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ABSTRACT

Simultaneous recordings from thousands of neurons across multiple brain areas re-
veal rich mixtures of activity that are shared between regions and dynamics that are
unique to each region. Existing alignment or multi-view methods neglect temporal
structure, whereas dynamical latent-variable models capture temporal dependencies
but are usually restricted to a single area, assume linear read-outs, or conflate shared
and private signals. We introduce Coupled Transformer Autoencoder (CTAE)—a
sequence model that addresses both (i) non-stationary, non-linear dynamics and
(ii) separation of shared versus region-specific structure, in a single framework.
CTAE employs Transformer encoders and decoders to capture long-range neu-
ral dynamics, and explicitly partitions each region’s latent space into orthogonal
shared and private subspaces. We demonstrate the effectiveness of CTAE on two
high-density electrophysiology datasets of simultaneous recordings from multiple
regions, one from motor cortical areas and the other from sensory areas. CTAE
extracts meaningful representations that better decode behavior variables compared
to existing approaches.

1 INTRODUCTION

The advent of high-density electrophysiology probes, e.g., Neuropixels, and volumetric calcium
imaging has enabled recording large-scale, high-resolution, multi-region neuronal datasets. This
shift from single-area recordings to distributed circuits reveals both globally coordinated signals
and region-specific specialization (Jun et al., 2017; Machado et al., 2022). Individual neurons both
receive input from and project to multiple distant areas; behaviorally relevant codes are hypothesized
to be broadcast across widespread circuits rather than confined to a canonical locus (Machado
et al., 2022). This perspective challenges conclusions drawn from single-area studies and raises the
question of which computations are local, which are distributed, and how global brain states are
coordinated. Disentangling the shared components that mediate inter-area interactions from private
signals unique to each region is therefore essential—both for mechanistic insight and for designing
causal experiments such as targeted optogenetic inactivation or electrical stimulation of an upstream
circuit.

Thus, recent work has focused on analyzing distributed circuits to recover latent activity patterns
both within and across regions. A successful multi-region latent model faces three simultaneous
challenges: (i) latent trajectories must evolve smoothly in time to respect neural autocorrelation; (ii)
they must accommodate the non-stationary, nonlinear dynamics that real circuits display; and (iii)
they must separate shared from region-specific structure without a parameter explosion as the number
of areas grows.

Even within a single brain region, recordings of neural population activity reveal a mixture of struc-
tured responses and substantial trial-to-trial variability, introducing a challenge when interrogating the
behavior of neural circuits (Cunningham & Yu, 2014). A widely adopted framework—neural latent
dynamics (Vyas et al., 2020; Churchland & Shenoy, 2024) —proposes that these high-dimensional
responses reflect the evolution of a consistent, low-dimensional trajectory, supported by stable patterns
of co-variability across neurons. Classical PCA or factor analysis (FA) uncover low-dimensional
structure(Cunningham & Yu, 2014) but ignore time. Moreover, because observed spikes are subject
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to high Poisson noise, the resulting latents can exhibit high-frequency dynamics that are difficult to
interpret and may not reflect meaningful underlying processes. Consequently, latent variable models
that incorporate temporal smoothness or dynamical constraints have been developed, based on either
linear Gaussian Process (GP) models (Yu et al., 2009) or nonlinear deep learning models (Pandarinath
et al., 2018; Ye & Pandarinath, 2021). Yet, when these single-area tools are applied naı̈vely to
multi-area data, e.g., by concatenating the recordings, they often fail. Inter-area delays warp the latent
space, differences in correlation structure cause shared factors to absorb private variance, and the
larger or more active region can dominate the mixture weights. To address these challenges, recent
studies have investigated both predictive models (Zandvakili & Kohn, 2015; Semedo et al., 2019;
Perich et al., 2018) and joint latent variable (Gokcen et al., 2022;?) approaches for inter-regional
activity. These efforts reveal that only a selective subset of latent dimensions actively participates
in inter-area communication. Such findings motivate extensions to the latent dynamics framework,
proposing that communication is mediated through a persistent, low-dimensional subspace—referred
to as a communication subspace (Semedo et al., 2019)—that is distinct and orthogonal to private,
region-specific dynamics Fig. 1.

More recently, joint latent variable models inspired by canonical correlation analysis (CCA) have
been developed to capture correlated latent dynamics across regions while simultaneously learning
region-specific latent components. One approach focused on neural data has been linear approaches
that generalize GP-based models to the multi-region setting (Gokcen et al., 2022; 2023; 2024; Li
et al., 2024). Alternatively, nonlinear autoencoder-based disentangling methods (Lee & Pavlovic,
2021; Koukuntla et al., 2024) have been developed to analyze multiview point cloud data and partition
latents into shared and private factors. However, these treat time points as i.i.d. samples and therefore
discard dynamics.

This work. We introduce the Coupled Transformer Autoencoder (CTAE), an end-to-end framework
for modeling simultaneous recordings from multiple brain areas. Transformer-based (Vaswani et al.,
2017) encoders and decoders act as flexible priors capable of capturing non-stationary, long-range
neural dynamics; each region’s latent space is split into orthogonal shared and private subspaces,
with reconstruction losses preserving region-specific information and a lightweight alignment loss
matching the shared representations. Because the latents are behaviour-agnostic, downstream decod-
ing—whether kinematics, forces, or cognitive variables—can be carried out on the same embedding
without retraining. Our contributions are as follows:

• Non-stationary multi-region modelling. CTAE extracts shared and private representations that
capture long-range, nonlinear dynamics absent.

• Scalable architecture. A mixing weight allows the shared subspace to extend trivially beyond
two regions without an exponential increase in parameters.

• Generic downstream utility. The behaviour-agnostic latent space supports diverse decoding
tasks (e.g. position, velocity, cognitive state) using simple linear read-outs.

• Empirical validation. On neural recordings from M1–PMd (Utah Arrays) and SC-ALM (Neu-
ropixel Probes), CTAE achieves higher shared-variance capture than existing works, while
revealing interactions consistent with anatomy.

2 RELATED WORK

Single-region latent-variable models. Linear techniques—including PCA (Pearson, 1901) and
FA (Harman, 1976) are widely used to analyze large-scale recordings (Cunningham & Yu, 2014).
Gaussian-Process Factor Analysis (GPFA) adds a smooth GP prior to FA to enforce temporal
continuity (Yu et al., 2009). GPFA’s stationarity and linear read-out assumptions are relaxed by
Latent Factor Analysis via Dynamical Systems (LFADS) (Pandarinath et al., 2018) and the Neural
Data Transformer (NDT) (Ye & Pandarinath, 2021), which exploit nonlinear recurrent generators
or self-attention to capture non-stationary and nonlinear dynamics. Subsequent efforts pursued
identifiability with switching LDS (Linderman et al., 2016; Glaser et al., 2020), GP-SLDS (Hu et al.,
2024), locally linear manifold models in DFINE (Abbaspourazad et al., 2024), and variational neural
state-space models such as VIND (Hernandez et al., 2018) and S4-based sequence layers (Gu et al.,
2022).
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Multi-region latent models. Multi-region methods relying on GP models include Delayed Latents
Across Groups (DLAG) (Gokcen et al., 2022), its multi-population generalization mDLAG (Gokcen
et al., 2023), multi-view GPFA extensions (Gokcen et al., 2024), and Multi-Region Markovian
Gaussian Process (Li et al., 2024). These inherit smooth-GP assumptions and linear read-outs that
struggle with non-stationary or long-range dependencies. Classical multiset CCA (Hotelling, 1936)
and tensor-decomposition methods (Cichocki et al., 2015) have also been applied to multi-area
recordings, however these are linear techniques. Current-Based Decomposition (CURBD) (Perich
et al., 2020) infers directed currents between many regions from data-constrained RNNs, yet it does
not model explicit shared–private split. Similarly, multi-modal models have been recently developed
to jointly analyze neural recordings and behavior Vahidi et al. (2025); Gondur et al. (2024); Yi et al.
(2025). These models could potentially be adapted to analyze multi-region recordings, however we
expect Multimodal GP-VAE Gondur et al. (2024) and Shared-AE Yi et al. (2025) to scale poorly to
more than 2 regions due to exponential growth in experts or pairwise loss terms. Both also operate on
i.i.d. samples or short windows rather than full neural time series.

