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ABSTRACT

We propose a novel autoregressive modeling approach for speech synthesis, com-
bining a variational autoencoder (VAE) with a multi-modal latent space and an
autoregressive model that uses Gaussian Mixture Models (GMM) as the con-
ditional probability distribution. Unlike previous methods that rely on residual
vector quantization, our model leverages continuous speech representations from
the VAE’s latent space, greatly simplifying the training and inference pipelines.
We also introduce a stochastic monotonic alignment mechanism to enforce strict
monotonic alignments. Our approach significantly outperforms the state-of-the-
art autoregressive model VALL-E in both subjective and objective evaluations,
achieving these results with only 10.3% of VALL-E’s parameters. This demon-
strates the potential of continuous speech language models as a more efficient
alternative to existing quantization-based speech language models. Sample audio
can be found at https://tinyurl.com/gmm-lm-tts.

1 INTRODUCTION

Transformers trained with autoregressive (AR) objectives have become the dominant approach in
natural language processing (NLP) (Radford et al., 2019; Brown et al., 2020; Vaswani, 2017). The
vast successes in NLP have inspired researchers to apply Transformers and autoregressive objectives
to image and speech domains as well (Ramesh et al., 2021; Wang et al.; Betker, 2023). Since speech
and images are continuous signals, discretization is a critical first step before applying discrete au-
toregressive training. As a result, autoregressive modeling of images and audio typically involves
two stages of training. In the first stage, a VQ-VAE (Van Den Oord et al., 2017) or a variant of
VQ-VAE (Zeghidour et al., 2021; Défossez et al., 2022; Kumar et al., 2024) is trained to encode
input data into discrete latent representations using a vector quantization bottleneck. After train-
ing the VQ-VAE, an autoregressive model is trained on the discrete latent codes produced by the
encoder (Ramesh et al., 2021). The AR model captures the sequential dependencies in the latent
space, learning to predict the next latent code based on previous ones, which enables high-fidelity
generation. One of the most attractive features of AR modeling in speech is its ability to model both
the distribution of acoustic vectors and the duration simultaneously. This is particularly beneficial
compared to non-autoregressive models, which often require separate duration modules and exter-
nal alignments (Ren et al., 2020; 2019; Li et al., 2022). Another advantage of AR models is their
capability for in-context learning of speaker style and voice through prompting, which has proven to
be more powerful than traditional speaker embedding-based voice cloning (Wang et al.; Casanova
et al., 2024).

It has been found that to faithfully reconstruct audio signals, the required codebook size can be
prohibitively large (Zeghidour et al., 2021), and the use of discrete codes often introduces artifacts
and mispronunciation during reconstruction (Casanova et al., 2024; Betker, 2023). Additionally,
codebooks are often under-utilized, and training stability can be compromised due to the use of the
Straight-Through (ST) estimator (Łańcucki et al., 2020; Mentzer et al., 2023). While using multiple
codebooks with residual vector quantization (RVQ) mitigates some of these issues (Zeghidour et al.,
2021; Défossez et al., 2022), it comes at the cost of requiring a specialized second-stage model to
handle the additional codebooks (Borsos et al., 2023b; Wang et al.). To address the computational
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Table 1: Comparison of VALL-E and Our Method.
Method VALL-E Ours

Codec Model RVQ GMM-VAE
TTS Model Decoder-only-Transformers GMM-LM-Mini
Codec Related Param. 16.7M 0
TTS Model Param. 496.5M 51.5M
Dominant Computation 2DL2 DL2

All Tokens AR No Yes
Strict Mono. Alignment No Yes

WER ↓ 6.04 2.83
Q-MOS ↑ 3.54 4.11

overhead introduced by these extra codebooks, some approaches avoid using all tokens in autore-
gressive modeling (Wang et al.; Lyth & King, 2024; Copet et al., 2024).

All of the aforementioned issues stem from the use of quantization during VAE training. In this
paper, we demonstrate that vector quantization is not a necessary prerequisite for learning an au-
toregressive model. By constraining the latent representation to be a continuous multimodal distri-
bution during VAE training and recovering it in the second stage with a continuous autoregressive
model, we are able to build an autoregressive model that retains all the advantages of AR modeling
(prompting, integrated duration modeling, and sampling) without many of the challenges associated
with VQ. Table 1 compares our proposed continuous autoregressive model with VALL-E (Wang
et al.), a state-of-the-art autoregressive text-to-speech (TTS) model. Without the need for multi-
ple codebooks from residual vector quantization, we are able to use a single Conformer model to
perform autoregressive modeling on all tokens, cutting theoretical computation in half compared to
VALL-E’s AR and NAR mixed approach. Furthermore, the removal of quantization allows us to
build an ultra-compact TTS model with only 51.5M parameters, which is 10.3% of VALL-E’s size.
Despite its smaller size, our model achieves lower WER and higher MOS than VALL-E, thanks to
the continuous autoregressive modeling approach.

