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Abstract—Prompt Recovery, reconstructing prompts from the
outputs of large language models (LLMs), has grown in im-
portance as LLMs become ubiquitous. Most users access LLMs
through APIs without internal model weights, relying only on out-
puts and logits, which complicates recovery. This paper explores a
unique prompt recovery task focused on reconstructing prompts
for style transfer and rephrasing, rather than typical question-
answering. We introduce a dataset created with LLM assistance,
ensuring quality through multiple techniques, and test methods
like zero-shot, few-shot, jailbreak, chain-of-thought, fine-tuning,
and a novel canonical-prompt fallback for poor-performing cases.
Our results show that one-shot and fine-tuning yield the best
outcomes, but highlight flaws in traditional sentence similarity
metrics for evaluating prompt recovery. Contributions include (1)
a benchmark dataset, (2) comprehensive experiments on prompt
recovery strategies, and (3) identification of limitations in current
evaluation metrics, all of which advance general prompt recovery
research, where the structure of the input prompt is unrestricted.

Index Terms—Prompt Recovery, Language Model Inversion,
LLM, Adversarial Attack

I. INTRODUCTION

Large Language Models (LLMs) have become essential
to various applications due to their ability to generate high-
quality outputs based on user prompts. However, there are
instances where we only have access to the generated output
but need to identify the corresponding prompt to get that
specific output. This task, known as “Prompt Recovery,” was
introduced by [1] in the context of closed-source LLMs.
Subsequent studies have addressed this challenge as a form of
attack, such as prompt leakage or jailbreak attempts [2] [3],
highlighting the security implications of recovering prompts
to defend against malicious uses of LLMs. Successful prompt
recovery is crucial for mitigating risks associated with harmful
prompt generation [4], determining user liability [5], and
verifying potential copyright violations [6].

The fundamental difficulty of prompt recovery lies in the
fact that exact inversion of outputs to prompts typically
requires additional information, like the full probability dis-
tribution, which is only available for some LLMs [1]. For
models that are accessible only through inference APIs, the
information is restricted. Additionally, in scenarios where
outputs are derived from documents without access to the orig-
inal prompt or supplementary data, the challenge of prompt
recovery becomes even more evident.

While most existing work in this area focused on question-
answering datasets [1] [7] [8], our research explores a special-
ized scenario in which prompts are used to transform writing
styles or rephrase sentences. The task involves recovering
the transformation prompt from the original sentence and its
corresponding output. Different from [9], our work focuses
on providing an open-source dataset along with a detailed
methodology for its construction and testing method within
a single model for this task.

In this paper, we introduce a benchmark dataset, named
StyleRec1, which ensures quality and diversity through rigor-
ous construction techniques. We detail the dataset’s creation
process to facilitate further research. Additionally, we evaluate
five different methods to determine the most effective approach
for prompt recovery in this specialized context. Our contribu-
tions are as follows. (1) We present the first benchmark dataset
with detailed construction guidelines, enabling researchers to
generate additional data. (2) Our experimental results demon-
strate the effectiveness of specific methods, offering guidance
for future research in this domain. (3) We identify flaws
in commonly used sentence similarity metrics when applied
to the prompt recovery task. Additionally, we highlight the
unique challenges of prompt recovery in different scenarios,
underscoring the complexity of the general prompt recovery
task where the format of the prompt is unrestricted.

II. RELATED WORK

A. Language Model Jailbreaking

Language Model Jailbreaking refers to techniques used to
bypass or undermine the safety and ethical guidelines em-
bedded within LLMs. [3] employs a Self-Adversarial Attack
and demonstrates that paraphrasing a system prompt can
effectively bypass a target model’s safeguards. [10] conducts
an empirical study that categorizes jailbreak methods into
three primary strategies: Pretending, Attention Shifting, and
Privilege Escalation. The work in [11] identifies two primary
causes for LLM safeguard failures: competing objectives and
generalization mismatch. These factors have inspired the de-
velopment of various jailbreak techniques [12] [13].

