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ABSTRACT

Learning informative representations from image-based observations is a funda-
mental problem in deep Reinforcement Learning (RL). However, data inefficiency
remains a significant barrier. To this end, we investigate Predictive Consistent
Representations (PCR) that enforces predictive consistency on a learned dynamic
model. Unlike previous algorithms that simply exploit a forward dynamics model,
the PCR agent is trained to predict the future state and retain consistency across
the predicted state of observation and its multiple views, which is demonstrated
through careful ablation experiments. We empirically show that PCR outperforms
the current state-of-the-art baselines in terms of data efficiency on a series of pixel-
based control tasks in the DeepMind control suite. Notably, on challenging tasks
like Cheetah-run, PCR reaches a 47.4% improvement when environmental steps
are limited to 100k steps.

1 INTRODUCTION

Deep Reinforcement Learning (RL) harnesses the expressive power of deep neural networks and
the long-term reasoning ability of RL to solve sequential decision-making problems (Mnih et al.,
2015). Recent years have witnessed the sensational progress of it in various complex control tasks,
such as playing video games (Berner et al., 2019), robotic control (Kalashnikov et al., 2018) and
autonomous driving (Shalev-Shwartz et al., 2016).

Despite the notable success of deep RL, recent studies have observed that data/sample inefficiency
severely impedes its performance when learning from high dimensional observations (Lake et al.,
2016). This remains a significant barrier to the real-world applicability of deep RL, where collecting
experiences is often costly and time-consuming (Dulac-Arnold et al., 2019). For instance, a success-
ful RL agent requires several months to develop a decent grasping skill, standing sharply contrast to
the human-level efficiency (Kalashnikov et al., 2018). Accordingly, elevating data efficiency is of
paramount importance for the broader progress of deep RL.

A number of existing works approach this goal by augmenting deep RL with self-supervised tasks.
The motivation of that is two-fold: (i) solely using potentially sparse reward signals is data-
inefficient to fit a high-capability encoder (Yarats et al., 2021; 2020); (ii) Self-Supervised Learning
(SSL) unleashes the potential of massive unsupervised signals for representation learning, achieving
remarkable performance in downstream vision and language tasks, particularly in low data regimes
(Devlin et al., 2019; Grill et al., 2020). Beyond that, there are proliferative paradigms of designing
SSL tasks in RL due to its interactive and temporal-correlated training mechanism, such as max-
imally preserving predictive information (van den Oord et al., 2018; Lee et al., 2020b), modeling
dynamics (Schwarzer et al., 2020; Shelhamer et al., 2016) and discriminating instances at a spatial
or temporal level (Laskin et al., 2020a; Stooke et al., 2021).

In this work, we first revisit two of hypotheses made in the aforementioned methods: good state
representations are the ones that (i) encode temporally predictive information and (ii) is consistent
across augmented observations (views). Combining these two hypotheses naturally raises a new
one: (iii) a powerful state representation is capable of predicting the future (by modeling dynamics),
and the prediction itself is consistent across multiple views, on top of which deep RL algorithms
should be significantly more data-efficient. Though considerable effort has been dedicated to testing
hypotheses (i) and (ii), the explorations for hypothesis (iii), to our best knowledge, are still rare. We
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consider that it meets the Markovian assumption on the latent dynamics model (Hafner et al., 2019b;
Lee et al., 2020b), and is thus worthy of study.

To investigate it, we propose Predictive Consistent Representations (PCR) that enforces predictive
consistency on a learned dynamics model. The term ‘Predictive’ refers to the hypothesis (i) as we
model the environmental dynamics, and the term ‘Consistent’ refers to the hypothesis (ii) as the
dynamics model itself is forced to be consistent across multiple views of its input. Composing them
with the RL objective teases out the final objective in the whole course of policy learning. We
demonstrate our framework in Figure 2.1.

We evaluate PCR on a series of pixel-based control tasks from the DeepMind control suite, a com-
mon benchmark for testing the data efficiency in deep RL from visual observations. The empirical
results show that our PCR agents outperform prior state-of-the-art baselines on the majority of tasks.
We have also done extensive experiments to show that: (i) the powerfulness of PCR comes from its
predictive consistency objective and (ii) predictive consistency is superior to contrastive consistency
in RL settings.

