  $\{\mathbf{S}^{(ij)}, \mathbf{S}^{(123)}, \mathbf{P}^{(r)}\}$  from the observed  
 757 neural activity  $\{\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \mathbf{X}^{(3)}\}$ , such that the model disentangles private, pairwise shared, and  
 758 fully shared dynamics in a principled way. For more than three regions, this formulation extends by  
 759 including shared latent variables for all possible combinatorial subsets of regions, with the training  
 760 algorithm remaining unchanged. The training algorithm introduced below applies to this general  
 761 multi-region setting.

762 **B.2 GENERAL MULTI-REGION SETTING**

763 To move beyond two regions, we extend the formulation with a general mechanism that assigns latent  
 764 dimensions to all possible combinatorial subsets of regions. This extension builds directly on the same  
 765 architectural backbone introduced in Section 4, but augments it with an enhanced weighted latent  
 766 fusion mechanism. This mechanism enables CTAE to disentangle latents shared by arbitrary subsets  
 767 of regions while preserving strictly region-private structure. All other components—per-region  
 768 causal Transformer encoders/decoders and the optimization procedure—remain unchanged. The key  
 769 modifications are described below.

770 **Encoder outputs.** For each region  $r \in \{1, \dots, R\}$  we keep a dedicated encoder–decoder pair  
 771  $(E_\theta^{(r)}, D_\theta^{(r)})$  and obtain

$$772 \mathbf{Z}^{(r)} = E_\theta^{(r)}(\mathbf{X}^{(r)}) \in \mathbb{R}^{D \times T}.$$

773 **Region-specific weight masks.** A single binary matrix encodes which latent dimensions are associated  
 774 with each region *uses*:

$$775 \mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \ \mathbf{w}_R]^\top \in \{0, 1\}^{R \times D}, \quad \mathbf{W}[r, d] = 1 \iff \text{region } r \text{ claims dimension } d.$$

776 A dimension is *private* when exactly one row in  $\mathbf{W}$  is active and *shared* when two or more rows are  
 777 active, thereby accommodating every subset pattern (for instance, when  $R = 3$  the binary code 110  
 778 indicates a dimension used by regions 1 and 2 but not 3; 101 corresponds to regions 1 and 3; and 111  
 779 denotes a dimension shared by all three). Relative to the two-region mask 3,  $\mathbf{W}$  expands the notion  
 780 of “shared” from “both regions” to “arbitrary subset of regions”. The membership matrix  $\mathbf{W}$  can be (i)  
 781 fixed a priori from anatomical knowledge, (ii) selected by a hyper-parameter search that allocates an  
 782 appropriate number of latent dimensions to each subset pattern (analogous to the two-region masks  
 783 in Eq. equation 3), or (iii) treated as a fully learnable variable and optimised jointly with the rest of  
 784 the network.

785 **Weighted latent fusion.** We fuse the region-specific latents with a masked average

$$786 \mathbf{Z}_t[d] = \frac{\sum_{r=1}^R \mathbf{W}[r, d] \mathbf{Z}_t^{(r)}[d]}{\sum_{r=1}^R \mathbf{W}[r, d]}, \quad (14)$$

787 so that private dimensions stay unchanged, whereas any dimension claimed by multiple regions is  
 788 forced to align across them.

789 **Region-specific decoding.** Each decoder receives only the dimensions it owns,

$$790 \widehat{\mathbf{X}}^{(r)} = D_\phi^{(r)}((\mathbf{w}_r \mathbf{1}_T^\top) \odot \mathbf{Z}),$$

791 exactly as in the two-region case. Hence the extension does not change model capacity but merely  
 792 broadens how “shared” information is defined.

793 This design (i) embeds all regions in one latent space of size  $D$ , (ii) preserves region-specific structure  
 794 through fixed relevance masks, and (iii) enforces cross-region consistency via Eq. equation 14.

803 **B.3 TRAINING OBJECTIVE**

804 We retain the four losses used for two regions—reconstruction, shared-only reconstruction, alignment,  
 805 and orthogonality—while replacing two binary masks with the matrix  $\mathbf{W}$ .

806 **Reconstruction.** The reconstruction loss is unchanged, only we now sum over all regions.

$$807 \mathcal{L}_{\text{rec}} = \sum_{r=1}^R \|\widehat{\mathbf{X}}^{(r)} - \mathbf{X}^{(r)}\|_F^2. \quad (15)$$

---

810    **Shared-only reconstruction.** To guarantee that *all* cross-region regularities live inside shared  
 811    dimensions, we mask out every coordinate used by fewer than two regions. Let  $\mathbf{s} = \mathbf{1}_{\{\sum_r \mathbf{w}_{r,\cdot} \geq 2\}} \in$   
 812     $\{0, 1\}^D$  and  $\mathbf{w}_r^{(s)} = \mathbf{w}_r \odot \mathbf{s}$ . We then reconstruct each region from the shared subspace alone:

814    
$$\mathcal{L}_{\text{shared}} = \sum_{r=1}^R \|D_{\phi}^{(r)}((\mathbf{w}_r^{(s)} \mathbf{1}_T^\top) \odot \mathbf{Z}) - \mathbf{X}^{(r)}\|_F^2. \quad (16)$$

817    When  $R = 2$  this term reduces to Eq. (11) in the main text, but for  $R > 2$  it now supervises *every*  
 818    shared subset simultaneously.

819    **Alignment.** Each region's encoder estimate should coincide with the fused latent over the dimensions  
 820    it owns:

821    
$$\mathcal{L}_{\text{align}} = \sum_{r=1}^R \|(\mathbf{w}_r \mathbf{1}_T^\top) \odot \mathbf{Z} - (\mathbf{w}_r \mathbf{1}_T^\top) \odot \mathbf{Z}^{(r)}\|_F^2. \quad (17)$$

823    Private coordinates contribute zero because they match by definition; shared coordinates are actively  
 824    driven together, extending the simple two-region difference penalty to an  $R$ -way match.

826    **Orthogonality.**

827    
$$\mathcal{L}_{\text{orth}} = \left\| \frac{1}{T} \mathbf{Z} \mathbf{Z}^\top - \text{diag}\left(\frac{1}{T} \mathbf{Z} \mathbf{Z}^\top\right) \right\|_F^2. \quad (18)$$

828    Identical to the two-region version, this term keeps all latent dimensions—private or shared—mutually  
 829    decorrelated.

830    **Total loss.**

831    
$$\mathcal{L} = \mathcal{L}_{\text{rec}} + \lambda_{\text{shared}} \mathcal{L}_{\text{shared}} + \lambda_{\text{align}} \mathcal{L}_{\text{align}} + \lambda_{\text{orth}} \mathcal{L}_{\text{orth}}, \quad (19)$$

832    with  $\lambda_{\text{shared}}$ ,  $\lambda_{\text{align}}$ ,  $\lambda_{\text{orth}}$  selected on a validation set. The objective reduces exactly to the two-  
 833    region formulation when  $R = 2$ ; for  $R > 2$  it differs only in how masks are constructed and applied,  
 834    maintaining conceptual continuity while capturing richer patterns of shared neural dynamics.

