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Abstract

We focus on the problem of training convolutional neural networks on gigapixel histo-
pathology images to predict image-level targets. For this purpose, we extend Neural Image
Compression (NIC), an image compression framework that reduces the dimensionality of
these images using an encoder network trained unsupervisedly. We propose to train this
encoder using supervised multitask learning (MTL) instead. We applied the proposed MTL
NIC to two histopathology datasets and three tasks. First, we obtained state-of-the-art
results in the Tumor Proliferation Assessment Challenge of 2016 (TUPAC16). Second,
we successfully classified histopathological growth patterns in images with colorectal liver
metastasis (CLM). Third, we predicted patient risk of death by learning directly from
overall survival in the same CLM data. Our experimental results suggest that the repre-
sentations learned by the MTL objective are: (1) highly specific, due to the supervised
training signal, and (2) transferable, since the same features perform well across differ-
ent tasks. Additionally, we trained multiple encoders with different training objectives,
e.g. unsupervised and variants of MTL, and observed a positive correlation between the
number of tasks in MTL and the system performance on the TUPAC16 dataset.
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1. Introduction

Pathologists examine whole-slide images (WSIs) to diagnose a wide variety of diseases and
predict patient prognosis. These WSIs are gigapixel images of human tissue sections taken at
very high resolution, i.e. subcellular detail. In order to perform WSI classification, pathol-
ogists incorporate visual features from the entire WSI at once. This task poses two main
challenges to Computer Vision algorithms: first, processing images of gigapixel resolution
at once is computationally extremely expensive; and, second, the low signal-to-noise ratio
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Figure 1: Neural Image Compression. Left: an entire gigapixel whole-slide image is read as a set of
high-resolution patches using a uniform grid. Center: each of these patches is compressed
into a low-dimensional embedding vector using a neural network, the encoder. Right: the
embedding vectors are organized following the same spatial arrangement as in the original
whole-slide image.

present in WSIs has been shown to limit the performance of these algorithms (Pawlowski
et al., 2019).

Several methods have been proposed to solve WSI classification. In multiple-instance
learning, a WSI is decomposed into small high-resolution patches (bag of patches) that
are weakly annotated using the image label (Xu et al., 2017; Coudray et al., 2018; Wang
et al., 2018; Ilse et al., 2018; Combalia and Vilaplana, 2018; Tomczak et al., 2018; Hou
et al., 2016; Quellec et al., 2017). However, these methods cannot exploit the relationship
between patches, being unable to observe a more global context of the WSI. Reinforcement
learning has been proposed as a solution to increase context (Qaiser and Rajpoot, 2019;
Dong et al., 2018; BenTaieb and Hamarneh, 2018). Although these methods can integrate
knowledge across patches, they suffer from other limitations, e.g. optimization difficulties
and leaving large areas of the WSI unexplored. Moreover, other authors have proposed
memory-efficient methodologies that enable convolutional neural networks (CNNs) to be
trained with very large images (Pinckaers et al., 2019; Kong et al., 2007). However, CNNs
struggle to perform well in tasks with very low signal-to-noise ratio like histopathology
image analysis (Pawlowski et al., 2019), requiring vast amount of data samples to work.
Unfortunately, histopathological datasets rarely surpass the hundreds or thousands of data
points (Veta et al., 2019; Bándi et al., 2019), urging for more sample-efficient methods to
perform WSI classification.

Neural Image Compression (NIC) is a recently proposed framework (Tellez et al., 2019)
that can drastically reduce the dimensionality of WSIs while retaining semantic information
and suppressing noise (see Fig. 1). NIC divides each WSI into a set of high-resolution small
patches that are independently compressed into embedding vectors using an encoder, i.e.,
a neural network trained unsupervisedly. Then, these vectors are arranged in a 2D grid
following the spatial configuration of the original WSI. The result of this operation is a
compressed representation of the entire WSI, where each vector corresponds to a patch in
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the WSI. Once all WSIs are compressed using NIC, a classifier, e.g. a CNN, is trained on
the compressed WSI representations using the image-level labels as targets. NIC addresses
the main challenges of WSI classification by reducing both the size and noise levels of WSIs,
while allowing the CNN classifier to exploit global context.

