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ABSTRACT

Machine Learning (ML) models are increasingly used to support or substitute de-
cision making. In applications where skilled experts are a limited resource, it is
crucial to reduce their burden and automate decisions when the performance of
an ML model is at least of equal quality. However, models are often pre-trained
and fixed, while tasks arrive sequentially and their distribution may shift. In that
case, the respective performance of the decision makers may change, and the de-
ferral algorithm must remain adaptive. We propose a contextual bandit model of
this online decision making problem. Our framework includes budget constraints
and different types of partial feedback models. Beyond the theoretical guarantees
of our algorithm, we propose efficient extensions that achieve remarkable perfor-
mance on real-world datasets.

1 INTRODUCTION

Consider a decision-making system that must make investment decisions based on the company’s
existing resources and on the characteristics of the available assets (the “context”). Although these
strategic tasks are usually led by humans, the diversity and complexity of the observable variables
have led to the introduction of Machine Learning (ML) models in the loop (Shi et al., 2023). The
decision-making system is consequently composite: human experts and an ML model are working
side by side, with possibly nonaligned expertise. The ML model might excel in certain scenarios
due to its analytical precision, while human experts bring additional insights and contextual under-
standing to others. Therefore, it is crucial to design a deferral meta-model that can efficiently decide
when the decision must be deferred to human experts and when not.

Existing learning-to-defer systems, e.g. (Cortes et al., 2016; Madras et al., 2018), often rely on
a joint training method where the model and its deferral component are learnt together on large,
expert-annotated datasets, with the goal of trading off prediction quality and other criteria such as
fairness. When data collection requires highly skilled experts, this traditional approach is very costly.
Furthermore, in steadily evolving contexts, such as financial investments or content moderation, the
data is subject to constant distribution shifts.

If directly retraining the ML model is not a viable option, then it is desirable to have an adaptive
deferral model that estimates and adapts to the current and unknown quality of the ML model and
of the human experts.

In this work, we model this scenario as an online two-armed contextual bandit problem that takes
into account the budget constraints related to deferring to human experts (Lattimore and Szepesvári,
2020; Agrawal and Devanur, 2014; 2016).

We argue that the resulting online decision deferral system adds significant realism to the problem.
We distinguish two types of ‘observability’ of the decision’s performance. In many scenarios, it
can be impossible to evaluate alternative decisions post hoc, as an investment or content moderation
decision may not allow to observe the counterfactual. This is the case of pure bandit feedback, where
only the reward of the chosen action (or ‘arm’) can be observed. Sometimes, however, counterfactual
performance can be evaluated: for example, an alternative portfolio performance can be evaluated
on market data a posteriori, assuming the investment decision of the agent does not significantly
impact these markets. In that case, the observations are richer than the actual performance, and we
call it full information.
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Contributions. We introduce a novel framework for online decision deferral in a budgeted setting
with bandit or full information feedback. Our main contribution is to formalize this realistic prob-
lem into a tractable online learning setting and thoroughly evaluate the resulting algorithm through
experiments on simulated and real data, yielding remarkable results in various settings. Our choice
of setting and algorithm allows us to leverage relevant literature and obtain theoretical guarantees
on the learnt deferral model.

2 RELATED WORK

Learning to Defer. Traditionally, deferral was introduced as a rejection mechanism within the
model training procedure (Cortes et al., 2016). There, the goal of the system is to minimize the
overall cost by rejecting whenever the confidence on the prediction is too low. Learning to defer
(Madras et al., 2018) brings the human in the loop by taking into account the accuracy and bias that
they could also have on these decisions: a deferral model should balance the uncertainty and biases
of any downstream decision maker. This alternative approach has gained attention both among
theorists (Madras et al., 2018; Verma and Nalisnick, 2022; Mozannar et al., 2023; Verma et al., 2023)
with a focus on uncertainty calibration, and in applications to domains such as medicine (Dvijotham
et al., 2022).

Our approach is conceptually similar to the confidence-score method (Raghu et al., 2019; Okati
et al., 2021), where a separate confidence score is computed for the human and model predictors.
The decision to defer is based on comparing the scores. A weakness of this approach is that the
model is not trained concurrently with the deferral system to complement humans where they are
most uncertain (Charusaie et al., 2022). However, in the cases where the model is fixed (for practical
or legal reasons), it is optimal to defer with a deterministic threshold function (Okati et al., 2021).

Online learning-to-defer. The online setting has been noted as an open problem in the learning-
to-defer literature (Mozannar et al., 2023). Bordt and Von Luxburg (2022) propose the first online
model for learning to advise: the machine’s decision is always given to the human decision-maker,
targeting applications like health care where the decision may only be taken by a human. Joshi et al.
(2022) address sequential learning-to-defer in medical settings, proposing a model-based reinforce-
ment learning method to learn the deferral decision; however, they assume offline access to batch
data from clinicians. Gao et al. (2021) address the problem of counterfactual risk minimization in
human-AI systems.