Multiview autoencoders Multi-view representation learning has progressed beyond classical CCA
by incorporating additional losses and constraints to more effectively identify shared latent represen-
tations. However, these methods often require adaptation to account for the specific statistical and
temporal properties of neural data. Correlation-based alignments—canonical correlation analysis
(CCA) and its deep variant (DCCA) (Andrew et al., 2013)—maximise instantaneous correlation
but provide no guarantee of capturing all shared variance; Deep CCA Autoencoders (DCCAE) add
reconstructions at the risk of mixing private with shared information (Wang et al., 2016). Repre-
sentative examples include Deep Coupled Auto-encoder Networks (Wang et al., 2014), Coupled
Autoencoders for domain adaptation (Wang & Breckon, 2023), Correlated Autoencoders for audio-
visual retrieval (Feng et al., 2014), Deep Correlation Autoencoders (DCCAE) (Wang et al., 2016),
Split-brain Autoencoders (Zhang et al., 2017), shared-private domain adaptation AEs (Bousmalis
et al., 2016) and cycle-consistent multiview AEs (Wu et al., 2018). SPLICE (Koukuntla et al.,
2024) extends this line with measurement-network penalties to sharpen disentanglement, however it
scales poorly—its auxiliary measurement networks grow exponentially with region count—while
DMVAE assumes one global shared component across all views, precluding subset-specific latents.
Multimodal VAE (MVAE) (Wu & Goodman, 2018), Disentangled Multimodal VAE (DMVAE) (Lee
& Pavlovic, 2021), Joint Multimodal VAE (Sutter et al., 2021), Mixture-of-Experts MVAE (Shi et al.,
2019) learn shared/private factors across images, text and audio but treat each sample independently,
ignoring sequential dependencies.

Across these categories, no existing method jointly satisfies (i) non-stationary nonlinear dynamics,
(ii) temporal continuity and (iii) scalability to more than two regions without incurring a parameter
explosion as the number of areas increases.

3 PROBLEM FORMULATION

Let X(1) ∈ RN1×T ,X(2) ∈ RN2×T denote simultaneous neural population recordings from two
brain regions, each acquired over T time steps and, N1 and N2 channels respectively (generalization
to more than 2 regions is in Appendix B). We assume that the observed neural activity at each
time step t is a nonlinear transformation of latent variables (Fig.2), which include: (i) shared latent
dynamics within a communication subspace (Semedo et al., 2019) spanned by neural trajectories that
are correlated across regions, and (ii) private latent dynamics that capture region-specific processes
lying in subspaces orthogonal to the shared component. To effectively capture the temporal structure
of neural activity, we model these latent variables as functions of the entire observed neural activity.

X
(1)
t = f

(
S1:t,P

(1)
1:t

)
, X

(2)
t = g

(
S1:t,P

(2)
1:t

)
for t ∈ {1, . . . , T} (1)

where 1 : t denotes the sequence of indices between 1 and t, St ∈ Rds represents the shared dynamics
between the two regions at time t, and P

(1)
t ∈ Rd1 and P

(2)
t ∈ Rd2 capture dynamics specific to

regions 1 and 2, respectively, and ds, d1, and d2 denote the dimensionalities of the shared and private
representations.

Our goal is to recover the shared and private latent dynamics S, P (1), and P (2) given the observed
neural activity X(1) and X(2).
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Figure 1: Observed neural activity across time from two brain regions, denoted as X(1) and X(2),
is modeled as a nonlinear function of underlying latent dynamics specific to each region. In the
illustration, [e1, e2, e3] span the latent subspace for region 1 and [e1, e2, e4] for region 2. Inter-
regional communication is mediated by shared latent trajectories S within the common subspace
[e1, e2], which drive correlated population activity. Following the output-null/potent hypothesis, we
assume shared and private dimensions are orthogonal, allowing clear recovery of shared dynamics
from region-specific processes.

Notations. Bold upper-case letters denote matrices (e.g., X), bold lower-case denote latent vectors
(e.g., w), and ·̂ indicates reconstructions. Let 1n denote a vector of all-ones of length n and let 0n

denote a vector of all zeros of length n. ∥(·)∥F denotes the Frobenius norm. ⊙ denotes element-wise
multiplication. Expectation is over batches of trials unless stated otherwise.

4 COUPLED TRANSFORMER AUTOENCODERS FOR TWO REGIONS

Our model is comprised of a coupled autoencoder built on transformer models, that disentangles
shared and private representations. We have designed loss functions to recover latents that maximally
represent the neural activity, where the shared representations are aligned across all regions, and each
disentangled sub-space is orthogonal to the others. For clarity, we describe the two-region case in the
main text; the extension to an arbitrary number of regions is provided in Appendix B.

4.1 MODEL ARCHITECTURE

We design separate causal Transformer-based encoder–decoder pairs, denoted by (E
(1)
θ , D

(1)
ϕ ) and

(E
(2)
θ , D

(2)
ϕ ), for each of the two brain regions. Each encoder is a Transformer stack with self-attention

layers that capture long-range, nonlinear temporal dependencies within a region. The recorded spike
trains are Gaussian-smoothed to obtain continuous firing-rate estimates which are the inputs to the
encoder. Each decoder employs standard Transformer cross-attention to reconstruct the original
firing rates from its region’s latents. Processing the full multichannel time series from each session,
the encoders produce latent representations partitioned into two distinct components: shared latent
sequences capturing dynamics common to both regions and private latent sequences specific to each
region:

Z(1) = E
(1)
θ

(
X(1)

)
, Z(2) = E

(2)
θ

(
X(2)

)
, Z(1),Z(2) ∈ RD×T (2)

Here D is the total number of latent dimensions. To indicate which of the latent dimensions correspond
to shared and private representations, we introduce weight vectors w1 and w2 ∈ {0, 1}D.

Region–specific weight masks. Let the latent dimension be partitioned as D = ds + d1 + d2.
Define three contiguous index sets Is = {1, . . . , ds}, I1 = {ds+1, . . . , ds+d1}, and I2 =
{ds+d1+1, . . . , D}. We then construct binary weight vectors that indicate which subset of the
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Figure 2: CTAE architecture. CTAE is composed of a coupled autoencoder, where the encoders
and decoders are causal transformers designed to reconstruct neural activity for each region r. The
inputs to the network are estimated spike rates from each region. A weight mask per region w(r) is
used to disentangle the shared representation (violet) from the region-specific latents (red and blue)
in the encoder outputs Z(r). The latents are recovered via end-to-end training.

latent dimensions correspond to the shared or to region-private. Define w1,w2 ∈ {0, 1}D as

w1 =
[
1ds︸︷︷︸
Is

, 1d1︸︷︷︸
I1

, 0d2︸︷︷︸
I2

]⊤
, w2 =

[
1ds︸︷︷︸
Is

, 0d1︸︷︷︸
I1

, 1d2︸︷︷︸
I2

]⊤
. (3)

so that w1 activates the shared and region-private of region 1 dimensions, whereas w2 activates
the shared and region-private dimensions of region 2. Throughout the paper we treat wr as fixed;
the latent space dimensions (ds, d1, d2) are treated as hyper-parameters and tuned on a validation
set. Importantly, these masks do not hard-code the actual interaction structure: they only specify
an upper bound on how many shared or private latents the model may allocate. During training,
dimensions unsupported by the data naturally collapse to negligible variance. While fixed masks
provide clarity and control in the two-region setting, they could also be initialized from anatomical
priors or made learnable so that the model itself infers which latents are shared versus private. We
leave these scalable extensions to future work.