We highlight our main contributions below:

• We propose a new hypothesis on the state representation, and present a novel method, dubbed
PCR, to validate its reasonableness w.r.t. data efficiency in RL.

• We demonstrate that PCR agents outperform prior state-of-the-art baselines on the widely
adopted pixel-based DeepMind control benchmark in terms of both data-efficiency and asymp-
totic performance.

• With careful ablation studies, we verify the effectiveness of the predictive consistency itself
and against other similar approaches like contrastive consistency.

2 RELATED WORK

2.1 DATA EFFICIENT RL

A number of approaches have advanced the data efficiency in RL from high dimensional observa-
tions such as images. Broadly, we classify the existing methods into three groups. The first group
of works improves data efficiency by explicitly building the world models from environments. Rep-
resentative works include PlaNet (Hafner et al., 2019b), Dreamer (Hafner et al., 2019a) and SLAC
(Lee et al., 2020a), which use world models to perform planning or rollout-sampling in the latent
state space. Among these, another vine of research devotes to shaping the state representations from
the learned forward dynamics model without planning (Gelada et al., 2019; Kipf et al., 2019).

The second group of works effectively deploy the power of data augmentation. For instance, CURL
(Laskin et al., 2020a) learns contrastive representation in RL from pixels and achieves remarkable
data efficiency in DeepMind Control Suite. Based on that, RAD (Laskin et al., 2020b) and DrQ
(Yarats et al., 2020) directly incorporate data augmentation with visual observations to regularize
the model-free RL algorithms. In SPR (Schwarzer et al., 2020), data augmentation is injected into a
forward dynamics model, enforcing temporal consistency across the state representation.

Recently, unsupervised/self-supervised representation learning has achieved glaring success in vi-
sion and language tasks by exploiting the internal structure of unlabeled data (Grill et al., 2020;
Devlin et al., 2019). It, therefore, arouses the widespread interest of the third group. Works in this
group have investigated various auxiliary tasks for representation learning in RL and have shown
huge advances in data efficiency. One common rule is to leverage the temporal structure of the envi-
ronment. From this, CPC (van den Oord et al., 2018), DRIML (Mazoure et al., 2020), PI-SAC (Lee
et al., 2020b) maximally preserve the predictive information in state representation; SPR (Schwarzer
et al., 2020) and Shelhamer et al. (2017) achieve this in a similar way by encoding the representation
with environmental information by predicting future states; ST-DIM (Anand et al., 2019) and ATC
(Stooke et al., 2021) introduce contrastive losses that operates on both spatial and temporal levels.
In contrast, another designing paradigm focuses on the instances level. Representative examples are
CURL and SAC-AE (Yarats et al., 2021) that do discrimination or reconstruction on the pixel-based
observations.
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Figure 1: (a) Overview of Predictive Consistent Representations. A view of observation o′t (ot) is
encoded into a representation z′t (zt) in the online branch in green (target branch in orange and red).
The dynamics model takes as input z′t (zt) and action at, teasing out a prediction ẑ′t+1 (ẑt+1) of future
state representation z̄t+1. Representation z′t is used in RL tasks, while (ẑ′t+1, ẑt+1, z̄t+1) are used in
auxiliary task with two predictors. (b) Illustration of auxiliary loss in the latent space. Auxiliary
loss is composed of (i) predictive loss that is optimized to learn a dynamics model for predicting
future and (ii) consistent loss that enforces predictive consistency on the dynamics model.

2.2 PREDICTIVE AND CONSISTENT REPRESENTATION FOR RL

Two common hypotheses for state representations are often investigated in the literature. The first
one is hypothesis (i) that temporally predictive information is vital for state representations. They
realize it through different approaches, such as predicting the future state (Guo et al., 2020; Gelada
et al., 2019; Kipf et al., 2019). The second one is hypothesis (ii) that a good state representation
should be consistent across different views of observations. Typical methods include contrastive
learning (Laskin et al., 2020a; Stooke et al., 2021) and data-regularization (Laskin et al., 2020b;
Yarats et al., 2020).

Our method PCR is in line with the hypothesis (iii) that a powerful state representation is capable of
predicting the future (akin to hypothesis (i)), and the prediction itself is consistent between different
views of observations (akin to hypothesis (ii)). The key insight here is that we enforce the consis-
tency on the learned dynamics model rather than directly on the state representation as in CURL and
SPR. We consider that it meets the Markovian assumption that the transition is conditional indepen-
dence of the current observations given current state (Lee et al., 2020a; Hafner et al., 2019b), where
different views of observations are assumed to be emitted from the same latent state.