However, most evaluations of jailbreak methods have not
thoroughly considered defending LLMs. The study by [14]
addresses this gap by assessing the effectiveness of both

1For the dataset, please refer to the following GitHub repository:
https://github.com/promptrecovery501/StyleRec.979-8-3503-6248-0/24/$31.00 ©2024 IEEE

https://github.com/promptrecovery501/StyleRec
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Fig. 1: The Workflow of Data Generation

jailbreak attacks and defense techniques. The findings across
these papers underscore a critical point: no single defense can
block all attacks, and no attack can penetrate all defenses. Nev-
ertheless, the ongoing battle between attackers and defenders
drives the continuous improvement of LLMs.

B. Model Stealing

[15] first formalizes the Model Stealing problem that
is to steal the LLM’s weights through interaction with the
LLM itself. The approach has been used in different tasks
,such as membership inference [16], federate learning [17]
and machine translation [18] and different areas, such as
healthcare [19], biology [20] and cryptography [21]. Recent
studies [22] [1] suggest that reconstructing model weights
may replicate models capability of imitating surface syntax,
but have difficulty to restore their underlying decision-making
mechanisms.

Since many model stealing methods are developed, pro-
tection methods are also improved by many work. [23] [24]
focused on the defense of normal deep neurual network. [25]
discussed strategies of protection for chatbots.

Beyond the protection methods that make the model
stronger, another method to avoid issues is to detect model
stealing [26] [27] before submitting the inputs into the model.

C. Prompt Recovery

The term “Prompt Recovery” has been recently introduced
in studies such as [8], [7], and [9]. However, the underlying
concept has been explored for many years under the name
“Model Inversion” in the computer vision domain [28] [29].
[1] applied model inversion techniques to LLMs, highlighting
the crucial role of logits (e.g., probability distributions) in
successful prompt recovery.

[7] focused on creative writing, such as poetry, and em-
ployed a method termed “sample inverter” by [1], which does
not rely on logits. Building on this, [8] delved deeper into the
relationship between output probability-based uncertainty and
the effectiveness of prompt recovery methods. They developed

a novel approach that leverages this uncertainty through a
chain-of-thought methodology.

Simultaneously with our work, [9] developed a similar idea,
focusing on a specialized scenario where the goal is to predict
the prompt that alters the writing style or rephrases an original
sentence, given the original sentence and its corresponding
output. Previous studies [1], [7] and [8] have primarily con-
centrated on using the LLM’s output to predict the original
prompt or question.

III. DATA GENERATION WITH LLM

In this section, we describe the process used to generate
our dataset (see Figure 1). First, we selected YouTube videos
covering various topics relevant to daily life, extracted the
transcripts from these videos (Section III-A), and applied
multiple filters to ensure data quality (Section III-B). Using
the preprocessed transcripts, we crafted prompts to transform
the style of these transcripts (Section III-C). The resulting data
was further refined using validation methods based on cosine
similarity (Section III-D). The sample data is shown in Fig. 2.

A. Data Preparation

We utilize YouTube video transcripts as the primary source
for generating our dataset. The platform provides both auto-
matically generated and manually reviewed transcripts, making
it an ideal and comprehensive data source for this study. The
inclusion of such a wide variety of content ensures that the
dataset is rich and multifaceted, enhancing the generalizability
and broad applicability of the research to various real-world
use cases.

To ensure that our dataset captures a wide spectrum of
everyday scenarios, we selectively extract transcripts from
YouTube videos categorized into diverse topics, including:
travel, education, entertainment, environment, fashion, finance,
food, health, history, law, news, real estate, family, religion,
science, culture, sports, and technology. This deliberate cate-
gorization ensures that the dataset reflects a range of human



experiences, perspectives, and conversational styles. By incor-
porating content from various categories, we aim to guarantee
that the dataset covers both formal and informal language,
technical and non-technical topics, and different levels of
complexity in conversation.