Weighted latent fusion. Broadcasting the masks across time, we aggregate the two latent trajectories
dimension-wise via a masked average for each dimension d in the latent:

Zt[d] =
w1[d]Z

(1)
t [d] +w2[d]Z

(2)
t [d]

w1[d] +w2[d]
. (4)

Equation equation 4 leaves the private blocks unchanged (they receive weight 1 from only their own
region)

P̂ (1) = ZI1
= Z

(1)
I1

, P̂ (2) = ZI2
= Z

(2)
I2

. (5)

while averaging the shared block across regions:

Ŝ = ZIs
= 1

2

(
Z

(1)
Is

+ Z
(2)
Is

)
. (6)

This design will implicitly force alignment of the shared latents of both regions, via minimizing the
reconstruction losses we define in the next section.

Region-specific decoding. Each decoder receives only the latent dimensions relevant to its own
region:

X̂(r) = D
(r)
ϕ

(
(wr1

⊤
T )⊙Z

)
, (7)
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where (wr1
⊤
T ) ∈ RD×T is an outer product such that each weight is duplicated for each dimension

along all time points. Thus, the element-wise product zeroes out unrelated latents, forcing decoder r
to rely exclusively on the subset of dynamics meaningful for its region.

This architecture (i) aligns both regions in a common latent space of dimension D, (ii) preserves
region-specific structure via fixed relevance masks, and (iii) enforces cross-region consistency through
the fusion rule in Eq. equation 4. The loss function balancing reconstruction accuracy and alignment
objectives is detailed in Section 4.2. We illustrate our architecture in Fig. 2.

4.2 TRAINING OBJECTIVE

We use four loss functions to recover the shared and private latent representations with CTAE:

Reconstruction loss. The first loss is a reconstruction loss, so that each transformer autoencoder
faithfully reproduces its own region’s activity:

Lrec =

2∑
r=1

∥∥X̂(r) −X(r)
∥∥2
F
. (8)

Shared-only reconstruction. To ensure that all structure common to both regions is routed into the
shared block, we define a loss such that each decoder reconstructs the neural activity from its region
using only the shared representations. Let w(s) = w1⊙w2 = [1ds

,0d1
,0d2

]T be the intersection
mask that selects only the shared dimensions. The loss is

Lshared =

2∑
r=1

∥∥D(r)
ϕ

(
(w(s)1⊤

T )⊙Z
)
−X(r)

∥∥2
F
, (9)

where w(s) zeroes out all private coordinates from the inputs to the decoder, thus forcing the model
to encode every cross-region regularity inside the shared subspace. Without this constraint, shared
information can shift into private subspaces, leading to inaccurate representation.

Alignment loss. The shared latents are meant to capture only dynamics common to both regions.
To enforce this, we align each encoder’s shared output to their average, ensuring consistency across
regions and preventing region-specific variance from leaking into the shared space:

Lalign =

2∑
r=1

∥∥(wr1
⊤
T )⊙ Z− (wr1

⊤
T )⊙ Z(r)

∥∥2
F
. (10)

Orthogonality loss. To encourage each latent coordinate to capture distinct, non-redundant structure,
we penalize correlations between all rows of the fused latent matrix Z ∈ RD×T . Let G = 1

T ZZ
⊤

denote the empirical Gram matrix of latent trajectories, whose off-diagonal entries encode row-wise
correlations. We drive only the off-diagonal entries of G towards zero,

Lorth =
∥∥G− diag

(
G
)∥∥2

F
, (11)

so that every pair of latent dimensions—shared or private—becomes approximately orthogonal,
promoting global disentanglement.

Finally, the complete objective minimizes the weighted sum of the four losses:

L = Lrec + λalign Lalign + λshared Lshared + λorth Lorth. (12)

The weights λshared, λalign, λorth are selected on a held-out validation set. Methodology for training
the architecture is summarized in Algorithm 1.

5 EXPERIMENTS

We analyze two real-world datasets of simultaneous neural recordings from a motor circuit and from a
multisensory circuit. We demonstrate the efficacy of CTAE in extracting shared and private dynamics
in comparison to DLAG (Gokcen et al., 2022). We also provide a comparison to Deep CCA (Andrew
et al., 2013) in Appendix G. Implementation details for each experiment are in the appendix.
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5.1 MOTOR CIRCUIT: M1-PMD

We applied CTAE to simultaneous neural recordings from dorsal premotor cortex (PMd) and primary
motor cortex (M1) in macaque monkeys performing a standard delayed center-out reaching task with
eight outward targets (Perich et al., 2018), additional details in Appendix D.1. The dataset consisted
of 208 total trials across 8 reach conditions, with spike-sorted data from 66 and 52 putative neurons
in PMd and M1, respectively, recorded via 64-channel Utah arrays. Each trial spanned 3s, with spikes
and behavioral variables (e.g., position) binned in 100 ms bins, resulting in 30 time points per trial.

Historically, PMd and M1 have been jointly analyzed due to their complementary roles in movement
preparation and execution. During the instructed delay period between stimulus onset and the go
cue, both regions exhibit preparatory activity without inducing muscle output (Kaufman et al., 2014;
Churchland & Shenoy, 2024), potentially representing task goals—i.e., target identity (Byron et al.,
2010; Lara et al., 2018). Following the ‘go’ cue, both PMd and M1 generate execution-related activity
that descends to motor neurons and enables decoding of continuous hand kinematics, including
position and velocity (Churchland & Shenoy, 2024; Elsayed et al., 2016; Gilja et al., 2012; Byron
et al., 2010).

We applied CTAE to the dataset for unified modeling of joint latent subspaces and identified:

• A shared subspace of dimension ds, capturing correlated dynamics across PMd and M1.
• Private subspaces of dimensions dPMd and dM1, capturing region-specific activity.

Fig. 3 visualizes a subset of the CTAE inferred neural latent dynamics (the set of all latents is in
Fig. 11). Each panel shows a distinct latent dimension evolving over time. The shared latent subspace
captures both condition-invariant and condition-dependent structure, encoding aspects such as reach
direction and temporal progression. Region-specific latents display more complex dynamics, likely
reflecting local circuit processes.

Figure 3: M1-PMd dataset. CTAE shared (top) and region-private (bottom) latents. Dotted vertical
line indicates the “go” cue in each trial.

To interpret the latent dynamics—shared Zs, and private Z(PMd), Z(M1), we evaluated the inferred
latents using two decoding tasks with simple linear decoders:

Continuous decoding hand position: Predict hand position at each time point after go-cue (last 2
seconds for each trial) using linear regression: vhand

t = Wzt. We plot in Figure 4A the predictions
from neural activity, from CTAE latents and from DLAG latents.

Discrete decoding target condition: Classify the reach condition (one of 8 targets) using multi-
class logistic regression: ŷi =

exp(w⊤
i z+bi)∑C

j=1 exp(w⊤
j z+bj)

for i = 1, . . . , C. We present in Figure 4B the

confusion matrices across conditions for neural activity, CTAE and DLAG latents.

We hypothesized that the shared latent space would encode the majority of behaviorally relevant
information—particularly target identity—while PMd might contribute higher-order planning signals,
and M1 reflect finer temporal structure related to movement execution.

Our results confirmed that CTAE’s shared latent factors accounted for the majority of variance
associated with reaching behavior (Fig. 4 a). In other words, the shared PMd–M1 subspace captured
the dominant task-relevant signals. In contrast, DLAG tends to distribute behaviorally relevant
variance across private PMd and private M1 latents in a directionally anisotropic manner. This
is reflected in both private latents predicting certain movement directions but not others, and also

7
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Figure 4: M1-PMd dataset. a) Ground truth hand position in top-left corner. Hand position decoding
from neural activity in M1 and PMd (top), from CTAE latents (middle) and from DLAG (bottom). b)
Confusion matrices for reach direction classification (order of plots is same as in A). Classification
accuracy in parentheses.

discrete target classification showing high accuracy for only a subset of reach directions. Such
direction-specific ”fragmentation” of kinematic information across private latents is inconsistent
with established findings that both PMd and M1 encode reach kinematics through a coherent, low-
dimensional manifold. This pattern suggests that DLAG may inadvertently leak shared information
into private subspaces, whereas CTAE’s mask structure and regularization prevent such leakage. We
also compare to DeepCCA in Appendix G, and to analyzing the concatenation of data from both
regions with a single Transformer AE in Appendix H, and demonstrate that both baselines have
significantly lower continuous and discrete prediction accuracy than both CTAE and DLAG shared
latents. These findings demonstrate that CTAE can simultaneously decode continuous behavioral
trajectories Fig. 4 a. and classify discrete behavioral states Fig. 4 b. more effectively than prior
approaches.