2 RELATED WORK

Neural Speech Codecs and Representations. Unsupervised learning speech representation have
long line of research including learn representating by reconstruction from a bottleneck using au-
toencoder (Chorowski et al., 2019; Qian et al., 2019) and mutli-taks learning (Ravanelli et al., 2020).
More recently, the focus is shift to learning discrete representation, which often refer to as neural
speech codecs. Neural speech codecs can be divided into two categories: semantic codecs and
acoustic codecs. Semantic codecs, typically learned by clustering features from self-supervised
models such as Wav2vec2, HuBERT, and WavLM (Baevski et al., 2020; Hsu et al., 2021; Chen
et al., 2022), primarily preserve the phonetic information of speech (Choi et al., 2024). Due to the
disentangled nature of these features, semantic codecs are often coupled with speaker embeddings
for TTS (Polyak et al., 2021; Chen & Duan, 2022). Acoustic codecs, on the other hand, are designed
to reconstruct the speech waveform, preserving all information from the speech, including phonetic,
speaker, and acoustic environment details. Acoustic codecs are typically trained using a VQ-GAN
model (Van Den Oord et al., 2017; Esser et al., 2021), which learns to reconstruct the input through
a convolutional encoder-decoder architecture with GAN-based training and quantization layers. The
discrete representation significantly reduces storage requirements and enhances I/O efficiency, mak-
ing it an appealing alternative to traditional speech codecs (Zeghidour et al., 2021; Défossez et al.,
2022) . Furthermore, it enables the direct application of language models, such as BERT and GPT
(Devlin, 2018; Brown et al., 2020), to speech processing tasks. However, vector quantization can
lead to mispronunciations during reconstruction (Casanova et al., 2024; Betker, 2023), and building
a speech codec in this way often requires a very large codebook (Zeghidour et al., 2021). To address
this, (Zeghidour et al., 2021) proposed using multiple codebooks during the vector quantization pro-
cess, where each codebook quantizes the residuals of the previous one. This approach is referred
to as residual vector quantization (RVQ) in the literature. RVQ was further extended in Encodec
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(Défossez et al., 2022), where the authors employed multiscale spectrogram discriminators, a loss
balancer, and lightweight transformers to improve both the speech quality and efficiency of RVQ.
By introducing several vector quantization techniques from the image domain, along with improved
loss functions, RVQ was further refined, resulting in very low-bit-rate codecs in (Kumar et al., 2024).
NaturalSpeech3 (Ju et al., 2024) introduced factorized vector quantization (FVQ) to disentangle the
speech waveform into subspaces for content, prosody, timbre, and acoustic details, which has been
shown to improve the quality and prosody of synthesized speech.

Autoregressive Models in Speech Synthesis. Tacotron (Shen et al., 2018; Wang et al., 2017)
pioneered autoregressive modeling in TTS using an RNN trained with a regression loss on Mel-
spectrograms. Unlike most autoregressive models, Tacotron cannot perform sampling because it
relies on a regression loss. In contrast, the use of discrete speech codecs is appealing, as they can be
directly applied to Transformers using standard cross-entropy loss. However, using multiple code-
books from RVQ complicates the design of downstream models. Flattening all the codes leads to
a quadratic increase in computational complexity with the number of codebooks. Significant ef-
forts have been made to reduce computation for RVQ in downstream models, including strategies
where not all tokens are used during autoregressive modeling or where different codebook codecs
are modeled in separate stages (Copet et al., 2024; Wang et al.). In (Borsos et al., 2023a), the authors
proposed a three-stage audio generation process with a semantic codec, a coarse acoustic codec, and
a fine acoustic codec. However, using three autoregressive models results in slower inference. In
(Borsos et al., 2023b), the authors proposed generating acoustic vectors in parallel across multiple
codebooks by conditioning on semantic codes using a MaskGit decoding scheme. VALL-E (Wang
et al.) performs autoregressive modeling on acoustic codecs by first generating the initial acoustic
codecs autoregressively, then using a non-autoregressive model to predict the remaining codecs.

Non-Autoregressive Models in Speech Synthesis. Non-autoregressive models, utilizing adversar-
ial learning (Kong et al., 2020; Kim et al., 2021; Lim et al., 2022), diffusion (Jeong et al., 2021;
Popov et al., 2021; Huang et al., 2022; Liu et al., 2022; Li et al., 2024), and flow matching (Le et al.,
2023; Mehta et al., 2024b), have become strong competitors to autoregressive models due to their
faster inference speed and more stable generation. The primary challenge for non-AR models is
how to align phonemes with acoustic vectors. FastSpeech (Ren et al., 2019; 2020) pioneered non-
AR modeling by introducing a duration predictor and extracting phoneme durations from either an
autoregressive model or an external aligner as ground truth. The duration predictor is trained with
a regression loss. However, using regression loss instead of probabilistic modeling for duration has
limitations. (Mehta et al., 2024a) found that probabilistic modeling produces better results than a
regression-based approach, especially when modeling spontaneous speech. VITS (Kim et al., 2021)
is a non-autoregressive model that supports probabilistic duration modeling using stochastic duration
modeling. However, monotonic alignment search requires nested loops over the acoustic vectors and
text sequences, which cannot be vectorized, severely impacting large-scale training. More recently,
VoiceBox (Le et al., 2023) proposed separating the acoustic model and duration modeling, using
conditional flow matching (CFM) as the objective, which leads to improved speech generation and
better duration modeling.

VAEs with Learned Prior. While the prior distribution in VAEs is typically fixed as a standard
Gaussian, numerous studies have demonstrated that learning a prior can enhance the latent space
structure, thereby facilitating better representation learning. For instance, (Dilokthanakul et al.,
2016) proposed using a Gaussian mixture model (GMM) as the prior for VAEs to enable unsuper-
vised clustering, resulting in interpretable clusters and state-of-the-art performance in unsupervised
tasks. Similarly, (Tomczak & Welling, 2018) introduced a method where the VAE learns a mixture
of posteriors conditioned on pseudo-data as its prior. They demonstrated that this VAMP prior con-
sistently outperformed the standard VAE across six image datasets. Additionally, (Makhzani et al.,
2015) showed that instead of relying on traditional variational inference, it is possible to align the
aggregated posterior with an arbitrary prior distribution using adversarial learning techniques.

3 AUTOREGRESSIVE MODELING WITH CONTINUOUS NEURAL SPEECH
CODEC

In this section, we introduce the three major components of our model: (1) A Gaussian Mixture
Models VAE (GMM-VAE) that compresses speech with a multi-modal latent constraint. (2) A
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Figure 1: Training procedure and architecture difference of typical residual vector quantitation codec
model (left) and our proposed GMM-VAE speech codec model (right).

Gaussian Mixture Models language model (GMM-LM) that autoregressively models the compressed
acoustic vectors conditioned on text. (3) An attention mechanism that aligns the encoder and decoder
in a strictly monotonic fashion.

