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Abstract

Deep Reinforcement Learning (RL) is successful in solving many complex Markov
Decision Processes (MDPs) problems. However, agents often face unanticipated
environmental changes after deployment in the real world. These changes are often
spurious and unrelated to the underlying problem, such as background shifts for
visual input agents. Unfortunately, deep RL agents are usually sensitive to these
changes and fail to act robustly against them. This resembles the problem of domain
generalization in supervised learning. In this work, we study this problem for goal-
conditioned RL agents. We propose a theoretical framework in the Block MDP
setting that characterizes the generalizability of goal-conditioned policies to new
environments. Under this framework, we develop a practical method PA-SkewFit
that enhances domain generalization. The empirical evaluation shows that our
goal-conditioned RL agent can perform well in various unseen test environments,
improving by 50% over baselines.

1 Introduction

Deep Reinforcement Learning (RL) has achieved remarkable success in solving high-dimensional
Markov Decision Processes (MDPs) problems, e.g., Alpha Zero Silver et al. [2017] for Go, DQN
Mnih et al. [2015] for Atari games and SAC Haarnoja et al. [2018] for locomotion control. However,
current RL algorithms requires massive amounts of trial and error to learn Silver et al. [2017], Mnih
et al. [2015], Haarnoja et al. [2018]. They also tend to overfit to specific environments and often fail
to generalize beyond the environment they were trained on Packer et al. [2018]. Unfortunately, this
characteristic limits the applicability of RL algorithms for many real world applications. Deployed
RL agents, e.g. robots in the field, will often face environment changes in their input such as different
backgrounds, lighting conditions or object shapes Julian et al. [2020]. Many of these changes are
often spurious and unrelated to the underlying task, e.g. control. However, RL agents trained without
experiencing these changes are sensitive to the changes and often perform poorly in practice Julian
et al. [2020], Zhang et al. [2020a,b].

In our work, we seek to tackle changing, diverse problems with goal-conditioned RL agents. Goal-
conditioned Reinforcement Learning is a popular research topic as its formulation and method is
practical for many robot learning problems Marcin et al. [2017], Eysenbach et al. [2020]. In goal-
conditioned MDPs, the agent has to achieve a desired goal state g which is sampled from a prior
distribution. The agent should be able to achieve not only the training goals but also new test-time
goals. Moreover, in practice, goal-conditioned RL agents often receive high-dimensional inputs for
both observations and goals Paster et al. [2020], Péré et al. [2018]. Thus, it is important to ensure that
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the behaviour of goal-conditioned RL agents is invariant to any irrelevant environmental changes in
the input at test time. Previous work Zhang et al. [2020a] tries to address these problems via model
bisimulation metric Ferns et al. [2011]. These methods aim to acquire a minimal representation
which is invariant to irrelevant environment factors. However, as goal-conditioned MDPs are a family
of MDPs indexed by the goals, it is inefficient for these methods to acquire the model bisimulation
representation for every possible goal, especially in high-dimensional continuous goal spaces (such
as images).

In our work, we instead choose to optimize a surrogate objective to learn the invariant policy. Our
main contributions are:

1. We formulate the Goal-conditioned Block MDPs (GBMDPs) to study domain generalization in
the goal-conditioned reinforcement learning setting (Section 2), and propose a general theory
characterizing how well a policy generalizes to unseen environments (Section 3.1).

2. We propose a theoretically-motivated algorithm based on optimizing a surrogate objective, perfect
alignment, with aligned data (Section 3.2). We then describe a practical implementation based on
Skew-Fit Pong et al. [2020] to achieve the objective (Section 3.3).

3. Empirically, our experiments for a sawyer arm robot simulation with visual observations and
goals demonstrates that our proposed method achieves state-of-the-art performance compared
to data augmentation and bisimulation baselines at generalizing to unseen test environments in
goal-conditioned tasks (Section 4).

2 Problem Formulation
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Figure 1: Graphical model
for Goal-conditioned Block
MDPs (GBMDPs) setting.
The agent takes in the goal
g and observation xt, which
is produced by the domain
invariant state st and environ-
mental state bt, and acts with
action at. Note that bt may
have temporal dependence
indicated by the dashed edge.

In this section, we formulate the domain invariant learning problem
as solving Goal-conditioned Block MDPs (GBMDPs). This extends
previous work on learning invariances Zhang et al. [2020a], Du et al.
[2019] to the goal-conditioned setting Kaelbling [1993], Schaul et al.
[2015], Marcin et al. [2017].