We present time-wise prediction of the reach in Fig. 16. Importantly, our results support the view that
motor planning and execution signals are largely embedded in shared population dynamics across
PMd and M1, while private activity may facilitate flexible, context-dependent processing—such as
adaptation to perturbations—without interfering with ongoing execution.

Ablation study: To evaluate the contribution of the individual loss functions to the CTAE model we
perform an ablation study (full details in Appendix E) and report the prediction accuracy in Tab. 1.
We demonstrate that removing any of the three loss functions results in decreased performance.

Model Shared Private M1 Private PMd
CTAE 0.69 (0.03) 0.22 (0.02) 0.21 (0.03)
CTAE without alignment loss 0.61 (0.02) 0.16 (0.02) 0.2 (0.02)
CTAE without orthogonality loss 0.31 (0.02) 0.28 (0.02) 0.29 (0.02)
CTAE without shared only reconstruction loss 0.34 (0.01) 0.36 (0.01) 0.37 (0.01)

Table 1: Ablation study of CTAE loss functions. Each entry indicates the model’s accuracy in
predicting the reach direction. The values in the brackets indicate standard deviation across 5-folds.
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Figure 5: SC-ALM dataset. Representative latents. Each panel shows the condition-averaged time
course of one latent (title = subspace and latent index). Left panels: stimuli—visual (blue), tactile
(orange), multisensory (green). Right panels: target side—right (red), left (purple).

5.2 MULTISENSORY CIRCUIT: SC–ALM

We evaluated CTAE on a new dataset of simultaneous recordings from the superior colliculus (SC)
and anterolateral motor cortex (ALM) in mice trained on a multisensory discrimination task (see
Appendix D.2 for task details). Using high-density Neuropixels probes, neural activity was recorded
from superficial and deep layers of SC together with ALM while animals integrated visual and tactile
stimuli to identify the target side (left vs. right). We fit our multi-region CTAE (R > 2; Appendix B)
to this three-region dataset (superficial SC, deep SC, ALM). This multi-region analysis infers a wide
range of multi-region interactions: shared-across-all, pairwise-shared, and region-private (Fig. 5).

SC and ALM are key components of a cortico-subcortical loop implicated in linking sensory inputs
to motor planning. SC integrates visual and tactile information and contributes to orienting behavior
(Stein & Meredith, 1993; Cang & Feldheim, 2013), whereas ALM encodes preparatory and choice-
related activity during decision-making tasks (Guo et al., 2014; Li et al., 2015). We hypothesized that
shared subspaces across superficial and deep SC layers and between deep layers of SC and ALM
would preferentially capture task-relevant features, such as stimulus type and target side, thereby
mediating the transformation from multisensory evidence accumulation to decision making.

Figure 6: Row-normalized confusion matrices for decoding stimulus
× target side. (top) Raw activity from SupSC, DeepSC, ALM; (mid-
dle) CTAE private: region-specific latents; (bottom) CTAE shared
latents (pairwise and 3-way). Panel titles show mean 5-fold accuracy.

Figure 6 shows decoding per-
formance of stimuli and tar-
get side across private and
shared subspaces. For the
raw neural activity, Deep SC
best discriminates both stim-
ulus and target. Superficial
SC activity correctly distin-
guishes target side but poorly
distinguishes between stimu-
lus type for visual and multi-
sensory trials, and poorly
distinguishes between target
sides for tactile trials. In
contrast, ALM activity cor-
rectly distinguishes target side
but poorly distinguishes be-
tween stimulus type for tac-
tile and multi-sensory trials,
and poorly distinguishes be-
tween target sides for visual
trials. However, with CTAE
we identify shared dynamics
between regions that better
identify stimulus and target. The shared subspaces between superficial and deep SC, and between
deep SC and ALM, yielded higher decoding accuracy than region-private latents. The shared subspace
between superficial SC and ALM has little shared dynamics meaningful for discrimination. Our
results indicate that deep SC plays a more central role in this circuit, with shared dynamics reflecting

9
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evidence accumulation with superficial SC and choice with ALM (Fig. 15). Overall, these findings
highlight a role for inter-regional subspaces in integrating sensory inputs within SC and propagating
them to ALM to support decision-related processes.

6 CONCLUSIONS

In this paper, we presented a new approach for recovering shared and private latents from multi-
region neural recordings. Our framework relies on a Transformer-based autoencoder architecture for
nonlinear modeling of the relationship between neural activity and latent dynamics, and loss functions
designed to recover orthogonal private and shared latents that maximally capture the information in
the shared activity between the brain regions. By explicitly separating shared and private sources
of variability, CTAE facilitates more robust comparisons across contexts and offers a foundation
for addressing deeper questions about how distributed neural populations collectively drive flexible
behavior and adapt through experience (Perich et al., 2018). This work demonstrates effective joint
latent inference across cortical areas and establishes a foundation for future studies on generalizable,
population-level neural computations across behavioral contexts.

There are multiple exciting future directions building on our proposed CTAE model. First, while our
paper focuses on neural recordings, our coupled-transformer autoencoder design is not specific to
neural data and can be applied to general multiview time series data. Particularly, it can be applied
to analyze neural and behavioral recordings to identify features shared between neural activity and
behavior, and neural features that are not reflected in behavior and vice versa. Second, currently
our approach is scalable to more than two regions by generalizing the orthogonality loss to pairs
of brain regions. By making the disentanglement weight vector learnable, the dimensions of each
of the subspaces can be identified from the training data. Finally, training CTAE directly on spikes
with a Poisson/dispersion-aware observation model, i.e. incorporating a likelihood loss matched to
spike generation (e.g., Poisson or negative-binomial) will enable directly analyzing unsmoothed spike
counts.
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A CTAE ALGORITHM OUTLINE FOR R = 2 BRAIN REGIONS

Algorithm 1: Training Coupled Transformer Autoencoders (CTAE) for two regions

Input: Paired recordings X(1),X(2), encoder–decoder parameters θ, ϕ, latent dimensions (ds, d1, d2), loss
weights λshared, λalign, λorth, optimiser O and learning rate η

Output: Trained parameters θ⋆, ϕ⋆

1 Compute weights: w1 ←
[
1ds ,1d1 ,0d2

]⊤, w2 ←
[
1ds ,0d1 ,1d2

]⊤
2 w(s) ← w1 ⊙w2

3 while not converged do
4 Encoder forward pass: Z(1) ← E

(1)
θ (X(1)), Z(2) ← E

(2)
θ (X(2))

5 Fuse latents: Z← (Eq. equation 4)
6 Extract Ŝ, P̂ (1), P̂ (2) (Eq. equation 5)
7 Data reconstruction: X̂(1) ← D

(1)
ϕ

(
(w11

⊤
T )⊙Z

)
, X̂(2) ← D

(2)
ϕ

(
(w21

⊤
T )⊙Z

)
8 Compute losses: L ← Lrec + λsharedLshared + λalignLalign + λorthLorth

(Eq. equation 8-equation 11)
9 Parameter update: θ, ϕ← O(θ, ϕ,∇θ,ϕL2R, η)

10 return θ⋆, ϕ⋆

B EXTENDING CTAE TO R > 2 BRAIN REGIONS

In the main text, we presented CTAE with a two-region formulation and reported results on datasets
involving either two or three regions. Here, we provide the generalization of our framework to R ≥ 3
regions.