3.1 LEARNING CONTINUOUS SPEECH CODECS WITH GAUSSIAN MIXTURE MODELS VAE

Learning compact representations of high-dimensional signals has been a long-standing area of
research. (Hinton & Salakhutdinov, 2006; Vincent et al., 2008; Kingma & Welling, 2014; Van
Den Oord et al., 2017). Variational autoencoders (VAEs) (Kingma & Welling, 2014) provide a gen-
eral framework for learning generative models and performing data compression. Let x denote the
input to the VAE and z the latent code. The objective is to maximize the Evidence Lower Bound
(ELBO):

L = Eq(z|x)[log p(x|z)]− KL(q(z|x)||N (0, I)) (1)
where Eq(z|x)[log p(x|z)] is the log-likelihood of the reconstructed data, and KL(q(z|x)||N (0, I))
is the KL divergence term that encourages the latent distribution to be close to a standard Gaus-
sian. The KL divergence acts as a critical regularization mechanism to ensure a meaningful latent
space. In VQ-VAE (Van Den Oord et al., 2017), the continuous latent variable z is replaced by a
discrete latent code z, corresponding to an index in a learned codebook with K possible entries.
Each codebook entry is a D-dimensional vector v. Instead of sampling from a latent distribution
during decoding, VQ-VAE quantizes the input, mapping the continuous encoder output to the near-
est discrete code. Denote the output of the VAE encoder as h = E(x), and the posterior is defined
as:

q(z = k | x) =

{
1, if k = argmin

b
∥h− vb∥2

0, otherwise
, (2)

where E(.) denotes the encoder, typically composed of several convolutional layers. Since quan-
tization is a non-differentiable operation that prevents gradient backpropagation, a straight-through
estimator is used to pass gradients from the decoder to the encoder (Van Den Oord et al., 2017). A
vector quantization objective (codebook loss) and a commitment loss are added:

L = log p (x | zq) + β ∥ze − sg (zq)∥22 + ∥sg (ze)− zq∥22 , (3)
where zq(x) = vk, k = argminb ∥E(x)− vb∥2

where sg represents the stop-gradient operator. Unlike traditional VAEs, the prior p(z) is assumed
to be uniform, so the KL divergence is constant and has not effect on learning. Nonetheless, regu-
larization is achieved through vector quantization. Quantization also implicitly defines a categorical
distribution during training, allowing for the second stage where an autoregressive model is trained
to recover the prior/latent distribution (Van Den Oord et al., 2017). However, it has been observed
that the codebook size can be prohibitively large for compact discrete audio codes (Zeghidour et al.,
2021), and mispronunciations can occur during decoding (Casanova et al., 2024; Betker, 2023).

We propose a VAE compression model that supports a multi-modal latent space, but without relying
on quantization. Our key finding is that as long as the VAE stage defines a valid latent distri-
bution that can be recovered in the second stage, quantization is not the only option. Since our
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Figure 2: Training procedure and architecture difference of VALL-E with residual vector quantita-
tion codec model (left) and our proposed GMM-LM with GMM-VAE speech codec model (right).

goal is not to build a generative model in the VAE stage, we use a deterministic mapping but skip
the quantization step in Eq. 2. The posterior can be written as q(h|x) = δ(h − E(x)), where δ is
the Dirac delta function. The appeal of the categorical distribution defined by VQ is its ability to
model multi-modal distributions, which is essential for speech. To achieve a similar effect, we use a
learned mixture of Gaussians prior with parameters {πl,µl,σl}Ll=1, allowing the continuous latent
distribution to be multi-modal. The ELBO for this setup can be written as:

L = Eq(h|x)[log p(x|h)]− λKL(q(h|x)||
L∑

l=1

πlN (µl,Σl)), (4)

where λ controls the strength of the regularization, l is the mixture index, and L is the total number of
mixtures. Since our posterior is a deterministic function and the prior is a mixture of Gaussians, we
no longer have an analytical solution for the KL divergence. Instead, we use Monte Carlo estimation
to compute the KL divergence. Standard deep learning libraries, such as PyTorch, already support
this estimation, and backpropagation through mixture sampling is derived in (Graves, 2016). We
refer to a VAE trained with the proposed GMM constraint as GMM-VAE. When training GMM-
VAE for speech signals, we replace the reconstruction term with Mel-spectrogram reconstruction
loss and add discriminators, as done in RVQ, Encodec, and DAC (Zeghidour et al., 2021; Défossez
et al., 2022; Kumar et al., 2024). Figure 1 illustrates the differences in training procedures and model
architecture between the residual vector quantization model and the proposed GMM-VAE.

3.2 AUTOREGRESSIVE SPEECH MODELING WITH GMM-LM

Autoregressive models are typically associated with Transformer models that use discrete inputs and
outputs (Vaswani, 2017; Radford et al., 2019). The conditional probabilities at time step t can be
expressed as:

P (zt | zt−1, zt−2, . . . , z1, Y ) = Categorical

(
f(zt−1, zt−2, . . . , z1, Y )

)
(5)

where f() is a neural network that takes in the previous predictions zt−1, zt−2, . . . , z1 and the con-
ditioning information Y , to predict the next token. The network is typically trained with standard
cross-entropy loss. However, the conditional probability of an autoregressive model does not neces-
sarily need to follow a categorical distribution, as long as it is conditioned on the previous token and
produces a valid distribution (Salimans et al., 2017).
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To this end, we define an autoregressive model for the continuous random variable ht ∈ RD, where
the conditional probability is represented as a mixture of Gaussians:

p (ht | ht−1, . . . ,h1, Y ) =

N∑
n=1

ωt
nN

(
ht;ν

t
n,
(
τ t
n

)2)
(6)

where ωt
n, νt

n, and τ t
n represent the n-th mixture’s weight, mean, and diagonal variances for frame

t. N is the number of Gaussian components. The mixture parameters are produced by a neural
network f() that takes in the previous inputs and conditioning information:[