To identify suitable videos for each category, we apply the
following criteria as filters for selection: (1) the video must be
the most recommended within its specific category, ensuring
that the content is both relevant and engaging, (2) the video
must have English transcripts, ensuring language consistency
throughout the dataset, and (3) the video must be longer than
20 minutes, providing enough content to generate substantial
transcripts for analysis. These filters ensure that the dataset
is not only diverse but also provides enough contextual depth
and richness for effective model training and testing.

B. Data Preprocessing

After the initial selection of videos, we preprocess the
transcripts to prepare them for use in the study. Fig. 1
illustrates the filtering criteria used in this preprocessing
phase. First, we remove any special characters and extraneous
information, such as the speaker’s name that often precedes
dialogue in transcripts. This step is crucial to eliminate non-
conversational elements that may interfere with the language
modeling process. The transcripts then undergo a series of five
additional filtering steps: length checking, grammar correction,
non-English content removal, hate speech elimination and
advertisement exclusion. Fig. 3 shows the specific prompts
and rules we used to implement these filtering steps. Once
these preprocessing steps are completed, we receive a set of
clean, high-quality transcripts that are ready for use in our
study.

Finally, these cleansed transcripts are input into the LLM
using a variety of style transformation prompts. The LLM
generates outputs based on the input transcripts, applying
different stylistic changes.

C. Methods for Generation

With the preprocessed transcripts, we generated our dataset
by applying style transformation prompts and obtaining the
outputs from the LLM. Each instance in the dataset follows
the format: original sentence, result sentence, style prompt.
The prompts we employed include eight categories: tone,
family roles, occupation, celebrity, historical periods, passive
voice, diary style, and proverbs. All 33 styles are shown in
Table I. Given the varied sources of the transcripts, the styles
were initially inconsistent. The prompt template is shown
in Fig. 5 We standardized the style of the transcripts to a
uniform “style for consistency” (Fig. 4), which was used as
the original sentence in our dataset. To ensure the stability
of the results, multiple outputs were generated for each style
prompt. We then applied self-correction [30] to select the best
output, the prompt is shown in Fig. 7. For further study, we
also collected logits for next-token probability and Length-
normalized Predictive Entropy (LN-PE) [31] for use in few-
shot sample selection.

D. Data Validation
To validate the generated data, we measured the cosine

similarity between the original sentence and the output after
style transformation, as a metric referred to as meaning
consistency. To differentiate the current generated data with
the final results, we call it “temporary results”. As described
in Sec III-C, we first transformed the transcripts to the “style
for consistency” as the original sentence before generating the
result sentence using the style transformation prompt. Subse-
quently, the result sentence was converted back to the “style
for consistency” to obtain the predicted original sentence.
We then measured the cosine similarity between the original
sentence and the predicted original sentence, a process known
as cycle consistency [32]. Finally, we applied thresholds for
both meaning consistency and cycle consistency to filter out
inconsistent results.

original_sentence: 
The notion that wine has health benefits is not universally accepted.

result_sentence
Wine's health benefits are a topic of debate.

style_prompt
Please change the sentence by using an informal tone.

Fig. 2: Sample Data

Grammar correction: 
Please check the grammar errors for this sentence: '{mysentence}'. If there exist errors, show corrected sentence without 
mentioning the words 'corrected sentence:' and if there is no error, show original sentence. Please show only the final 
result without explanation.

Removal of non-English content:
Please check this sentence: '{mysentence}'. If it contains language other than English return 'true'; otherwise, return 
'false'.

Elimination of hate speech:
Please check this sentence: '{mysentence}'. If it contains hate speech, return 'true'; otherwise, return 'false'.

Exclusion of advertisements:
Please check this sentence: '{mysentence}'. If it contains advertisement, return 'true'; otherwise, return 'false'.

Fig. 3: Prompts for filters

Style for Consistency: 
Please change the sentence: '{mysentence}' in a way that a 30 years old PhD student would say. Please show only the 
final result without explanation and replies.