## 836    C TRAINING AND HYPERPARAMETER DETAILS

838    To ensure consistency in model capacity across regions, we adopt identical causal Transformer-based  
 839    encoder-decoder architectures for each region, using an equal number of encoder and decoder layers  
 840    to maintain architectural symmetry. We then performed a grid search over:

841    **Number of layers.** We varied the total number of Transformer layers  $L \in \{1, 2, 3\}$  in both encoder  
 842    and decoder to trade off model capacity against overfitting risk and computational cost.

844    **Latent dimensions.** Private and shared dimensions,  $d \in \{5, 10, 15\}$ . Note - Here, the specified latent  
 845    dimensionality  $d$  should be treated as an upper bound on bottleneck capacity. After training with  
 846    the designed regularizers, redundant factors collapse to near-zero explained variance, yielding an  
 847    effective dimensionality  $d_{\text{eff}} \leq d$  that approximates the data's intrinsic dimensionality.

848    **Loss weights.**

849    

- 850       • Shared-space:  $\lambda_{\text{shared}} \in \{0, 1, 2\}$
- 851       • Alignment:  $\lambda_{\text{align}} \in \{0, 0.05, 0.1, 0.5\}$
- 852       • Orthogonality:  $\lambda_{\text{orth}} \in \{0, 0.001, 0.01, 0.05\}$

854    **Learning rate.**  $\eta \in \{10^{-3}, 10^{-4}\}$

855    **Warm-up schedule for orthogonality loss.** To prevent an overly strict orthogonality constraint  
 856    from hindering early representation learning, we set  $\lambda_{\text{orth}} = 0$  for the first  $e$  epochs—allowing the  
 857    model to focus on reconstruction and shared/private separation—then linearly ramp it up to its target  
 858     $\lambda_{\text{orth}}$  value over the next  $e$  epochs. This gradual increase stabilizes training by delaying the full  
 859    orthogonality penalty until the autoencoders have already learned meaningful features. We explored  
 860     $e \in \{100, 500, 1000\}$ . Formally,

861    
$$\lambda_{\text{orth}}^{(t)} = \begin{cases} 0, & t \leq e, \\ \frac{t-e}{e} \lambda_{\text{orth}}, & e < t \leq 2e, \\ \lambda_{\text{orth}}, & t > 2e. \end{cases}$$

864 **Positional encoding.** We use fixed, deterministic sinusoidal signals into each input embedding to  
 865 convey temporal order, following (Vaswani et al., 2017). Specifically, for time step  $t$  and embedding  
 866 dimension index  $i$  (with model dimension  $d_{\text{model}}$ ):

$$867 \quad \text{PE}(t, 2i) = \sin\left(\frac{t}{10000^{2i/d_{\text{model}}}}\right), \quad \text{PE}(t, 2i + 1) = \cos\left(\frac{t}{10000^{2i/d_{\text{model}}}}\right).$$

869 These encodings provide both absolute and relative position information without adding any learnable  
 870 parameters, enabling the self-attention layers to distinguish different time steps.

871 All models were trained for 10 000 epochs, and the run minimizing the total loss in equation 12  
 872 on a held-out validation set was selected. Table 2 summarizes all the hyperparameters and their  
 873 corresponding search ranges and Table 3 reports the optimal settings for the two datasets studied.

875 **Table 2: Hyperparameter search ranges.**

| 876 <b>Hyperparameter</b>          | 877 <b>Values</b>              |
|------------------------------------|--------------------------------|
| 878 # Transformer layers $L$       | 879 $\{1, 2, 3\}$              |
| 879 latent dims. $d_1 = d_2 = d_s$ | 880 $\{5, 10, 15\}$            |
| 880 $\lambda_{\text{shared}}$      | 881 $\{0, 1, 2\}$              |
| 881 $\lambda_{\text{align}}$       | 882 $\{0, 0.05, 0.1, 0.5\}$    |
| 882 $\lambda_{\text{orth}}$        | 883 $\{0, 0.001, 0.01, 0.05\}$ |
| 883 Learning rate $\eta$           | 884 $\{10^{-3}, 10^{-4}\}$     |
| 884 Warm-up epochs for orth. loss  | 885 $\{100, 500, 1000\}$       |

886 **Table 3: Selected hyperparameters for M1–PMd and SC–ALM.**

| 887 <b>Parameter</b>          | 888 <b>M1–PMd</b> | 889 <b>SC–ALM</b> |
|-------------------------------|-------------------|-------------------|
| 890 latent dims               | 891 10            | 892 15            |
| 891 # Layers $L$              | 892 3             | 893 1             |
| 892 $\lambda_{\text{shared}}$ | 893 1             | 894 1             |
| 893 $\lambda_{\text{align}}$  | 894 0.5           | 895 0.1           |
| 894 $\lambda_{\text{orth}}$   | 895 0.01          | 896 0.01          |
| 895 Learning rate $\eta$      | 896 $10^{-4}$     | 897 $10^{-4}$     |
| 896 Warm-up (orth. loss)      | 897 100 epochs    | 898 1000 epochs   |

899 **Compute Resources.** All models were trained using CUDA-accelerated implementations in PyTorch.  
 900 Training was performed on NVIDIA Quadro RTX 8000 GPUs, supplemented by additional compute  
 901 resources from a high-performance computing (HPC) cluster.

## 901 D DATASET DETAILS

902 The motor circuit dataset used in this study is publicly available and was originally released with  
 903 (Perich et al., 2018). Both datasets were preprocessed using standard neural signal processing  
 904 pipelines. Specifically, spike trains were first binned at 100 ms for both M1–PMd dataset and SC–  
 905 ALM dataset. The binned spike counts were then smoothed using a Gaussian filter (kernel size of 3  
 906 and 2 for M1–PMd and SC–ALM, respectively) to estimate instantaneous firing rates, which were  
 907 used as input to the CTAE model.

### 908 D.1 MOTOR CIRCUIT DATASET: CENTER-OUT ARM REACHING TASK

909 We use the dataset from (Perich et al., 2018), which includes neuronal recordings from a Utah Array  
 910 in M1 and PMd; see Fig. 7, Left). In this task, a monkey performs center-out arm reaches using a  
 911 planar manipulandum. Neural activity was recorded from the primary motor cortex (M1) and dorsal  
 912 premotor cortex (PMd) via Utah arrays, yielding spike-sorted activity from 52 putative units in M1  
 913 and 66 in PMd (Fig. 7 Right). Each trial begins with a target onset, followed by a variable delay  
 914 period (0.5–1.3 s) for movement preparation. After a “go” cue, the monkey initiates a reach to one  
 915 of eight evenly spaced targets in a 2D workspace, holds briefly, and returns to center. The dataset  
 916 includes 208 trials across 8 target conditions, with approximately 26 repetitions per condition.