B.1 PROBLEM FORMULATION (3 REGIONS)

For clarity, we present the formulation below for three regions. However, this construction naturally
extends to more than three regions.

Let X(1) ∈ RN1×T ,X(2) ∈ RN2×T ,X(3) ∈ RN3×T denote simultaneous neural population
recordings from three brain regions, each acquired over T time steps with N1, N2, N3 channels,
respectively. We assume that the observed activity in each region arises from latent dynamics that
decompose into:

1. Region-private dynamics P (r) that capture computations unique to each region r ∈
{1, 2, 3}, lying in subspaces orthogonal to shared components.

2. Pairwise shared dynamics S(ij) that span communication subspaces shared between
each pair of regions (i, j) ∈ {(1, 2), (2, 3), (1, 3)}, reflecting coordinated activity patterns
specific to that pair.

3. Globally shared dynamics S(123) that capture population trajectories common to all three
regions, representing fully shared circuit-level computations.

Formally, the neural activity at each time step t is modeled as nonlinear functions of these latent
processes:

X
(1)
t = f

(
S

(12)
1:t ,S

(13)
1:t ,S

(123)
1:t ,P

(1)
1:t

)
,

X
(2)
t = g

(
S

(12)
1:t ,S

(23)
1:t ,S

(123)
1:t ,P

(2)
1:t

)
,

X
(3)
t = h

(
S

(13)
1:t ,S

(23)
1:t ,S

(123)
1:t ,P

(3)
1:t

)
,

(13)

where S
(ij)
t ∈ Rdij denotes the latent state shared between regions i and j, S(123)

t ∈ Rd123 the fully
shared latent state across all three regions, and P

(r)
t ∈ Rdr the region-private latent state of region r.
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Our objective is to recover these latent representations {S(ij),S(123),P (r)} from the observed
neural activity {X(1),X(2),X(3)}, such that the model disentangles private, pairwise shared, and
fully shared dynamics in a principled way. For more than three regions, this formulation extends by
including shared latent variables for all possible combinatorial subsets of regions, with the training
algorithm remaining unchanged. The training algorithm introduced below applies to this general
multi-region setting.

B.2 GENERAL MULTI-REGION SETTING

To move beyond two regions, we extend the formulation with a general mechanism that assigns latent
dimensions to all possible combinatorial subsets of regions. This extension builds directly on the same
architectural backbone introduced in Section 4, but augments it with an enhanced weighted latent
fusion mechanism. This mechanism enables CTAE to disentangle latents shared by arbitrary subsets
of regions while preserving strictly region-private structure. All other components—per-region
causal Transformer encoders/decoders and the optimization procedure—remain unchanged. The key
modifications are described below.

Encoder outputs. For each region r ∈ {1, . . . , R} we keep a dedicated encoder–decoder pair(
E

(r)
θ , D

(r)
θ

)
and obtain

Z(r) = E
(r)
θ (X(r)) ∈ RD×T .

Region-specific weight masks. A single binary matrix encodes which latent dimensions are associ-
ated with each region uses:

W =
[
w1 w2 . . . wR

]⊤ ∈ {0, 1}R×D, W[r, d] = 1 ⇐⇒ region r claims dimension d.

A dimension is private when exactly one row in W is active and shared when two or more rows are
active, thereby accommodating every subset pattern (for instance, when R = 3 the binary code 110
indicates a dimension used by regions 1 and 2 but not 3; 101 corresponds to regions 1 and 3; and 111
denotes a dimension shared by all three). Relative to the two–region mask 3, W expands the notion
of “shared” from “both regions” to “arbitary subset of regions”. The membership matrix W can be (i)
fixed a priori from anatomical knowledge, (ii) selected by a hyper-parameter search that allocates an
appropriate number of latent dimensions to each subset pattern (analogous to the two-region masks
in Eq. equation 3), or (iii) treated as a fully learnable variable and optimised jointly with the rest of
the network.

Weighted latent fusion. We fuse the region–specific latents with a masked average

Zt[d] =

∑R
r=1 W[r, d]Z

(r)
t [d]∑R

r=1 W[r, d]
, (14)

so that private dimensions stay unchanged, whereas any dimension claimed by multiple regions is
forced to align across them.

Region-specific decoding. Each decoder receives only the dimensions it owns,

X̂(r) = D
(r)
ϕ

(
(wr1

⊤
T )⊙ Z

)
,

exactly as in the two–region case. Hence the extension does not change model capacity but merely
broadens how “shared” information is defined.

This design (i) embeds all regions in one latent space of size D, (ii) preserves region-specific structure
through fixed relevance masks, and (iii) enforces cross-region consistency via Eq. equation 14.

B.3 TRAINING OBJECTIVE

We retain the four losses used for two regions—reconstruction, shared-only reconstruction, alignment,
and orthogonality—while replacing two binary masks with the matrix W.

Reconstruction. The reconstruction loss is unchanged, only we now sum over all regions.

Lrec =

R∑
r=1

∥∥X̂(r) −X(r)
∥∥2
F
. (15)
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Shared-only reconstruction. To guarantee that all cross-region regularities live inside shared
dimensions, we mask out every coordinate used by fewer than two regions. Let s = 1{

∑
r Wr,·≥2} ∈

{0, 1}D and w
(s)
r = wr ⊙ s. We then reconstruct each region from the shared subspace alone:

Lshared =

R∑
r=1

∥∥D(r)
ϕ

(
(w(s)

r 1⊤
T )⊙ Z

)
−X(r)

∥∥2
F
. (16)

When R = 2 this term reduces to Eq. (11) in the main text, but for R > 2 it now supervises every
shared subset simultaneously.

Alignment. Each region’s encoder estimate should coincide with the fused latent over the dimensions
it owns:

Lalign =

R∑
r=1

∥∥(wr1
⊤
T )⊙ Z− (wr1

⊤
T )⊙ Z(r)

∥∥2
F
. (17)

Private coordinates contribute zero because they match by definition; shared coordinates are actively
driven together, extending the simple two-region difference penalty to an R-way match.

Orthogonality.
Lorth =

∥∥ 1
T ZZ

⊤ − diag
(
1
T ZZ

⊤)∥∥2
F
. (18)

Identical to the two-region version, this term keeps all latent dimensions—private or shared—mutually
decorrelated.

Total loss.
L = Lrec + λsharedLshared + λalignLalign + λorthLorth, (19)

with λshared, λalign, λorth selected on a validation set. The objective reduces exactly to the two-
region formulation when R = 2; for R > 2 it differs only in how masks are constructed and applied,
maintaining conceptual continuity while capturing richer patterns of shared neural dynamics.

C TRAINING AND HYPERPARAMETER DETAILS

To ensure consistency in model capacity across regions, we adopt identical causal Transformer-based
encoder–decoder architectures for each region, using an equal number of encoder and decoder layers
to maintain architectural symmetry. We then performed a grid search over:

Number of layers. We varied the total number of Transformer layers L ∈ {1, 2, 3} in both encoder
and decoder to trade off model capacity against overfitting risk and computational cost.

Latent dimensions. Private and shared dimensions, d ∈ {5, 10, 15}. Note - Here, the specified latent
dimensionality d should be treated as an upper bound on bottleneck capacity. After training with
the designed regularizers, redundant factors collapse to near-zero explained variance, yielding an
effective dimensionality deff ≤ d that approximates the data’s intrinsic dimensionality.

Loss weights.