Fig. 4: Prompts for consistency

TABLE I: All styles in different categories

Category Styles

Tone formal, informal, optimistic, pessimistic, humorous, serious,
inspiring, authoritative, persuasive

Family Roles grandfather, grandmother, father, mother, son, daughter

Occupation professor, doctor, policeman, priest, kindergarten teacher,
businessman

Celebrity Donald Trump, Joe Biden, Ellen DeGeneres, Kevin Hart,
Conan O’Brien, Steve Harvey

Historical Period old English, middle English, early modern English
Passive passive
Diary diary
Proverb proverb

IV. METHODS FOR PROMPT RECOVERY

A. Direct Inference with LLM
In earlier models, limited size and training on specific tasks

meant that performance on new tasks without fine-tuning was



Data Generation: 
Please find the prompt that was given to you to transform **original_text** to **new_text**. One clue is the prompt 
itself was short and concise. Answer in this format: "The prompt was: <the prompt>" and don't add anything else.
**original_text**:
<oringinal sentence>
**new_text**:
<result sentence>

Fig. 5: Prompts for Data Generation

Few-shot Example: 
Given the example:
Example 1:
**original_text**:
I have a preference for sweet flavors, such as a banana smoothie with honey, but the combination of beetroot and 
kale does not appeal to me at all!

**new_text**:
I absolutely love sweet flavors like a banana smoothie with honey, but I'm open to trying new combinations like 
beetroot and kale to see if they can surprise me!

The prompt was: "Please change the sentence by using a optimistic tone."

Example 2:
**original_text**:
We will engage in a discussion on dengue fever, a disease that is often transmitted by these insects, and, as is 
customary, we will also explore some pertinent lexical items.

**new_text**:
Let's dive into the fascinating world of lexical items that will not only expand our vocabulary, but also equip us with the 
tools to tackle this pressing public health issue.

The prompt was: "Please change the sentence by using a persuasive tone."

Example 3:
**original_text**:
Notwithstanding the lack of a definitive cure, contemporary pharmacological interventions have enabled individuals to 
effectively manage their HIV infection, thereby prolonging their lifespan.

**new_text**:
Notwithstanding the lack of a magic pill, modern meds have turned HIV into a minor annoyance, allowing people to 
live longer and not die immediately... yet!

The prompt was: "Please change the sentence by using a humorous tone."

Fig. 6: Prompts for Few-shot

often poor. However, with the advent of modern LLMs, which
are trained on large amounts of data and a wide range of
downstream tasks, direct inference has become feasible. For
this study, we manually crafted prompts for both zero-shot (see
Fig.5) and few-shot (see Fig.6) settings to generate the result
sentences. The size of examples for the few-shot setting is
kept constrained because longer sample sizes lead to increased
inference time. We selected data with the highest LN-PE
scores for each different style as sample data and randomly
picked a subset for few-shot learning.

B. Jailbreak

As mentioned in the results of [8], jailbreak prompt does
not help much for prompt recovery task. We do not try all
the jailbreak prompts in [8], but only use Prefix Injection and
Refusal Suppression discussed in [11].

C. Chain of Thoughts

Chain of Thoughts (CoT) [33] is effective for enhancing
reasoning in language models because it breaks down complex
problems into smaller, manageable steps, leading to more
interpretable and accurate responses. In this work, we break
the problem into four steps: compare tone and style, identify
the changes, check the purpose of the transformation, and
consider the clues to get the final result.

D. LLM Fine-Tuning

Although LLMs can address the problem through direct
inference with some samples, fine-tuning enhances the model’s
ability to learn from training data. To efficiently fine-tune the

Self-Correction: 
What is the most common theme among these statements? Please do not show the common theme but only show the 
best sentence that conclude the common theme without additional description. <previous results>.

