
Under review as a conference paper at ICLR 2021

FMIX: ENHANCING MIXED SAMPLE DATA AUGMEN-
TATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixed Sample Data Augmentation (MSDA) has received increasing attention in
recent years, with many successful variants such as MixUp and CutMix. We anal-
yse MSDA from an information theoretic perspective, characterising learned mod-
els in terms of how they impact the models’ perception of the data. Ultimately,
our analyses allow us to decouple two complementary properties of augmenta-
tions that are useful for reasoning about MSDA. From insight on the efficacy of
CutMix in particular, we subsequently propose FMix, an MSDA that uses binary
masks obtained by applying a threshold to low frequency images sampled from
Fourier space. FMix improves performance over MixUp and CutMix for a num-
ber of models across a range of data sets and problem settings, obtaining new
state-of-the-art results on CIFAR-10 and Fashion-MNIST.

1 INTRODUCTION

Recently, a plethora of approaches to Mixed Sample Data Augmentation (MSDA) have been pro-
posed which obtain state-of-the-art results, particularly in classification tasks (Chawla et al., 2002;
Zhang et al., 2017; Tokozume et al., 2017; 2018; Inoue, 2018; Yun et al., 2019; Takahashi et al.,
2019; Summers and Dinneen, 2019). MSDA involves combining data samples according to some
policy to create an augmented data set on which to train the model. The policies so far proposed
can be broadly categorised as either combining samples with interpolation (e.g. MixUp) or masking
(e.g. CutMix). Traditionally, augmentation is viewed through the framework of statistical learning
as Vicinal Risk Minimisation (VRM) (Vapnik, 1999; Chapelle et al., 2001). Given some notion of
the vicinity of a data point, VRM trains with vicinal samples in addition to the data points them-
selves. This is the motivation for MixUp (Zhang et al., 2017); to provide a new notion of vicinity
based on mixing data samples. In the classical theory, validity of this technique relies on the strong
assumption that the vicinal distribution precisely matches the true distribution of the data. As a re-
sult, the classical goal of augmentation is to maximally increase the data space, without changing
the data distribution. Clearly, for all but the most simple augmentation strategies, the data distribu-
tion is in some way distorted. Furthermore, there may be practical implications to correcting this, as
is demonstrated in Touvron et al. (2019). In light of this, three important questions arise regarding
MSDA: What is good measure of the similarity between the augmented and the original data? Why
is MixUp so effective when the augmented data looks so different? If the data is distorted, what
impact does this have on trained models?

To construct a good measure of similarity, we note that the data only need be ‘perceived’ similar
by the model. As such, we measure the mutual information between representations learned from
the real and augmented data, thus characterising how well learning from the augmented data sim-
ulates learning from the real data. This measure clearly shows the data-level distortion of MixUp
by demonstrating that learned representations are compressed in comparison to those learned from
the un-augmented data. To address the efficacy of MixUp, we look to the information bottleneck
theory of deep learning (Tishby and Zaslavsky, 2015). This theory uses the data processing inequal-
ity, summarised as ‘post-processing cannot increase information’, to suggest that deep networks
progressively discard information about the input whilst preserving information about the targets.
Through this lens, we posit that the distortion and subsequent compression induced by MixUp pro-
motes generalisation by preventing the network from learning about highly sample-specific features
in the data. Regarding the impact on trained models, and again armed with the knowledge that
MixUp distorts learned functions, we show that MixUp acts as a kind of adversarial training (Good-
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fellow et al., 2014), promoting robustness to additive noise. This accords with the theoretical result
of Perrault-Archambault et al. (2020) and the robustness results of Zhang et al. (2017). However,
we further show that MSDA does not generally improve adversarial robustness when measured as a
worst case accuracy following multiple attacks as suggested by Carlini et al. (2019). In contrast to
our findings regarding MixUp, we show that CutMix causes learned models to retain a good knowl-
edge of the real data, which we argue derives from the fact that individual features extracted by a
convolutional model generally only derive from one of the mixed data points. At the same time Cut-
Mix limits the ability of the model to over-fit by dramatically increasing the number of observable
data points, in keeping with the original intent of VRM. We go on to argue that by restricting to only
masking a square region, CutMix imposes an unnecessary limitation. Indeed, it should be possible
to construct an MSDA which uses masking similar to CutMix whilst increasing the data space much
more dramatically. Motivated by this, we introduce FMix, a masking MSDA that uses binary masks
obtained by applying a threshold to low frequency images sampled from Fourier space. Using our
mutual information measure, we show that learning with FMix simulates learning from the real data
even better than CutMix. We subsequently demonstrate performance of FMix for a range of models
and tasks against a series of augmented baselines and other MSDA approaches. FMix obtains a
new state-of-the-art performance on CIFAR-10 (Krizhevsky et al., 2009) without external data and
Fashion MNIST (Xiao et al., 2017) and improves the performance of several state-of-the-art mod-
els (ResNet, SE-ResNeXt, DenseNet, WideResNet, PyramidNet, LSTM, and Bert) on a range of
problems and modalities.

In light of our analyses, and supported by our experimental results, we go on to suggest that the
compressing qualities of MixUp are most desirable when data is limited and learning from individual
examples is easier. In contrast, masking MSDAs such as FMix are most valuable when data is
abundant. We finally suggest that there is no reason to see the desirable properties of masking
and interpolation as mutually exclusive. In light of these observations, we plot the performance of
MixUp, FMix, a baseline, and a hybrid policy where we alternate between batches of MixUp and
FMix, as the number of CIFAR-10 training examples is reduced. This experiment confirms our
above suggestions and shows that the hybrid policy can outperform both MixUp and FMix.