A crucial factor of the NIC method is the encoder model. This neural network is respon-
sible for suppressing low-level pixel noise and spurious correlations, while identifying and
extracting high-level discriminative features that could work well in a variety of downstream
tasks and, as such, should be transferable across a number of histopathological tasks. To
satisfy this condition, the original formulation of NIC suggested to use unsupervised meth-
ods to train the encoder, such as: variational autoencoders (VAE) (Kingma and Welling,
2013), contrastive training (Koch et al., 2015; Melekhov et al., 2016; Hyvarinen and Morioka,
2016), and adversarial feature learning (Donahue et al., 2017; Dumoulin et al., 2017). Since
networks trained with supervised signals are able to extract more specific feature represen-
tations than those using unsupervised loss terms (Tan and Le, 2019), we hypothesize that
combining multiple supervised goals during training could lead to superior and more gener-
alizable features than using a single unsupervised task. Therefore, we propose to introduce
supervision in the training of the encoder and do so via supervised multitask learning (Caru-
ana, 1997). Although, supervised and unsupervised multitask representation learning have
shown promising results on multiple Computer Vision benchmarks (Ruder, 2017; Zhang
and Yang, 2017), the usefulness of the learned representations for WSI compression is yet
an unexplored research avenue. We propose a method that exploits and combines sev-
eral supervision signals from four representative tasks in Computational Pathology: mitosis
detection in breast, axillary lymph node tumor metastasis detection, prostate epithelium
detection, and colorectal cancer tissue type classification.

In this work, we trained image compression using the proposed multitask NIC and
evaluated the obtained representations in two histopathology datasets that target image-
level labels. First, modeling the speed of tumor growth in invasive breast cancer, included in
the Tumor Proliferation Assessment Challenge 2016 (TUPAC16) (Veta et al., 2019). Second,
predicting histopathological growth patterns and the overall risk of death in patients with
colorectal metastasis in the liver (Galjart et al., 2019).

Our contributions can be summarized as follows:

� We improved NIC by training the encoder with supervised multitask learning. Exper-
imental results suggest that embedding vectors were more discriminative and trans-
ferable, and adding more tasks to the multitask framework increased the performance
of the method at WSI level.

� We obtained state-of-the-art performance predicting tumor proliferation speed in in-
vasive breast cancer patients from the Tumor Proliferation Assessment Challenge, and
classifying histopathological growth patterns in patients with colorectal liver metas-
tasis.

� We successfully predicted patient risk of death by learning directly from overall sur-
vival in patients with colorectal liver metastasis, without the need for human inter-
vention.
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Figure 2: Supervised multitask learning framework. Left: the full model is trained to solve four
different tasks simultaneously. Center: the encoder provides a shared embedded repre-
sentation for the images of all the tasks. Right: the head models perform each of the
four classification tasks independently from each other.

2. Materials

Multitask learning dataset. We selected multicenter data from four representative patch
classification tasks in Computational Pathology (see Fig. 2), namely: mitosis detection in
breast, axillary lymph node tumor metastasis detection, prostate epithelium detection, and
colorectal cancer tissue type classification. A full description of this dataset is available
in (Tellez et al., 2019). For each task, we selected 200000 patches of 64 × 64 pixels at
0.5 µm/pixel resolution with patch-level annotations. We distributed the number of patches
across classes and medical centers uniformly, so that classes and centers were equally rep-
resented in the dataset, and reserved 20% of the samples for validation purposes (randomly
selected).

TUPAC16 dataset. We used public WSIs from the Tumor Proliferation Assessment
Challenge 2016 (TUPAC16) (Veta et al., 2019) to evaluate our method. This cohort con-
sisted of 492 hematoxylin and eosin (H&E) training slides taken from patients with invasive
breast cancer from The Cancer Genome Atlas (Weinstein et al., 2013). The organizers of
the Challenge provided a label for each patient that served as a proxy for tumor prolifera-
tion speed (Nielsen et al., 2010). Additionally, the organizers also provided 321 test slides
with no public labels available, that were used to perform a truly independent performance
evaluation.