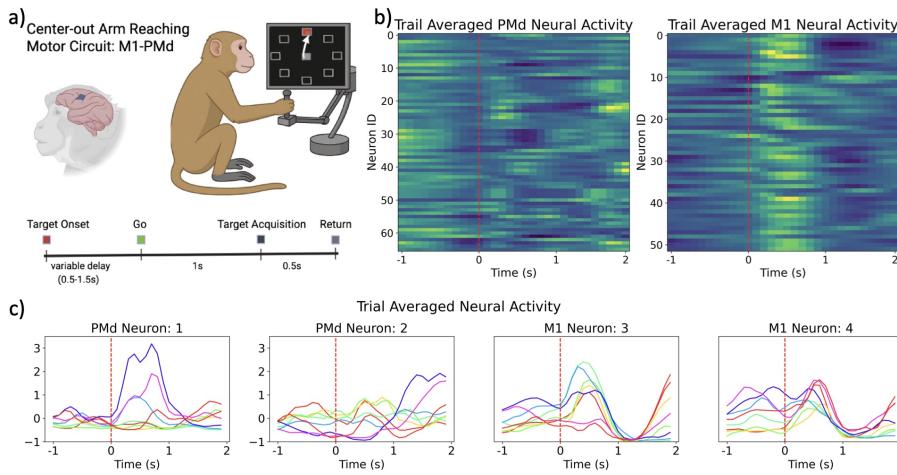


Figure 7: Motor study. a) Schematic of the behavioral tasks performed by non-human primates in the datasets used in Section 5. Center-Out Arm Reach Task: The monkey controls a manipulandum to perform instructed delay reaches toward one of eight peripheral targets, with neural activity recorded from M1 and PMd using Utah arrays. b) Population firing rates in M1 and PMd. Heatmaps shows the trial-averaged z-scored firing rates for individual neurons (rows) across time. c) Condition-averaged firing rates of individual neurons in M1 and PMd. Each panel shows trial-averaged firing rates for single neurons, grouped and colored by reach direction. Colormap follows that in Fig. 4.

## D.2 SC-ALM DATASET: MULTISENSORY TASK

The anterolateral motor cortex (ALM) and the superior colliculus (SC) are important parts of a cortico-subcortical loop that transforms multisensory inputs into behavioral decisions. To study the role of these areas in multisensory integration and decision-making, we trained mice in a multisensory discrimination task, where animals had to integrate visual and tactile information over time to identify the target stimulus side. We then performed simultaneous neural recordings in ALM and SC, using high-density Neuropixels probes, in task-performing animals., see Fig. 8(left).

Each trial had a total duration of 7 seconds, comprising a 1-second baseline, then 3 seconds of probabilistic stimuli, followed by a 0.5-second delay without any stimulus and finally, the spouts moved in front of the mouse, allowing up to 2.5 seconds for a licking response. The mice were rewarded when responding on the side where more sensory stimuli were presented during the stimulus period. The stimulus period was composed of six periods of 500 milliseconds each, during which a stimulus could be presented to the mouse. One to six stimuli were presented on a given side, with each stimuli likelihood of presentation determining the difficulty of the task. Depending on the trial type, a stimulus could either be a *visual* grating moving along a screen (visual trial), an *air puff* of 100ms to the vibrissae on one side of the mouse (tactile trial), or both, in a simultaneous congruent *multisensory* manner (multisensory trial). Mice were trained to respond by licking the side on which more stimuli were shown. An example trial is illustrated in Fig. 8(center). An example of a multisensory trial timeline is presented in Fig. 8(right).

We analyzed a single session from an expert animal that achieves  $\sim 70\%$  correct choice accuracy (564 trials in total), with approximately 80–100 trials per stimulus type and per target direction

## E ABLATION STUDY: INDIVIDUAL LOSS CONTRIBUTIONS

We evaluate the contribution of each loss term by training four CTAE variants:

1. **Full CTAE:** all losses active (shared-only reconstruction, alignment, orthogonality, standard reconstruction).
2. **No Shared-only Reconstruction:** drop the loss that reconstructs inputs using only the shared subspace.

972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989

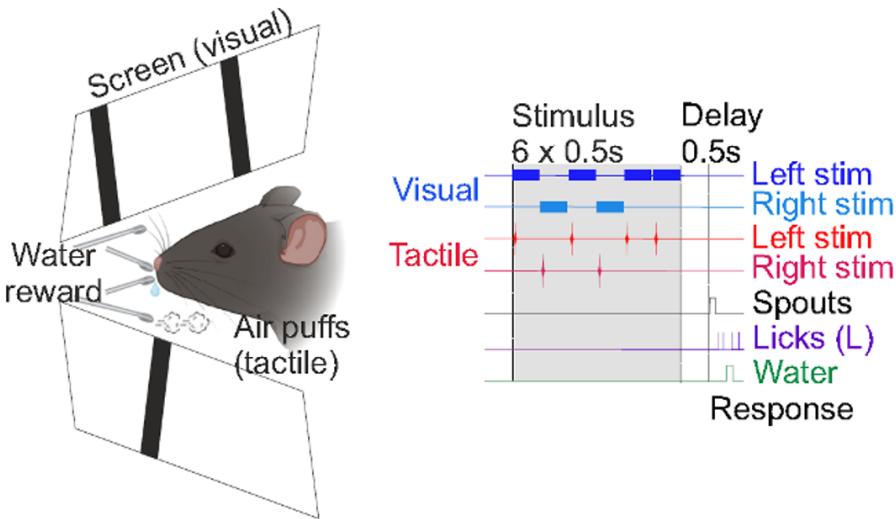


Figure 8: Multisensory study. Left: Schematic of the 2-alternative forced choice task performed by the mice, trained to lick on the side where more stimuli was presented. The mice received a water reward through the target spout. Right: Schematic of the task timeline in a multisensory trial with a left-side target. The stimulus phase is in grey, the delay and response phase are in white, separated by a vertical line and the movement of the spouts begins at the start of the response period.

995  
996 3. **No Alignment:** remove the term that aligns shared latents across regions.  
997 4. **No Orthogonality:** remove the orthogonality constraint between shared and private latents.  
998

999 For each variant, we (i) visualize ablated interactions where meaningful, and (ii) quantify reach-  
1000 direction decoding accuracy from each latent subspace.

1001 E.1 SHARED-ONLY RECONSTRUCTION LOSS ABLATION

1003 The shared-only reconstruction loss ensures that the shared subspace alone can reconstruct the original  
1004 neural input; it encourages capturing all common dynamics in that subspace. Without it, information  
1005 shifts into private latents, reducing interpretability of the shared space. As shown in Table 1, removing  
1006 this loss component leads to a dramatic drop in shared-latent decoding accuracy, accompanied by a  
1007 corresponding increase in private-latent accuracies.

1009 E.2 ALIGNMENT LOSS ABLATION

1011 The alignment loss penalizes discrepancies between shared latents from each region, enforcing that  
1012 they capture the same underlying dynamics. To highlight the significance of this term, we performed  
1013 loss ablation experiments and analyzed the latents when no alignment loss was enforced. In Fig.  
1014 9a), the alignment loss is enforced, forcing the latents to have high similarity and significant overlap.  
1015 When the alignment loss is relaxed in Fig. 9b), the two shared latents diverge and sometimes cancel  
1016 each other, indicating a breakdown in cross-region correspondence. Correspondingly, Table 1 shows  
1017 that removing the alignment loss degrades shared-latent decoding accuracy, while private-latent  
1018 accuracies remain largely unchanged.