2 RELATED WORK

In this section, we review the fundamentals of MSDA. Let pX(x) denote the input data distribution.
In general, we can define MSDA for a given mixing function, mix(X1, X2,Λ), where X1 and X2

are independent random variables on the data domain and Λ is the mixing coefficient. Synthetic
minority over-sampling (Chawla et al., 2002), a predecessor to modern MSDA approaches, can be
seen as a special case of the above where X1 and X2 are dependent, jointly sampled as nearest
neighbours in feature space. These synthetic samples are drawn only from the minority class to be
used in conjunction with the original data, addressing the problem of imbalanced data. The mixing
function is linear interpolation, mix(x1, x2, λ) = λx1+(1−λ)x2, and pΛ = U(0, 1). More recently,
Zhang et al. (2017), Tokozume et al. (2017), Tokozume et al. (2018) and Inoue (2018) concurrently
proposed using this formulation (as MixUp, Between-Class (BC) learning, BC+ and sample pairing
respectively) on the whole data set, although the choice of distribution for the mixing coefficients
varies for each approach. We refer to this as interpolative MSDA, where, following Zhang et al.
(2017), we use the symmetric Beta distribution, that is pΛ = Beta(α, α).

Recent variants adopt a binary masking approach (Yun et al., 2019; Summers and Dinneen, 2019;
Takahashi et al., 2019). Let M = mask(Λ) be a random variable with mask(λ) ∈ {0, 1}n and
µ(mask(λ)) = λ, that is, generated masks are binary with average value equal to the mixing coeffi-
cient. The mask mixing function is mix(x1,x2,m) = m � x1 + (1 −m) � x2, where � denotes
point-wise multiplication. A notable masking MSDA which motivates our approach is CutMix (Yun
et al., 2019). CutMix is designed for two dimensional data, with mask(λ) ∈ {0, 1}w×h, and uses
mask(λ) = rand rect(w

√
1− λ, h

√
1− λ), where rand rect(rw, rh) ∈ {0, 1}w×h yields a binary

mask with a shaded rectangular region of size rw × rh at a uniform random coordinate. CutMix im-
proves upon the performance of MixUp on a range of experiments. For the remainder of the paper
we focus on the development of a better input mixing function. Appendix A provides a discussion
of the importance of the mixing ratio of the labels. For the typical case of classification with a cross
entropy loss, the objective function is simply the interpolation between the cross entropy against
each of the ground truth targets.
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Table 1: Mutual information between VAE latent spaces (ZA) and the CIFAR-10 test set (I(ZA;X)),
and the CIFAR-10 test set as reconstructed by a baseline VAE (I(ZA; X̂)) for VAEs trained with
a range of MSDAs. MixUp prevents the model from learning about specific features in the data.
Uncertainty estimates are the standard deviation following 5 trials.

I(ZA;X) I(ZA; X̂) MSE

Baseline 78.05±0.53 74.40±0.45 0.256±0.002
MixUp 70.38±0.90 68.58±1.12 0.288±0.003
CutMix 83.17±0.72 79.46±0.75 0.254±0.003
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Figure 1: Robustness of PreAct-ResNet18 models trained on CIFAR-10 with standard augmen-
tations (Baseline) and the addition of MixUp and CutMix to uniform noise, DeepFool (Moosavi-
Dezfooli et al., 2016), and the worst case performance after multiple attacks including the additive
uniform noise and DeepFool. MixUp improves robustness to adversarial examples with similar
properties to images generated with MixUp (acting as adversarial training), but MSDA does not
improve robustness in general. Shaded region indicates the standard deviation following 5 repeats.

3 ANALYSIS

We now analyse both interpolative and masking MSDAs with a view to distinguishing their impact
on learned representations. We summarise previous analyses and theories (Zhang et al., 2017; Liang
et al., 2018; Guo et al., 2019; He et al., 2019; Verma et al., 2019; Yun et al., 2019) in Appendix G. For
our analysis, we desire a measure which captures the extent to which learning about the augmented
data simulates learning about the original data. To achieve this, we propose training unsupervised
models on real data and augmented data and then measuring the mutual information, the reduction in
uncertainty about one variable given knowledge of another, between the representations they learn.
In particular, we propose using Variational Auto-Encoders (VAEs) (Kingma and Welling, 2013),
which provide a rich depiction of the salient or compressible information in the data (Higgins et al.).
Denoting the latent space of a VAE trained on the original data as ZX and on some candidate aug-
mentation A as ZA, in Appendix B we show that we can obtain a tractable lower bound, I(ZA;X),
and upper bound, I(ZA; X̂) where X̂ is the original data as reconstructed by a baseline VAE, for the
intractable quantity I(ZA;ZX). Table 1 gives these quantities for MixUp, CutMix, and a baseline.
The results show that MixUp consistently reduces the amount of information that is learned about
the original data. In contrast, CutMix manages to induce greater mutual information with the data
than is obtained from just training on the un-augmented data. Crucially, the results present concrete
evidence that interpolative MSDA differs fundamentally from masking MSDA in how it impacts
learned representations.

Having shown this is true for VAEs, we now wish to understand whether the finding also holds
for trained classifiers. To this end, in Figure 4 in the appendix we visualise the decisions made by
a classifier using Gradient-weighted Class Activation Maps (Grad-CAMs) (Selvaraju et al., 2017).
Grad-CAM finds the regions in an image that contribute the most to the network’s prediction by
taking the derivative of the model’s output with respect to the activation maps and weighting them
according to their contribution. If MixUp prevents the network from learning about highly specific
features in the data we would expect more of the early features to contribute to the network output.
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Clearly, it is difficult to ascertain whether this is the case from the examples in the figure, although
there is some indication that it may be true. To verify empirically we compute the average sum
of Grad-CAM heatmaps over the CIFAR-10 test set for 5 repeats (independently trained PreAct-
ResNet18 models). We obtain the following scores: baseline - 146±5, MixUp - 162±3, CutMix -
131±6. It is clear that on average more of the early features contribute to the decisions made by
MixUp trained models and that this result is consistent across independent runs.