Colorectal liver metastasis dataset. This private cohort consisted of 363 patients
that underwent colorectal liver metastasis resection at the Erasmus MC Cancer Institute
(Rotterdam, the Netherlands) between 2000 and 2015 (Galjart et al., 2019). A total of 1571
H&E stained slides were used in this work. These slides were scanned using a 3DHistech
P1000 scanner at a spatial resolution of 0.25 µm/pixel. Each slide was manually scored
for the presence of histopathological growth patterns (HGP) following international guide-
lines (Van Dam et al., 2017; Höppener et al., 2019). A given slide was considered desmo-
plastic HGP (dHGP) if this was the only pattern observed, and non-desmoplastic HGP
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(non-dHGP) otherwise. The consideration of dHGP is generally associated with better
prognosis (longer patient survival). In addition, overall survival was available for these
patients, with a mean follow-up period of 3.4 years.

3. Methods

Supervised multitask learning. Our multitask learning architecture is built from two
components. The first component, the encoder, is shared among the four tasks, whereas
the second part, the heads, consists of four multilayer perceptrons (MLPs) specialized in
solving each task individually. Both the encoder and the four heads are trained to minimize
the sum of the classification losses of the four tasks. By doing so, the encoder learns a
vector representation that is optimized to produce high classification performance while
being highly transferable across different tasks. Fig. 2 provides an overview of the method.
The size of the embedded representation C is an hyperparameter of the method, by default
set to C = 128 following the original implementation of NIC. We trained this model using
images from the multitask learning dataset only.

The architecture of the encoder consisted of 4 strided convolutional layers with 128
3 × 3 filters, batch normalization, leaky-ReLU activation (LRA), and stride of 2; followed
by a linear layer with C units. The head models were composed of a dense layer with
256 units, and LRA, with 10% dropout before and after this layer; and a final dense layer
whose number of output units depended on the classification task (9 for the multiclass tissue
classification, and 2 for the rest), followed by a softmax.

We trained the encoder and head models simultaneously by minimizing the average
categorical cross-entropy across the four tasks. We used stochastic gradient descent with
Adam optimization and a mini-batch of 128 samples (32 samples per task dataset), de-
creasing the learning rate by a factor of 10 starting from 1× 10−3 every time the validation
metric plateaued until 1× 10−5. During training, we used heavy morphological and color
augmentation (Tellez et al., 2019), increasing the model robustness to unseen data.

WSI classification. In order to train a CNN classifier on gigapixel WSIs and image-
level labels, we followed the method described in the original NIC publication, with the
exception of using the proposed multitask encoder instead of the unsupervised model. A
detailed description of the CNN architecture and training details is available in the Ap-
pendix A.

Learning from patient overall survival. Survival analysis constitutes a regression
problem where a model is trained to predict a risk score for each patient that is proportional
to their chances of experiencing the event of death. Each patient’s WSI is associated with
a record composed of two items: a follow-up period and a binary death-event variable. We
used WSIs compressed with multitask NIC and overall survival data to train a CNN classifier
to predict patient risk of death by maximizing the partial log-likelihood loss (Faraggi and
Simon, 1995). Intuitively, by optimizing this objective the CNN classifier learned to assign
high risk scores to those patients that died early. See Appendix C for a detailed description
of this loss.
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Table 1: Predicting tumor proliferation speed in TUPAC16 Spearman corr. and 95% c.i.
Method Training set External test set
TUPAC16 top-3 (Veta et al., 2019) - 0.503
TUPAC16 top-2 (Veta et al., 2019) - 0.516
NIC unsupervised (Tellez et al., 2019) 0.522 0.558 [0.5191, 0.5962]
Streaming CNNs (Pinckaers et al., 2019) - 0.570
TUPAC16 top-1 (Veta et al., 2019) - 0.617
NIC multitask (proposed) 0.620 0.632 [0.5966, 0.6641]
TUPAC16 human-assisted (*) (Veta et al., 2019) - 0.710

(*) Requires the intervention of an expert pathologist

4. Experimental results

4.1. Training the multitask encoder

For the purpose of compressing WSIs in the TUPAC16 and liver datasets, we first trained
a 4-task multitask encoder following the procedure described in the Methods section. We
obtained the following validation accuracy scores at patch level: lymph node tumor classifi-
cation (90.87%), mitosis classification (94.81%), prostate epithelium classification (86.48%),
and colorectal 9-class classification (77.49%).