1019 E.3 ORTHOGONALITY LOSS ABLATION

1021 The orthogonality loss enforces that shared and private latents carry non-redundant information by  
1022 minimizing their dot products. To evaluate the importance of this loss, ablation experiments with  
1023 relaxed orthogonality constraints were used during model training. The degree of disentanglement is  
1024 quantified using the dot products between latents. In Fig. 10 a) the orthogonality loss is enforced in  
1025 the model and this constrained the latents to be maximally disentangled from each other. In Fig. 10  
b) the orthogonality loss is relaxed in the model and there is a significant overlap between the latents,

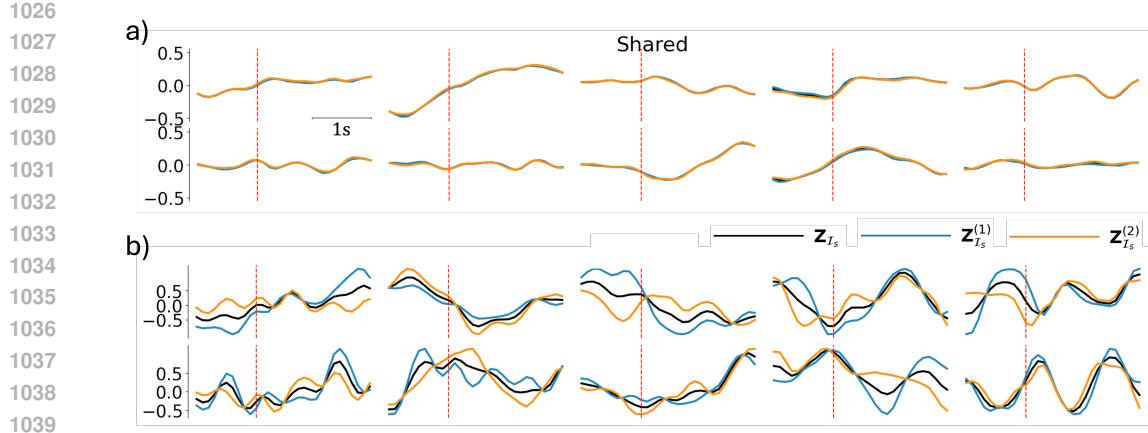


Figure 9: Alignment of shared latents in M1-PMd. Each subplot visualizes a single latent. Blue and orange traces indicate shared latents obtained from M1 and PMd respectively. Black trace represents the mean of blue and orange traces. (a) Alignment loss is enforced in the model. The shared latents have significant overlap. (b) Alignment loss is relaxed in this model. The latents deviate significantly from each other.

indicating a breakdown in disentanglement. Correspondingly, Table 1 shows that removing the orthogonality loss degrades shared-latent decoding accuracy, while private-latent accuracies remain largely unchanged.

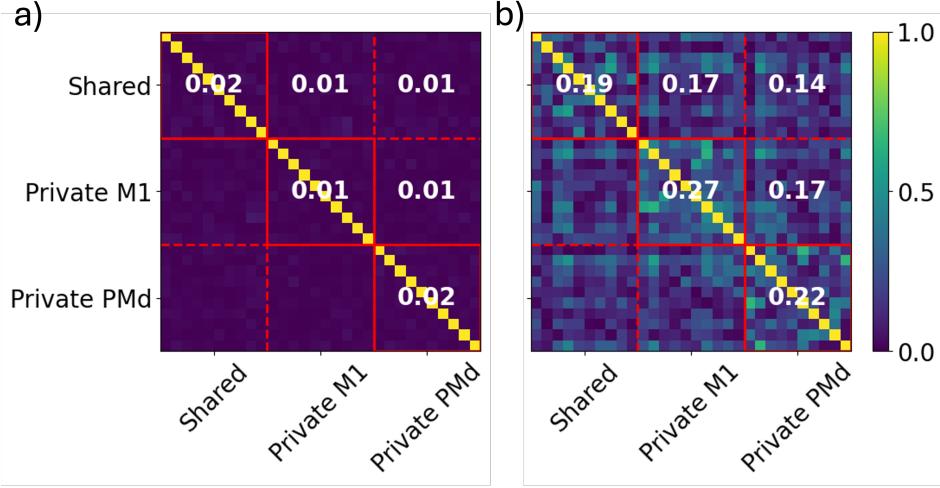


Figure 10: Orthogonality between CTAE latents in M1-PMd. The red lines are used to differentiate between the shared and region-private M1 and region-private PMd latents, in that order. The values in the blocks indicate the mean of dot product value between the latents. (a) Latents from model with orthogonality loss enforced (b) Latents from model with orthogonality loss relaxed

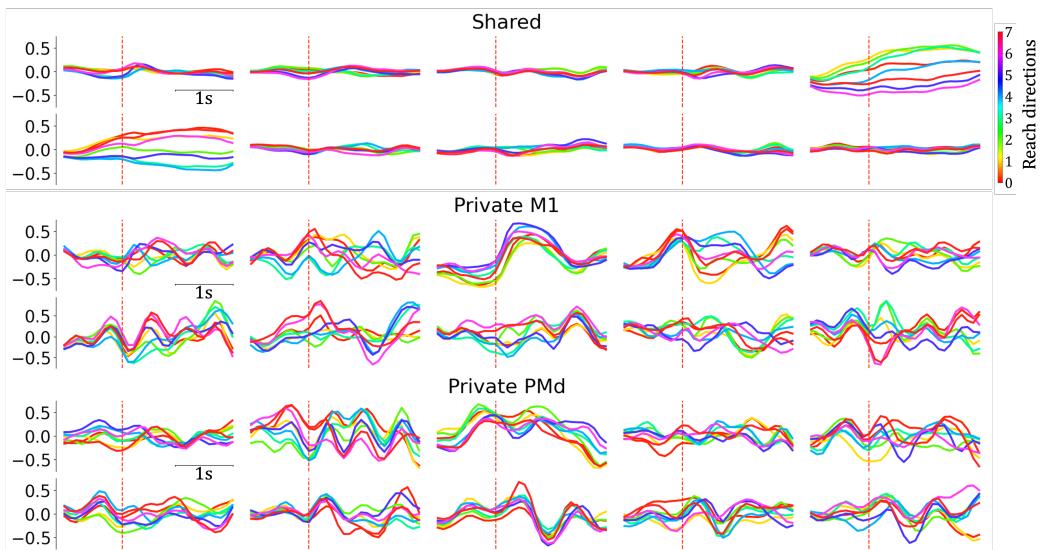
## F ANALYSIS OF LATENTS AND ATTENTION MAPS

### F.1 OVERVIEW OF LATENT DYNAMICS

The CTAE model extracts both shared and region-private latents from neural activity, and does so at a single-trial resolution. Shared and region-private latents for the motor dataset are obtained from the best performing CTAE model and visualized in Fig. 11. The region-private latents capture neural activity patterns that are specific to the region and thereby, reflect local dynamics and computations.

1080  
1081 The shared latents capture activity patterns that are common to both regions. The representation of  
1082 task variables such as reach direction in motor task was analyzed by averaging latent trajectories  
1083 across trials grouped by task variables. In both regions in Fig. 11, distinct latents exhibit systematic  
1084 variation across the task variables, indicating that the latents are inherently capturing behaviorally  
1085 relevant information.