ωt
1, . . . , ω

t
N ,νt

1, . . . ,ν
t
N , τ t

1, . . . , τ
t
N

]
= f(ht−1, . . . ,h1, Y ). (7)

To ensure the mixture weights and variances are valid, we apply softmax to normalize the ωt
n values

and softplus to the τ t
n values in the network output. In the case of Gaussian mixture autoregres-

sive modeling, we no longer need an embedding layer or a softmax layer. The model is trained by
minimizing the negative log-likelihood, forcing it to predict the parameters of the Gaussian mixture
that maximize the likelihood of the data. Standard AR training techniques, such as teacher forcing,
can be used during training. Since there is no stop token in the continuous case, the model requires
an additional linear classifier to predict the stop token, as in (Shen et al., 2018). The autoregressive
model is implemented using a Conformer encoder-decoder architecture. In this paper, we refer to
the proposed Gaussian Mixture Models based autoregressive model as GMM-LM. Figure 2 illus-
trates the differences in training procedures and architecture between VALL-E with a residual vector
quantization codec model (left) and our proposed GMM-LM with a GMM-VAE speech codec model
(right).

3.3 STOCHASTIC HARD MONOTONIC ALIGNMENT LEARNING

Our monotonic alignment mechanism is based on the work of (Raffel et al., 2017). Given the energy
eij between encoder state j and decoder state i, we represent the alignment probability using a
sigmoid function:

pi,j = Sigmoid (ei,j) (8)
If we use dot product to compute the energy, pi,j can be computed in parallel but does not enforce a
monotonic constraint. To enforce monotonic attention, an iterative process (Raffel et al., 2017; He
et al., 2019) is used to compute the attention score from pi,j :

αi,j = αi−1,j−1 (1− pi,j−1) + αi−1,jpij (9)

Here, αi,j represents the attention weight used to sum up encoder states. However, while αi,j is
monotonic in expectation, it does not guarantee that every alignment step will strictly follow the
monotonic constraint for each sample. In (Raffel et al., 2017), the authors propose adding Gaussian
noise to the energy term to encourage binary pi,j during training. However, this approach introduces
bias during optimization, and discrepancy between training and test time can lead to performance
issues (Chiu & Raffel, 2017). We propose replacing the soft pi,j with a binary value uforward

i,j , sampled
from a Bernoulli distribution during the forward pass:

uforward
i,j ∼ Bernoulli (pi,j) (10)

This ensures that attention weights are always binary. To enable backpropagation, we approximate
the gradient using a Gumbel-Softmax relaxation of the Bernoulli distribution (Jang et al., 2016):

ubackward
i,j =

exp ((log (pi,j) + g1)/s)

exp ((log (pi,j) + g1)/s) + exp ((log (1− pi,j) + g2)/s)
(11)

where g1, g2 ∼ Gumbel(0, 1), and s is a temperature parameter that controls the degree of relaxation.
We schedule s to decrease gradually toward the end of training. Algorithm 1 provides a detailed
explanation of how encoder and decoder features are monotonically aligned and fed into the decoder
to compute the negative log-likelihood.

4 EXPERIMENT SETUP

Training Procedure All models were trained on the LibriLight corpus (Kahn et al., 2020), which
contains 60k hours of unlabeled 16kHz audiobook speech. We transcribed the audio using Whisper
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V2 (Radford et al., 2022). Since the number of utterances per speaker vary significantly, we used
a class-balanced sampler to ensure each speaker was sampled the same number of times during
training. For GMM-VAE, we used the same model architecture as described in the DAC paper
(Kumar et al., 2024), with modifications that removed all quantization-related layers. Although it
is possible to learn all the mixture parameters for GMM-VAE, in this paper, we only learned the
means of each mixture. We assumed the mixture weights were equal, and the covariance matrices
were set to identity. For GMM-LM, we used the Conformer encoder and decoder from SpeechBrain
(Ravanelli et al., 2021) with monotonic attention modification proposed in Section 3.3. We trained
models with 51.5M (Mini), 101M, 170M, and 315M (Large) parameters. The details of the GMM-
LM configurations can be found in the Table A.2 in Appendix. For GMM-VAE training, we used 8
GPUs, with a total batch size of 680, and each segment length was 8960. We used scheduler-free
AdamW (Defazio et al., 2024) with a learning rate of 0.001, training for a total of 1,000k steps. For
GMM-LM training, we used 8 GPUs with a total batch size of 240. We used the same scheduler-free
AdamW with a learning rate of 0.01 and a gradient norm clip of 0.005, training for a total of 200k
steps. We did not observe any impact of random seeds on the runs.

Evaluation Protocol We used the LibriSpeech test set for evaluation (Panayotov et al., 2015). For
zero-shot TTS, we used standard objective measures such as word error rate (WER) and speaker sim-
ilarity (SIM) to assess the content and speaker fidelity of the generated speech. We used wav2vec2-
large (Baevski et al., 2020), fine-tuned on LibriSpeech 960h, to transcribe the generated speech and
then computed the WER against the ground truth. For SIM, we used the model released by We-
Speaker (Wang et al., 2023), trained on the VoxCeleb datasets (Nagrani et al., 2017; Chung et al.,
2018). The objective metrics were computed over the entire test set. For subjective metrics, we con-
ducted mean opinion score (MOS) evaluations on the generated audio to assess the naturalness and
speaker cloning fidelity. For each model, 40 samples were generated and evaluated by 20 listeners.
The listeners were asked to evaluate the speech quality and naturalness (Q-MOS) and the speaker
similarity between the prompt speech and the generated speech (S-MOS). In addition to zero-shot
TTS, we were also interested in the quality of GMM-VAE and GMM-LM reconstructions. We used
standard reconstruction metrics such as Mel Distance, ViSQOL, and SI-SNR, as in (Kumar et al.,
2024). For GMM-LM, we used teacher forcing to generate the reconstructed codec, which was then
used by the GMM-VAE decoder to reconstruct the waveforms.