In this sense, PCR bears some resemblance to SPR. Both integrate the data augmentation with
the dynamics model to learn predictive and consistent representations. We illustrate the difference
between them in r.h.s of Figure 2.1: PCR takes both predictive loss and consistent loss into con-
sideration, while SPR only considers the former. Essentially speaking, PCR forces the dynamics
model itself to be consistent across different views of observations. Such consistency is not explic-
itly exploited by SPR. We ablate the consistent loss in Section 5.3 and show it indeed improves our
performance on the majority of tasks from DMC.

We also relate PCR to CPC|Action (Guo et al., 2018) and CMC (Tian et al., 2020), which extent con-
trastive learning in the dimension of future-predicting and multiview, respectively. PCR combines
their key ideas by optimizing an associative auxiliary objective. Specifically, we introduce predic-
tive loss to learn a dynamics model and consistent loss to enforces consistency on the dynamics
model. Composing these two forms a ‘multiview’ consistency in the latent space, where we extend
the concept of ‘views’ in the temporal level, as illustrated in the r.h.s of Figure 2.1. Moreover, in our
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ablations, we show that prediction loss (Grill et al., 2020) is superior to the contrastive losses, which
are adopted in their models.

3 BACKGROUND

Reinforcement Learning. We train an RL agent within a Markov Decision Process defined by a
tuple 〈S,A, P, r, γ〉, where S = Rk is the state space,A is the action space, the transition dynamics
P = Pr(st+1|st, at) determines the transition distribution over next state st+1 given the state st and
action at, r : S × A → R represents the reward function whose element r(st, at) is the expected
reward collected by taking action at in state st, γ ∈ [0, 1) is the discount factor that determines the
present value of future reward. The objective of the agent is to find a policy π(at|st) that maximizes
the cumulative discounted return Eπ [

∑∞
t=0 γ

tr(st, at)]. Crucially, in pixel-based control tasks, the
agent perceives image-based observations ot ∈ O(st) = Rn.

Soft Actor-Critic with Augmented Data. SAC (Haarnoja et al., 2018) is an off-policy RL algo-
rithm for continuous control tasks. It optimizes a stochastic policy by maximizing a γ-discounted
maximum-entropy objective (Ziebart et al., 2008). RAD-SAC (Laskin et al., 2020b), which we ab-
breviate as RAD, further enhances SAC with augmented data to elevate the data efficiency. The
RAD agent trains the critic Qφ by minimizing the Bellman residual:

LQ(φ) = Eυ∼D
[(
Qφ(o′t, at)−

(
rt + γV (o′t+1)

))2]
, (1)

where υ = (o′t, at, rt, o
′
t+1) is sampled from the replay buffer D with augmentation on observations

ot and ot+1. We practically learn two critic Q1
φ, Q

2
φ and their targets for double Q-learning in

practice (refer to Haarnoja et al. (2018) for details), and we omit it for expression simplicity. The
target Q-value is estimated by

V (o′t+1) = Ea′∼π
[
Qφ̄(o′t+1, a

′)− κ log πψ(a′|o′t+1)
]
, (2)

where the parameters of the target critic Qφ̄ are updated in a exponential moving average (EMA)
fashion with coefficient τ , κ is a positive entropy coefficient that balances the reward maximization
and the behavioral stochasticity. For training the policy, one can apply the reparameterization trick
to minimize the objective:

Lπ(ψ) = −Ea∼π [Qφ(o′t, a)− κ log πψ(a|o′t)] . (3)

4 METHOD

We propose a novel method named PCR that learns predictive consistent state representations for
data-efficient RL. The main innovation of PCR is to introduce predictive consistency (consistent
loss) on the dynamics model. Inspired by the success of He et al. (2020); Grill et al. (2020), we
design a two-stream network architecture. One stream is trained in an online manner, while the other
one serves a self-supervised target updated in EMA fashion. An overview of the PCR architecture
is provided in Figure 2.1. We divide it into three main components which we describe as follows.