We consider a family of Goal-conditioned Block MDP environments
ME = {(S,A,X e, T e,G, �)|e 2 E} where e stands for the envi-
ronment index. Each environment consists of shared state space S,
shared action space A, observation space X

e, transition dynamic
T

e, shared goal space G ⇢ S and the discount factor �.

Moreover, we assume that ME follows the generalized Block struc-
ture Zhang et al. [2020a]. The observation xe

2 X
e is determined

by state s 2 S and the environmental factor be 2 B
e, i.e., xe(s, be)

(Figure 6(c)). For brevity, we use xe
t (s) to denote the observa-

tion for domain e at state s and step t. We may also omit t as
xe(s) if we do not emphasize on the step t or the exact environ-
mental factor bet . The transition function is thus consists of state
transition p(st+1|st, at) (also p(s0)), environmental factor transition
qe(bet+1|b

e
t ). In our work, we assume the state transition is nearly

deterministic, i.e., 8s, a, entropy H(p(st+1|st, at)),H(p(s0)) ⌧ 1,
which is quite common in most RL benchmarks and applications
Mnih et al. [2015], Greg et al. [2016], Pong et al. [2018]. Most
importantly, X E = [e2EX

e satisfies the disjoint property Du et al. [2019], i.e., each observation
x 2 X

E uniquely determines its underlying state s. Thus, the observation space X E can be partitioned
into disjoint blocks X (s), s 2 S . This assumption prevents the partial observation problem.

The objective function in GBMDP is to learn a goal-conditioned policy ⇡(a|xe, g) that maximizes
the discounted state density function J(⇡) Eysenbach et al. [2020] across all domains e 2 E . In our
theoretical analysis, we do not assume the exact form of g to the policy. One can regard ⇡(·|xe, g) as
a group of RL policies indexed by the goal state g.

J(⇡) = Ee⇠E,g⇠G,⇡

"
(1� �)

1X

t=0

�tpe⇡(st = g|g)

#
= Ee⇠E [J

e(⇡)] (1)

pe⇡(st = g|g) denotes the probability of achieving goal g under policy ⇡(·|xe, g) at step t in domain
e. Besides, e ⇠ E and g ⇠ G refers to uniform samples from each set. As pe⇡ is defined over
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state space, it may differs among environments since policy ⇡ takes xe as input. Fortunately, in
a GBMDP, there exist optimal policies ⇡G(·|xe, g) which are invariant over all environments, i.e.,
⇡G(a|xe(s), g) = ⇡G(a|xe0(s), g), 8a 2 A, s 2 S, e, e0 2 E .

During training, the agent has access to training environments {ei}Ni=1 = Etrain ⇢ E with their
environment indices. However, we do not assume that Etrain is i.i.d sampled from E . Thus, we
want the goal-conditioned RL agent to acquire the ability to neglect the spurious and unrelated
environmental factor be and capture the underlying invariant state information. This setup is adopted
in many recent works such as in Zhang et al. [2020a] and in domain generalization Koh et al. [2020],
Arjovsky et al. [2019] for supervised learning.

3 Method

In this section, we propose a novel learning algorithm to solve GBMDPs. First, we propose a general
theory to characterize how well a policy ⇡ generalizes to unseen test environments after training on
Etrain. Then, we introduce perfect alignment as a surrogate objective for learning. This objective is
supported by the generalization theory. Finally, we propose a practical method to acquire perfect
alignment.

3.1 Domain Generalization Theory for GBMDP

In a seminal work, Ben-David et al. Ben-David et al. [2010] shows it is possible to bound the error of
a classifier trained on a source domain on a target domain with a different data distribution. Follow-up
work extends the theory to the domain generalization setting Sicilia et al. [2021], Albuquerque et al.
[2019]. In GBMDP, we can also derive similar theory to characterize the generalization from training
environments Etrain to target test environment t. The theory relies on the Total Variation Distance DTV
Wikipedia [2021] of two policies ⇡1,⇡2 with input (xe, g), which is defined as follows.