Following on from these observations, it is now pertinent to ask whether these different represen-
tations learned from MixUp give rise to practical differences other than just improved generalisa-
tion. Since it is our assessment that models trained with MixUp have an altered ‘perception’ of
the data distribution, we suggest an analysis based on adversarial attacks, which involve perturb-
ing images outside of the perceived data distribution to alter the given classification. We perform
fast gradient sign method, standard gradient descent, projected gradient descent, additive uniform
noise, and DeepFool (Moosavi-Dezfooli et al., 2016) attacks over the whole CIFAR-10 test set on
PreAct-ResNet18 models subject to `∞ constraints using the Foolbox library (Rauber et al., 2020;
2017). The plots for the additive uniform noise and DeepFool attacks, given in Figure 1, show that
MixUp provides an improvement over CutMix and the augmented baseline in this setting. This
is because MixUp acts as a form of adversarial training (Goodfellow et al., 2014), equipping the
models with valid classifications for images of a similar nature to those generated by the additive
noise and DeepFool attacks. In Figure 1, we additionally plot the worst case robustness following all
attacks as suggested by Carlini et al. (2019). These results show that the adversarial training effect
of MixUp is limited and does not correspond to a general increase in robustness. We provide an
enhanced depiction of these results in Appendix C.

4 FMIX: IMPROVED MASKING

Our finding is that the masking MSDA approach works because it effectively preserves the data
distribution in a way that interpolative MSDAs do not, particularly in the perceptual space of a Con-
volutional Neural Network (CNN). We suggest that this derives from the fact that each convolutional
neuron at a particular spatial position generally encodes information from only one of the inputs at
a time. This could also be viewed as local consistency in the sense that elements that are close to
each other in space typically derive from the same data point. To the detriment of CutMix, it would
be easy for a model to learn about the augmentation since perfectly horizontal and vertical artefacts
are unlikely to be a salient feature of the data. We contend that a method which retains the masking
nature of CutMix but increases the space of possible shapes (removing the bias towards horizontal
and vertical edges) may be able to induce an even greater knowledge of the un-augmented data in
trained models as measured by our mutual information analysis. This should in turn correspond with
improved accuracy. If we can increase the number and complexity of masks then the space of novel
features (that is, features which occur due to edges in the mask) would become significantly larger
than the space of features native to the data. As a result, it is highly unlikely that a model would be
able to ‘fit’ to this information. This leads to our core motivation: to construct a masking MSDA
which maximises the space of edge shapes whilst preserving local consistency.

For local consistency, we require masks that are predominantly made up of a single shape or con-
tiguous region. We might think of this as trying to minimise the number of times the binary mask
transitions from ‘0’ to ‘1’ or vice-versa. For our approach, we begin by sampling a low frequency
grey-scale mask from Fourier space which can then be converted to binary with a threshold. We
will first detail our approach for obtaining the low frequency image before discussing our approach
for choosing the threshold. Let Z denote a complex random variable with values on the domain
Z = Cw×h, with density p<(Z) = N (0, Iw×h) and p=(Z) = N (0, Iw×h), where < and = return
the real and imaginary parts of their input respectively. Let freq(w, h) [i, j] denote the magnitude of
the sample frequency corresponding to the i, j’th bin of the w × h discrete Fourier transform. We
can apply a low pass filter to Z by decaying its high frequency components. Specifically, for a given
decay power δ, we use

filter(z, δ)[i, j] =
z[i, j]

freq(w, h) [i, j]
δ
. (1)

Defining F−1 as the inverse discrete Fourier transform, we can obtain a grey-scale image with

G = <
(
F−1

(
filter

(
Z, δ

)))
. (2)
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Figure 2: Example masks and mixed images from CIFAR-10 for FMix with δ = 3 and λ = 0.5.

All that now remains is to convert the grey-scale image to a binary mask such that the mean value
is some given λ. Let top(n,x) return a set containing the top n elements of the input x. Setting the
top λwh elements of some grey-scale image g to have value ‘1’ and all others to have value ‘0’ we
obtain a binary mask with mean λ. Specifically, we have

mask(λ,g)[i, j] =

{
1, if g[i, j] ∈ top(λwh,g)

0, otherwise
. (3)

To recap, we first sample a random complex tensor for which both the real and imaginary part
are independent and Gaussian. We then scale each component according to its frequency via the
parameter δ such that higher values of δ correspond to increased decay of high frequency informa-
tion. Next, we perform an inverse Fourier transform on the complex tensor and take the real part
to obtain a grey-scale image. Finally, we set the top proportion of the image to have value ‘1’ and
the rest to have value ‘0’ to obtain our binary mask. Although we have only considered two di-
mensional data here it is generally possible to create masks with any number of dimensions. We
provide some example two dimensional masks and mixed images (with δ = 3 and λ = 0.5) in Fig-
ure 2. We can see that the space of artefacts is significantly increased, furthermore, FMix achieves
I(ZA;X) = 83.67±0.89, I(ZA; X̂) = 80.28±0.75, and MSE = 0.255±0.003, showing that learning
from FMix simulates learning from the un-augmented data to an even greater extent than CutMix.

5 EXPERIMENTS

We now perform a series of experiments to compare the performance of FMix with that of MixUp,
CutMix, and augmented baselines. For each problem setting and data set, we provide exposition on
the results and any relevant caveats. Throughout, our approach has been to use the hyper-parameters
which yield the best results in the literature for each setting. Unless otherwise stated, we use α = 1
for the distribution of λ. For FMix, we use δ = 3 since this was found to produce large artefacts with
sufficient diversity. We perform an ablation of both parameters in Appendix H, reporting results for
5 fold cross validation. We perform repeats where possible and report the average performance and
standard deviation after the last epoch of training. A complete discussion of the experimental set-up
can be found in Appendix E along with the standard augmentations used for all models on each
data set. Additional experiments on point cloud and audio classification are given in Appendix D.
In all tables, we give the best result and results that are within its margin of error in bold. We
discuss any cases where the results obtained by us do not match the results obtained by the authors
in the accompanying text, and give the authors results in parentheses. Uncertainty estimates are the
standard deviation over 5 repeats. Code for all experiments is given in the supplementary material.