4.1 ONLINE AND TARGET ENCODERS

We consider a one-step transition ((ot, o
′
t), at, rt, (ot+1)) in MDPs. Following Grill et al. (2020);

Chen et al. (2020), we train two encoders: the online encoder fθ and target encoder fξ, parameter-
ized by a set of parameters θ and ξ, respectively.1 The online encoder compresses the augmented
observation (or view) o′t into representation z′t , fθ(o

′
t), while the target encoder is applied on the

original observation: z̄t , fξ(ot). Two encoder share a same structure but different sets of param-
eters. The target parameters ξ are an EMA of the online parameters θ, which are updated via the
rule:

ξ ← τ ′θ + (1− τ ′)ξ, (4)
where τ ′ ∈ [0, 1] is the EMA coefficient. Only the online parameters θ are updated via back-
propagation.

1We include the projectors (Grill et al., 2020) in the conjunct encoders without ambiguity, which share the
same parameters with Q-learning head. More details are presented in Section 5.
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Algorithm 1 PCR: Predictive Consistent Representation applied to RAD-SAC
φ, φ̄, ψ, θ, ξ, α, β: randomly initialized network parameters . Copy weights φ̄← φ, ξ ← θ
{λpred, λcons}, {τ, τ ′}: loss and EMA coefficients . Default: λpred = λcons = 1
{ηφ, ηψ, ηθ}, N : learning rates, mini-batch size . h, qα, qβ share ηθ as learning rates

1: while training do
2: for each environment step do
3: at ∼ πψ(·|fθ(ot)) . Sample action from current policy
4: st+1 ∼ P (·|st, at), ot+1 ∼ O(st+1) . Transit from the underlying state st
5: D ← D ∪ {(ot, o′t, at, rt, ot+1)} . Collect experiences with augmentation on ot
6: end for
7: for each gradient step do
8: {(ot, o′t, at, r(st, at), ot+1)}Ni=1 ∼ D . Sample a mini batch
9: ψ ← ψ − ηψ∇̂ψL(ψ) . gradient step on actor

10: {φ, θ} ← {φ, θ} − ηφ∇̂{φ,θ}LQ(φ; θ) . gradient step on critic(s)
11: {θ, α, β} ← {θ, α, β} − ηθ∇̂{θ,α,β}(λpredLpred(θ;α, β) + λconsLcons(θ;α, β)
12: . gradient step on online encoder, predictors and dynamics model
13: φ̄← τφ+ (1− τ)φ̄, ξ ← τθ + (1− τ)ξ . EMA update of target critic and encoder
14: end for
15: end while

4.2 DYNAMICS MODEL FOR PREDICTING FUTURE

Learning a dynamics model has been well investigated in RL from visual observations. The agents
learn informative state representations by predicting the future state in the latent space, avoiding the
reconstruction of pixel-level objectives in the observation space. To this end, we introduce an action-
conditioned dynamics model h that acts on state representations to augment the policy learning.

The dynamics model h takes the representation z′t and action at as input, and outputs a prediction
ẑ′t+1 = h(z′t, at) of the future representation z̄t+1. As suggested by Grill et al. (2020), we apply a
predictor qα to the online branch and minimize the normalized `2 loss between the prediction and
target representation:

Lpred(θ) = 2− 2 ·
〈qα(ẑ′t+1), z̄t+1〉

‖qα(ẑ′t+1)‖2 · ‖z̄t+1‖2
(5)

4.3 DYNAMICS MODEL FOR PREDICTIVE CONSISTENCY

Though many existing works have explored the temporal consistency (Stooke et al., 2021; Yu et al.,
2021) and instance consistency (Laskin et al., 2020a; Schwarzer et al., 2020) of state representations,
the related works on the predictive consistency of dynamics model are still rare. To begin with, we
give a formal definition of the predictive consistent dynamics model as follows.

Definition 1 A dynamics model h is predictive consistent with encoder g if, for any action at ∈ A
and any view (ot,1, ot,2) of a observation ot ∈ O(st), the following condition holds:

dZ (ẑt+1,1, ẑt+1,2) ≤ ε

where ẑt+1,i , h(g(ot,i), at) for i ∈ {1, 2}, dZ is a distance metric on the space Z , and ε is the
acceptable error bound.