Fig. 7: Prompts for Data Validation

model while limiting the training time, we employed Low-
Rank Adaptation (LoRA) [34], a parameter-efficient technique
for fine-tuning. This method adjusts only a small subset of
the model’s trainable parameters while maintaining strong
performance.

E. Canonical Prompt for Abnormal Outputs

The “Canonical Prompt” concept involves identifying a
prompt that is close to the majority of prompts in the training
set ST , enabling it to serve as a fallback prompt that avoids
poor performance across various inputs. The approach is sum-
marized in Algorithm 1. We detail the process for generating
a canonical prompt as follows: First, we manually create seed
prompts and add them to the Generated Prompt Set SG. We
then calculate the cosine similarity between sampled prompts
SSample from ST and SG and determine the average similarity
for each prompt in SG. Prompts in SG with high similarity
are retained as our new training set, SGnew , we keep top k of
the prompts. Next, we use SGnew

to generate a Vocabulary Set
SV and employ beam search to insert words from SV into the
prompts in SG, cosine similarity is used as first step to evaluate
generated prompts. New prompts that significantly increase
similarity to SGnew are stored as coarse results. Since word
insertion can result in excessively long prompts, we apply a
threshold to trim them. To further reduce the search space,
we use a greedy search approach, inserting words only into
the current best prompt. To improve the performance, all the
steps discussed above can be run multiple times before get the
best prompt. Finally, we get the final results and find the best
prompt to return.

V. EXPERIMENTAL SETUP

A. LLM

For inference and fine-tuning, we conducted experiments
using Llama 3 8B model [35] and Mistral 7B v0.3 model
[36]. We train models for 1 epoch with Paged Adam 8Bit
optimizer with a learning rate of 2e−4. To generate embedding
vectors for cosine similarity, we utilize the E5-Mistral-7B-
Instruct model [37], which is recognized as one of the top-
performing embedding models. We use a constant learning
rate with linear warmup over the first 30% training steps. We
train in FP32 precision.

B. Dataset

We generated the dataset as described in Section III. First we
get 16174 transcripts from selected YouTube videos, and use
filters to get 13686 filtered transcripts. We did not create results
for each of the filtered transcript with all 33 transformation
styles, instead, we just use one of these styles for them.
Then, we get the dataset consisting of 13686 instances across
various categories, each including the original sentence, result



Algorithm 1 Canonical Prompt
Input ST , SeedPrompts, LoopT imes

SG ← SeedPrompts
i = 0
while i < LoopT imes do

for sentenceg ← enumerate(SG) do
Similarityg ← 0
SSimilarity ← ∅ ▷ SSimilarity is the set for average similarity between one prompt in SG and each prompt in

SSample

SSample ← Sample(ST )
for sentences ← enumerate(SSample) do

Similarityg ← Similarityg+CosineSimilarity(sentenceg, sentences)
end for
Similarityg ← Average(Similarityg)
SSimilarity ← SSimilarity ∪ Similarityg

end for
SGnew

← GetTopk(SSimilarity) ▷ Get k prompts with the best similarity
SV ← GenerateVocabulary(SGnew

)
for sentenceg ← enumerate(SGnew

) do
CoarseResults←BeamSearch(sentenceg, SV )
Results← Trim(CoarseResults)

end for
i = i+ 1
SG ← SG ∪Results

end while
BestPrompt← GetBest(Results)
return BestPrompt

sentence, style prompt, logits, and LN-PE values. We only take
the data with both meaning consistency and cycle consistency
larger than 0.75, so we finally get 10193 instances. The
dataset is then divided as follows: 80% for training, 10% for
validation, and 10% for testing.

C. Evaluation Metrics

We use sharpened cosine similarity (SCS) as in [9] and we
also experiment with Exact Match, BLEU-4 [38], Rouge-L
[39] and F1 score at the token level as in [1] and [8].

1) Rouge-L: ROUGE-L is a metric used to evaluate the
quality of summaries by comparing them to reference sum-
maries. Specifically, it utilizes the Longest Common Subse-
quence (LCS) between the prediction (pred) and ground truth
sentence (gt).