Image Classification We first discuss image classification results on the CIFAR-
10/100 (Krizhevsky et al., 2009), Fashion MNIST (Xiao et al., 2017), and Tiny-ImageNet (Stanford,
2015) data sets. We train: PreAct-ResNet18 (He et al., 2016), WideResNet-28-10 (Zagoruyko and
Komodakis, 2016), DenseNet-BC-190 (Huang et al., 2017) and PyramidNet-272-200 (Han et al.,
2017). For PyramidNet, we additionally apply Fast AutoAugment (Lim et al., 2019), a successor
to AutoAugment (Cubuk et al., 2019a), and ShakeDrop (Yamada et al., 2018) following Lim et al.
(2019). The results in Table 2 show that FMix offers a significant improvement over the other
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Table 2: Image classification accuracy for our approach, FMix, against baselines for: PreAct-
ResNet18 (ResNet), WideResNet-28-10 (WRN), DenseNet-BC-190 (Dense), PyramidNet-272-200
+ ShakeDrop + Fast AutoAugment (Pyramid). Parentheses indicate author quoted result.

Data set Model Baseline FMix MixUp CutMix

CIFAR-10

ResNet 94.63±0.21 96.14±0.10 95.66±0.11 96.00±0.07
WRN 95.25±0.10 96.38±0.06 (97.3) 96.60±0.09 96.53±0.10
Dense 96.26±0.08 97.30±0.05 (97.3) 97.05±0.05 96.96±0.01
Pyramid 98.31 98.64 97.92 98.24

CIFAR-100
ResNet 75.22±0.20 79.85±0.27 (78.9) 77.44±0.50 79.51±0.38
WRN 78.26±0.25 82.03±0.27 (82.5) 81.09±0.33 81.96±0.40
Dense 81.73±0.30 83.95±0.24 83.23±0.30 82.79±0.46

Fashion
ResNet 95.70±0.09 96.36±0.03 96.28±0.08 96.03±0.10
WRN 95.29±0.17 96.00±0.11 95.75±0.09 95.64±0.20
Dense 95.84±0.10 96.26±0.10 96.30±0.04 96.12±0.13

Tiny-ImageNet ResNet 55.94±0.28 61.43±0.37 55.96±0.41 64.08±0.32

Table 3: Classification performance for a ResNet101 trained on ImageNet for 90 epochs with a batch
size of 256, and evaluated on ImageNet and ImageNet-a, adversarial examples to ImageNet. Note
that Zhang et al. (2017) (MixUp) use a batch size of 1024 and Yun et al. (2019) (CutMix) train for
300 epochs, so these results should not be directly compared.

Baseline FMix MixUp CutMix

Data set α Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ImageNet 1.0 77.28 93.63 77.42 93.92 75.89 93.06 76.92 93.55
0.2 77.70 93.97 77.23 93.81 76.72 93.46

ImageNet-a 1.0 4.08 28.87 7.19 33.65 8.69 34.89 6.92 34.03
0.2 5.32 31.21 5.81 31.43 6.08 31.56

methods on test, with the exception of the WideResNet on CIFAR-10/100 and the PreAct-ResNet
on Tiny-ImageNet. In combination with PyramidNet, FMix achieves, to the best of our knowledge,
a new state-of-the-art classification accuracy on CIFAR-10 without use of external data. By
the addition of Fast AutoAugment, this setting bares some similarity to the recently proposed
AugMix (Hendrycks et al., 2019a) which performs MixUp on heavily augmented variants of the
same image. With the PreAct-ResNet18, FMix obtains a new state-of-the-art classification accuracy
on Fashion MNIST. Note that Zhang et al. (2017) also performed experiments with the PreAct-
ResNet18, WideResNet-28-10, and DenseNet-BC-190 on CIFAR-10 and CIFAR-100. There are
some discrepancies between the authors results and the results obtained by our implementation.
Whether any differences are significant is difficult to ascertain as no measure of deviation is
provided in Zhang et al. (2017). However, since our implementation is based on the implementation
from Zhang et al. (2017), and most of the differences are small, we have no reason to doubt it. We
speculate that these discrepancies are simply a result of random initialisation, but could also be due
to differences in reporting or training configuration.

Next, we obtain classification results on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC2012) data set (Russakovsky et al., 2015). We train a ResNet-101 on the full data set (Ima-
geNet), additionally evaluating on ImageNet-a (Hendrycks et al., 2019b), a set of natural adversarial
examples to ImageNet models, to determine adversarial robustness. We train for 90 epochs with a
batch size of 256. We perform experiments with both α = 1.0 and α = 0.2 (as this was used by
Zhang et al. (2017)). The results, given in Table 3, show that FMix was the only MSDA to provide
an improvement over the baseline with these hyper-parameters. Note that MixUp obtains an accu-
racy of 78.5 in Zhang et al. (2017) when using a batch size of 1024. Additionally note that MixUp
obtains an accuracy of 79.48 and CutMix obtains an accuracy of 79.83 in Yun et al. (2019) when
training for 300 epochs. Due to hardware constraints we cannot replicate these settings and so it is
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Table 4: Classification performance for FMix against baselines on Bengali grapheme classification.

Category Baseline FMix MixUp CutMix

Root 92.86±0.20 96.13±0.14 94.80±0.10 95.74±0.20
Consonant diacritic 96.23±0.35 97.05±0.23 96.42±0.42 96.96±0.21
Vowel diacritic 96.91±0.19 97.77±0.30 96.74±0.95 97.37±0.60

Grapheme 87.60±0.45 91.87±0.30 89.23±1.04 91.08±0.49

Table 5: Classification performance of FMix and baselines on sentiment analysis tasks.