1086 Fig. 12 visualizes a subset of the CTAE inferred neural latent dynamics (from the set of all latents  
1087 in Fig. 11). Each panel shows state-space trajectories for different latent groups across task epochs.  
1088 Immediately after target onset, trajectories in the shared subspace  $Z^{(s)}$  diverge from a common  
1089 baseline toward target-dependent fixed points, yielding an explicit goal code—consistent with prior  
1090 reports of a PMd–M1 preparatory subspace. During movement, variance in  $Z^{(s)}$  increases along  
1091 axes orthogonal to the preparatory subspace, indicating a shift in PMd–M1 coupling as the task  
1092 transitions to execution (Fig. 12B). We also observe that PMd-private latents maintain a stable  
1093 target representation during the preparatory phase (Fig. 12C), consistent with staging signals that are  
1094 subsequently reflected in the shared space; after the go cue, this private structure weakens, no longer  
1095 reflecting clear separation of different targets, consistent with transient reorganization or monitoring  
1096 as movement unfolds (Fig. 12D).



1114  
1115 Figure 11: CTAE latent dynamics in M1-PMd. Each subplot visualizes a single neural latent, with  
1116 colors indicating trial-averaged latents for each reach direction. Red dashed line indicates go-cue.  
1117 (Top) Shared latents capture neural dynamics present in both M1 and PMd. (Middle) M1-private  
1118 latents capture dynamics specific to M1 (Bottom) PMd-private latents capture dynamics specific to  
1119 PMd.

1120 In Fig. 13 and Fig. 14, we present all the latents for the SC-ALM dataset, where we trial-average the  
1121 latents within target side and stimulus type, respectively. In general, most latents exhibit oscillatory  
1122 patterns that, to varying degrees, are tuned to the stimulus presentation times; superficial SC latents  
1123 tend to exhibit higher-frequency oscillations. Shared latents for Deep SC and ALM, and region-  
1124 specific ALM latents, exhibit separation between the target sides at the delay and response. Superficial  
1125 SC latents and shared superficial and deep SC latents exhibit separate activity pattern for tactile trials  
1126 compared to visual and multisensory trials. In contrast, Deep SC and ALM shared latents exhibit  
1127 patterns that separate all three stimulus types.

1128 We next evaluate temporal decoding of the target variable (e.g., reach direction, target side) from the  
1129 latents, to better determine the dynamics represented by the latents in shared and private subspaces.  
1130  
1131  
1132  
1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

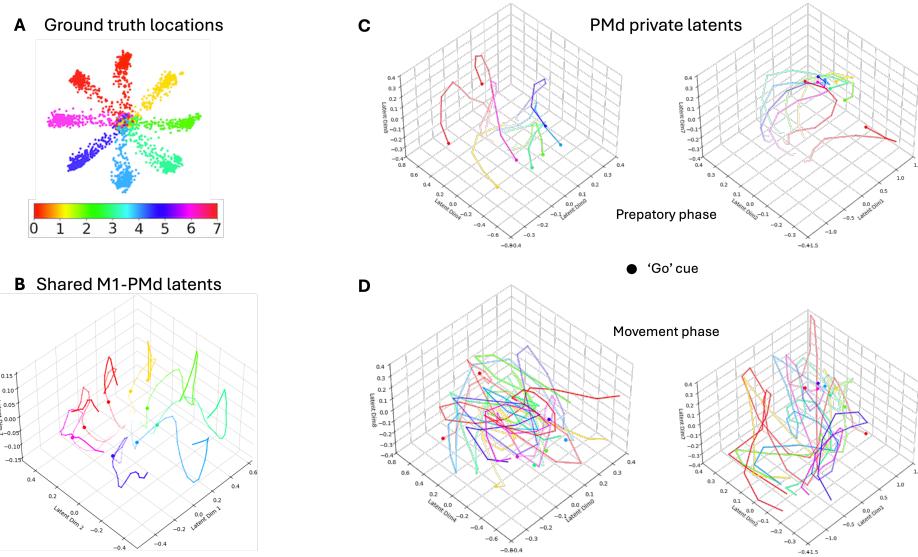
1145

1146

1147

1148

1149



1167  
 1168 Figure 12: State-space views of CTAE latents across task epochs. Each subplot shows trajectories in  
 1169 a 3 dimensional latent subspace. Colors denote trial-averaged trajectories for each reach direction  
 1170 in (A). (B) Shared PMd–M1 subspace: trajectories evolve over the entire trial, circle denotes ‘go’  
 1171 cue. (C) PMd-private subspace during the preparatory phase. Left and right plots are two different  
 1172 3D subspaces within the private latents. (D) PMd-private subspace during the movement phase.  
 1173 Together, these panels highlight distinct PMd–M1 interaction modes that differ between preparation  
 1174 and execution. Left and right same as in (C).

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241

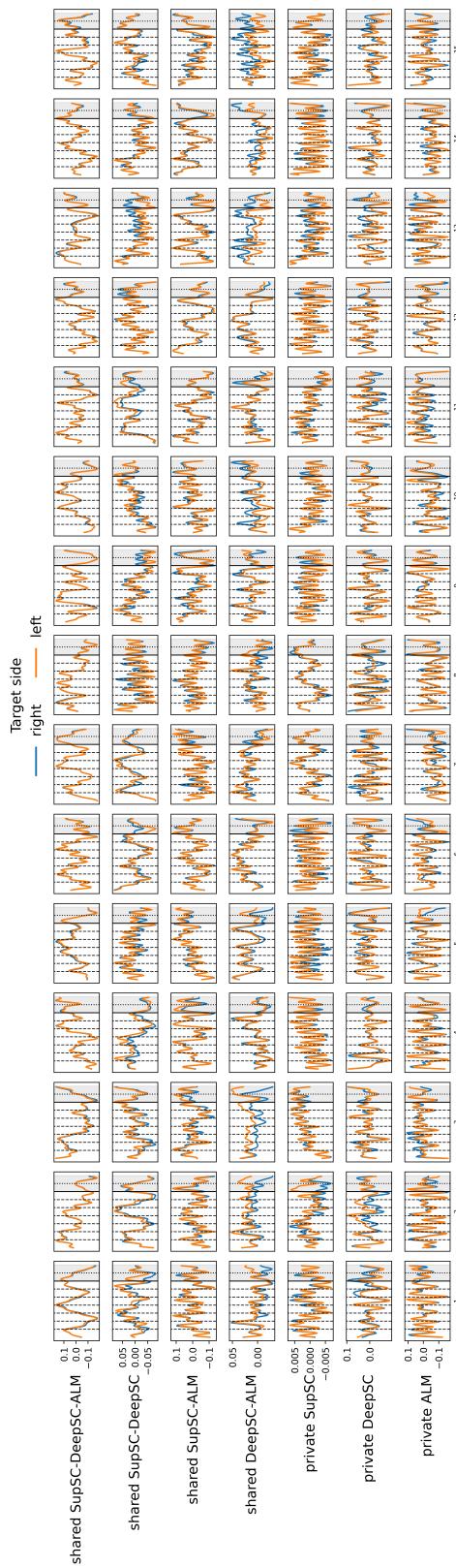


Figure 13: SC-ALM: CTAE latents averaged across target side.