The question of optimizing decisions online while minimizing resource usage is more common to
the online learning and operations research fields: for instance, Cesa-Bianchi et al. (2021) optimize
online the Return on Investment, and Jain and Jamieson (2018) learn to manage a crowdfunding
platform to maximize the global quality of funded projects. To the best of our knowledge, our
model is the first to integrate a human expert in the loop of these online learning settings.

Bandits with Knapsacks. Bandits (Lattimore and Szepesvári, 2020) are sequential resource al-
location problems with limited information: only the return of the chosen action, or arm, can be
observed by the learner, and the observed return is often noisy. Knapsack constraints have been ex-
tensively studied in the stochastic setting (Madani et al., 2004; Badanidiyuru et al., 2018; Agrawal
and Devanur, 2014; 2016; Li and Stoltz, 2022) and rely on online optimization techniques (Hazan
and Levy, 2014; Hazan and Li, 2016; Lattimore and György, 2023) to adapt to the cost sequence.
There has also been recent interest in the adversarial setting, and proposed algorithms have achieved
O(log T ) competitive ratio over the optimal static policy (Immorlica et al., 2022; Sivakumar et al.,
2022).

3 FORMAL PROBLEM SETTING

We model online learning-to-defer as a two-armed contextual bandit problem with budget con-
straints. Over a horizon of T interactions, the learner sequentially observes contexts represented
by a vector xt ∈ X ⊂ Rd, with ∥x∥2 ≤ 1. They can then decide to assign the task to a human,
incurring a cost1 ct ∈ [0, 1] and obtaining the reward rh,t = rh(xt) ∈ [0, 1], or they can predict

1This cost may be known a priori or not.
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Figure 1: The deferral learner observes inputs online over a time horizon T , then decides whether to
pay ct and defer to the human or to let an ML model decide for ct = 0. The deferral learner achieves
the reward of the human decision rh,t = rh(xt) if the context was deferred to the human, and the ml
decision reward rm,t = rm(xt) otherwise. The observation Ot is the reward of the decision rπ(xt),t

in the pure bandit feedback setting. In the full information setting, Ot = {rm,t, rπ(xt),t}.

using the model and obtain the reward rm,t = rm(xt) ∈ [0, 1] at no cost ct = 0. The total budget of
the learner is fixed to B > 0 and known in advance.

Following the online learning terminology, we denote the (possibly stochastic) policy of the learner
as π : X → {m,h}. Her objective is to minimize the regret over T rounds compared to a fixed
‘good’ policy π∗ whose definition is discussed further below:

RT (π)=

T∑
t=1

rπ∗(xt) −
T∑

t=1

rπ(xt),t s.t.
∑
t

ct ≤ B (1)

Because of the cost constraints, the algorithm must not only estimate whether rh,t > rm,t, but also
whether the gain rh,t − rm,t justifies the cost expenditure.

As seen in Figure 1, we distinguish two observation models: Full information is when the model’s
performance is always observable but the received reward is that of the chosen decision. The obser-
vation is Ot = {m, π(xt)} but reward is only rπ(xt),t; in the Bandit setting, the model’s performance
can only be observed when chosen, i.e. Ot = {π(xt)}.
In the full information setting, paying the cost of a human intervention allows to guarantee a human-
level performance while the quality of the model can be monitored passively, budget permitting,
until we can safely use it when its performance could be superior. In the bandit setting, the model
cannot be run in parallel with the human and must be specifically chosen to obtain a performance.
In both cases, the cost incurred and the reward obtained are always that of the chosen action only.

Generalized Linear rewards and costs. As a first step towards solving this online learning
problem, we propose to assume the performance, or rewards, of the human and the model follow
a generalized linear model. Generalized linear models are an extension of linear regression, where
the expected value of the response variable given the predictor variable can be characterized by a
link function µ(Li et al., 2017). The two typical examples of generalized linear models are linear
(µ(x) = x), and logistic models (µ(x) = 1/(1+e−x)). For each action, there exists an independent
and unknown parameter vector θ∗a ∈ [0, 1]d such that given a context x ∈ X , E[ra(x)] = µ(x⊤θ∗a).
The costs and rewards are noisy; at round t, with context xt and decision a ∈ {m, h}, the reward is
ra,t = µ(x⊤

t θ
∗
a) + ηa,t, where ηa,t is a zero-mean, σ−sub-Gaussian martingale noise, independent

of xt and a. Additionally, the cost of deferring to the human also follows a generalized linear model;
ct = ch,t = µ(x⊤

t w
∗) + ηc,t for an unknown parameter w∗ ∈ [0, 1]d.