Baseline Models. We evaluated our model against state-of-the-art TTS models such as VALL-E
(Wang et al.), HierSpeech++ (Lee et al., 2023) (97M Parameters), and StyleTTS2 (Li et al., 2024)
(142M Parameters). For HierSpeech++ and StyleTTS2, we used the official implementations to
train the models.

Prompt Duration Model WER(%)↓ SIM↑ S-MOS↑ Q-MOS ↑
GroundTruth 2.26 - 4.24 ± 0.06 4.24 ± 0.10

3 Seconds

StyleTTS-2 3.32 0.70 3.44 ± 0.10 3.82 ± 0.06

HierSpeech++ 3.45 0.71 3.52 ± 0.13 3.71 ± 0.07

VALL-E 6.04 0.73 3.65 ± 0.11 3.54 ± 0.08

Ours-Mini 2.83 0.80 3.84 ± 0.13 4.11 ± 0.08

Ours-Large 2.81 0.85 4.04 ± 0.07 4.06 ± 0.11

8 Seconds

StyleTTS-2 3.34 0.77 3.57 ± 0.07 3.92 ± 0.10

HierSpeech++ 3.22 0.75 3.66 ± 0.10 3.80 ± 0.08

VALL-E 7.54 0.73 3.71 ± 0.11 3.58 ± 0.08

Ours-Mini 3.02 0.81 3.82 ± 0.09 3.87 ± 0.12

Ours-Large 2.75 0.88 3.92 ± 0.13 4.02 ± 0.10

15 Seconds

StyleTTS-2 3.02 0.76 3.52 ± 0.13 4.02 ± 0.08

HierSpeech++ 3.12 0.77 3.73 ± 0.11 3.84 ± 0.07

VALL-E 9.68 0.63 3.62 ± 0.12 3.32 ± 0.12

Ours-Mini 2.92 0.80 3.78 ± 0.08 4.16 ± 0.09

Ours-Large 2.72 0.91 4.17 ± 0.07 3.92 ± 0.06

Table 2: Comparison of models’ zero-shot TTS performance on WER, SIM, S-MOS, and P-MOS
across different prompt durations.
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5 EXPERIMENT RESULTS

5.1 ZERO-SHOT TEXT-TO-SPEECH

We evaluated our model’s zero-shot text-to-speech ability using prompts against both state-of-the-
art autoregressive model VALL-E, and non-autoregressive models, StyleTTS-2 and HierSpeech++.
To study the effect of prompt length on speech synthesis, we divided the prompts into three groups:
3 seconds, 8 seconds, and 15 seconds. If an utterance exceeded the specified duration, we trun-
cated it; otherwise, we sampled another utterance from the same speaker and concatenated it until
reaching the desired duration. We used two versions of our model for evaluation: a mini version
with 51.2M parameters and a large version with 315M parameters, both of which output 6 Gaussian
mixture parameters with diagonal covariances. Both models were trained on encoder features from
a GMM-VAE model trained with 3 mixture components, constrained by λ = 50. The results are
shown in Table 2. The first observation from Table 2 is that non-AR models such as StyleTTS2
and HierSpeech++ achieved much better WER than VALL-E. We found that VALL-E was prone to
skipping words or failing in the middle of sentences, suggesting that simple cross-attention mech-
anisms may not be sufficient for autoregressive models. Contrary to our expectations, VALL-E’s
WER worsened as the prompt length increased. Another observation is that non-AR models do not
significantly benefit from longer prompts, as there was no performance improvement from 8-second
to 15-second prompts in SIM and S-MOS for HierSpeech++ and StyleTTS2. By contrast, our pro-
posed GMM-LM model consistently outperformed both VALL-E and the state-of-the-art non-AR
models in content fidelity and speaker cloning, demonstrating a clear advantage in speaker-related
metrics with longer prompts. We also found that scaling our model from mini to large primarily
benefited speaker-related metrics (SIM and S-MOS), while WER and general speech quality did not
improve as much.

50 100 150 200 250 300
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Zero-Shot TTS Content Performance (WER )
Mel WER
GMM-VAE WER

50 100 150 200 250 300
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Figure 3: Comparison on GMM-LM models’ zero-shot TTS performance trained on Mel-
Spectrogram features and GMM-VAE features.

5.2 MEL-SPECTROGRAM VS. GMM-VAE FEATURES

In this section, we evaluate GMM-LM models trained on Mel-spectrograms against GMM-LM mod-
els trained on GMM-VAE encoder features. We trained models with 51.5M, 101M, 170M, and 315M
parameters, each outputting 6 Gaussian mixture parameters with diagonal covariances. For models
using GMM-VAE features, the GMM-VAE model was trained with 3 mixture components, con-
strained by λ = 50. For the Mel-spectrogram model, we used a 120-dimensional Mel-spectrogram
with a hop length of 240. We evaluated the models’ zero-shot TTS performance using objective
metrics on the LibriSpeech test set. The results are presented in Figure 3. From Figure 3, it can be
seen that GMM-LM models trained on GMM-VAE features significantly outperform those trained
on Mel-spectrogram features. The discrepancy is especially pronounced with smaller models. Al-
though increasing model size reduces the performance gap for Mel-based models, this comes at the
cost of increased computation and model size. Thus, we conclude that GMM-LM with GMM-VAE
features is a more efficient approach that delivers better performance for speech synthesis. Ad-
ditionally, we found that GMM-LM models using Mel-spectrograms take much longer to achieve
proper alignment compared to GMM-LM models using GMM-VAE features. We hypothesize that
the GMM-VAE step helps extract semantic information, which greatly aids the alignment steps.
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Method Model Mel Distance ↓ ViSQOL ↑ SI-SDR ↑

Encoding-Decoding Encodec 1.47 3.41 5.66
GMM-VAE 1.13 3.96 8.89

Teacher Forcing VALL-E 2.26 2.25 -0.15
GMM-LM 1.82 2.86 4.45

Table 3: Comparison of reconstruction quality for codec models (Encodec and GMM-VAE) and
downstream models with teacher forcing (VALL-E and GMM-LM).