1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295

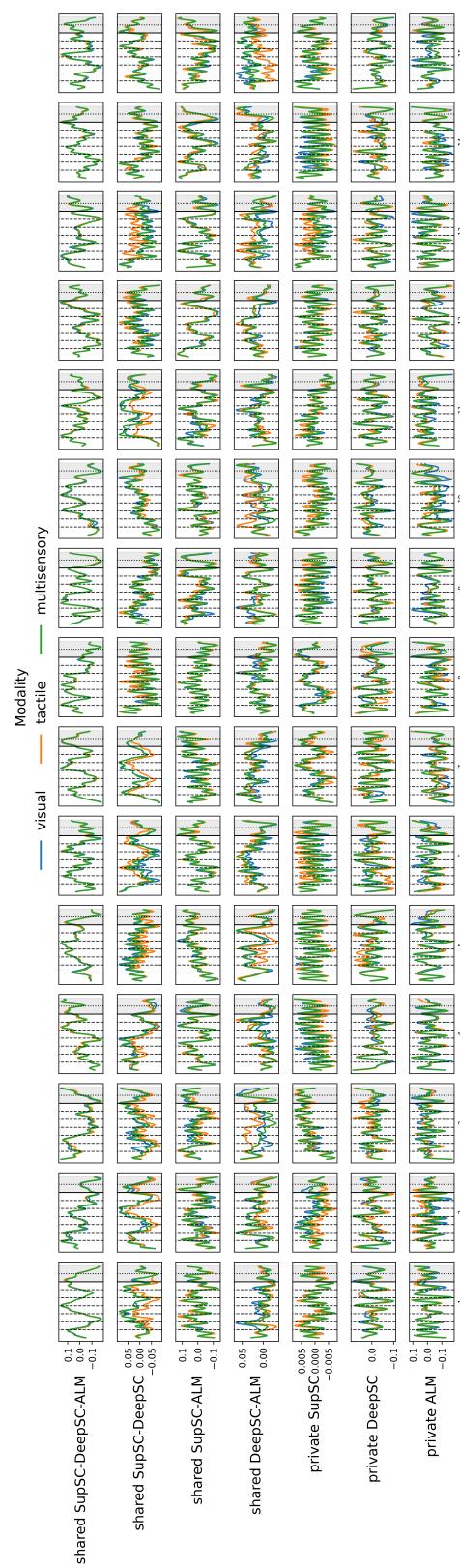


Figure 14: SC-ALM: CTAE latents averaged across stimulus type.

1296  
1297

## F.2 TEMPORAL DECODING ANALYSIS FROM CTAE LATENT SUBSPACES

1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307

**Time-resolved decoding.** To localize when task information appears in each CTAE latent subspaces, we considered per-trial, per-time bin latents from CTAE’s private and shared (pairwise and all-shared) subspaces. At every time bin, the input features are the latent dimensions in that subspace (i.e., private, all shared, or pairwise shared) within a window of 5 time bins. For each subspace we ran 5-fold stratified cross-validation with a single multinomial logistic-regression classifier (with feature standardization) trained once per fold on the full time-flattened feature matrix. Time-resolved accuracy was then obtained without re-training: at test time we fixed the classifier and masked all features outside a temporal context centered at each time point (a symmetric sliding window of five bins, i.e.,  $\pm 2$  bins). We report mean  $\pm$  s.d. across folds at every time bin and overlay event markers for cue onsets, delay start, and delay end.

1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320

**Findings: SC-ALM dataset.** Across subspaces, the accuracy of the shared latents progressively improves as the response approaches, indicating that cross-area information integrates toward the decision and movement execution. Specifically, the shared subspace across all 3 regions demonstrates a positive trend towards the response period with the highest accuracy at the response period and a slight increase in accuracy after each stimulus time. Superficial SC private subspace shows the highest prediction accuracy prior to the delay period, consistent with sustained maintenance of task-relevant signals. In contrast, ALM and the Deep SC-ALM shared subspace peak after the response, suggesting strong encoding of the target side and decision (the two are highly correlated in expert mice). The Superficial SC-Deep SC shared subspace also exhibits marked prediction increases immediately following most stimulus onsets, pointing to early multisensory interactions between superficial and deep SC layers, and shared representation of stimulus direction. Together, these patterns reveal complementary temporal roles: private subspaces emphasize delay-period maintenance and response choice, while shared subspaces carry stimulus- and response-proximal information that ramps as action nears.

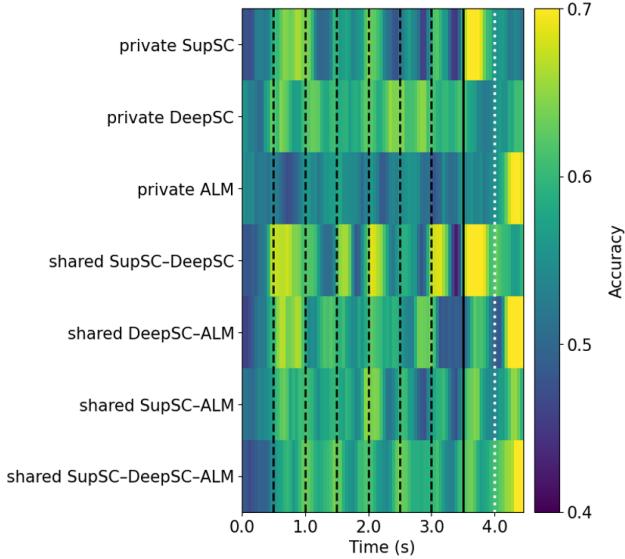
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
13391340  
1341  
1342  
1343  
1344  
1345

Figure 15: Time-resolved decoding accuracy (mean over 5-fold CV) for each latent subspace. Rows correspond to private and shared subspaces (private SupSC/DeepSC/ALM; shared pairs and all-shared), columns are time. Dashed vertical lines mark cue onsets (every 0.5 s from 0.5–3.0 s), the solid line marks delay start (3.5 s), and the white dotted line marks the start of the decision making period (4.0 s).

1346  
1347  
1348  
1349

**Findings: Motor-Circuit dataset.** Time-resolved reach-direction prediction accuracy shows a pronounced increase following the Go-Cue (Fig. 16). This pattern is observed across latents obtained from CTAE, DLAG and DeepCCA. Shared latents from all three models peak in accuracy following the go-cue, indicating presence of higher directional information, with CTAE-shared consistently

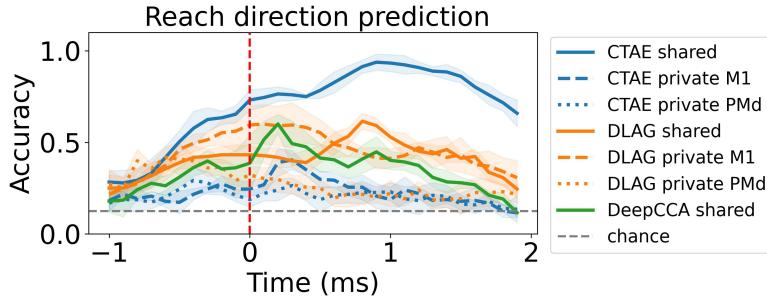


Figure 16: Time-resolved reach-direction decoding accuracy (5-fold CV) for each subspace, across multiple models. Red dashed line represents go-cue. Shared latents from all models show a sharp increase in accuracy following the Go-Cue, with CTAE-shared consistently outperforming others. PMd-specific latents exhibit a pre-Go-Cue rise, indicating anticipatory directional information, whereas M1-specific latents peak post Go-Cue, reflecting direction-specific encoding after movement initiation. Shading represents  $\pm 1$  standard error across the different folds.