Following prior literature(Filippi et al., 2010; Li et al., 2017), we make some regularity assumptions:
µ is twice differentiable, and its first and second derivatives are upper bounded by Lµ and Mµ. For
simplicity, we assume the link function µ is the same between the reward and cost and between
actions. However, the algorithm can extend to varying µ. We also assume there exists a constant

3
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κ := inf∥x∥≤1,∥θ−θ∗
a∥≤1 µ

′(x⊤θ) > 0. Lastly, we make a regularity assumption on the context
distribution: there exists a constant σ0 such that λmin(Ex∼Dxx⊤) > σ0 > 0.

Defining OPT. Even when the sequence of rewards and costs are known in advance, finding the
optimal solution is a famously NP-hard combinatorial optimization problem (Pisinger and Toth,
1998). When the sequence is not known in advance, the optimal solution is an adaptive policy
with full knowledge of the context distribution, the hidden parameters, and its remaining budget.
Since the adaptive policy cannot be computed efficiently, the budgeted bandit algorithm is compared
against a static policy2 which is only required to fulfill the constraints in expectation(Agrawal and
Devanur, 2016).
Definition 3.1 (Optimal Static Policy). Let Π = {π : X → [0, 1]} denote the set of policies, where
π(x) is the probability of deferring to the human on context x. Then, define the optimal static policy:

π∗ =argmax
π∈Π

Ex∼Dπ(x)µ(θ⊤h x) + (1− π(x))µ(θ⊤mx)

subject to TEx∼Dπ(x)µ(w⊤x) ≤ B (2)

The optimal value achieved is then OPT = TEx∼D[π∗(x)µ(θ⊤h x) + (1− π∗(x))µ(θ⊤mx)]

It was shown by Agrawal and Devanur (2016) that the performance of this static policy is an upper
bound on the true optimum.

4 ALGORITHM

This problem was studied in the linear setting by Agrawal and Devanur (2016) who consider any
number of arms, as well as any number of resources which are expended at different rates. We adapt
their algorithm to allow generalized linear rewards and full information/bandit feedback (Algorithm
1). To show that the application of the algorithm to our setting is principled, we present regret
bounds as a corollary (Corollary 4.3)

The algorithm is based on the optimism principle and relies on upper confidence bounds on the
maximum likelihood estimates of the true but unknown parameters (θ∗m, θ

∗
h , w

∗) (Filippi et al., 2010;
Li et al., 2017; Lattimore and Szepesvári, 2020). This means that, rather than using the greedy
estimates, the algorithm uses an optimistic one - the parameter which achieves the highest reward
(or lowest cost) within the confidence ellipsoid around the least-squares estimate.

At each round, if the budget allows it, we evaluate the potential reward of the model (cost-free) and
of the human and its associated cost, and we choose the option with maximal return. Note that we
take into account the different observation regimes as described above: the model reward may or not
be simultaneously observable to the human’s. The set of observed actions at t is denoted Ot.

Definition 4.1 (Maximum Likelihood Estimator). Let θ̂a,t be the solution to
∑

i<t:a∈Oi
(ya,i −

µ(x⊤
i θ))xi = 0. Additionally, let ŵa,t be the solution to:

∑
i<t:a∈Oi

(ca,i − µ(x⊤
i w))xi = 0.

Definition 4.2 (Optimistic estimates). Let β(t) = σ
κ

√
2d log

(
1+2td

δ

)
for a failure probability δ ∈

(0, 1). Define Ma,t =
∑

s<t:a∈Os
xsx

⊤
s . Optimistic estimates of θ∗a are computed as follows.

θ̃a,t ← θ̂a,t + β(t)
(Ma,t)

−1xt√
x⊤
t (Ma,t)−1xt

Similarly, optimistic estimates for the cost function estimates are defined as

w̃a,t ← ŵa,t − β(t)
(Ma,t)

−1xt√
x⊤
t (Ma,t)−1xt

These are optimistic in the sense that for any x ∈ X , for all t ∈ [T ], P(⟨x, θ̃at ⟩ ≥ ⟨x, θa∗⟩) ≥ 1 − δ
(see e.g. (Lattimore and Szepesvári, 2020, Chap.20)). Since µ is an increasing function, this is an
upper bound on the expected reward.

2π is independent of the time t ∈ [T ].

4
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Algorithm 1 Generalized Linear Bandit with Budget Constraints (Agrawal and Devanur, 2016)

Require: Time horizon T , budget B
for a ∈ [m, h] do

Initialize Ma
t ← 0d×d, θ̂a,t ← 0d, ŵa,t ← 0d,

Initialize γt ← 0.5, α← 0.5, ϵ←
√

2
T

for t = 1, . . . , τ = O
(
(d+ log 1/δ)/σ2

0

)
do

Play actions at random and update estimates.
for t = τ + 1, τ + 2, . . . , T do

Observe xt

Compute θ̃a,t, w̃a,t per Definition 4.2
if Total Cost Incurred < B − 1 then

Play at = argmaxa∈[m, h] µ(x
⊤
t θ̃a,t)− T

Bγtµ(x
⊤
t w̃a,t)

Gain reward rat,t and incur cost cat,t

Observe rewards and costs {ra,t}a∈Ot
, {ca,t}a∈Ot

and update estimates.
Set gt ← γt(cat,t −B/T ).