No. Gaussian Mode λ

0.1 1 10 50 100
1 GMM-VAE Recon 0.76 0.89 1.14 1.67 2.06
1 GMM-LM Teacher Forcing – 4.62 3.82 3.16 4.48

3 GMM-VAE Recon. 0.71 0.77 0.98 1.13 1.77
3 GMM-LM Teacher Forcing 6.72 3.04 1.87 1.82 4.27

6 GMM-VAE Recon. 0.73 0.86 0.95 1.37 1.83
6 GMM-LM Teacher Forcing 4.63 4.07 2.54 2.44 5.26

Table 4: Reconstruction Quality (Mel Distance ↓) of GMM-VAE and GMM-LM (with teacher forc-
ing) across different number of Gaussians and λ values.

5.3 RECONSTRUCTION QUALITY OF DISCRETE AND CONTINUOUS CODECS

In this section, we evaluate the reconstruction quality of our GMM-VAE model in comparison with
the RVQ codec model, Encodec. The GMM-VAE model was trained with 3 mixture components,
constrained by λ = 50. Our primary focus is on how well these models can reconstruct the input,
as this greatly impacts tasks like zero-shot TTS. Even if codec models can perfectly reconstruct
the input, if the downstream models are unable to predict the correct codec, the effort is futile.
Therefore, we also evaluate the reconstruction quality with downstream models such as VALL-E
and our GMM-LM. Specifically, we encode the input speech to generate speech codecs, then use
VALL-E or GMM-LM in teacher forcing mode to predict the codec. Finally, we reconstruct the
speech by decoding the teacher-forced predicted codec. We use common speech reconstruction
quality metrics, including Mel Distance, ViSQOL (Hines et al., 2015), and SI-SDR. The results
are presented in Table 3. It is clear from the table that our GMM-VAE significantly outperforms
Encodec in speech reconstruction. The performance gap is even larger when the downstream models
are included.

5.4 ABLATION STUDY

Divergence constraint. Since we no longer perform quantization when training the speech codec,
the divergence constraint in Eq. 4 becomes the only factor that directly influences the latent distribu-
tion, aside from the reconstruction loss. Because our goal is to use the codec for downstream models
rather than compress speech per se, we evaluate both the reconstruction quality of GMM-VAE and
the downstream GMM-LM reconstruction with teacher forcing, using Mel-spectrogram distance.
The GMM-LM model used is the large version with 6 Gaussian mixtures and diagonal covariances.
Specifically, we investigate how the value of λ and the number of Gaussian means in the divergence
constraint affect reconstruction. The results are presented in Table 4. It is important to note that
without any divergence constraint, we were unable to successfully train the downstream GMM-LM
models. As expected, the VAE reconstruction Mel distance increases with larger λ. However, the
effect of λ on downstream model reconstruction is less straightforward. With λ = 0.1, although
we observed very low Mel distance, we were unable to train downstream models (the model could
not produce intelligible speech conditioned on text). When increasing λ from 1 to 50, although
the GMM-VAE reconstruction quality decreases, the downstream model’s teacher forcing recon-
struction quality improves. In terms of the number of Gaussians in the constraint term, we found
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that using three Gaussians yields better results than using a single Gaussian, with both GMM-VAE
and GMM-LM showing smaller Mel distances. However, increasing the number of Gaussians to 6
led to a general decrease in reconstruction quality. Since our focus is on improving the GMM-LM
generation quality, we selected three Gaussians with λ = 50 as the optimal hyper-parameters.

GMM-LM Parameterization. The GMM parameterization in GMM-LM directly affects the output
distribution. We aim to investigate how the number of Gaussian mixtures and the choice between
full or diagonal covariance matrices impact model performance. We assess the generated speech
using objective metrics such as WER and SIM. Furthermore, since GMM parameterization also
influences the sampling process, we measure the diversity of the generated samples under differ-
ent parameterization schemes. Specifically, given the target text and speech prompt, we randomly
sample from the parameterized GMM to generate speech three times. We ask human evaluators
to rate the diversity of the three samples on a scale from 0 to 5. These results are compared with
VALL-E, StyleTTS2, and HierSpeech++, as presented in Table 5. For comparison, we also included
Tacotron’s approach, shown in the first row of Table 5, which trains an autoregressive model using
only the mean and a regression loss. This approach does not allow for sampling. We found that us-
ing a single Gaussian with an L1 loss led to weaker performance compared to models with multiple
mixtures. As we increased the mixture count to 3, and then to 6, we observed improved diversity
in both diagonal and full covariance models. However, the WER improvement was mixed: gener-
ally the full covariance model worsened with more mixtures, while the diagonal covariance model
maintained approximately the same WER. Finally, we did not observe better results with 10 mix-
tures. In conclusion, there is no clear advantage in using full covariance matrices or increasing the
number of mixtures beyond 6. When comparing the speech diversity of GMM-LM with VALL-E,
StyleTTS2, and HierSpeech++, our model consistently produced significantly more diverse sam-
ples. For StyleTTS2 and HierSpeech++, the multiple generated samples showed little variation. For
VALL-E, while some degree of diversity were observed, the model frequently failed during random
sampling. When excluding failed samples, the diversity remained limited. In contrast, our model
consistently generated samples with diverse speaking styles.

No. Mixture Variance Type Loss WER ↓ SIM ↑ Diversity ↑

1
None L1 Mel-Dist 4.29 0.75 -

Diagonal NLL 3.34 0.81 2.17
Full NLL 3.45 0.82 2.32

3 Diagonal NLL 2.89 0.85 3.14
Full NLL 3.74 0.72 2.85

6 Diagonal NLL 2.72 0.91 3.42
Full NLL 4.82 0.69 3.01

10 Diagonal NLL 5.21 0.71 3.08

VALL-E - 9.68 0.63 1.47
StyleTTS2 - 3.02 0.76 0.6

HierSpeech++ - 3.12 0.77 0.3

Table 5: Zero-shot TTS performance of GMM-LM with different mixture counts and variance types,
evaluated on WER, SIM, and sample diversity.