• Shared-space: λshared ∈ {0, 1, 2}
• Alignment: λalign ∈ {0, 0.05, 0.1, 0.5}
• Orthogonality: λorth ∈ {0, 0.001, 0.01, 0.05}

Learning rate. η ∈ {10−3, 10−4}
Warm-up schedule for orthogonality loss. To prevent an overly strict orthogonality constraint
from hindering early representation learning, we set λorth = 0 for the first e epochs—allowing the
model to focus on reconstruction and shared/private separation—then linearly ramp it up to its target
λorth value over the next e epochs. This gradual increase stabilizes training by delaying the full
orthogonality penalty until the autoencoders have already learned meaningful features. We explored
e ∈ {100, 500, 1000}. Formally,

λ
(t)
orth =


0, t ≤ e,
t− e

e
λorth, e < t ≤ 2e,

λorth, t > 2e .
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Positional encoding. We use fixed, deterministic sinusoidal signals into each input embedding to
convey temporal order, following (Vaswani et al., 2017). Specifically, for time step t and embedding
dimension index i (with model dimension dmodel):

PE(t, 2i) = sin
(

t
100002i/dmodel

)
, PE(t, 2i+ 1) = cos

(
t

100002i/dmodel

)
.

These encodings provide both absolute and relative position information without adding any learnable
parameters, enabling the self-attention layers to distinguish different time steps.

All models were trained for 10 000 epochs, and the run minimizing the total loss in equation 12
on a held-out validation set was selected. Table 2 summarizes all the hyperparameters and their
corresponding search ranges and Table 3 reports the optimal settings for the two datasets studied.

Table 2: Hyperparameter search ranges.
Hyperparameter Values
# Transformer layers L {1, 2, 3}
latent dims. d1 = d2 = ds {5, 10, 15}
λshared {0, 1, 2}
λalign {0, 0.05, 0.1, 0.5}
λorth {0, 0.001, 0.01, 0.05}
Learning rate η {10−3, 10−4}
Warm-up epochs for orth. loss {100,500,1000}

Table 3: Selected hyperparameters for M1–PMd and SC-ALM.
Parameter M1–PMd SC–ALM
latent dims 10 15
# Layers L 3 1
λshared 1 1
λalign 0.5 0.1
λorth 0.01 0.01
Learning rate η 10−4 10−4

Warm-up (orth. loss) 100 epochs 1000 epochs

Compute Resources. All models were trained using CUDA-accelerated implementations in PyTorch.
Training was performed on NVIDIA Quadro RTX 8000 GPUs, supplemented by additional compute
resources from a high-performance computing (HPC) cluster.

D DATASET DETAILS

The motor circuit dataset used in this study is publicly available and was originally released with
(Perich et al., 2018). Both datasets were preprocessed using standard neural signal processing
pipelines. Specifically, spike trains were first binned at 100 ms for both M1–PMd dataset and SC-
ALM dataset. The binned spike counts were then smoothed using a Gaussian filter (kernel size of 3
and 2 for M1-PMd and SC-ALM, respectively) to estimate instantaneous firing rates, which were
used as input to the CTAE model.

D.1 MOTOR CIRCUIT DATASET: CENTER-OUT ARM REACHING TASK

We use the dataset from (Perich et al., 2018), which includes neuronal recordings from a Utah Array
in M1 and PMd; see Fig. 7, Left). In this task, a monkey performs center-out arm reaches using a
planar manipulandum. Neural activity was recorded from the primary motor cortex (M1) and dorsal
premotor cortex (PMd) via Utah arrays, yielding spike-sorted activity from 52 putative units in M1
and 66 in PMd (Fig. 7 Right). Each trial begins with a target onset, followed by a variable delay
period (0.5–1.3 s) for movement preparation. After a “go” cue, the monkey initiates a reach to one
of eight evenly spaced targets in a 2D workspace, holds briefly, and returns to center. The dataset
includes 208 trials across 8 target conditions, with approximately 26 repetitions per condition.
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Figure 7: Motor study. a) Schematic of the behavioral tasks performed by non-human primates in the
datasets used in Section 5. Center-Out Arm Reach Task: The monkey controls a manipulandum to
perform instructed delay reaches toward one of eight peripheral targets, with neural activity recorded
from M1 and PMd using Utah arrays. b) Population firing rates in M1 and PMd. Heatmaps shows the
trial-averaged z-scored firing rates for individual neurons (rows) across time. c) Condition-averaged
firing rates of individual neurons in M1 and PMd. Each panel shows trial-averaged firing rates for
single neurons, grouped and colored by reach direction. Colormap follows that in Fig. 4.

D.2 SC-ALM DATASET: MULTISENSORY TASK

The anterolateral motor cortex (ALM) and the superior colliculus (SC) are important parts of a
cortico-subcortical loop that transforms multisensory inputs into behavioral decisions. To study the
role of these areas in multisensory integration and decision-making, we trained mice in a multisensory
discrimination task, where animals had to integrate visual and tactile information over time to identify
the target stimulus side. We then performed simultaneous neural recordings in ALM and SC, using
high-density Neuropixels probes, in task-performing animals., see Fig. 8(left).

Each trial had a total duration of 7 seconds, comprising a 1-second baseline, then 3 seconds of
probabilistic stimuli, followed by a 0.5-second delay without any stimulus and finally, the spouts
moved in front of the mouse, allowing up to 2.5 seconds for a licking response. The mice were
rewarded when responding on the side where more sensory stimuli were presented during the stimulus
period. The stimulus period was composed of six periods of 500 milliseconds each, during which a
stimulus could be presented to the mouse. One to six stimuli were presented on a given side, with
each stimuli likelihood of presentation determining the difficulty of the task. Depending on the
trial type, a stimulus could either be a visual grating moving along a screen (visual trial), an air
puff of 100ms to the vibrissae on one side of the mouse (tactile trial), or both, in a simultaneous
congruent multisensory manner (multisensory trial). Mice were trained to respond by licking the side
on which more stimuli were shown. An example trial is illustrated in Fig. 8(center). An example of a
multisensory trial timeline is presented in Fig. 8(right).

We analyzed a single session from an expert animal that achieves ∼ 70% correct choice accuracy
(564 trials in total), with approximately 80–100 trials per stimulus type and per target direction

E ABLATION STUDY: INDIVIDUAL LOSS CONTRIBUTIONS

We evaluate the contribution of each loss term by training four CTAE variants:

1. Full CTAE: all losses active (shared-only reconstruction, alignment, orthogonality, standard
reconstruction).

2. No Shared-only Reconsruction: drop the loss that reconstructs inputs using only the shared
subspace.
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Figure 8: Multisensory study. Left: Schematic of the 2-alternative forced choice task performed by
the mice, trained to lick on the side where more stimuli was presented. The mice received a water
reward through the target spout. Right: Schematic of the task timeline in a multisensory trial with a
left-side target. The stimulus phase is in grey, the delay and response phase are in white, separated by
a vertical line and the movement of the spouts begins at the start of the response period.

3. No Alignment: remove the term that aligns shared latents across regions.
4. No Orthogonality: remove the orthogonality constraint between shared and private latents.

For each variant, we (i) visualize ablated interactions where meaningful, and (ii) quantify reach-
direction decoding accuracy from each latent subspace.

E.1 SHARED-ONLY RECONSTRUCTION LOSS ABLATION

The shared-only reconstruction loss ensures that the shared subspace alone can reconstruct the original
neural input; it encourages capturing all common dynamics in that subspace. Without it, information
shifts into private latents, reducing interpretability of the shared space. As shown in Table 1, removing
this loss component leads to a dramatic drop in shared-latent decoding accuracy, accompanied by a
corresponding increase in private-latent accuracies.

E.2 ALIGNMENT LOSS ABLATION

The alignment loss penalizes discrepancies between shared latents from each region, enforcing that
they capture the same underlying dynamics. To highlight the significance of this term, we performed
loss ablation experiments and analyzed the latents when no alignment loss was enforced. In Fig.
9a), the alignment loss is enforced, forcing the latents to have high similarity and significant overlap.
When the alignment loss is relaxed in Fig. 9b), the two shared latents diverge and sometimes cancel
each other, indicating a breakdown in cross-region correspondence. Correspondingly, Table 1 shows
that removing the alignment loss degrades shared-latent decoding accuracy, while private-latent
accuracies remain largely unchanged.