4.2. Predicting the speed of tumor proliferation (TUPAC16)

In this experiment, we used the previously trained encoder to compress the WSIs on the
TUPAC16 training dataset; and trained four CNN regressors on top of these compressed
WSIs using 4-fold cross-validation (3 folds for training, 1 for validation). For the test set, we
compressed the WSIs similarly, then averaged the predictions of the four CNNs per sample,
and submitted the results to the Challenge organizers for independent evaluation (the labels
of the test set are not public). Our proposed method achieved state-of-the-art results on the
leaderboard of the TUPAC16 Challenge for automatic methods (see Tab. 1), demonstrating
the effectiveness of using multitask learning in combination with NIC to predict image-level
labels from WSIs.

4.3. Image-level performance vs. number of tasks used in multitask training

The goal of the following experiment was to study the relationship between the number
of tasks used to train the multitask encoder and the performance of the CNN regressor
trained at image level, i.e. using TUPAC16 WSIs. First, we trained a set of encoders
varying the number of tasks included during multitask training: 4 encoders using 1 task
(only lymph, only mitosis, etc.), 6 encoders using 2 tasks (lymph+mitosis, lymph+prostate,
etc.), 4 encoders using 3 tasks (lymph+mitosis+prostate, lymph+mitosis+colorectal, etc.),
and 1 encoder using 4 tasks. Second, we compressed the TUPAC16 training dataset using
each of the 15 previously trained encoders, and trained CNN regressors on them using 4-
fold cross-validation as before in order to obtain an unbiased prediction for each training
sample. Due to the large computational resources required to perform these steps, we used
a reduced code size of C = 16.
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Figure 3: Relationship between the number of
tasks used to train the multitask en-
coder and the performance of the
CNN regressor trained on TUPAC16
(mean and std Spearman corr).

Figure 4: Predicting the presence of desmo-
plastic HGP in colorectal liver metas-
tasis WSIs. Different encoding
strategies are compared using the
area under the ROC.

Table 2: Spearman correlation between task inclusion during multitask training, and per-
formance at image level in TUPAC16

Lymph Mitosis Prostate Colorectal
Correlation 0.319 0.033 0.077 0.824

We measured the Spearman correlation between the predictions of our system and the
image-level labels, and averaged the results by the number of tasks (see Fig. 3). Note that
we repeated the 4-task experiment four times with random weight initialization to obtain
a more robust performance estimate. All the performance metrics are summarized in the
Appendix B. We observed that increasing the number of tasks during multitask training
produced a higher and more robust performance at image level. However, the large variance
obtained in some cases (2 and 3 tasks) suggests that task selection might play an important
role in the performance of multitask NIC.

Additionally, we measured the Spearman correlation between a binary variable describ-
ing whether a task was included during multitask training or not, and the performance of
the system at image level. The results of this analysis are presented in Tab. 2. We found a
positive correlation between the inclusion of the colorectal task and the global performance
at image level. This result suggests that this dataset might be more valuable for feature
extraction purposes than the rest. We recognize this task to be the most complex of all,
requiring the encoder to extract robust features to accurately solve the classification prob-
lem. We hypothesize that multitask training can benefit from the highly specific features
required to solve difficult classification tasks like this one.
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Figure 5: Predicting patient risk of death in
colorectal liver metastasis WSIs.
Learning from annotated HGP sta-
tus.

Figure 6: Predicting patient risk of death in
colorectal liver metastasis WSIs.
Learning from overall survival
records.

4.4. Predicting patient risk of death in colorectal liver metastasis

Desmoplastic HGP manual annotations. We compressed all the liver WSIs using the
multitask encoder introduced before in Sec. 4.1, and trained a CNN classifier to distinguish
between dHGP or non-dHGP type on the compressed WSIs using 4-fold cross-validation
(2 folds for training, 1 for validation, and 1 for testing). We measured the area under the
ROC (AUC) on all the test samples to quantify performance.