Data set Model Baseline FMix MixUp

Toxic (ROC-AUC)
CNN 96.04±0.16 96.80±0.06 96.62±0.10
BiLSTM 96.72±0.04 97.35±0.05 97.15±0.06
Bert (α=0.1) 98.22±0.03 98.26±0.03 -

IMDb CNN (α=0.2) 86.68±0.50 87.31±0.34 88.94±0.13
BiLSTM (α=0.2) 88.29±0.17 88.47±0.24 88.72±0.17

Yelp Binary CNN 95.47±0.08 95.80±0.14 95.91±0.10
BiLSTM 96.41±0.05 96.68±0.06 96.71±0.07

Yelp Fine-grained CNN 63.78±0.18 64.46±0.07 64.56±0.12
BiLSTM 62.96±0.18 66.46±0.13 66.11±0.13

not known how FMix would compare. On ImageNet-a, the general finding is that MSDA gives a
good improvement in robustness to adversarial examples. Interestingly, MixUp with α = 1.0 yields
a lower accuracy on ImageNet but a much higher accuracy on ImageNet-a, suggesting that models
trained with MixUp learn a fundamentally different function.

For a final experiment with image data, we use the Bengali.AI handwritten grapheme classification
data set (Bengali.AI, 2020), from a recent Kaggle competition. Classifying graphemes is a multi-
class problem, they consist of a root graphical form (a vowel or consonant, 168 classes) which is
modified by the addition of other vowel (11 classes) or consonant (7 classes) diacritics. To cor-
rectly classify the grapheme requires classifying each of these individually, where only the root is
necessarily always present. We train separate models for each sub-class, and report the individual
classification accuracies and the combined accuracy (where the output is considered correct only
if all three predictions are correct). We report results for 5 folds where 80% of the data is used for
training and the rest for testing. We extract the region of the image which contains the grapheme and
resize to 64 × 64, performing no additional augmentation. The results for these experiments, with
an SE-ResNeXt-50 (Xie et al., 2017; Hu et al., 2018), are given in Table 4. FMix and CutMix both
clearly offer strong improvement over the baseline and MixUp, with FMix performing significantly
better than CutMix on the root and vowel classification tasks. As a result, FMix obtains a significant
improvement when classifying the whole grapheme. In addition, note that FMix was used in the
competition by Singer and Gordeev (2020) in their second place prize-winning solution. This was
the best result obtained with MSDA.

Sentiment Analysis Although typically restricted to classification of two dimensional data, we can
extend the MSDA formulation for classification of one dimensional data. In Table 5, we perform
a series of experiments with MSDAs for the purpose of sentiment analysis. In order for MSDA
to be effective, we group elements into batches of similar sequence length as is already a standard
practice. This ensures that the mixing does not introduce multiple end tokens or other strange
artefacts (as would be the case if batches were padded to a fixed length). The models used are: pre-
trained FastText-300d (Joulin et al., 2016) embedding followed by a simple three layer CNN (LeCun
et al., 1995), the FastText embedding followed by a two layer bi-directional LSTM (Hochreiter
and Schmidhuber, 1997), and pre-trained Bert (Devlin et al., 2018) provided by the HuggingFace
transformers library (Wolf et al., 2019). For the LSTM and CNN models we compare MixUp and
FMix with a baseline. For the Bert fine-tuning we do not compare to MixUp as the model input
is a series of tokens, interpolations between which are meaningless. We first report results on the
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Figure 3: CIFAR-10 performance for a PreAct-ResNet18 as we change the amount of training data.

Toxic Comments (Jigsaw and Google, 2018) data set, a Kaggle competition to classify text into one
of 6 classes. For this data set we report the ROC-AUC metric, as this was used in the competition.
Note that these results are computed over the whole test set and are therefore not comparable to
the competition scores, which were computed over a subset of the test data. In this setting, both
MixUp and FMix provide an improvement over the baseline, with FMix consistently providing a
further improvement over MixUp. The improvement when fine-tuning Bert with FMix is outside
the margin of error of the baseline, but mild in comparison to the improvement obtained in the other
settings. We additionally report results on the IMDb (Maas et al., 2011), Yelp binary, and Yelp fine-
grained (Zhang et al., 2015) data sets. For the IMDb data set, which has one tenth of the number
of examples, we found α = 0.2 to give the best results for both MSDAs. Here, MixUp provides a
clear improvement over both FMix and the baseline for both models. This suggests that MixUp may
perform better when there are fewer examples.

Combining MSDAs We have established through our analysis that models trained with interpola-
tive MSDA perform a fundamentally different function to models trained with masking. We now
wish to understand whether the benefits of interpolation and masking are mutually exclusive. We
therefore performed experiments with simultaneous action of multiple MSDAs, alternating their
application per batch with a PreAct-ResNet18 on CIFAR-10. A combination of interpolation and
masking, particularly FMix+MixUp (96.30±0.08), gives the best results, with CutMix+MixUp per-
forming slightly worse (96.26±0.04). In contrast, combining FMix and CutMix gives worse results
(95.85±0.1) than using either method on its own. For a final experiment, we note that our results
suggest that interpolation performs better when there is less data available (e.g. the IMDb data set)
and that masking performs better when there is more data available (e.g. ImageNet and the Ben-
gali.AI data set). This finding is supported by our analysis since it is always easier for the model
to learn specific features, and so we would naturally expect that preventing this is of greater utility,
when there is less data. We confirm this empirically by varying the size of the CIFAR-10 training set
and training with different MSDAs in Figure 3. Notably, the FMix+MixUp policy obtains superior
performance irrespective of the amount of available data.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have introduced FMix, a masking MSDA that improves classification performance
for a series of models, modalities, and dimensionalities. We believe the strength of masking meth-
ods resides in preserving local features and we improve upon existing approaches by increasing
the number of possible mask shapes. We have verified this intuition through a novel information
theoretic analysis. Our analysis shows that interpolation causes models to encode more general
features, whereas masking causes models to encode the same information as when trained with the
original data whilst eliminating memorisation. Our preliminary experiments suggest that combin-
ing interpolative and masking MSDA could improve performance further, although further work
is needed to fully understand this phenomenon. Future work should also look to expand on the
finding that masking MSDA works well in combination with Fast AutoAugment (Lim et al., 2019),
perhaps by experimenting with similar methods like AutoAugment (Cubuk et al., 2019a) or Ran-
dAugment (Cubuk et al., 2019b). Finally, our early experiments resulted in several lines of enquiry
that ultimately did not bare fruit, which we discuss further in Appendix F.
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A ON THE IMPORTANCE OF TARGETS