Define α←
{
α(1 + ϵ)gt gt ≥ 0

α(1− ϵ)−gt gt < 0
Set γt+1 ← α

1+α

The regret guarantees (Corollary 4.3 below) combine the proof of Agrawal and Devanur (2016) with
results on unconstrained generalized linear bandits(Filippi et al., 2010; Li et al., 2017). Additionally,
we show that the full information setting we propose enjoys the same guarantees. The proof of the
regret bounds is deferred to Appendix A.

Note that our setting differs slightly from conventions in prior literature(Agrawal and Devanur, 2016;
Filippi et al., 2010; Li et al., 2017). In these works, the algorithm receives arm-dependent contexts
{xt}a, and the hidden parameter θ∗ is shared between arms. Though this difference is minor, it
means that in our setting there is no shared information between arms: choosing the model does not
allow us to gain information on the human’s parameter.

Corollary 4.3 (based on Agrawal and Devanur (2016)). Under the setting presented
in Section 3, and assuming B > d1/2T 3/4 Algorithm 1 achieves regret RT =

O
(
(OPT

B + 1)
Lµdσ

κ

√
T log T

dδ log
T
d

)
with probability 1− δ.

This result means that the method is near optimal since the regret for an unconstrained linear
contextual bandit algorithm is always bounded from below by Ω(d

√
T ) (see e.g. (Lattimore and

Szepesvári, 2020, Chap. 24)). Note, however, that the budget must be large for this algorithm to
perform well. Our experiments are motivated by settings with constant budget (i.e. B = pT for a
constant p ∈ (0, 1]). However, for some smaller3 values of p, T , i.e. for smaller datasets and small
budget choices, pT ≤ dT 3/4, and this may affect the convergence of the method.

Neural Linear Algorithm. While the assumption of generalized linear costs and rewards is nat-
ural for analysis, it may not perform well for every dataset. To address this, we propose a neural
variant which applies Algorithm 1 to learned context embeddings. This approach was introduced by
Riquelme et al. (2018) in the pure bandit, cost-free setting, where it was shown to have empirical
success over the linear algorithm.

We define three separate feed-forward neural networks - one to predict the model reward, one to
predict the human reward, and one to predict the cost of deferral. When a context xt is observed,
these neural networks are used to compute three separate embeddings. Each embedding is the output
of the penultimate layer of the network, and is passed to deferral algorithm in place of the real context
xt. They are used to update the maximum likelihood estimate, context covariance, and optimistic
estimate for θ∗h , θ

∗
m, and w∗ in the main loop of Algorithm 1. Depending on the action chosen, the

3Note that the condition on the budget is in O(), indicating that scaling constants are hidden. This discussion
refers to orders of magnitudes rather than precise thresholding values.
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algorithm may observe rm,t, rh,t, and/or ct. These are then used to update the neural networks to
create more accurate embeddings.

Note that there are steps that can make this algorithm easier to apply in practice. If compute time is
a concern, it is not necessary to train all three neural networks; a viable approach would be to train
two embeddings for the human and the model, or even a single embedding for all three parameters.
Additionally, we train the networks in batches after a certain number of examples arrive to avoid
updating after every step.

5 EXPERIMENTS

The goal of the following experiments is to examine the performance of Algorithm 1 in the expert
deferral setting. All experiments take place in the Full Information setting. We defer a comparison
to the Pure Bandit setting to Appendix C. Our code and data are available on an anonymous GitHub
repository for doubleblind review.

First, to explore how the algorithm learns to exploit the contexts, we examine its performance on
artificial data for which the linear model is valid. We compare its performance against a variety of
simple baselines.

5.1 SYNTHETIC LINEAR REALIZABLE DATA

We tested Algorithm 1 on synthetic data that demonstrate the behavior under different budget con-
straints and reward functions. We draw the contexts from a discrete distribution with 20 binary
features. Let X = {x ∈ {0, 1}20 : ∥x∥1 ≤ 8}. At each time step, a vector x̄t is drawn from
the the probability distribution p(x) ∝ λ|x|, with λ = 0.3. Finally, the context is normalized, so
xt =

x̄t

∥x̄t∥2
. This choice of distribution reduces the context space without reducing the dimension,

and it mimics applications where the number of nonzero attributes follow a Bell curve.

Experiment 1: Learning the Optimal Policy We compare the policy computed by the algorithm
against the optimal static policy described in Definition 3.1. The results of this experiment are shown
in Figure 2. We see that the regret of Algorithm 1 is sublinear, meaning that the performance of our
algorithm gets closer to OPT as T increases.