DTV(⇡1(·|x
e, g) k ⇡2(·|x

e, g)) = sup
A02�(A)

|⇡1(A
0
|xe, g)� ⇡2(A

0
|xe, g)|

In the following statements, we denote ⇢(x, g) as some joint distributions of goals and observations
that g ⇠ G and x is determined by ⇢(x|g). Additionally, we use ⇢e⇡(xe

|g) to denote the discounted
occupancy measure of xe in environment e under policy ⇡(·|xe, g) and refer ⇢e⇡(xe) as the marginal
distribution. Furthermore, we denote ✏⇢(x,g)(⇡1 k ⇡2) as the average DTV between ⇡1 and ⇡2, i.e.,
✏⇢(x,g)(⇡1 k ⇡2) = E⇢(x,g)[DTV(⇡1(·|x, g) k ⇡2(·|x, g))]. This quantity is crucial in our theory as it
can characterize the performance gap between two policies (see Appendix C).

Then, similar to the famous H�H-divergence Ben-David et al. [2010], Sicilia et al. [2021] in domain
adaptation theory, we define ⇧�⇧-divergence of two joint distributions ⇢(x, g) and ⇢(x, g)0 in terms
of the policy class ⇧:

d⇧�⇧(⇢(x, g), ⇢(x, g)
0) = sup

⇡,⇡02⇧
|✏⇢(x,g)(⇡ k ⇡0)� ✏⇢(x,g)

0
(⇡ k ⇡0)|

On one hand, d⇧�⇧ is a distance metric which reflects the distance between two distributions w.r.t
function class ⇧. On the other hand, if we fix these two distributions, it also reveals the quality of the
function class ⇧, i.e., smaller d⇧�⇧ means more invariance to the distribution change. Finally, we
state the following Proposition in which ⇡G is some optimal and invariant policy.
Proposition 1 (Informal). For any ⇡ 2 ⇧, we consider the occupancy measure {⇢ei⇡ (xei , g)}Ni=1 for
training environments and ⇢t⇡G

(xt, g) for the target environment. For simplicity, we use ✏ei as the

abbreviation of ✏⇢
ei
⇡ (xei ,g), ✏t as ✏⇢

t
⇡G

(xt,g) and � = maxei,e0i2Etrain d⇧�⇧(⇢ei⇡ (xei , g), ⇢
e0i
⇡ (xe0i , g)).

Let

� =
1

N

NX

i=1

✏ei(⇡⇤
k ⇡G) + ✏t(⇡⇤

k ⇡G), ⇡⇤ = argmin
⇡02⇧

NX

i=1

✏ei(⇡0
k ⇡G)

Then, we have

J t(⇡G)� J t(⇡) 
1

N

NX

i=1

✏ei(⇡ k ⇡G) + �+ � + min
⇢(x,g)2B

d⇧�⇧(⇢(x, g), ⇢
t
⇡G

(xt, g)) (2)

where B is a characteristic set of joint distributions determined by Etrain and policy class ⇧.
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The formal statement and the proof are shown in Appendix C.2. Generally speaking, the first term
of the right hand side in Eq. (2) quantifies the performance of ⇡ in the N training environments. �
quantifies the optimality of the policy class ⇧ over all environments. � reflects how the policy class
⇧ can reflect the difference among {⇢ei⇡ (xei , g), ei 2 Etrain}, which should be small if the policy
class is invariant. The last term characterizes the distance between training environment and target
environment and will be small if the training environments are diversely distributed.

Many works on domain generalization of supervised learning Ben-David et al. [2010], Liu et al.
[2019], Sicilia et al. [2021], Albuquerque et al. [2019], Akuzawa et al. [2019] spend much effort
in discussing the trade-offs among different terms similar to the ones in Eq. (2), e.g., minimizing �
may increase � Akuzawa et al. [2019], and in developing sophisticated techniques to optimize the
bound, e.g. distribution matching Louizos et al. [2016], Li et al. [2018], Jin et al. [2020] or adversarial
learning Liu et al. [2019].

Different from their perspectives, in GBMDPs, we propose a simple but effective criteria to minimize
the bound. From now on, we only consider the policy class ⇧ = ⇧� = {w(�(x), g), 8w}. Usually,
� will be referred as an encoder which maps x 2 X

E to some latent representation z = �(x). We
will also use the notation z(s) = �(x(s)) if we do not emphasize on the specific environment.
Definition 1 (Perfect Alignment). An encoder is called a perfect alignment encoder � w.r.t environ-
ment set E if 8e, e0 2 E and 8s, s0 2 S , �(xe(s)) = �(xe0(s0)) if and only if s = s0.