In addition, we considered the predicted probability of dHGP as a proxy for the patient
risk of death, and used the Kaplan-Meier (KM) estimator to model survival curves for two
groups of patients, low and high risk, divided by the median predicted risk score.

For the dHGP classification task, we obtained an AUC of 0.895. Regarding the prog-
nostic power of these predictions, results in Fig. 5 showed that our system could divide the
population into two risk categories with high significance (p < 0.001).

Overall survival records. We trained a CNN classifier on the same compressed liver
WSIs to predict patient risk of death learning directly from overall survival data (loss
described in Sec. 3 under Learning from patient overall survival). As before, we used the
KM estimator to assess the prognostic power of the classifier’s predictions.

We found that this model was able to learn directly from overall survival data, dividing
the population into two risk categories (p < 0.01), see Fig. 6. Note that no manual anno-
tation was required on the colorectal liver metastasis dataset to perform this experiment,
only patient records.

4.5. Comparing unsupervised and supervised encoders

We repeated the experiment described in Sec. 4.4 under Desmoplastic HGP manual anno-
tations using different encoding options. In particular, we compressed the liver WSIs using
several unsupervised and supervised encoding methods, and subsequently trained a CNN
classifier to distinguish between dHGP and non-dHGP status.
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We selected several encoders from the original NIC publication (Tellez et al., 2019) as
baselines for the comparison: the unsupervised bidirectional generative adversarial network
(BiGAN-pretrained) and the supervised network trained for lymph node tumor classification
(Supervised-pretrained). Additionally, we trained two BiGAN encoders using patches ex-
tracted from the liver WSIs; in one case applying no augmentation during training (BiGAN-
liver-noaug), and using heavy color augmentation in the other one (BiGAN-liver-aug). Fi-
nally, we also compared our proposed 4-task multitask encoder (Multitask n = 4).

Evidence in Fig. 4 highlighted three main results. First, heavy color augmentation
played an important role in improving the features extracted by the encoder. Second, there
seemed to be no difference between unsupervised and one-task supervised methods, trained
on liver or any other organ. Three, multitask training substantially improved the overall
performance of the system, obtaining the best classification AUC score of all tested methods
(0.895).

5. Discussion

In this study, we extended Neural Image Compression (Tellez et al., 2019) by training the
encoder with a supervised multitask learning approach. We trained the encoder to solve
four classification tasks in Computational Pathology simultaneously, and used this model
to perform the gigapixel image compression. First, supervised multitask training was key to
obtaining a high performance at image level, surpassing unsupervised techniques. We found
that increasing the number of tasks used to train the encoder was directly proportional to
the system performance. Second, we obtained state-of-the-art results in predicting both
the speed of tumor proliferation in invasive breast cancer (TUPAC16 Challenge), and HGP
status in colorectal liver metastasis classification. These results in real-world tasks show-
cased the flexibility of multitask NIC as a method to empower WSI classification. Third,
we used the proposed system to assess patient risk of death by learning directly from overall
survival data, i.e. without human intervention. By doing so, we enabled the CNN classifier
to work as an effective biomarker discovery tool for liver metastasis, moving beyond human
knowledge rather than mimicking pathologists.

We acknowledge the main limitation of the proposed method to be a lack of straight-
forward criteria on how to expand the number and type of tasks used during multitask
training, i.e. which tasks to select and include in the multitask loss function. We selected
four representative tasks performed in the clinic with high-quality patch-level annotations.
However, our results suggest that the WSI classifier might be sensitive to this choice. Care-
ful weighting of multitask objectives and optimizing which tasks should be learned together
is a matter of study in recent publications in the field (Kendall et al., 2018; Chen et al.,
2018; Zamir et al., 2018). Future work should focus on conducting a more detailed evalua-
tion on how to select these patch-level tasks, combining multiple objectives optimally, and
including unsupervised or weakly-annotated data in the multitask loss.
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Table 3: Predicting tumor proliferation speed in TUPAC16 (Spearman corr.) depending
on which task was included during multitask training