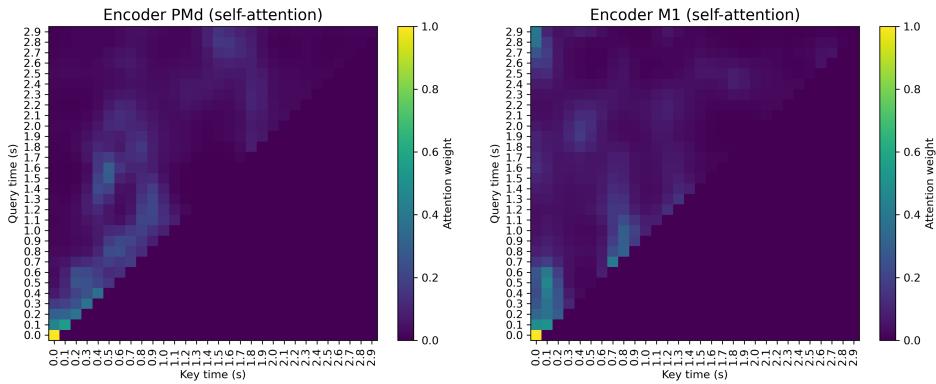


Figure 17: Self-Attention Maps obtained from CTAE’s encoder branches

outperforming those from the other models. In contrast, PMd-specific latents show an increase in accuracy prior to the go-cue, while, M1-specific latents achieve peak-accuracies post go-cue. These findings suggests that PMd encodes anticipatory directional information, while M1 encodes directional information more strongly during movement. Overall, these results align with previous reports on directional information representation in M1 and PMd (Lara et al., 2018).

### F.3 ATTENTION MAPS

We note that as opposed to DLAG, our model does not learn latent-specific delays between brain regions. However, observing the attention maps indicates interesting temporal information.

In Fig. 17 we visualize the attention maps for the causal self-attention of the encoders for M1 and PMd separately, averaged over all trials and conditions. The encoders demonstrate the latent were closely aligned in time to both regions up to the “go” cue, after which they diverged. A diagonal feature in both attention maps, shifted with respect to each other, suggests a lag between the two regions following the cue.

In Fig. 18 we visualize the attention maps for the cross-attention in the decoder encoders for M1 and PMd separately, averaged over all trials and conditions. In PMd the attention map shows a strong separation between the time periods before and after the cue. The interpretation of the M1 decoder attention map is less clear, without a clear separation of before and after the cue.

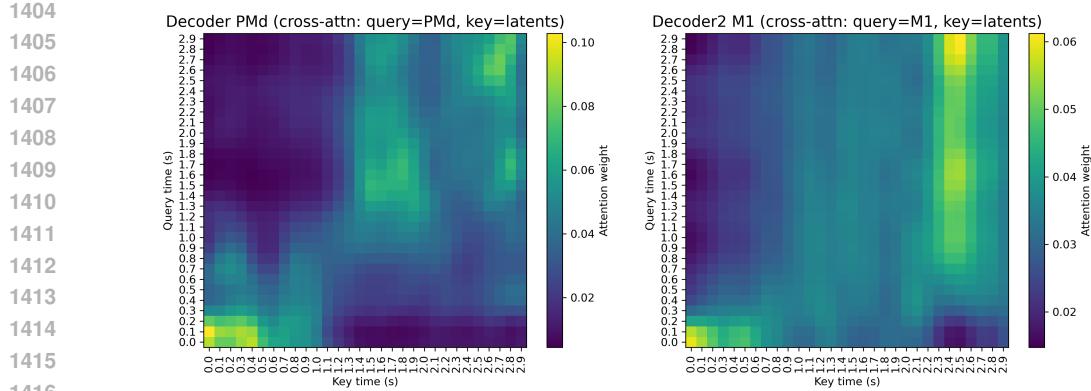


Figure 18: Cross-Attention Maps obtained from CTAE’s decoder branches

## G COMPARISON TO DEEPCCA

We applied DeepCCA on the M1-PMd and SC-ALM dataset and extracted shared latents between the pairs of regions. We implemented DeepCCA using parallel multilayer perceptrons (MLPs) for each regions inputs. Each branch consisted of three fully connected layers with 1024 hidden units, sigmoid nonlinearities, and batch normalization (non-affine) applied after each layer. The final layer applied batch normalization followed by a linear projection into a shared latent space that was matched to that of the CTAE’s latent dimensionality. Canonical correlation analysis (CCA) was then performed between the two branches to maximize shared variance in this latent representation. We evaluated these latents on the downstream tasks described in Sec. 5.1 and Sec. 5.2.

### G.1 M1-PMD DATA

The M1 branch received 66-dimensional inputs and the PMd branch 52-dimensional inputs.

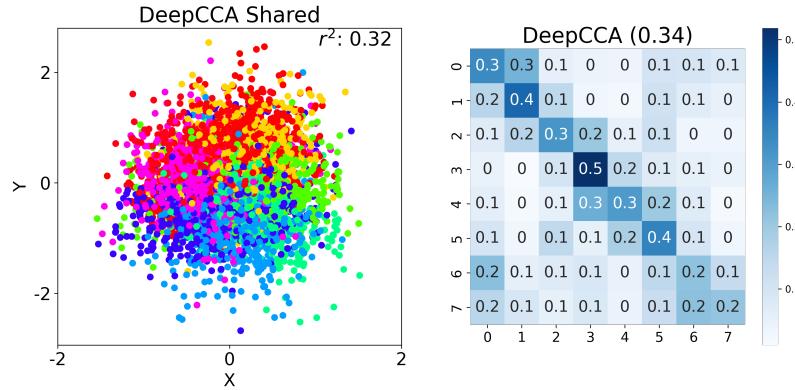


Figure 19: DeepCCA Decoding Performance on M1-PMD dataset. (a) Scatter plot of predicted hand-positions obtained from linear decoding from DeepCCA shared latents. (b) Confusion matrix for reach-direction classification at a single-trial level.

**Continuous Decoding.** As shown in Fig. 19 a), linear regression readout of the hand position from the shared latents, DeepCCA attained an  $R^2$  value of 0.32. In comparison, the shared latents obtained from CTAE and DLAG have  $R^2$  values of 0.77 and 0.72. These results indicate the CTAE captures substantially more temporal variation than DeepCCA.