P =
LCS(pred, gt)

length(pred)
, (1)

where LCS(pred, gt) is the length of the longest common
subsequence between prediction and ground truth sentence,
length(pred) is the total number of words in the prediction.

R =
LCS(pred, gt)

length(gt)
, (2)

where length(gt) is the total number of words in the ground
truth sentence.

F1 =
2× P ×R

P +R
(3)

We use ROUGE-L F1 score in our result.
2) Token F1: Token F1 is a metric used in tasks where

predictions are made at the token level. The result is calculate
by comparing predictions and ground truth sentences.

P =
TP

TP + FP
, (4)

where TP stands for the number of words shared by prediction
and ground truth sentence and FP stands for the number of
words in the ground truth sentence but not in the prediction.

P =
TP

TP + FN
, (5)

where FN stands for the number of words in the prediction
but not in the ground truth sentence.

F1 =
2× P ×R

P +R
(6)

3) Sharpened Cosine Similarity: Unlike the work of [1]
and [8] that just use cosine similarity, we employed sharpened
cosine similarity (SCS) to provide a more refined similarity
score as in [9]. The similarity is calculated as follows:

SCS(voriginal, vresult) = (
voriginal · vresult
∥voriginal∥∥vresult∥

)3, (7)

where voriginal and vresult are the embedding vectors of the
original sentence and the results, respectively. These vectors
are generated using the E5-Mistral-7B-Instruct model [37].



We opted not to use the Sentence-T5-Base model as in [9]
for two main reasons. First, the E5-Mistral-7B-Instruct model
outperforms Sentence-T5-Base. Secondly, the Sentence-T5-
Base model implemented by Hugging Face has a known issue
with the embedding of the word “lucrarea,” which is almost
identical to the embedding of the special token “</s>,” used to
close output sentences. If “lucrarea” is added multiple times to
the input, the output will contain many “</s>” tokens. When
calculating the similarity between such outputs and the ground
truth sentences, the similarity is likely to be inflated compared
to outputs generated without “lucrarea” due to the presence of
“</s>” in all the embeddings.

4) BLEU: BLEU is an evaluation metric used primarily for
assessing the quality of machine-translated text by comparing
it to one or more ground truth translations. It measures the
correspondence between the machine-generated output and
the ground truth translations using n-gram precision (e.g.,
contiguous sequences of words of length n). The BLEU is
calculate by the equation as follows:

BLEU = BP × exp

(
1

N

N∑
n=1

log pn

)
, (8)

where BP is the brevity penalty, N is the maximum n-gram
length and pn is the modified precision for n-grams of length
n. And the brevity is calculated as follows:

BP =

{
1 if pred > gt

e1−
gt

pred if pred ≤ gt
, (9)

where pred is the length of the prediction, gt is the length of
the ground truth sentence.

5) Exact Match: Exact Match (EM) is a simple and in-
tuitive evaluation metric that measures how often a model’s
prediction exactly matches the ground truth.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

TABLE II: Experimental Results with Mistal-7B-Instruct
Model

Setting Rouge-L Token F1 SCS
zero-shot 14.25 14.27 76.73
jailbreak+zero-shot 15.00 15.01 75.7
CoT+zero-shot 15.34 13.94 76.68
canonical prompt+zero-shot 14.34 14.36 76.78
one-shot 32.06 31.88 84.88
jailbreak+one-shot 26.40 26.01 81.40
CoT+one-shot 31.24 30.34 84.98
canonical prompt+one-shot 32.08 31.89 84.90
three-shot 19.98 19.65 73.89
jailbreak+three-shot 16.90 16.18 76.60
CoT+three-shot 30.36 29.42 81.42
canonical prompt+three-shot 20.50 20.10 74.34
five-shot 21.40 21.16 74.91
jailbreak+five-shot 16.25 15.58 76.53
CoT+five-shot 31.51 30.41 81.66
canonical prompt+five-shot 21.97 21.64 75.32
fine-tuning 32.80 36.39 84.58