The standard formulation for classification with MSDA weights the cross entropy losses computed
with each of the true labels by the corresponding input mixing ratio. It could be suggested that by
mixing the targets differently, one might obtain better results. However, there are key observations
from prior art which give us cause to doubt this supposition; in particular, Liang et al. (2018) per-
formed a number of experiments on the importance of the mixing ratio of the labels in MixUp. They
concluded that when the targets are not mixed in the same proportion as the inputs the model can be
regularised to the point of underfitting. However, despite this conclusion their results show only a
mild performance change even in the extreme event that targets are mixed randomly, independent of
the inputs. That doesn’t mean that the target space is always insignificant. For example, we might
care about how calibrated the outputs are. Calibration is the extent to which an output ‘probabil-
ity’ corresponds to the actual probability of being correct. Clearly, this is a challenging property
to evaluate since we have no notion of ground truth uncertainty in the data. Peterson et al. (2019)
suggest using human uncertainty as a baseline on the CIFAR-10 data set. Specifically, they intro-
duce the CIFAR-10H data set which consists of human soft-labels for the CIFAR-10 test set, i.e.
the distribution resulting from many different humans labelling each image. We evaluate a series
of CIFAR-10 pretrained PreAct-ResNet18 models on CIFAR-10H in Table 6. The metric used is
the relative entropy of the model outputs with respect to the soft-labels. The results show that the
masking MSDA approaches induce a notion of uncertainty that is more similar to that of human
observers. An important weakness of this claim derives from the cross entropy objective used to
train models. We note that

H(pŶ |X , pY |X) = H(pŶ |X) +D
(
pŶ |X ‖ pY |X

)
. (4)

In other words, the model is jointly required to match the target distribution and minimise the en-
tropy of each output. The result of this is that trained models naturally output very high confidence
predictions as an artefact of their training process. The above claim should therefore be taken with a
pinch of salt since it is likely that the improved results derive simply from the lower entropy targets
and model outputs. Furthermore, we expect that significant improvement would be gained in this
test by training MSDA models with a relative entropy objective rather than the cross entropy.

Table 6: Mean and standard deviation divergence scores on CIFAR-10H, using the PreAct ResNet18
model trained on CIFAR-10.

Baseline FMix MixUp CutMix

D
(
pŶ |X ‖ pYH |X

)
0.716±0.032 0.220±0.009 0.239±0.005 0.211±0.005

B VAE MUTUAL INFORMATION

Recall from the paper that we wish to estimate the mutual information between the representa-
tion learned by a VAE from the original data set, ZX , and the representation learned from some
augmented data set, ZA, written I(ZX ;ZA) = EZX

[
D
(
p(ZA |ZX) ‖ pZA

)]
. VAEs comprise an

encoder, p(Z |X), and a decoder, p(X |Z). We impose a standard Normal prior on Z, and train the
model to maximise the Evidence Lower BOund (ELBO) objective

L = EX
[
EZ |X

[
log(p(X |Z))

]
−D

(
p(Z |X) ‖N (0, I)

)]
. (5)

Denoting the outputs of the decoder of the VAE trained on the augmentation as X̂ = decode(ZX),
and by the data processing inequality, we have I(ZA; X̂) ≤ I(ZA;ZX) with equality when the
decoder retains all of the information in Z. Now, we need only observe that we already have a
model of p(ZA |X), the encoder trained on the augmented data. Estimating the marginal pZA

presents
a challenge as it is a Gaussian mixture. However, we can measure an alternative form of the mutual
information that is equivalent up to an additive constant, and for which the divergence has a closed
form solution, with

EX̂
[
D
(
p(ZA | X̂) ‖ pZA

)]
= EX̂

[
D
(
p(ZA | X̂) ‖N (0, I)

)]
−D

(
pZA
‖N (0, I)

)
. (6)
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The above holds for any choice of distribution that does not depend on X̂ . Conceptually, this
states that we will always lose more information on average if we approximate p(ZA | X̂) with any
constant distribution other than the marginal pZA

. Additionally note that we implicitly minimise
D
(
pZA
‖N (0, I)

)
during training of the VAE (Hoffman and Johnson, 2016). In light of this fact,

we can write I(ZA; X̂) ≈ EX̂ [D
(
p(ZA | X̂) ‖N (0, I)

)
].

We can now easily obtain a helpful upper bound of I(ZA;ZX) such that it is bounded on both
sides. Since ZA is just a function of X , again by the data processing inequality, we have
I(ZA;X) ≥ I(ZA;ZX). This is easy to compute since it is just the relative entropy term from
the ELBO objective. To summarise, we can compute our measure by first training two VAEs, one
on the original data and one on the augmented data. We then generate reconstructions of data points
in the original data with one VAE and encode them in the other. We now compute the expected
value of the relative entropy between the encoded distribution and an estimate of the marginal to
obtain an estimate of a lower bound of the mutual information between the representations. We then
recompute this using real data points instead of reconstructions to obtain an upper bound.

C SUPPLEMENTARY ANALYSES

Input

Baseline

MixUp

CutMix

Figure 4: Grad-CAM at the output of the first convolutional layer of a PreAct-ResNet18 trained with
a range of MSDAs.