E.3 ORTHOGONALITY LOSS ABLATION

The orthogonality loss enforces that shared and private latents carry non-redundant information by
minimizing their dot products. To evaluate the importance of this loss, ablation experiments with
relaxed orthogonality constraints were used during model training. The degree of disentanglement is
quantified using the dot products between latents. In Fig. 10 a) the orthogonality loss is enforced in
the model and this constrained the latents to be maximally disentangled from each other. In Fig. 10
b) the orthoginality loss is relaxed in the model and there is a significant overlap between the latents,
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Figure 9: Alignment of shared latents in M1-PMd. Each subplot visualizes a single latent. Blue and
orange traces indicate shared latents obtained from M1 and PMd respectively. Black trace represents
the mean of blue and orange traces. (a) Alignment loss is enforced in the model. The shared latents
have significant overlap. (b) Alignment loss is relaxed in this model. The latents deviate significantly
from each other.

indicating a breakdown in disentanglement. Correspondingly, Table 1 shows that removing the
orthogonality loss degrades shared-latent decoding accuracy, while private-latent accuracies remain
largely unchanged.

Figure 10: Orthogonality between CTAE latents in M1-PMd. The red lines are used to differentiate
between the shared and region-private M1 and region-private PMd latents, in that order. The values
in the blocks indicate the mean of dot product value between the latents. (a) Latents from model with
orthogonality loss enforced (b) Latents from model with orthogonality loss relaxed

F ANALYSIS OF LATENTS AND ATTENTION MAPS

F.1 OVERVIEW OF LATENT DYNAMICS

The CTAE model extracts both shared and region-private latents from neural activity, and does so at a
single-trial resolution. Shared and region-private latents for the motor dataset are obtained from the
best performing CTAE model and visualized in Fig. 11. The region-private latents capture neural
activity patterns that are specific to the region and thereby, reflect local dynamics and computations.
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The shared latents capture activity patterns that are common to both regions. The representation of
task variables such as reach direction in motor task was analyzed by averaging latent trajectories
across trials grouped by task variables. In both regions in Fig. 11, distinct latents exhibit systematic
variation across the task variables, indicating that the latents are inherently capturing behaviorally
relevant information.

Fig. 12 visualizes a subset of the CTAE inferred neural latent dynamics (from the set of all latents
in Fig. 11). Each panel shows state-space trajectories for different latent groups across task epochs.
Immediately after target onset, trajectories in the shared subspace Z(s) diverge from a common
baseline toward target-dependent fixed points, yielding an explicit goal code—consistent with prior
reports of a PMd–M1 preparatory subspace. During movement, variance in Z(s) increases along
axes orthogonal to the preparatory subspace, indicating a shift in PMd–M1 coupling as the task
transitions to execution (Fig. 12B). We also observe that PMd-private latents maintain a stable
target representation during the preparatory phase (Fig. 12C), consistent with staging signals that are
subsequently reflected in the shared space; after the go cue, this private structure weakens, no longer
reflecting clear separation of different targets, consistent with transient reorganization or monitoring
as movement unfolds (Fig. 12D).

Figure 11: CTAE latent dynamics in M1-PMd. Each subplot visualizes a single neural latent, with
colors indicating trial-averaged latents for each reach direction. Red dashed line indicates go-cue.
(Top) Shared latents capture neural dynamics present in both M1 and PMd. (Middle) M1-private
latents capture dynamics specific to M1 (Bottom) PMd-private latents capture dynamics specific to
PMd.

In Fig. 13 and Fig. 14, we present all the latents for the SC-ALM dataset, where we trial-average the
latents within target side and stimulus type, respectively. In general, most latents exhibit oscillatory
patterns that, to varying degrees, are tuned to the stimulus presentation times; superficial SC latents
tend to exhibit higher-frequency oscillations. Shared latents for Deep SC and ALM, and region-
specific ALM latents, exhibit separation between the target sides at the delay and response. Superficial
SC latents and shared superficial and deep SC latents exhibit separate activity patrern for tactile trials
comapred to visual and multisensory trials. In contrast, Deep SC and ALM shared latents exhibit
patterns that separate all three stimulus types.

We next evaluate temporal decoding of the target variable (e.g., reach direction, target side) from the
latents, to better determine the dynamics represented by the latents in shared and private subspaces.
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Figure 12: State-space views of CTAE latents across task epochs. Each subplot shows trajectories in
a 3 dimensional latent subspace. Colors denote trial-averaged trajectories for each reach direction
in (A). (B) Shared PMd–M1 subspace: trajectories evolve over the entire trial, circle denotes ‘go’
cue. (C) PMd-private subspace during the preparatory phase. Left and right plots are two different
3D subspaces within the private latents. (D) PMd-private subspace during the movement phase.
Together, these panels highlight distinct PMd–M1 interaction modes that differ between preparation
and execution. Left and right same as in (C).
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F.2 TEMPORAL DECODING ANALYSIS FROM CTAE LATENT SUBSPACES

Time-resolved decoding. To localize when task information appears in each CTAE latent subspaces,
we considered per-trial, per-time bin latents from CTAE’s private and shared (pairwise and all-shared)
subspaces. At every time bin, the input features are the latent dimensions in that subspace (i.e.,
private, all shared, or pairwise shared) within a window of 5 time bins. For each subspace we
ran 5-fold stratified cross-validation with a single multinomial logistic-regression classifier (with
feature standardization) trained once per fold on the full time-flattened feature matrix. Time-resolved
accuracy was then obtained without re-training: at test time we fixed the classifier and masked all
features outside a temporal context centered at each time point (a symmetric sliding window of five
bins, i.e., ±2 bins). We report mean ± s.d. across folds at every time bin and overlay event markers
for cue onsets, delay start, and delay end.

Findings: SC-ALM dataset. Across subspaces, the accuracy of the shared latents progressively
improves as the response approaches, indicating that cross-area information integrates toward the
decision and movement execution. Specifically, the shared subspace across all 3 regions demonstrates
a positive trend towards the response period with the highest accuracy at the response period and a
slight increase in accuracy after each stimulus time. Superficial SC private subspace shows the highest
prediction accuracy prior to the delay period, consistent with sustained maintenance of task-relevant
signals. In contrast, ALM and the Deep SC–ALM shared subspace peak after the response, suggesting
strong encoding of the target side and decision (the two are highly correlated in expert mice). The
Superficial SC–Deep SC shared subspace also exhibits marked prediction increases immediately
following most stimulus onsets, pointing to early multisensory interactions between superficial and
deep SC layers, and shared representation of stimulus direction. Together, these patterns reveal
complementary temporal roles: private subspaces emphasize delay-period maintenance and response
choice, while shared subspaces carry stimulus- and response-proximal information that ramps as
action nears.

Figure 15: Time-resolved decoding accuracy (mean over 5-fold CV) for each latent subspace. Rows
correspond to private and shared subspaces (private SupSC/DeepSC/ALM; shared pairs and all-
shared), columns are time. Dashed vertical lines mark cue onsets (every 0.5 s from 0.5–3.0 s), the
solid line marks delay start (3.5 s), and the white dotted line marks the start of the decision making
period (4.0 s).

Findings: Motor-Circuit dataset. Time-resolved reach-direction prediction accuracy shows a
pronounced increase following the Go-Cue (Fig. 16). This pattern is observed across latents obtained
from CTAE, DLAG and DeepCCA. Shared latents from all three models peak in accuracy following
the go-cue, indicating presence of higher directional information, with CTAE-shared consistently
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Figure 16: Time-resolved reach-direction decoding accuracy (5-fold CV) for each subspace, across
multiple models. Red dashed line represents go-cue. Shared latents from all models show a sharp
increase in accuracy following the Go-Cue, with CTAE-shared consistently outperforming others.
PMd-specific latents exhibit a pre-Go-Cue rise, indicating anticipatory directional information,
whereas M1-specific latents peak post Go-Cue, reflecting direction-specific encoding after movement
initiation. Shading represents ±1 standard error across the different folds.