Figure 2: Mean and standard deviation of the regret over 100 trials. The reward and cost functions
are sampled uniformly at random from [0, 1]d for each trial.The algorithm is run over T = 50000
random contexts with B = 8000. Then, the reward received by OPT is computed for the same
contexts.

Experiment 2: Evolution of Performance with Budget In the next experiment, we observe how
the performance can adapt to different budget constraints. At intermediate budget constraints, the
algorithm can explore but must be mindful of limited resources. We demonstrate that Algorithm 1
performs near to optimal regardless of the regime.

The performance in this case also depends on the relative difference between the skills of the hu-
man and the model. We investigate two main regimes for which we construct specific parameters
(θm, θh). First, the human and the model have the same average reward, but complementary spe-
cialties, i.e. θm = 1 − θh, with4 θh ∼ {x ∈ {0, 1}20 : ∥x∥1} = 10}. Note that this reflects an

4The symbol ∼ denotes ‘chosen uniformly at random’.
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intuitively ideal setting for our online deferral problem. In the second regime, the human expert has
on average a much higher reward than the model, i.e. θh ∼ [0, 1]20 and θm ∼ [0, 0.5]20. In both
settings, we compare this algorithm against two simple baselines - ModelOnly, which only uses the
response of the model, and ArbitraryHuman, where the algorithm depletes the budget by deferring
to the human on arbitrary instances. Additionally, we compare against BestReject, an algorithm that
knows the expected model reward on each context and defers to the human if this reward is below a
given threshold. We tested thresholds in increments of 0.01, and plotted the best. This algorithm is
the optimum among algorithms that do not use any information about the human reward.

The results of this experiment are shown in Figure 3. In both settings, the algorithm significantly
outperforms all simple baselines, attaining close to OPT (Definition 3.1).

Figure 3: Performance of Algorithm 1 as a percentage of OPT across five different budgets. The
two plots correspond to two different human/model reward functions. (Left) θh ∼ {x ∈ {0, 1}20 :
∥x∥1} = 10}, and θm = 1− θh. (Right) θh ∼ [0, 1]20 and θm ∼ [0, 0.5]20. In both, the cost function
is wt ∼ [0, 1]20. Each experiment runs for T = 50000 time steps, and the mean and standard
deviation over 20 trials are shown.

In the complementary performance setting, we see that the algorithm does not outperform BestReject
by a significant margin. In this setting, the human reward was inversely correlated with the model
reward, so the rejection algorithm necessarily deferred to the human on good contexts. In the second
setting, the reward functions are uncorrelated, and BestReject has no information on the human
reward. It also cannot take advantage of learning the cost function to optimally defer on instances
with lower cost.

5.2 REAL DATASETS

In this section, we simulate the online deferral problem on tasks for which performance data was
collected from human participants. Unlike with the synthetic data, these experiments are not real-
izable: human performance data might not admit a good linear approximation. For the following
datasets, we use both Algorithm 1 and its neural extension, described in Sec. 4. In this approach,
the output of the last hidden layer of a neural network is used as the context xt when computing
the maximum likelihood estimator (Definition 4.1). Further details on our implementation of this
algorithm, including the model architectures used, are available in Appendix B.

Computing OPT. In real datasets, the context, reward, and cost distributions are not known and
cannot be used to compute OPT via Equation 2. Instead, we compute OPT via the following pro-
gram, where πt is 1 if the optimal policy defers to the human at time t, and 0 otherwise.

maximize
T∑

t=1

πt(rm,t − rh,t) subject to
T∑

t=1

πtct ≤ B , πj ∈ [0, 1] j = 1, . . . , 2d

In the infinite budget case, this program simply sets πt to the maximum of (rm,t, rh,t). With finite
budget, it prefers to defer to the human in cases where the ratio of reward gained (rm,t, rh,t) to cost ct
is greater. This can be thought of as the optimal static policy over the empirical distribution defined
by the dataset.

Knapsack Problem Dataset The 0-1 knapsack problem is a computationally hard combinatorial
optimization problem. Given a set of items with specified weights and values, the goal is to choose
the set of items with the maximum value whose total weight is less than or equal to the capacity.

7
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Algorithm 2 RatioMax4
Require: Capacity C, weights [w1, w2, . . . , wM ],

values [v1, v2, . . . , vM ]
Set I = [1, 2, . . . ,M ].
Set w ← 0, v ← 0, c← 0
while |I| > 0, c < 4 do

Let i = argmaxi∈Ivi/wi

Set w ← w + wi, v ← v + vi, c← c+ 1
For any j ∈ I such that w + wj > C, remove
j from I

Return v

In this dataset, 396 participants were asked to
solve, via an online form, randomly generated
integer instances of the knapsack problem with
18 items. Each participant solved 10 instances,
and their performance was recorded as a per-
centage of the optimal value. The mean per-
formance across all instances was 0.895. They
were also given a time limit of 3 minutes,
and their time to complete the problem was
recorded. This dataset was compiled by Sühr
et al. (2024) and we direct the interested reader
to their work for more details on data collection,
code, study design and the data used for our experiments in this work.