6 CONCLUSION

We presented a new autoregressive modeling approach for speech synthesis, utilizing a Gaus-
sian Mixture VAE (GMM-VAE) for compression and a Gaussian Mixture Model language model
(GMM-LM) for autoregressive generation. By eliminating the need for quantization and introduc-
ing stochastic monotonic alignment, our method ensures stable, efficient, and high-quality speech
synthesis. Our experiments showed that this approach outperforms traditional VQ-based methods,
achieving lower WER and higher MOS scores with reduced model complexity. These results demon-
strate the potential of continuous latent spaces for autoregressive modeling in speech synthesis, of-
fering a simpler and more effective alternative to VQ models.
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7 REPRODUCIBILITY STATEMENT

We have provided detailed descriptions of the hyperparameters and training procedures in Section 4.
Our implementations are based on publicly available codebases (descript-audio-codec and Speech-
Brain) and datasets. With the detailed explanations of the training process and hyperparameters,
readers should be able to easily reproduce our models. Additionally, we plan to release the code and
pre-trained models upon the paper’s acceptance.
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A APPENDIX

Algorithm 1 GMM-LM Monotonic Alignment and Decoder Training Procedure
Require: Acoustic features {hi}Ii=1 extracted from the GMM-VAE encoder. Phoneme features

Y = {yj}Jj=1 from the GMM-LM text encoder, and the GMM-LM Decoder D.
1: Compute energy terms in parallel for all i, j using the dot product:

ei,j = h⊤
i yj

2: Sample initial alignments for all i, j from a Bernoulli distribution:

uforward
i,j ∼ Bernoulli(sigmoid(ei,j))

3: Save the Gumbel-Softmax relaxation ubackward
i,j (Eq. 11) for gradient computation.

4: Initialize α0 = [1, 0, 0, . . . , 0] ∈ RJ , LNLL = 0, and C0 = [] (an empty sequence for accumu-
lating contexts).

5: for each time step i = 1 to I − 1 do
6: Let ui = [ui,1, ui,2, . . . , ui,J ].
7: Refine alignments to enforce monotonicity:

αi = αi−1 · ui + shift (αi−1 · (1− ui), 1)

▷ shift(·, 1) shifts the vector by one position to the right, filling the leftmost entry with zero.
8: Compute the attention context using the refined alignments:

ci = Y⊤αi + hi

9: Update the accumulated attention contexts:

Ci = concat(Ci−1, ci)

10: Pass the accumulated context Ci to the decoder network D to obtain N mixtures parameters:

D(Ci) =
[
ωt+1
1 , . . . , ωt+1

N ,νt+1
1 , . . . ,νt+1

N , τ t+1
1 , . . . , τ t+1

N

]
▷ ωi+1

n are normalized using the softmax and τ i+1
n are passed through the softplus to ensure

they are positive.
11: Compute the negative log-likelihood for the next frame:

LNLL += − log p
(
hi+1 | {ωi+1

n ,νi+1
n , τ i+1

n }Nn=1

)
12: end for

A.1 ABLATION STUDY ON ALIGNMENT MODULE

Even with powerful neural codecs, we found that monotonic alignment forcing remains crucial for
the stability of autoregressive models. We compared our monotonic alignment approach with using
direct cross-attention, location-sensitive attention (Shen et al., 2018), and various monotonic atten-
tion variants. It is worth noting that location-sensitive attention is not strictly monotonic, meaning it
can still result in word repetition and lookahead errors. We also found that it was slow to train be-
cause energy terms are computed iteratively. Since the alignment module primarily affects phonetic
content, we used WER to measure the performance of different alignment methods. For monotonic
attention, we explored the use of pre-sigmoid noise, Gumbel Softmax, and the proposed Straight-
Through (ST) Gumbel in Eq. 10 and Eq. 11. The results are presented in Table 6. As seen from the
table, using cross-attention alone led to poor results—some samples even failed to produce intelli-
gible speech. Location-sensitive attention performed better, but it still suffered from frequent word
repetition errors, and both training and inference were slow. Our proposed monotonic alignment
with ST Gumbel outperformed all other methods, including the original monotonic attention with
pre-sigmoid noise.
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Alignment Cross Att. Loc. Att. Monotonic Att.
w. Noise w. Gumbel w. ST Gumbel

WER(%) 6.6 6.02 3.77 3.34 2.72

Table 6: Word Error Rate (WER) comparison of various alignment methods

A.2 DETAILS OF MODEL ARCHITECTURE

For GMM-LM, we used the Conformer encoder and decoder from SpeechBrain (Ravanelli et al.,
2021) with monotonic attention modification proposed in Section 3.3. We trained models with
51.5M (Mini), 101M, 170M, and 315M (Large) parameters. The details of the GMM-LM configu-
rations can be found in the Table A.2.

Name Mini 101M 170M Large
Encoder
No. Layers 3 3 3 3
Encoder Dim. 512 512 512 512
Feedforward Dim. 1024 1024 1024 1024
Decoder
No. Layers 6 6 6 12
Decoder Dim. 512 768 1024 1024
Feedforward Dim. 2048 3144 4096 4096
Total Params. (M) 51.5 101 170 315

Table 7: Model Architecture and Parameters

A.3 RECONSTRUCTION QUALITY ON TRAINING SET

Table 4 shows that the GMM-VAE with 3 mixtures and λ = 50 achieves the best reconstruction
quality on the evaluation set. To further investigate the underperformance of the 6-mixture model,
we selected a subset of the training data (randomly sampled 200 speakers with 5 utterances each)
and computed the reconstruction loss. The results, along with the evaluation set reconstruction loss,
are presented in Table 9. From Table 9, we observed that the reconstruction loss on the training set is
consistently lower than that on the evaluation set across all configurations. This discrepancy may be
attributed to a slight domain difference between the LibriSpeech evaluation set and the LibriSpeech-
Light training set, with the latter containing noisier recordings. Another key observation is that the
6-mixture model achieves a lower reconstruction loss on the training set compared to the 3-mixture
model, yet it performs slightly worse in terms of reconstruction quality on the evaluation set. This
suggests that the 6-mixture model may suffer from overfitting.