D ADDITIONAL EXPERIMENTS

Table 7: Classification performance for our approach, FMix, against a baseline for a PointNet (Qi
et al., 2017) on ModelNet10 (Wu et al., 2015)

Data set Model Baseline FMix MixUp CutMix

ModelNet10 PointNet 89.10±0.32 89.57±0.44 - -

Commands ResNet (α=1.0) 97.69±0.04
98.59±0.03 98.46±0.08 98.46±0.08

ResNet (α=0.2) 98.44±0.06 98.31±0.08 98.48±0.06

Point Cloud Classification We now demonstrate the extension of FMix to 3D through point cloud
classification on ModelNet10 (Wu et al., 2015). We transform the pointclouds to a voxel representa-
tion before applying a 3D FMix mask. Table 7 reports the average median accuracy from the last 5
epochs, due to large variability in the results. It shows that FMix continues to improve results within
significance, even in higher dimensions.

Audio Classification The Google Commands data set was created to promote deep learning re-
search on speech recognition problems. It is comprised of 65,000 one second utterances of one
of 30 words, with 10 of those words being the target classes and the rest considered unrelated or
background noise. We perform MSDA on a Mel-frequency spectrogram of each utterance. The
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Figure 5: Full set of adversarial robustness results over the CIFAR-10 test set for a range of MSDAs,
including our approach FMix.

results for a PreAct ResNet-18 are given in Table 7. We evaluate FMix, MixUp, and CutMix for the
standard α = 1 used for the majority of our experiments and α = 0.2 recommended by Zhang et al.
(2017) for MixUp. We see in both cases that FMix and CutMix improve performance over MixUp
outside the margin of error, with the best result achieved by FMix with α = 1.
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E EXPERIMENTAL DETAILS

In this section we provide the experimental details for all experiments presented in the main paper.
Unless otherwise stated, the following parameters are chosen: α = 1, δ = 3, weight decay of 1×104

and optimised using SGD with momentum of 0.9. For cross validation experiments, 3 or 5 folds of
10% of the training data are generated and used for a single run each. Test set experiments use the
entire training set and give evaluations on the test sets provided. If no test set is provided then a
constant validation set of 10% of the available data is used. Table 8 provides general training details
that were present in all experiments.

All experiments were run on a single GTX1080ti or V100, with the exceptions of ImageNet ex-
periments (4 × GTX1080ti) and DenseNet/PyramidNet experiments (2 × V100). ResNet18 and
LSTM experiments ran within 2 hours in all instances, PointNet experiments ran within 10 hours,
WideResNet/DenseNet experiments ran within 2.5 days and auto-augment experiments ran within
10 days.

For all image experiments we use standard augmentations to normalise the image to [0, 1] and
perform random crops and random horizontal flips. For the google commands experiment we
used the transforms and augmentations implemented here https://github.com/tugstugi/
pytorch-speech-commands for their solution to the tensorflow speech regonition challenge.

Table 8: General experimental details present in all experiments. Batch Size (BS), Learning Rate
(LR). Schedule reports the epochs at which the learning rate was multiplied by 0.1. † Adam optimiser
used.

Experiment Model Epochs Schedule BS LR

CIFAR-10 / 100

PreAct-ResNet18 200 100, 150 128 0.1
WideResNet-28-10 200 100, 150 128 0.1
DenseNet-BC-190 300 100, 150, 225 32 0.1
PyramidNet-272-200 1800 Cosine-Annealed 64 0 - 0.05

FashionMNIST
PreAct-ResNet18 200 100, 150 128 0.1
WideResNet-28-10 300 100, 150, 225 32 0.1
DenseNet-BC-190 300 100, 150, 225 32 0.1

Google Commands PreAct-ResNet18 90 30, 60, 80 128 0.1

ImageNet ResNet101 90 30, 60, 80 256 0.4

TinyImageNet PreAct-ResNet18 200 150, 180 128 0.1

Bengali.AI PreAct-ResNet18 100 50, 75 512 0.1

Sentiment Analysis†
CNN 15 10 64 10−3

LSTM 15 10 64 10−3

Bert 5 3 32 10−5

Combining MSDAs PreAct-ResNet18 200 100, 150 128 0.1

ModelNet10† PointNet 50 10, 20, 30, 40 16 10−3

Ablations PreAct-ResNet18 200 100, 150 128 0.1
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F THINGS WE TRIED THAT DIDN’T WORK

This section details a number of experiments and modifications we attempted which did not lead
to significant results. Our aim here is to prevent future research effort being devoted to approaches
that have already been explored by us. It may also be the case that better versions of these could be
constructed which obtain better results.

F.1 SALIENCE PRIOR

It is clear that we should care about how the mixing coefficient relates to the relative amount of
salient information from each data point in the outcome. This presents a challenge because getting
λ of the salient information in the first data point does not imply that we have 1 − λ of the salient
information in the second. We could consider making an assumption that the expected distribution of
salient information in each data point is the same. In such a case, the above problem no longer exists.
For images, a simple assumption would be that the salient information is roughly Gaussian about the
centre. To apply a salience prior to our mask generation process, we need to change the binarisation
algorithm. Specifically, we iterate over the values in descending order until the mass over the prior
is equal to λ. We experimented with this approach and found no significant performance gain, and
so did not pursue it any further. That said, there may still be some value to the above motivation and
a more complex, data point specific, salience distribution could work.

F.2 MASK SOFTENING

Following the observation that combining interpolation and masking provides the best results, and
particularly the experiments in Summers and Dinneen (2019), we considered a grey-scale version
of FMix. Specifically, we explored a method which softened the edges in the mask. To achieve this,
after sorting the low frequency image by pixel value, instead of choosing a threshold and setting one
side to 1 and the other to 0, we choose an equal distance either side of the threshold and linearly
value the mask between 1 and 0 for some number of pixels. The number of grey pixels is chosen
to ensure that the mean mask value is retained and that the fraction of the image that is non-binary
does not exceed some present value.