As illustrated in Figure 5, an encoder is in perfect alignment if it maps two observations of the same
underlying state s to the same latent encoding z(s) while also preventing meaningless embedding,
i.e., mapping observations of different states to the same z. We believe perfect alignment plays an
important role in domain generalization for goal-conditioned RL agents. Specifically, it can minimize
the bound of Eq. (2) as follows.
Proposition 2 (Informal). If the encoder � is a perfect alignment over Etrain, then

J t(⇡G)� J t(⇡) 
1

N

NX

i=1

✏ei(⇡ k ⇡G)

| {z }
(E)

+ ✏t(⇡⇤
k ⇡G) + d⇧��⇧�(⇢̃(x, g), ⇢

t
⇡G

(xt, g))
| {z }

(t)

(3)

where ⇢̃(x, g) and ⇡⇤ are defined in Proposition 1 (also Appendix C).

In Appendix C.3, we formally prove Proposition 2 when � is a (⌘, )-perfect alignment, i.e., � is
only near perfect alignment. The proof shows that the generalization error bound is minimized on the
R.H.S of Eq. (3) when � asymptotically becomes an exact perfect alignment encoder. Therefore, in
our following method, we aim to learn a perfect alignment encoder via aligned sampling (Section 3.2).

For the remaining terms in the R.H.S of Eq. (3), we find it hard to quantify them task agnostically, as
similar difficulties also exist in the domain generalization theory of supervised learning Sicilia et al.
[2021]. Fortunately, we can derive upper bounds for the remaining terms under certain assumptions
and we observe that these upper bounds are significantly reduced via our method in the experiments
(Section 4). The (E) term represents how well the learnt policy ⇡ approximates the optimal invariant
policy on the training environments and is reduced to almost zero via RL (Table 1). For the (t)
term, we show that an upper bound of (t) is proportion to the invariant quality of � on the target
environment. Moreover, we find that learning a perfect alignment encoder over Etrain empirically
improves the invariant quality over other unseen environments (t) (Figure 4). Thus, this (t) term
upperbound is reduced by learning perfect alignment. Please refer to Appendix C.4 for more details.

Based on the theory we derived in this subsection, we adopt perfect alignment as the heuristic to
address GBMDPs in our work. In the following subsections, we propose a practical method to acquire
a perfect alignment encoder over the training environments.

3.2 Learning Domain Invariant via Aligned Sampling

First, we discuss about the if condition on perfect alignment encoder �, i.e., 8s,�(xe(s)) =
�(xe0(s)). The proposed method is based on aligned sampling. In contrast, most RL algorithms
use observation-dependent sampling from the environment, e.g., ✏-greedy or Gaussian distribution
policies Haarnoja et al. [2018], Fujimoto et al. [2018], Pong et al. [2020], Mnih et al. [2015]. However,
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(a) Illustration of Aligned Sampling (b) Overall structure

Figure 2: (a): Illustration of Aligned Sampling. Square represents the whole state space S , gray area
represents the distribution ⇢e⇡(s) in two different environments. Small colored areas are the aligned
state distribution generated by aligned sampling in Section 3.2. (b): Overall VAE structure in our
PA-SF. Encoder maps xe to the latent embedding z and decoder D reconstructs the observations with
z and index e. LMMD and LDIFF denote the two losses in Section 3.2.

with observation-dependent sampling, occupancy measures ⇢e⇡(s), 8e 2 Etrain will be different. Thus,
simply aligning the latent representation of these observations will fail to produce a perfect alignment
encoder �.

Thus, we propose a novel strategy for data collection called aligned sampling. First, we randomly
select a trajectory (e.g., from replay buffer etc.), denoted as {xe

0, a0, x
e
1, a1, . . . , x

e
T } from envi-

ronment e. The set of corresponding states along this trajectory are denoted as {set (a0:t)}
T
t=0.

Second, we take the same action sequence a0:T in another domain e0 to get another trajectory
{xe0

0 , a0, x
e0
1 , a1, . . . , x

e0

T } (so as {se
0

t (a0:t)}
T
t=0). We refer to the data collected by aligned sampling

from all training environments as aligned data. These aligned observations {xei
t (a0:t)}, 8ei 2 Etrain

are stored in an aligned buffer Ralign corresponding to the aligned action sequence a0:t.