Remark 1 We posit that one of the characteristics that a good dynamics model should possess is to
consistently predict the future given the current representations extracted from the multiple views of
observation. This characteristic is in line with the basic assumption on the latent dynamics model
that transition is conditional independent of observations given the current (latent) state. Based on
that, we enforce the predictive consistency on the dynamics model to accelerate the representation
learning.

Then comes a crucial question: how to choose a proper distance metric on the latent state space?
The following proposition suggests that `2 loss is possibly a reasonable choice.

5



Under review as a conference paper at ICLR 2022

Proposition 1 Minimizing the `2 loss ‖ẑt+1−qβ(z′t+1)‖2 is equivalent to maximizing a lower bound
of conditional mutual information I(z′t; ẑt+1|at), where qβ is a predictor distinguished from qα.

Proposition 1 indicates that minimizing ‖ẑt+1 − qβ(z′t+1)‖2 is essentially to maximally maintain
the information shared between multiple views of ot, which excludes action information. This
essentially meets the property of predictive consistency. Based on that, we give a practical objective
in the course of learning: given the action at and state representations (ẑ′t+1, ẑt+1 , h(z̄t, at)), the
consistent loss (for predictive consistency) of the dynamics model is calculate as:

Lcons(θ) = 2− 2 ·
〈qβ(ẑ′t+1), ẑt+1〉

‖qβ(ẑ′t+1)‖2 · ‖ẑt+1‖2
, (6)

Although the predictive consistency loss does not circumvent the trivial solution on its own, i.e.,
h(·, ·) ≡ 0, such a behavior is not observed in our experiments. We attribute it to the updates of
target encoder fξ, which is jointly optimized by the RL and auxiliary objectives. It serves as the
target future prediction in Lpred, and constant equilibria are in conflict with optimizing Lpred.

Composing Training Objectives. Composing the RL and auxiliary objectives gives the overall
training objective:

Ltotal(φ, ψ, θ) = LQ(φ) + Lπ(ψ)︸ ︷︷ ︸
RL Loss

+λpredLpred(θ) + λconsLcons(θ)︸ ︷︷ ︸
Auxiliary Loss

, (7)

where λpred and λcons are the hyperparameters that steer the weights of the conjunct objectives. We
summarize PCR in Algorithm 1.

5 EXPERIMENTS

In this section, we first introduce the experiment setup including the environments, baselines, and
implementation details of PCR. Furthermore, we conduct two ablation studies to explore the effec-
tive of Predictive Consistency and compare it with Contrastive Consistency, which is widely adopted
by previous works (Laskin et al., 2020a; Chen et al., 2020; He et al., 2020).

5.1 SETUP

Environments. We evaluate PCR on the DeepMind Control Suit (DMControl) (Tassa et al., 2018),
a standard benchmark for measuring the data efficiency of RL algorithms with vision-input in con-
tinuous action space. Following previous works, we measure the performance of PCR at 100k
(DMControl100k) and 500k (DMControl500k) environment steps during training, where the envi-
ronment steps are defined as the number of steps the underlying simulators take. DMControl100k
has been widely accepted as a benchmark for measuring data efficiency, while DMControl500k
evaluates the asymptotic long-horizon performance of an RL algorithm.

Implementation Details. We build PCR on top of RAD. We first build four-layer CNN online and
target encoders to encode the original observations. The representations output by the online (target)
encoders are feed into a single-layer online (target) projector with BatchNorm being applied. This
follows the previous works (Laskin et al., 2020a;b). Note that our online projector shares same
architecture and parameter with Q-learning head. To keep our modules simple, the dynamics model
is set as a two-layer MLP with LayernNorm on the last layer. Meanwhile, we adopt crop and
random translation, powerful augmentations suggested by Laskin et al. (2020b), to obtain the
multiple views of the original observation. The weights of λpred and λcons in Eq. 7 are set to 1 for
simplicity. We list more details, including the augmentation mechanism and model hyperparameters,
in Appendix B.

5.2 PERFORMANCE

Baselines. For a fair comparison, we take as baselines the previous state-of-the-art algorithms that
also focus on data-efficiency: SLAC (Lee et al., 2020a) learns compact latent representation through
a forward model; CURL(Laskin et al., 2020a) learns a contrastive representation of the observa-
tions; SAC+AE (Yarats et al., 2021) introduces an auxiliary task of observation reconstruction; DrQ
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Figure 2: Learning of PCR, as well as two other SOTA methods (DrQ (Yarats et al., 2020) and
CURL (Laskin et al., 2020a)). The results is averaged cross five different training seeds.The solid
line and shaded regions represent the mean and standard deviation, respectively, across five runs.