We found that softening the masks resulted in no performance gains, and in fact, occasionally hin-
dered training. We considered it again for the toxic comments experiments since we assumed smooth
transitions would be very important for text models. It did offer minor improvements over default
FMix, however, we judged that the gain was not worth the added complexity and diluting of the core
idea of FMix for us to present it in the paper. Furthermore, proposing it for the singular case of toxic
comments would have been bad practice, since we only observed an improvement for one model,
on one data set. That said, we feel mask softening would be interesting to explore further, certainly
in the case of text models. We would need to experiment with softened FMix masks in multiple
text data sets and observe improvement in most or all of them over base FMix in order to formally
propose softening as an FMix modification.

F.3 TARGET DISTRIBUTION

A final alteration that we experimented with relates to the distribution of targets. The idea was that
we could change the distribution of the target mixing coefficients to obtain better ‘calibrated’ model
outputs. The way this is done is simple, we pass the sampled λ through its CDF and then through the
inverse CDF of the target distribution. This allows us to, for example, encourage confident outputs
by choosing a symmetric Beta distribution with α ≈ 0.1. The issue with this approach is two fold.
First, changing the distribution of the outputs in this way has no bearing on the ordering, and so no
effect on the classification accuracy. Second, any simple transform of this nature can be trivially
learned by the model or applied in post. In other words, it is equivalent to training a model normally
and then just transforming the outputs. As a result, it is difficult to argue that this approach does
anything particularly clever. We trained models with different target distributions at several points
and found that the performance was not significantly different.
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G CURRENT UNDERSTANDING OF MSDA

Attempts to explain the success of MSDAs were not only made when they were introduced, but
also through subsequent empirical and theoretical studies. In this section we review these studies to
paint a picture of the current theories, and points of contention, on how MSDA works. In addition
to their experimentation with the targets, Liang et al. (2018) argue that linear interpolation of inputs
limits the memorisation ability of the network. Gontijo-Lopes et al. (2020) proposes two measures
to explain the impact of augmentation on generalisation when jointly optimised: affinity and diver-
sity. While the former captures the shift in the data distribution as perceived by the baseline model,
the latter measures the training loss when learning with augmented data. A somewhat more math-
ematical view on MSDA was adopted by Guo et al. (2019), who argue that MixUp regularises the
model by constraining it outside the data manifold. They point out that this could lead to reducing
the space of possible hypotheses, but could also lead to generated examples contradicting original
ones, degrading quality. Upon Taylor-expanding the objective, a more recent study that also focuses
on MixUp motivates its success by the co-action of four different regularisation factors (Carratino
et al., 2020).

Following Zhang et al. (2017), He et al. (2019) take a statistical learning view of MSDA, basing
their study on the observation that MSDA distorts the data distribution and thus does not perform
VRM in the traditional sense. They subsequently propose separating features into ‘minor’ and ‘ma-
jor’, where a feature is referred to as ‘minor’ if it is highly sample-specific. Augmentations that
significantly affect the distribution are said to make the model predominantly learn from ‘major’
features. From an information theoretic perspective, ignoring these ‘minor’ features corresponds to
increased compression of the input by the model. Although He et al. (2019) noted the importance of
characterising the effect of data augmentation from an information perspective, they did not explore
any measures that do so. Instead, He et al. (2019) analysed the variance in the learned represen-
tations. It can be seen that this is analogous to the entropy of the representation since entropy can
be estimated via the pairwise distances between samples, with higher distances corresponding to
both greater entropy and variance (Kolchinsky and Tracey, 2017). In proposing Manifold MixUp,
Verma et al. (2019) additionally suggest that MixUp works by increasing compression. The authors
compute the singular values of the representations in early layers of trained networks, with smaller
singular values again corresponding to lower entropy. The issue with these approaches is that the
entropy of the representation is only an upper bound on the information that the representation has
about the input.

An issue with these findings is that they relate purely to interpolative MSDAs. It is also the case that
there is disagreement in the conclusions of some of these studies. If interpolative MSDA works by
preventing the model from learning about so called ‘minor’ features, then that would suggest that the
underlying data distribution has been distorted, breaking the core assumption of VRM. Furthermore,
Yun et al. (2019) suggested that masking MSDA approaches work by addressing this distortion. If
this is the case then we should expect them to perform worse than interpolative MSDAs since the bias
towards compressed representations has been removed. Clearly, there is some contention about the
underlying mechanisms driving generalisation in MSDAs. In particular, it is necessary to provide an
explanation for masking MSDAs that is complementary to the current explanations of interpolative
MSDAs, rather than contradictory to them.
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H HYPERPARAMETER CHOICE

Figure 6a gives the relationship between validation accuracy and the parameter α for three MSDA
methods. Validation accuracy is the average over 5 folds with a validation set consisting of 10% of
the data. This ablation was performed on the CIFAR-10 data set using the PreAct ResNet18 model
from the previous experiments. In the cases of FMix and MixUp there exists an optimal value. In
both cases, this point is close to α = 1, although for MixUp it is skewed slightly toward 0, as was
found for their ImageNet experiments. The choice of decay power δ is certainly more significant.
Figure 6b shows that low values of δ drastically reduce the final accuracy. This is unsurprising
since low δ corresponds to a speckled mask, with no large regions of either data point present in the
augmentation. Larger values of δ correspond to smoother marks with large cohesive regions from
each donor image. We note that for δ & 3 there is little improvement to be gained, validating our
decision to use δ = 3.
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(a) Performance of masking MSDAs (FMix and Cut-
Mix) remains with increased mixing (as α increases).
Performance of interpolative MSDAs (MixUp) does
degrade, since data level distortion increases.
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(b) Performance of FMix increases with the decay
power δ. Using a lower frequency grey-scale image
(increasing δ) increases local consistency up to a point
(δ ≈ 3).

Figure 6: CIFAR-10 accuracy for a PreAct-ResNet18 with varying α trained with FMix (ours),
MixUp and CutMix (Figure 6a), and with varying δ trained with FMix (Figure 6b).
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