Under the definition of GBMDP, we have 8t 2 [0 : T ], s 2 S, ⇢(set (a0:t)) = ⇢(se
0

t (a0:t)), i.e.,
the same state distribution. Therefore, we can use MMD loss Gretton et al. [2008] to match
distribution of �(xe(s)) for the aligned data. More specifically, in each iteration, we sample a
mini-batch of B aligned observations of every training environment ei 2 Etrain from Ralign, i.e.,
Balign = {xei(seit (ab0:t)), 8ei 2 Etrain}

B
b=1. Then we use the following loss as a computationally

efficient approximation of the MMD metric Zhao and Meng [2015], Louizos et al. [2016].

LMMD(�) = Ee,e0⇠Etrain,Balign⇠Ralign [k
1

B

BX

b=1

 (�(xe(set (a
b
0:t)))�

1

B

BX

b=1

 (�(xe0(se
0

t (a
b
0:t)))) k

2
2]

where  is a random expansion function.

In Figure 2(a), we illustrate the intuition of the above approach. When the transition is nearly
deterministic, the entropy for ⇢(set (a0:t)) is much smaller, i.e., H(⇢(set (a0:t))) ⌧ H(⇢e⇡(st)). Thus,
⇢(set (a0:t)) can be regarded as small patches in S . We use the MMD loss LMMD to match the latent
representation {�(xe(s)), s ⇠ ⇢(set (a0:t))}, 8e 2 Etrain together. As a consequence, we should
achieve an encoder � that is more aligned. We discuss the theoretical property of LMMD in detail in
Appendix C.5.

However, simply minimizing LMMD may violate the only if condition for perfect alignment. For
example, a trivial solution for LMMD = 0 is mapping all observations to some constant latent. To
ensure that �(xe(s)) = �(xe0(s0)) only if s = s0, we additionally use the difference loss LDIFF as
follows.

LDIFF(�) = �Ee⇠Etrain,xe,x̃e2Re k �(xe)� �(x̃e) k22

where R
e refers to the replay buffer of environment e. Clearly, minimizing LDIFF encourages

dispersed latent representations over all states s 2 S .

We refer to the combination ↵MMDLMMD + ↵DIFFLDIFF as our perfect alignment loss LPA. Note that
LPA resembles contrastive learning Chen et al. [2020], Laskin et al. [2020a]. Namely, observations of
aligned data from Ralign are positive pairs while observations sampled randomly from a big replay
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buffer are negative pairs. We match the latent embedding of positive pairs via the MMD loss while
separating negative pairs via the difference loss. As discussed in Section 3.1, we believe this latent
representation will improve generalization to unseen target environments.

3.3 Perfect Alignment for Skew-Fit

In Section 4, we will train goal-conditioned RL agents with perfect alignment encoder using the
Skew-Fit algorithm Pong et al. [2020]. Skew-Fit is typically designed for visual-input agents which
learn a goal-conditioned policy via purely self-supervised learning.

First, Skew-Fit trains a �-VAE with observations collected online to acquire a compact and meaningful
latent representation for each state, i.e., z(s) from the image observations x(s). Then, Skew-Fit
optimizes a SAC Haarnoja et al. [2018] agent in the goal-conditioned setting over the latent embedding
of the image observation and goal, ⇡(a|z, g). The reward function is the negative of l2 distance
between the two latent representation z(s) and z(g), i.e., r(s, g) = � k z(s)� z(g) k2. Furthermore,
to improve sample efficiency, Skew-Fit proposes skewed sampling for goal-conditioned exploration.

In our algorithm, Perfect Alignment for Skew-Fit (PA-SF), the encoder � is optimized via both �-VAE
losses as Pong et al. [2020], Nair et al. [2018] and LPA loss to ensure meaningful and perfectly aligned
latent representation.

L(�, D) = LRECON(xe, x̂e) + �DKL(q�(z|x
e) k p(z)) + ↵MMDL

MMD + ↵DIFFL
DIFF (4)

In addition, we use both aligned sampling and observation-dependent sampling. Aligned sam-
pling provides aligned data but hurts sample-efficiency while observation-dependent sampling is
exploration-efficient but fails to ensure alignment. In practice, we find that collecting a small portion
(15% of all data collected) of aligned data in Ralign is enough for perfect alignment via LPA.