TABLE III: Experimental Results with Meta-Llama-3-8B-
Instruct Model

Setting Rouge-L Token F1 SCS
zero-shot 15.34 14.88 81.80
jailbreak+zero-shot 16.98 16.45 80.51
CoT+zero-shot 12.00 10.63 77.98
canonical prompt+zero-shot 15.34 14.88 81.80
one-shot 79.66 79.64 90.56
jailbreak+one-shot 36.97 36.60 86.88
CoT+one-shot 42.15 41.26 84.68
canonical prompt+one-shot 79.66 79.64 90.56
three-shot 68.42 68.26 90.20
jailbreak+three-shot 37.77 36.98 87.27
CoT+three-shot 12.51 10.88 79.02
canonical prompt+three-shot 68.42 68.26 90.20
five-shot 57.46 56.60 87.83
jailbreak+five-shot 35.42 35.24 85.37
CoT+five-shot 10.74 9.34 78.16
canonical prompt+five-shot 57.46 56.60 87.83
fine-tuning 17.18 16.88 82.12

A. Overall Result and Analysis

Since the BLEU and Exact Match scores are either zero
or very close to zero, we choose not to include them in the
result tables. The results are shown in Table II and Table III.
Focusing on the performance of two different models, the
one-shot setting and fine-tuning deliver the best results. The
one-shot setting achieves the highest SCS scores for both
models, while fine-tuning yields the best Rouge-L and Token
F1 scores for Mistal-7B-Instruct. Overall, Meta-Llama-3-8B-
Instruct outperforms Mistal-7B-Instruct in most settings, ex-
cept for CoT in the zero-shot, three-shot, and five-shot settings,
where Mistal-7B-Instruct has an average of 13.99 higher for
Rouge-L, 14.31 higher for Token F1, and 1.3 higher for SCS
compared to Meta-Llama-3-8B-Instruct.

It is clear that Meta-Llama-3-8B-Instruct is the best model
for our task, while the CoT technique is proven less beneficial
for it. This suggests that Meta-Llama-3-8B-Instruct is able
to derive better solutions for the task independently, without
relying on the “thoughts” manually designed for CoT.

Next, we examine the performance of each method for
the two models, using the zero-shot setting as a baseline for
comparison.

First, although all few-shot settings outperform zero-shot,
the one-shot setting leads to the most significant improve-
ments. For Mistal-7B-Instruct, one-shot improves Rouge-L by
17.91, Token F1 by 17.61, and SCS by 12.15. For Meta-Llama-
3-8B-Instruct, one-shot boosts Rouge-L by 64.32, Token F1 by
64.76, and SCS by 8.76.

Secondly, the jailbreak setting results in a performance drop,
with Mistal-7B-Instruct showing an average decrease of 3.29
for Rouge-L, 3.55 for Token F1, and 0.07 for SCS. Similarly,
Meta-Llama-3-8B-Instruct experiences an average decrease of
23.44 for Rouge-L, 23.53 for Token F1, and 1.11 for SCS.

Thirdly, CoT improves Mistal-7B-Instruct’s performance
with an average increase of 5.19 points for Rouge-L, 4.29
points for Token F1, and 3.58 points for SCS. In contrast,
Meta-Llama-3-8B-Instruct’s performance shows a decrease of
35.87 for Rouge-L, 36.82 for Token F1, and 7.64 for SCS.



Fourthly, the canonical prompt setting provides only slight
improvements for Mistal-7B-Instruct, with average gains of
0.3 for Rouge-L, 0.26 for Token F1, and 0.23 for SCS. For
Meta-Llama-3-8B-Instruct, there is no noticeable change.