Lymph Mitosis Prostate Colorectal Correlation
No No No Yes 0.563
No No Yes No 0.515
No Yes No No 0.473
Yes No No No 0.498
No No Yes Yes 0.584
No Yes No Yes 0.573
No Yes Yes No 0.557
Yes No No Yes 0.613
Yes No Yes No 0.548
Yes Yes No No 0.520
No Yes Yes Yes 0.549
Yes No Yes Yes 0.592
Yes Yes No Yes 0.605
Yes Yes Yes No 0.505
Yes Yes Yes Yes 0.569
Yes Yes Yes Yes 0.594
Yes Yes Yes Yes 0.597
Yes Yes Yes Yes 0.591

Appendix A. Architecture and training details of the image-level CNN

The complete CNN architecture consisted of 8 convolutional layers using strided depthwise
separable convolutions with 128 3 × 3 filters, batch normalization (BN), leaky-ReLU acti-
vation (LRA), L2 regularization with 1× 10−5 coefficient, feature-wise 20% dropout, and
stride of 2 except for the 7-th and 8-th layers with no stride; followed by a dense layer with
128 units, BN and LRA; and a final layer that depended on the application: a softmax
dense layer for classification problems, and a linear output unit for regression tasks.

We trained the CNN using stochastic gradient descent with Adam optimization and 16-
sample mini-batch, decreasing the learning rate by a factor of 10 starting from 1× 10−2 every
time the validation metric plateaued until 1× 10−5. We minimized mean squared error for
regression (TUPAC16), cross-entropy for classification (dHGP vs non-dHGP), and partial
log-likelihood for patient risk prediction (targeting overall survival).

Appendix B. Multitask training experiments

In Sec. 4.3, we experimented varying the number of tasks included during multitask training.
We trained a set of encoders that were subsequently used to solve the TUPAC16 task. In
Tab. 3, we show the performance obtained with each encoder.

Appendix C. Learning from overall survival data

Survival analysis constitutes a regression problem where a model is trained to predict a risk
score for each patient that is proportional to their chances of experiencing a given event,
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in this case death. Each patient’s WSI is associated with a label composed of two items:
a follow-up period t indicating the number of months that the patient has been enrolled in
the study; and a binary variable e that describes the event of whether the patient actually
died or not. If a patient is event-free until her last follow-up, i.e. did not die, that sample
is considered to be censored since we do not know when the event could take place in the
future. The following introduces a loss function that enables a CNN to regress the patient’s
risk of death by exploiting censored and uncensored data.

The Cox’s proportional hazards model (Cox, 1972) is the most widely used method
to find the relationship between censored data and its covariates x. It models the hazard
function h(t, x) (probability of death at a given time) as a product between a time-dependent
baseline h0(t) that is common to all patients, and a term proportional to the covariates
weighted by learned coefficients β:

h(t, x) = h0(t) exp (βx). (1)

We can estimate the optimal coefficients β̂ by maximizing the logarithm of the partial
likelihood:

β̂ = arg max log
∏
i∈D

expβxi∑
j∈Ri

expβxj
= arg max

∑
i∈D

βxi − log
∑
j∈Ri

expβxj

, (2)

where D corresponds to the set of patients whose death is recorded (uncensored), and
Ri is the set of patients that did not experienced the event before patient i, i.e. survived
longer than patient i.

In this study, the covariate vector x is a compressed WSI γ representing a patient.
Instead of weighting each pixel with β coefficients to produce a risk score, we parameterize
this transformation with a CNN as f(θ, γ), with θ representing the trainable parameters of
the neural network (Faraggi and Simon, 1995):

θ̂ = arg max
∑
i∈D

f(θ, γi)− log
∑
j∈Ri

exp f(θ, γj)

. (3)

Intuitively, by maximizing the previous term we enforce the CNN to learn a certain
solution θ̂ that assigns high risk scores f(θ, γ) to those patients i ∈ D that died early in
comparison to those patients in each i’s risk set Ri that survived longer, and thus deserve
a lower risk score.

14


	Introduction
	Materials
	Methods
	Experimental results
	Training the multitask encoder
	Predicting the speed of tumor proliferation (TUPAC16)
	Image-level performance vs. number of tasks used in multitask training
	Predicting patient risk of death in colorectal liver metastasis
	Comparing unsupervised and supervised encoders

	Discussion
	Architecture and training details of the image-level CNN
	Multitask training experiments
	Learning from overall survival data