(Yarats et al., 2020) uses both data augmentation and weighted Q-objectives. All the above four
methods are all built upon SAC (Haarnoja et al., 2018), a simple yet efficient algorithm for learning
with state-based inputs. Unlike those methods, PlaNet (Hafner et al., 2019b) and Dreamer (Hafner
et al., 2019a) takes a different approach: they explicitly learns a world model for generating fictitious
trajectories.

Analysis. We evaluate PCR and baselines on six commonly-adopted environments. The scores mea-
sure the their performances at 100k and 500 environment steps, which is dubbed DMControl100k
and DMControl500k, respectively. We report the scores achieved by PCR and baselines in Table
1, and plot the training curve in Figure 5.2. We train PCR five times with random seeds. The
scores are averaged over five runs with ten times of evaluation on each runs. The results show that
PCR reaches the state-of-the-art performance on the majority of (4 out of 6) DMControl100k and
DMControl500k.2 Particularly, in the most challenging task Cheetah-Run, PCR outperforms all pre-
vious state-of-the-art algorithms by 47.4% on data limited DMControl100k benchmark and 13.6%
on asymptotic optimal DMControl500k benchmark.

We point out that simply incorporating a forward dynamics model or applying augmentations to
visual observations, as suggested by the baselines, is not enough to achieve higher data efficiency.
To this end, PCR takes one step further through consistent loss that enforces predictive consistency
on the learned dynamics model. Such consistency makes our dynamics model more robust against
multiple views of the original observations during the transition in latent space. The results show that
this property significantly elevates data efficiency in complex control tasks with visual observations.
To take a deeper investigation, we conduct ablation studies in Section 5.3 to verify the impact of
predictively consistency, followed a comparison between contrastive representations and predictive
representations in Section 5.3.2.

5.3 ABLATIONS

5.3.1 EVALUATION OF PREDICTIVE CONSISTENCY

As described in Section 4, PCR explicitly learns a predictive consistent dynamics model and im-
plicitly encode such consistency into the state representation. A crucial part is a consistent loss that
forces the predicted representation from the online encoder to be predictive of the ones in the target

2Data listed in the table referred to Laskin et al. (2020b); Yarats et al. (2020).
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Table 1: Scores of baselines and PCR (Ours) on DMControl100k and DMControl500k. We select
6 representative environments for benchmarking. The results show the mean and standard deviation
averaged over five runs and the best results are indicated in bold. PCR (Ours) reaches state-of-
the-art performance on 4 out of 6 tasks on both benchmarks and just below DrQ on Reacher easy
and Walker walk. Particularly, PCR significantly outperforms DrQ on the most challenging task
Cheetah-run with 47.4% improvement on data limited DMControl100k bechmark and 13.6% on
asymptotic optimal DMControl500k benchmark.

100k Step Scores SLAC PlaNet Dreamer SAC+AE CURL DrQ Ours
Finger, spin 693 ±141 136 ±216 341 ±70 740 ±64 767 ±56 901 ±104 933 ±60
Cartpole, swingup - 297 ±39 326 ±27 311 ±11 582 ±146 759 ±92 839 ±20
Reacher, easy - 20 ±50 314 ±155 274 ±14 538 ±233 601 ±213 443 ±96
Cheetah, run 319 ±56 138 ±88 235 ±137 267 ±24 299 ±48 344 ±67 507 ±52
Walker, walk 361 ±73 224 ±48 277 ±12 394 ±22 403 ±24 612 ±164 540 ±59
Ball in cup, catch 512 ±110 0 ±0 246 ±174 391 ±82 769 ±43 913 ±53 936 ±14
500k Step Scores
Finger, spin 673 ±92 561 ±284 796 ±183 884 ±128 926 ±45 938 ±103 985 ±3
Cartpole, swingup - 475 ±71 762 ±27 735 ±63 841 ±45 868 ±10 875 ±4
Reacher, easy - 210 ±390 793 ±164 627 ±58 929 ±44 942 ±71 842 ±94
Cheetah, run 640 ±19 305 ±131 570 ±253 550 ±34 518 ±28 660 ±96 750 ±35
Walker, walk 842 ±51 351 ±58 897 ±49 847 ±48 902 ±43 921 ±45 878 ±18
Ball in cup, catch 852 ±71 460 ±380 879 ±98 794 ±58 959 ±27 963 ±9 968 ±3

stream. Hence, to validate the effectiveness of learning predictively consistency, we compare the
performances of PCR and its variant that excludes the consistent loss.