Finally, fine-tuning offers significant improvements for
Mistal-7B-Instruct, with gains of 18.55 for Rouge-L, 22.12 for
Token F1, and 7.85 for SCS. For Meta-Llama-3-8B-Instruct,
fine-tuning provides more modest improvements: 1.84 points
for Rouge-L, 2.00 points for Token F1, and 0.42 points for
SCS. Surprisingly, fine-tuning Meta-Llama-3-8B-Instruct does
not surpass the one-shot setting as seen in the few-shot settings
as well. We dicuss the reason in the next section.

In conclusion, the one-shot setting delivers strong results.
Methods like jailbreak, canonical prompt, and CoT offer
slight improvements for Mistal-7B-Instruct but have little to
no impact on Meta-Llama-3-8B-Instruct. Ultimately, Meta-
Llama-3-8B-Instruct with one-shot setting proves to be the
superior setting for our prompt recovery task in our study.

B. Error Analysis
Given the variety of experimental settings we tested, it is

challenging to review all errors comprehensively. Here, we
focus on the errors observed in the one-shot and fine-tuning
settings. (See Table IV and Table V)

The first scenario involves low scores with acceptable
answers. For example, the “businessman’s style” prompt often
results in outputs that are concise and formal, which are
acceptable for most people. However, the scores for these
outputs are consistently low across all metrics. This type of
error is common in the fine-tuning results.

The second scenario involves high scores with incorrect
answers. For instance, the model predicts “son” instead of
“mother” in a family role task. The rest of the sentence is
correctly predicted and the overall score remains high, even
though the output is clearly wrong from a human perspective.
This highlights a limitation in the metrics, as they fail to
penalize such errors adequately. This type of error is common
in the one-shot setting.

The third scenario involves low scores with incorrect an-
swers, which is expected based on the metrics we use.
However, we cannot definitively say that the answer is 100%
wrong, as even though we generate the result based on the
ground truth, prompts other than the ground truth may also
lead to similar result sentences.

In the first scenario, Rouge-L and Token F1 fail to reflect
the close semantic similarities between the prediction and
ground truth, while SCS captures some similarity but remains
inadequate. In the second scenario, we conclude that Rouge-
L, Token F1, and SCS all yield high scores, indicating that
they do not fully capture the nuances of our specific task.
In the third scenario, it underscores the inherent difficulty of
the prompt recovery task, emphasizing the need for further
research and exploration.

VII. LIMITATIONS

First, as mentioned in error analysis, the metrics we use
have defects when facing some specific scenarios and need to

be improved. Secondly, although LLMs demonstrate strong
performance on our dataset, this success may not extend
to out-of-distribution data, highlighting the need for further
experiments to assess generalization. Thirdly, given the vast
scale of LLMs, the dataset we generated may be insufficient
compared to the data used during pre-training for these LLMs.
Expanding the dataset, potentially through data augmenta-
tion techniques, could improve performance. Fourthly, our
research focuses on English transcripts from YouTube videos,
which provide a rich dataset for understanding contemporary
language usage in various contexts, but the dataset can be
extend to other languages to incorporate multilingual and
cross-cultural perspectives. Fifthly, our study focuses on a
specific prompt recovery scenario, and many of the methods
we explored may not easily apply to more general prompt
recovery tasks, where the output format is not constrained.
Addressing the general prompt recovery challenge may require
leveraging adversarial attack techniques, jailbreak methods,
or other strategies to extract additional information about the
input prompt.

VIII. CONCLUSION

In conclusion, we explore a unique aspect of the prompt
recovery task, focusing on scenarios where a prompt alters
the writing style or rephrases a sentence. Our work introduces
a new benchmark dataset, StyleRec, specifically designed
to address this specialized challenge, ensuring both quality
and comprehensive coverage. Through our experiments, we
demonstrate that some methods contribute to this complex
problem and one-shot is the best among them. However, the
error analysis reveals that the current metrics are inadequate
for our specific task and require improvement. Our research
not only advances the understanding of prompt recovery but
also opens up new avenues for further exploration, encourag-
ing the development of innovative approaches to tackle the
general prompt recovery challenge.
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