Additionally, inspired by Louizos et al. [2016], we also change the �-VAE structure to what is shown
in Figure 2(b), since in GBMDP data are collected from N training environments and thus, the
identity Gaussian distribution is no longer a proper fit for prior. The encoder � maps xe(s) to some
latent representation z(s) while the decoder D takes both z(s) and the environment index e as input
to reconstruct x̂e(s). Note that by using both LPA and LRECON, we require static environmental
factors in Etrain (unnecessary for testing environments) for a stable optimization. In future work, we
will address the limit from �-VAE by training two latent representations simultaneously to stabilize
the optimization for generality.

4 Experiments

In this section, we conduct experiments to evaluate our PA-SF algorithms. The experiments are based
on multiworld Pong et al. [2018]. Our empirical analysis tries to answer the following questions:
(1) How well does PA-SF perform in solving GBMDP problems? (2) How does each component
proposed in Section 3 contribute to the performance?

4.1 Comparative Evaluation

In this subsection, we aim to answer the question (1) by comparing our proposed PA-SF method with
vanilla Skew-Fit and several other baselines that attempt to acquire invariant policies for RL agents.

Baselines Current methods for obtaining robust policies can be characterized into two categories:
(1) data augmentation and (2) model bisimulation.
1. Data Augmentation. Recent work Stone et al. [2021] tries to use data augmentation to prevent

the RL agents from distractions. We implement the most widely accepted data augmentation
methods RAD Laskin et al. [2020b] upon Skew-Fit (Skew-Fit + RAD) as a baseline. Note that our
PA-SF method does not use any data augmentation and is parallel with this kind of techniques.

2. Model Bisimulation Ferns et al. [2011]. These methods utilize bisimulation metrics to learn
a minimal but sufficient representation which will neglect irrelevant features of Block MDPs.
We include MISA Zhang et al. [2020a] and DBC Zhang et al. [2020b] in our comparison as
they are the most successful implementations for high-dimensional tasks. Moreover, in the
goal-conditioned setting, we use an oracle state-goal distance � k s� g k2 as rewards for these
two algorithms in GBMDP. In contrast, our PA-SF method does not have such information.
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Table 1: Evaluation of PA-SF and baselines on four control tasks. We report the mean and one
standard deviation on each task (lower metric is better).

Algorithm
Reach Door Push Pickup

Hand distance Angle difference Puck distance Object distance
(35K) (150K) (400K) (280K)

Test Avg

Skew-Fit 0.111± 0.010 0.194± 0.018 0.086± 0.004 0.037± 0.006
Skew-Fit + RAD 0.105± 0.010 0.162± 0.030 0.082± 0.008 0.040± 0.004
MISA 0.239± 0.0142 0.255± 0.027 0.099± 0.006 0.043± 0.004
DBC 0.185± 0.037 0.320± 0.033 0.095± 0.006 0.045± 0.002
PA-SF(Ours) 0.076± 0.005 0.106± 0.015 0.069± 0.005 0.028± 0.004

Train Avg PA-SF(Ours) 0.067± 0.005 0.058± 0.074 0.060± 0.005 0.020± 0.008
Oracle Skew-Fit 0.055± 0.010 0.057± 0.012 0.054± 0.006 0.020± 0.006

Figure 3: Learning curve of all algorithms on average across test environments for each task. All
curves show the mean and one standard deviation (a half for Pickup to show clearly) of 7 seeds.

Environments We evaluate PA-SF and all baselines on a set of GBMDP tasks based on multiworld
benchmark Pong et al. [2018], which is widely used to evaluate the performance of visual input
goal-conditioned algorithms. We use the following four basic tasks Nair et al. [2018], Pong et al.
[2020]: Reach, Door, Pickup and Push. In GBMDP, we create different environments with various
backgrounds, desk surfaces, and object appearances. During testing, we also create environments
with unseen video backgrounds to mimic environmental factor transitions qe(bet+1|b

e
t ). This makes

policy generalization more challenging. Please refer to Appendix E for a full description of our
experiment setup and implementation details of the baselines and our algorithm.

Results In Table 1, we show the final average performance of each algorithm on unseen test
environments Etest. The corresponding learning curves are shown in Figure 3. This metric shows the
generalizability of each RL agent. All these agents are allowed to collect data from Etrain (N = 3)
with static environmental factors. Our PA-SF achieves SOTA performance on all tasks. On testing
environments, we achieve a relative reduction around 40% to 65% of the corresponding metrics
over vanilla Skew-Fit w.r.t the optimal metric possible (Oracle Skew-Fit). Oracle Skew-Fit refers
to the performance of a Skew-Fit algorithm trained directly on the single environment (and not
simultaneously on all Etrain).