For the model, we used a modified greedy algorithm we call RatioMax4 (Algorithm 2). This algo-
rithm greedily adds the item with the maximum value/weight ratio, until the capacity is reached or
four items are added. This algorithm was chosen because it achieves almost identical performance
to human participants on average, but it performs well on different instances. This is an ideal setting,
since a good online deferral algorithm can achieve large gains by adapting to the relative areas of
expertise.

The online deferral problem is as follows. At each time step, an instance of the knapsack problem is
presented to the algorithm. The features presented include the weights and values of the knapsack
(normalized by capacity), the total capacity, various summary statistics, along with the cumulative
average performance and time spent for the current participant. The instances are presented in the
same order as they were presented to the participants. The deferral system must decide whether to
take the participant’s answer (and incur the cost represented by the time they spent on the instance)
or to take the answer provided by Algorithm 2. Let V be the value of the answer, and Vmax be the
optimum value for this problem. The reward received is defined to be 0.1

1.1−V/Vmax
. This nonlinear

reward function incentivizes small improvements near V/Vmax ≈ 1.

Results. We model the reward and cost with a linear link function (µ(x) = x). Figure 4 shows
the reward over time for the infinite budget setting. Both algorithms improve significantly over
simply predicting with the human or model alone. The regret over time for three different budget
constraints (infinite budget, B = 1

2T , B = 1
4T ) are plotted in Figure 5. While both algorithms

perform similarly in the first few hundred steps, the NeuralLinear algorithm performs better over
time.

We observe that the regret appears to grow as O(t2/3) over the time scale of the experiment, which
indicates that the loss against OPT is sublinear. Note that this is contrary to the theoretical regret of
Õ(t1/2). There are several ways in which this experiment differs from the idealized setting. Mainly,
the regret bound assumes that the noise in the reward and cost signals are independent of the contexts.
This is not generally true in real-world datasets. For example, instances of the knapsack problem
that involve more difficult arithmetic may have noisier reward signals. It would be interesting to
investigate if a similar trend emerges in other bandit algorithms on real-world datasets.

In the limited budget setting, the regret is substantially higher. With fewer resources, the algorithm
cannot explore the human arm as thoroughly, and it has less training data to predict from. In essence,
the cost of information is much higher when the budget is limited.

ImageNet 16H Dataset (Steyvers et al., 2022). This dataset consists of 1200 unique images sam-
pled from a subset of the ImageNet Large Scale Visual Recognition Challenge (Deng et al., 2009),
and divided into 16 categories. The images were perturbed by four different levels of phase noise,
resulting in 4800 unique images for classification. These images were then provided to human study
participants (n = 145), resulting in 28997 total human-classified images. Their confidence and
classification time were also recorded. The images were also classified by various commonly used
models pre-trained on ImageNet.

We construct the deferral problem as follows. The algorithm receives a reward of 1 if the prediction
of the chosen arm was correct, and 0 otherwise. The cost of deferring to the human is the time taken
to classify the image (normalized to have mean 1). The features presented to the algorithm include

8
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Figure 5: Loss versus OPT of the NeuralLinear and Linear variants of the algorithm on the Knapsack
Problem dateset with three different budget constraints: infinite budget (Left), B = 1/2T (Middle),
and B = 1/4T (Right). The lines show the mean over 20 trials (rearranging the order of the
participants), and the shaded region represents one standard deviation.

Figure 6: Ratio of total reward to OPT on the ImageNet16H deferral problem, using two different AI
models and three different budget constraints. Shows the mean and standard deviation over 20 trials
(rearranging the order of the participants). The top plot was generated with the baseline version
of Densenet161 (Huang et al., 2017). The bottom plot used the prediction of Densenet161 fine-
tuned on noise-augmented images. Note that the BestReject model (striped) uses the best threshold
parameter for the dataset and is not possible online.

the model classification (encoded as a 16 × 1 1-hot vector), the logits of the model output, and the
maximum logit of the output. Since the data from many human participants were combined, we also
include the cumulative mean cost and accuracy of the current participant.

Figure 4: The reward over time of the Neu-
ralLinear and Linear variants on the Knapsack Prob-
lem dataset with no budget constraints. The reward
of always deferring to the human (HumanOnly) and
the model (ModelOnly) are plotted for comparison.