Figure 17: Self-Attention Maps obtained from CTAE’s encoder branches

outperforming those from the other models. In contrast, PMd-specific latents show an increase
in accuracy prior to the go-cue, while, M1-specific latents achieve peak-accuracies post go-cue.
These findings suggests that PMd encodes anticipatory directional information, while M1 encodes
directional information more strongly during movement. Overall, these results align with previous
reports on directional information representation in M1 and PMd (Lara et al., 2018).

F.3 ATTENTION MAPS

We note that as opposed to DLAG, our model does not learn latent-specific delays between brain
regions. However, observing the attention maps indicates interesting temporal information.

In Fig. 17 we visualize the attention maps for the causal self-attention of the encoders for M1 and
PMd separately, averaged over all trials and conditions. The encoders demonstrate the latent were
closely aligned in time to both regions up to the “go” cue, after which they diverged. A diagonal
feature in both attention maps, shifted with respect to each other, suggests a lag between the two
regions following the cue.

In Fig. 18 we visualize the attention maps for the cross-attention in the decoder encoders for M1 and
PMd separately, averaged over all trials and conditions. In PMd the attention map shows a strong
separation between the time periods before and after the cue. The interpretation of the M1 decoder
attention map is less clear, without a clear separation of before and after the cue.
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Figure 18: Cross-Attention Maps obtained from CTAE’s decoder branches

G COMPARISON TO DEEPCCA

We applied DeepCCA on the M1-PMd and SC-ALM dataset and extracted shared latents between the
pairs of regions. We implemented DeepCCA using parallel multilayer perceptrons (MLPs) for each
regions inputs. Each branch consisted of three fully connected layers with 1024 hidden units, sigmoid
nonlinearities, and batch normalization (non-affine) applied after each layer. The final layer applied
batch normalization followed by a linear projection into a shared latent space that was matched to
that of the CTAE’s latent dimensionality. Canonical correlation analysis (CCA) was then performed
between the two branches to maximize shared variance in this latent representation. We evaluated
these latents on the downstream tasks described in Sec. 5.1 and Sec. 5.2.

G.1 M1-PMD DATA

The M1 branch received 66-dimensional inputs and the PMd branch 52-dimensional inputs.

Figure 19: DeepCCA Decoding Performance on M1-PMd dataset. (a) Scatter plot of predicted
hand-positions obtained from linear decoding from DeepCCA shared latents. (b) Confusion matrix
for reach-direction classification at a single-trial level.

Continuous Decoding. As shown in Fig. 19 a), linear regression readout of the hand position from
the shared latents, DeepCCA attained an R2 value of 0.32. In comparison, the shared latents obtained
from CTAE and DLAG have R2 values of 0.77 and 0.72. These results indicate the CTAE captures
substantilly more temporal variation than DeepCCA.
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Discrete Decoding. Decoding the hand-reach condition for each trial using the shared latents,
DeepCCA obtained an accuracy of 34% at a single time-point level (Fig. 19 b)), compared to CTAE
(69%) and DLAG (44%).

G.2 SC-ALM DATA

Since DeepCCA performs pairwise correlation maximization, we applied it to region pairs (i.e.)
SupSC-DeepSC, DeepSC-ALM and SupSC-ALM pairs. As in G.1, the input dimensions for each
branch was matched to the dimensions of the number of neurons in each region.

Table 4: DeepCCA Pairwise Results on SC-ALM.
Data DeepCCA CTAE
SupSC-DeepSC 0.22 0.59
DeepSC-ALM 0.22 0.59
SupSC-ALM 0.20 0.39

These results highlight DeepCCA’s inability to model temporal dynamics, which hinders time-
resolved decoding and interpretability. On the other hand, CTAE combines strong continuous decod-
ing, robust discrete classification at a single-time point resolution and structured disentanglement
between shared and private latents.

H COMPARISON TO CONCATENATED-DATA BASELINE

As a baseline, we used our transformer autoencoder backbone to analyze the concatenated data
across all the regions, without enforcing latent disentangling into shared and private. As a result,
we only use the orthogonality loss (Eq. 11) and the reconstruction loss (Eq. 8, across all regions) to
train these models. The extracted latents were evaluated on both discrete and continuous behavioral
decoding tasks. While this experiment provides a baseline to compare the amount of task-relevant
information present in these latents, it is important to note that this baseline does not distinguish
between computations that are performed in individual regions, or shared across different regions, as
the recovered latents may be a mixture of both.

M1-PMd Data. The CTAE model consistently outperformed the concatenated baseline model on
both the continuous position and discrete condition decoding task (Fig. 20). On the continuous
position decoding task, the concatenated baseline model achieves an R2 of 0.59, compared to the R2

of 0.77 and 0.72 obtained from CTAE and DLAG. The classification accuracy of the reach conditions
obtained from the concatenated-data model is 57%, compared to accuracies of 69% and 44% obtained
from CTAE and DLAG, respectively.

Figure 20: Concatenated-Data Decoding Performance on M1-PMd dataset. (a) Scatter plot of pre-
dicted hand-positions obtained from linear decoding from Concatenated-Data latents. (b) Confusion
matrix for reach-direction classification at a single-trial level. True and predicted reach conditions on
the Y- and X- axis respectively.
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Figure 21: Concatenated-Data Decoding Performance on SC-ALM dataset. (a) Confusion matrix for
task-modalities single-trial level. True and predicted modalities on the Y- and X- axis respectively. (b)
Continuous-time target side decoding from the latents obtained from the Concatenated-data latents.

This highlights that the shared latents between M1-PMd, extracted from CTAE contain more task-
related information than the latents obtained from concatenating the data.

SC-ALM Data. The concatenated model outperforms CTAE in downstream behavioral decoding
tasks of discrete modality classification (Fig.) and continuous time decoding of target side (Fig.).
It is important to note that the latents obtained in this baseline do not identify computations that
are region-specific and shared across regions. This is evident in (Fig.) where the continuous-time
decoding traces lacked the structure that is present in (Fig.).

Thus, while the concatenated model can reflect dominant task information, it provides limited
interpretability into the organization of region-specific versus shared computations. The concatenated
approach collapses population activity into a single latent space, capturing task-relevant information,
but not distinguishing whether that variance is shared across regions or specific to one region. In
contrast, CTAE is designed to explicitly separate shared and region-private components of the neural
activity. Thus, the two approaches reflect different conceptual goals—task-focused compression
versus structured disentanglement—and their outputs are not directly interchangeable.

I THE USE OF LARGE LANGUAGE MODELS

We used ChatGPT solely for language-related assistance, such as improving grammar, refining
phrasing, and polishing the presentation of the text. All research ideas, methods, and results are
entirely our own. We take full responsibility for the content of this work.

J REPRODUCIBILITY STATEMENT

We provide all details necessary to reproduce our results.

• Model and objective: Sec. 4 describes the architecture and all loss terms, with explicit
equations for reconstruction, shared-only reconstruction, alignment, and orthogonality (Eqs.
8–12). Multi-region extension: App. B specifies the R > 2 formulation, including masked
latent fusion (Eq. 13) and the generalized training losses (Eqs. 14–18).

• Training and hyperparameters: App. C reports the full grid (Table 2), selected settings per
dataset (Table 3), and the 10k-epoch training selection protocol/warm-up schedule.

• Compute resources: (PyTorch/CUDA on Quadro RTX 8000 + HPC) are listed in App. C.

• Data and preprocessing: App. D details sources and processing (bin sizes, Gaussian
smoothing), with task specifics and counts for M1–PMd and SC–ALM.
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• Evaluation protocols: Sec. 5.1–5.2 define the continuous (hand-position) and discrete
(target/condition) decoding tasks and present cross-validated metrics/visualizations; App.
E.2 details ablations and reports 5-fold statistics (Table 1).

• Baselines: App. G documents the DeepCCA comparison and evaluation setup.

Source code will be made available at the time of publication.
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