Other invariant policy learning methods perform sluggishly on all tasks. For DBC and MISA, we
hypothesize that they struggle for goal-conditioned problems since the model bisimulation metric is
defined for a single MDP. In GBMDPs, this means acquiring a set of encoders �g that achieves model
bisimulation for every possible g and is thus inefficient for learning. By design, our method is not
susceptible to this issue as the perfect alignment is a universal invariant representation for all goals.
Data augmentation via RAD provides marginal improvement over the vanilla Skew-Fit. Nevertheless,
we believe developing adequate data augmentation techniques for GBMDPs is an important research
problem and is orthogonal with our method.

Additionally, we also show the performance of PA-SF on the training environments in Table 1. PA-SF
is still comparable and as sample-efficient as Skew-Fit in the training environments. This supports the
claim that the (E) term in the R.H.S of Eq. (3) is reduced to almost zero via RL training in practice.
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4.2 Design Evaluation

In this subsection, we conduct comprehensive analysis on the design of PA-SF to interpret how well
it carries out the theoretical framework discussed in Section 3.1 and Section 3.2.

To begin with, we show the learning curves in Figure 4 of different ablations of PA-SF in the Door
environment during both training and testing. To understand the roles of LDIFF and LMMD, PA-SF
(w/o D) excludes LDIFF and PA-SF (w/o MD) excludes both losses1. Noticing that PA-SF (w/o MD)
is equivalent to the Skew-Fit algorithm with our proposed VAE structure (Figure 2(b)). We also add
PA-SF (w/o AS) which excludes aligned sampling.

Figure 4: Ablation of PA-SF and visualization of the latent representation via LER metric. All curves
represent the mean and one standard deviation across 7 seeds.
Additionally, we also quantify the quality of the latent representation �(xe(s)) in Figure 4 via the
metric Latent Error Rate (LER). LER is defined as the average over environment set E 2 {Etrain, Etest}
as follows:

Err(�) = Ee⇠E,s⇠S


k �(xe(s))� �(xe0(s)) k2

k �(xe(s)) k2

�

In general, the smaller Err(�) is, the closer the encoder � is to perfect alignment over the environ-
ments E. We first focus on the discussion about training performance.

1. � achieves the if condition of perfect alignment over Etrain via LMMD as the LER value of PA-SF
and PA-SF (w/o D) is almost 0. While without MMD loss, PA-SF (w/o MD) and Skew-Fit
struggle with large LER value despite achieving good training performance. Furthermore, the
comparison between PA-SF and PA-SF (w/o AS) demonstrates the importance of using aligned
data in the MMD loss (Otherwise, the matching is inherently erroneous).

2. The only if condition, i.e., �(xe(s)) = �(xe0(s0)) only if s = s0, is also achieved empirically by
visualizing the reconstruction of the VAE (Figure 9 in Appendix D) and we believe this is satisfied
by both the difference loss and the reconstruction loss. Under the only if condition, the SAC
Haarnoja et al. [2018] trained on the latent space achieves the optimal performance. In contrast,
PA-SF (w/o AS) fails to learn well on the training environments as its latent representation is
mixed over different states.

Second, we focus on the generalization performance on target domains t, i.e., term (t) in Eq. (3). We
observe the following:
1. As shown by the learning curve of test environments, the target domain performance of different

ablations match that of the LER metric: SkewFit, PA-SF (w/o AS) > PA-SF (w/o MD) > PA-SF
(w/o D) > PA-SF. During training, these ablations have almost the same performance, except
PA-SF (w/o AS). This indicates that the increased test performance indeed comes from the
improved representation quality of the encoder �, i.e., more aligned. This supports our claim at
the end of Section 3.1 and the upper bound analysis on the (t) term in Appendix C.4, that the
increased invariant property of � produces better domain generalization performance.

2. In test environment ablations, the LER is reduced significantly on methods with LMMD. This
supports our claim that a perfect alignment encoder on training environments also improves the
encoder’s invariant property on unseen environments. In addition, by encouraging dispersed latent
representation, the difference loss LDIFF also plays a role in reducing LER during testing. This
supports the necessity of both losses for generalization.

1A single LDIFF is not useful here.
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Figure 5: t-SNE visualization of the latent space �(xe) trained with PA-SF for three environments: 2
training and 1 testing of Push as well as instances visualization.