Results. We model the reward with a logis-
tic link function (µ(x) = 1/(1 + e−x)), and
we model the cost with a linear link function
(µ(x) = x). The reward as a ratio of OPT for
three different budget constraints are plotted in
Figure 6. On this dataset, the NeuralLogistic
and Logistic variants of the algorithm achieve
similar performance. Since the features al-
ready consist of the output of the convolutional
model, it is intuitive that the model reward can
be predicted using a logistic model. Similarly,
the cumulative performance was included as a
feature, which could be a simple predictor to
differentiate ‘good’ participants from ‘bad’ par-
ticipants. Similarly to the Knapsack data, the
algorithm performed significantly worse on the
most extreme budget constraint, the baseline model with B = 0.25T . On this dataset, the classifi-
cation times had a long tail, meaning that a large number of participants had a significantly higher
cost than the median. The algorithm was not able to properly predict the cost, perhaps indicating
that the features were not expressive enough to predict the classification time. This proved to be a
significant hindrance in the limited budget setting where the human frequently out-performed the
model; deferring to the human as many times as possible was key to achieving performance near
OPT.

9
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6 DISCUSSIONS AND CONCLUSIONS

We introduced a novel online decision making framework that connects learning-to-defer problems
with challenges more common to online learning and game theory such as budget constraints, par-
tial observability and unknown performance models. Our algorithmic approach largely leverages
existing works in the latter literature but our empirical results show the first concrete results on real
data. Crucially, we are able to empirically demonstrate that we can learn how to efficiently assign
decisions such that the combined performance is better than either of the predictors alone (model or
human).

Limitations of the model. One major limitation of the model is the parametric nature of the
predictions. While the NeuralLinear model allows us to learn descriptive features, this algorithm
does not come with the same theoretical guarantees. It also requires several implementation choices
to be made in advance, such as the architecture, learning rate, etc.

We focus on single-resource constraint with single human expert but the original algorithm from
Agrawal and Devanur (2016) would naturally extend to allowing for multiple types of resource
constraints or multiple experts with partially overlapping specializations.

Future directions. Our online approach is designed to readapt a deferral strategy after a possi-
ble distribution shift. Going further, our model should be extended to continuously adapt to such
changes, for instance by building on recent works on non-stationary bandit models (Liu et al., 2022;
Lyu and Cheung, 2023).
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A PROOF OF REGRET GUARANTEE

For simplicity, we drop the a suffix and look at a single parameter θ∗. Note that all the following
also apply to w.

Define Ct = {θ : ∥θ − θ̂t∥Mt
≤ σ

κ

√
2d log

(
1+2td

δ

)
= β(t)}. Let τ = mint∈[T ] : λmin(Mt) ≥ 1.

It was shown by Li et al. (2017) that with probability 1 − δ, τ = O
(
(d+ log 1/δ)/σ2

0

)
(recalling

σ0 = λminEx∼Dxx
⊤ > 0).

We present two key lemmas from Li et al. (2017) on generalized linear bandits.
Lemma A.1 (Lemma 3 of Li et al. (2017)). With probability 1− δ, for all t ≥ τ , θ∗ ∈ Ct.

Lemma A.2 (Lemma 2 of Li et al. (2017)). For all t > τ

t∑
s=τ+1

∥xs∥M−1
t
≤
√
2(t− τ)d log

t

d

These three results lead to the following two corollaries, corresponding to two corollaries given by
Agrawal and Devanur (2016) in the linear bandit case.
Corollary A.3 (Corollary 1 of Agrawal and Devanur (2016)). Let θ̄ ∈ Ct. Then,

T∑
s=τ

|x⊤
t θ̄ − x⊤

t θ
∗| ≤ β(T )

√
2Td log

T

d

Proof.

T∑
s=τ

|x⊤
t θ̄ − x⊤

t θ
∗| ≤

T∑
t=τ

∥θ̄ − θ∗∥Vt
∥xt∥V −1

t

≤ β(T )

√
2dT log

T

d

The first line comes from a known matrix-norm inequality (Lemma 7 of Agrawal and Devanur
(2016)).

The second line comes from Lemmas A.1 and A.2.

Via the definition of the optimistic estimate:
Corollary A.4 (Corollary 2 of Agrawal and Devanur (2016)). With probability 1− δ, for all t ≥ τ ,
µ(x⊤

t θ̃t) ≥ µ(x⊤
t θ

∗), and

T∑
t=1

µ(x⊤
t θ̃t)− µ(x⊤

t θ
∗) ≤ Lµβ(T )

√
2dT log

T

d
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Proof. The first part comes from the assumption that µ is an increasing function. Thus, µ(x⊤
t θ̃t) ≥

µ(x⊤
t θ

∗) by Lemma A.1 and the definition of θ̃ as an optimistic estimator.

The second part follows from the assumption that µ is Lµ−Lipschitz. So,
∑T

t=1 µ(x
⊤
t θ̃t) −

µ(x⊤
t θ

∗) ≤
∑T

t=1 Lµ(x
⊤
t θ̃t − x⊤

t θ
∗), and the result follows from Corollary A.3.

Now we have the tools we need to prove the regret bound.