A.4 ZERO-SHOT VOICE CLONE NOISE ROBUSTNESS

In this section, we evaluate the robustness of TTS zero-shot voice cloning against noise. Specifically,
we added varying levels of noise to the LibriSpeech clean test set and used the noisy audio as
prompt input for the TTS models. The generated speech was assessed using WER and SIM metrics
under different noise levels, with the results presented in Table 8. From the table, we observe that,
with the exception of VALL-E, most models demonstrate robustness to noisy prompts in terms of
WER. However, speaker similarity (SIM) significantly decreases for models like StyleTTS-2 and
HierSpeech+++. In contrast, the proposed method shows strong robustness to noise for both WER
and SIM, particularly in its large version, where WER and SIM degrade only slightly across different
noise levels.

A.5 GMM-VAE MODEL DETAILS

The GMM-VAE architecture is inspired by the DAC model Kumar et al. (2024) and comprises a
convolutional encoder and decoder. Both the encoder and decoder feature a convolutional layer,
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Model WER (%) SIM
-20 dB -15 dB -10 dB -20 dB -15 dB -10 dB

StyleTTS-2 3.45 3.49 3.54 0.72 0.71 0.68
HierSpeech+++ 3.61 3.72 3.91 0.69 0.64 0.58
VALL-E 9.84 10.86 12.61 0.61 0.54 0.51
Ours-Mini 2.85 3.01 3.04 0.77 0.74 0.74
Ours-Large 2.77 2.82 2.97 0.88 0.87 0.85

Table 8: WER and SIM comparison across models under different prompt noise levels. Lower WER
and higher SIM indicate better performance.

No. Gaussian Mode λ

0.1 1 10 50 100
1 Training Set 0.72 0.78 0.98 1.54 1.85
1 Evaluation Set 0.76 0.89 1.14 1.67 2.06

3 Training Set 0.68 0.70 0.93 1.11 1.54
3 Evaluation Set 0.71 0.77 0.98 1.13 1.77

6 Training Set 0.67 0.73 0.86 1.02 1.32
6 Evaluation Set 0.73 0.86 0.95 1.37 1.83

Table 9: Reconstruction Quality (Mel Distance ↓) of GMM-VAE and GMM-LM (with teacher forc-
ing) across different number of Gaussians and λ values.

Model Output Codec Model Cross Att. Mono. Align.
Discrete AR Logits Group VQ-VAE 8.02 5.35
Discrete AR with Delay Pred. Multiple Logits Groups DAC 7.83 5.87
GMM-LM GMM Parameters GMM-VAE 6.60 2.72

Table 10: WER (%) of the models using different codec models, with and without the proposed
monotonic alignment on LibriSpeech-test-clean.

which performs upsampling or downsampling based on the stride, followed by a residual block.
Each residual block combines convolutional layers with non-linear Snake activations. The encoder
progressively downsamples the input audio waveform with strides of [2, 4, 8, 8], while the decoder
mirrors this by upsampling at corresponding rates of [8, 8, 4, 2]. The dimensionality of the encoder
and decoder is configured to 64 and 1536, respectively. The GMM-VAE contains a total of 76.5M
parameters, distributed as 22.4M in the encoder and 54.1M in the decoder.

A.6 COMPARISON OF GMM-LM AND VQ-BASED LM WITH MONOTONIC ALIGNMENT

As shown in Table 6, the proposed monotonic alignment significantly improves the WER of the
GMM-LM model. This raises a natural question: can discrete AR models benefit from the pro-
posed monotonic alignment in a similar way? To investigate this, we conducted a comparison using
discrete autoregressive (AR) models with the proposed monotonic alignment method, implemented
using the same architecture as the GMM-LM large version (315m), except for the discrete codec em-
bedding layer and softmax layers. Specifically, we implemented two discrete AR encoder-decoder
models:

• Discrete AR. The first model used discrete codes extracted from a VQ-VAE codec model,
implemented with a single codebook containing 8192 entries and using the same architec-
ture as the DAC model (Kumar et al., 2024). This model was trained to predict the next
tokens using standard cross-entropy with a single softmax layer.
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• Discrete AR with Delay Pred. The second model used discrete codes extracted from the
DAC model with 8 codebooks, each containing 1024 entries. The model adopted delayed
codebook prediction with multiple softmax layers, as proposed in MusicGen (Copet et al.,
2024) and (Lyth & King, 2024).

The results of these experiments are presented in Table 10 of the revised manuscript and summa-
rized below. The results clearly show that monotonic alignment contributes to WER improvement.
However, even with monotonic alignment, the discrete models do not achieve the same performance
as the proposed GMM-based version. We believe this performance gap can be attributed to two
factors:

1. Quantization and discrete representations introduce limitations: Discrete representations
can result in mispronunciations and artifacts. This is why some researchers use embed-
dings before the AR model’s softmax layer as input to waveform decoders as a workaround
(Casanova et al., 2024; Betker, 2023).

2. Challenges of applying monotonic alignment to RVQ-based models. RVQ models increase
the complexity of TTS systems, as they require multiple softmax heads to predict codes
from different codebooks. While it is possible to predict all codebooks in parallel at each
timestep, this approach ignores dependencies between codebooks and yields suboptimal re-
sults. A better approach, as used in VALL-E and the delayed prediction model in Table 10,
is to predict ”coarse” codes first, followed by ”fine” codes. However, this approach com-
plicates monotonic alignment because alignment must be performed using only the coarse
codes at each timestep. This limitation likely contributes to the higher WER observed with
RVQ-based models.
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