We observe the similar results in other tasks as well (Appendix D). Here, we also visualize the latent
space by t-SNE plot to illustrate the perfect alignment on task Push. Dots in training environments
are matched perfectly and the corresponding test environment dot is approximately near as expected.

5 Related Work

Goal-conditioned RL: Goal-conditioned RL Kaelbling [1993], Schaul et al. [2015] removes the
need for complicated reward shaping by only rewarding agents for reaching a desired set of goal states.
RIG Nair et al. [2018] is the seminal work for visual-input, reward-free learning in goal-conditioned
MDPs. Skew-Fit Pong et al. [2020] improves over RIG Nair et al. [2018] in training efficiency by
ensuring the behavioural goals used to explore are diverse and have wide state coverage. However,
Skew-Fit has its own limitation in understanding the semantic meaning of the goal-conditioned
task. To acquire more meaningful goal’s and observation’s latent representation, several approaches
apply inductive biases or seek human feedback. ROLL Wang et al. [2020] applies object extraction
methods under strong assumptions, while WSC Lee et al. [2020] uses weak binary labeled data as the
reward function. Others explore the same goal-conditioned RL problem via hindsight experience
replay Marcin et al. [2017], Ren et al. [2019], Ghosh et al. [2019], unsupervised reward learning Péré
et al. [2018], inverse dynamics models Paster et al. [2020], C-learning Eysenbach et al. [2020], goal
generation Florensa et al. [2018], Nair and Finn [2019], Pitis et al. [2020], goal-conditioned forward
models Nair et al. [2020], and hierarchical RL Li et al., Nachum et al. [2018], Zhang et al. [2020c],
Hou et al. [2020]. Our study focus on learning goal-conditioned policies that is invariant of spurious
environmental factors. We aim to learn a policy that can generalize to visual goals in unseen test
environments.

Learning Invariants in RL: Robustness to domain shifts is crucial for real-world applications of
RL. Zhang et al. [2020a,b], Gelada et al. [2019] implement the model-bisimulation framework
Ferns et al. [2011] to acquire a minimal but sufficient representation for solving the MDP problem.
However, model-bisimulation for high-dimension problems typically requires domain-invariant and
dense rewards. These assumptions do not hold in GBMDPs. Contrastive Metric Embeddings (CME)
Agarwal et al. [2021] instead uses ⇡⇤-bisimulation metric but it also requires extra information of the
optimal policy. Another line of work tries to address these issues via self-supervised learning. Stone
et al. [2021] tests multiple data augmentation methods including RAD Laskin et al. [2020b] and DrQ
Kostrikov et al. [2020] to boost the robustness of the representation as well as the policy. Our work
can also apply data augmentation in practice. However, we find that RAD is not very helpful in the
Skew-Fit framework. Additionally, Hansen et al. [2020], Bodnar et al. [2020] use self-supervised
correction during real-world adaptation like sim2real transfer but these methods are incompatible for
domain generalization.
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6 Conclusion

In this paper, we study the problem of learning invariant policies in Goal-conditioned RL agents. The
problem is formulated as a GBMDP, which is an extension of Goal-conditioned MDPs and Block
MDPs where we want the agent’s policy to generalize to unseen test environments after training on
several training environments.

As supported by the generalization bound for GBMDP, we propose a simple but effective heuristic,
i.e., perfect alignment which we can minimize the bound asymptotically and benefit the generalization.
To learn a perfect alignment encoder, we propose a practical method based on aligned sampling. The
method resembles contrastive learning: matching latent representation of aligned data via MMD loss
and dispersing the whole latent representations via the DIFF loss. Finally, we propose a practical
implementation Perfect Alignment for Skew-Fit (PA-SF) by adding the perfect alignment loss to
Skew-Fit and changing the VAE structure to handle GBMDPs.

The empirical evaluation shows that our method is the SOTA algorithm and achieves a remarkable
increase in test environments’ performance over other methods. We also compare our algorithm with
several ablations and analyze the representation quantitatively. The results support our claims in the
theoretical analysis that perfect alignment criteria is effective and that we can effectively optimize the
criteria with our proposed method. We believe the perfect alignment criteria will enable applications
in diverse problem settings and offers interesting directions for future work, such as extensions to
other goal-conditioned learning frameworks Eysenbach et al. [2020], Paster et al. [2020].
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