1458 **Discrete Decoding.** Decoding the hand-reach condition for each trial using the shared latents,  
 1459 DeepCCA obtained an accuracy of 34% at a single time-point level (Fig. 19 b)), compared to CTAE  
 1460 (69%) and DLAG (44%).  
 1461

1462 **G.2 SC-ALM DATA**  
 1463

1464 Since DeepCCA performs pairwise correlation maximization, we applied it to region pairs (i.e.)  
 1465 SupSC-DeepSC, DeepSC-ALM and SupSC-ALM pairs. As in G.1, the input dimensions for each  
 1466 branch was matched to the dimensions of the number of neurons in each region.  
 1467

1468 **Table 4: DeepCCA Pairwise Results on SC-ALM.**

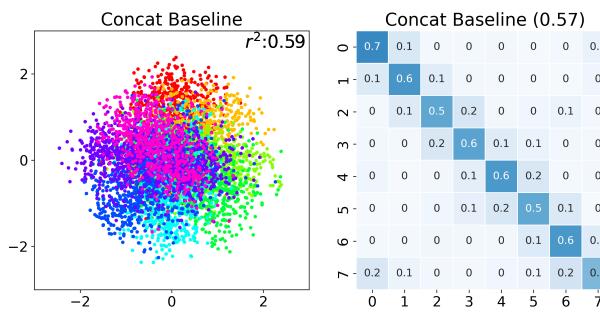
| Data         | DeepCCA | CTAE |
|--------------|---------|------|
| SupSC-DeepSC | 0.22    | 0.59 |
| DeepSC-ALM   | 0.22    | 0.59 |
| SupSC-ALM    | 0.20    | 0.39 |

1475 These results highlight DeepCCA’s inability to model temporal dynamics, which hinders time-  
 1476 resolved decoding and interpretability. On the other hand, CTAE combines strong continuous decod-  
 1477 ing, robust discrete classification at a single-time point resolution and structured disentanglement  
 1478 between shared and private latents.  
 1479

1480 **H COMPARISON TO CONCATENATED-DATA BASELINE**  
 1481

1482 As a baseline, we used our transformer autoencoder backbone to analyze the concatenated data  
 1483 across all the regions, without enforcing latent disentangling into shared and private. As a result,  
 1484 we only use the orthogonality loss (Eq. 11) and the reconstruction loss (Eq. 8, across all regions) to  
 1485 train these models. The extracted latents were evaluated on both discrete and continuous behavioral  
 1486 decoding tasks. While this experiment provides a baseline to compare the amount of task-relevant  
 1487 information present in these latents, it is important to note that this baseline does not distinguish  
 1488 between computations that are performed in individual regions, or shared across different regions, as  
 1489 the recovered latents may be a mixture of both.  
 1490

1491 **M1-PMd Data.** The CTAE model consistently outperformed the concatenated baseline model on  
 1492 both the continuous position and discrete condition decoding task (Fig. 20). On the continuous  
 1493 position decoding task, the concatenated baseline model achieves an  $R^2$  of 0.59, compared to the  $R^2$   
 1494 of 0.77 and 0.72 obtained from CTAE and DLAG. The classification accuracy of the reach conditions  
 1495 obtained from the concatenated-data model is 57%, compared to accuracies of 69% and 44% obtained  
 1496 from CTAE and DLAG, respectively.  
 1497



1508 **Figure 20: Concatenated-Data Decoding Performance on M1-PMd dataset. (a) Scatter plot of pre-  
 1509 dicted hand-positions obtained from linear decoding from Concatenated-Data latents. (b) Confusion  
 1510 matrix for reach-direction classification at a single-trial level. True and predicted reach conditions on  
 1511 the Y- and X- axis respectively.**

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

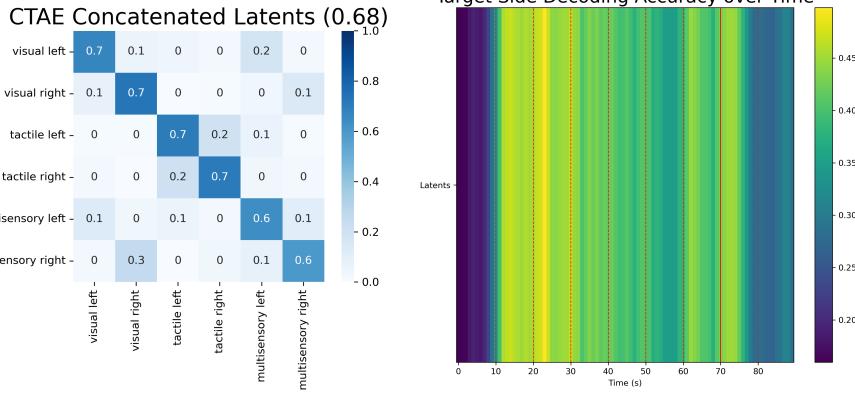


Figure 21: Concatenated-Data Decoding Performance on SC-ALM dataset. (a) Confusion matrix for task-modalities single-trial level. True and predicted modalities on the Y- and X- axis respectively. (b) Continuous-time target side decoding from the latents obtained from the Concatenated-data latents.

This highlights that the shared latents between M1-PMD, extracted from CTAE contain more task-related information than the latents obtained from concatenating the data.

**SC-ALM Data.** The concatenated model outperforms CTAE in downstream behavioral decoding tasks of discrete modality classification (Fig.) and continuous time decoding of target side (Fig.). It is important to note that the latents obtained in this baseline do not identify computations that are region-specific and shared across regions. This is evident in (Fig.) where the continuous-time decoding traces lacked the structure that is present in (Fig.).

Thus, while the concatenated model can reflect dominant task information, it provides limited interpretability into the organization of region-specific versus shared computations. The concatenated approach collapses population activity into a single latent space, capturing task-relevant information, but not distinguishing whether that variance is shared across regions or specific to one region. In contrast, CTAE is designed to explicitly separate shared and region-private components of the neural activity. Thus, the two approaches reflect different conceptual goals—task-focused compression versus structured disentanglement—and their outputs are not directly interchangeable.

## I THE USE OF LARGE LANGUAGE MODELS

We used ChatGPT solely for language-related assistance, such as improving grammar, refining phrasing, and polishing the presentation of the text. All research ideas, methods, and results are entirely our own. We take full responsibility for the content of this work.

## J REPRODUCIBILITY STATEMENT

We provide all details necessary to reproduce our results.

- Model and objective: Sec. 4 describes the architecture and all loss terms, with explicit equations for reconstruction, shared-only reconstruction, alignment, and orthogonality (Eqs. 8–12). Multi-region extension: App. B specifies the  $R > 2$  formulation, including masked latent fusion (Eq. 13) and the generalized training losses (Eqs. 14–18).
- Training and hyperparameters: App. C reports the full grid (Table 2), selected settings per dataset (Table 3), and the 10k-epoch training selection protocol/warm-up schedule.
- Compute resources: (PyTorch/CUDA on Quadro RTX 8000 + HPC) are listed in App. C.
- Data and preprocessing: App. D details sources and processing (bin sizes, Gaussian smoothing), with task specifics and counts for M1-PMD and SC-ALM.

---

1566       • Evaluation protocols: Sec. 5.1–5.2 define the continuous (hand-position) and discrete  
1567        (target/condition) decoding tasks and present cross-validated metrics/visualizations; App.  
1568        E.2 details ablations and reports 5-fold statistics (Table 1).  
1569       • Baselines: App. G documents the DeepCCA comparison and evaluation setup.  
1570

1571       Source code will be made available at the time of publication.  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619