Corollary A.5. Given Z, the algorithm achieves the following with probability 1− δ:

regret(T ) = O

((
OPT
B

+ 1

)
Lµdσ

κ

√
T log

T

dδ
log

T

d

)

Proof. We follow the proof steps presented in Agrawal and Devanur (2016), extending the claims
to the generalized linear model when necessary.

Let Tstop be the stopping time of the algorithm. Let R′(T ) = O
(

dσ
κ

√
T log T

dδ log
T
d

)
. Fix a. Also

define Ta = {τ < s < Tstop : at = a}. Via the Azuma-Hoeffding inequality,∣∣∣∣∣∣
Tstop∑
s=τ+1

cs − µ(x⊤
s w

∗
at
)

∣∣∣∣∣∣ ≤ R′(T )

∣∣∣∣∣∣
Tstop∑
s=τ+1

rs − µ(x⊤
s θ

∗
at
)

∣∣∣∣∣∣ ≤ R′(T )

Additionally, recalling Corollary A.4, with probability 1 − δ,
∑Tstop

t=τ+1 µ(x
⊤
t θ̃at,t) − µ(x⊤

t θ
∗
at
) ≤

LµR
′(T ) (and similarly for w). Therefore, as in the linear case, a bound on the estimated reward

with θ̃ can serve as a proxy for the bound with θ∗.

Define r̃t = µ(x⊤
t θ̃at,t) and c̃t = µ(x⊤

t w̃at,t).

Lemma A.6 (Lemma 8 of Agrawal and Devanur (2016)).

Tstop∑
t=τ

E[r̃t] ≥
Tstop

T
OPT + Z

Tstop∑
t=τ

γtE[c̃t −B/T ]

Proof. Let a∗ be the action taken by the optimal static policy at t. By Corollary A.4, for any xt,
µ(x⊤

t θ̃t,a∗) ≥ µ(x⊤
t θ

∗
a∗). Therefore, E[µ(x⊤

t θ̃t,a∗)] ≥ OPT/T and E[µ(x⊤
t w̃a∗,T )] ≤ B/T (taking

the expectation over the choice of xt, conditioned on the history). However, since the algorithm
chooses the optimal optimistic action:

r̃t − Zγtc̃t ≥ µ(x⊤
t θ̃t,a∗)− Zγtµ(x

⊤
t w̃t,a∗)

E[r̃t − Zγtc̃t] ≥ E[µ(x⊤
t θ̃t,a∗)]− ZγtE[µ(x⊤

t w̃t,a∗)]

≥ OPT
T
− Zγt

B

T

Sum to Tstop to get the Lemma statement.

The rest of the proof follows identically to Agrawal and Devanur (2016).
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B TRAINING DETAILS FOR NEURAL ALGORITHM

For both the ImageNet16H data and the Knapsack data, the Neural algorithm trained three separate
neural networks with the same architecture. They consist of an input layer with the same dimension
as the context, a hidden layer of dimension 50, and a single output layer. Note that this means that in
both experiments, the dimension of the linear system is 50. There is a ReLU activation between the
input layer and the hidden layer, and a Sigmoid activation on the output. The weights of the networks
were updated every 10 steps for the Knapsack data. For the ImageNet16H data, the weights were
initially updated every 20 steps, decreasing to every 100 steps after time step 4000. Both were
trained with mini-batches of size 500 using the Adam optimizer with learning rate 0.0005 for the
Knapsack data and 0.0001 for the ImageNet16H data. The experiments were run on Google Colab
servers using their T4 GPU.

Figure 7: The architecture for computing the embedding for the human arm. An identical architec-
ture exists for the model arm and the cost.

After updating the network weights, the embeddings for all previous contexts are recomputed using
the new networks. These new embeddings are used to recompute the estimated parameters per
Definition 4.2 and 4.1. As noted in (Riquelme et al., 2018), this may not be practical in applications
where all previous contexts cannot be stored, either due to space constraints or legal concerns. In
these settings, one can continue to use the previous embeddings and apply weights which decrease
the influence of old embeddings on the linear system over time.

C BANDIT FEEDBACK EXPERIMENTS

Overall, we do not observe a significant difference in performance between the bandit feedback
setting and the full information setting. With random reward and cost functions, the average per-
formance in the full information setting is slightly better, as seen in Figure 8. Interestingly, in the
Knapsack dataset, the linear algorithm seemed to perform slightly better in the pure bandit setting
(as shown in Figure 9). This may indicate that the full information setting overexplored the human
arm.
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Figure 8: The experiment described in Figure 2 with the Pure Bandit setting included. Mean and
standard deviation of the regret over 100 trials. The reward and cost functions are sampled uniformly
at random from [0, 1]d for each trial.The algorithm is run over T = 50000 random contexts with
B = 8000. Then, the reward received by OPT is computed for the same contexts.

Figure 9: The experiment described in Figure 5 with the Pure Bandit setting included. For clarity,
only the means are plotted.
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