Table 2 shows the performance of PCR (in the first line) and PCR without Consistent Loss (in the
second line) of 6 tasks on DMControl100k benchmark. Each result is averaged over five different
seeds. The significant gains of PCR over its counterpart demonstrate the effectiveness of predictive
consistency loss. A takeaway from this observation is that a dynamics model in model-based RL
methods would be more informative if invariant (consistent) against different views of observations.

Table 2: Scores of PCR and its variants: (i) PCR without Predictive Consistency and (ii) PCR with
Contrastive Loss on DMControl100k (Data Limited Regime). The results show the mean and stan-
dard deviation averaged over five runs, and the best results are indicated in bold. All hyperparameters
are identical except the corresponding loss module. Neither abandoning the Predictive Consistency
module nor replacing Predictive Loss with Contrastive Loss yields better results.

100k Step Scores Finger,
spin

Cartpole,
swingup

Reacher,
easy

Cheetah,
run

Walker,
walk

Ball in cup,
catch

PCR (Predictive Loss) 980.3 839.3 455.0 503.6 524.5 936.0
PCR (w/o Consistent Loss) 751.5 817.3 688.1 489.4 506.7 914.5
PCR (Contrastive Loss) 971.5 772.4 578.8 469.5 425.4 931.1

5.3.2 CONTRASTIVE REPRESENTATION V.S. PREDICTIVE REPRESENTATION

There have been two branches of methods for learning an informative representation in the visual
domain: either with contrastive learning (Chen et al., 2020) or predictive learning (Grill et al., 2020).
As concluded in Tian et al. (2020), learning with the contrastive Loss leads to a better representation
than the predictive Loss in some vision tasks. The same scenario happened in RL domain: Laskin
et al. (2020a); Stooke et al. (2021) use a contrastive objective for learning state representations, while
Schwarzer et al. (2020); van den Oord et al. (2018) use a predictive objective. The key difference
between these two schemes is that predictive learning only focuses on one specific instance, and
the Loss is taken among multiple views (got through augmentation) of visual input. In contrast,
contrastive learning takes a global perspective and treats samples except for the focusing one as
negative samples.
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Comparison of PCR with Contrastive Loss or Predictive Loss To explore the difference of ap-
plying either contrastive Loss or predictive Loss in RL with visual inputs, we implemented another
version of PCR, the predictive consistency of which is replaced with contrastive Loss. The imple-
mentation of contrastive loss follows from Laskin et al. (2020a). In short, an InfoNCE loss is applied
between one sample (anchor) and all other samples within the same batch (negatives). Please refer
to Appendix B.3 for the detailed implementation of the contrastive Loss.

Table 2 compares the performance of PCR (the first line) and PCR with Contrastive Loss (the third
line) on 6 tasks on DMControl100k benchmark. PCR with Predictive Loss (as stated in Algorithm
1) performs fat much better than PCR with Contrastive Loss, especially on challenging tasks like
Cheetah-Run. We provide a possible explanation to justify the above distinction in the next.

Learning Representation in RL is another Story In short, the source of the performance gap
comes from the interplay between the online nature of RL algorithms and the choices of negative
samples in contrastive learning. In the traditional vision domain, samples within a dataset vary
significantly since each of them is collected under different conditions. Accordingly, it makes sense
to perform contrastion on instance level: i.e., image B should be a negative sample from image A’s
perspective, and they are supposed to be pulled away in the latent space. However, for RL algorithms
like SAC, samples are constructed from online-collected trajectories. Therefore, samples selected
from different episodes or different time steps within one episode may be highly similar. In other
words, different samples may fail to form an good contrastive pair, and it is undesired to pull them
away. This observation is in line with the previous work Schwarzer et al. (2020).

6 CONCLUSION

In this paper, we presented Predictive Consistency Representation (PCR), a self-supervised repre-
sentation learning algorithm that significantly improves data efficiency for RL agents with visual
inputs. On the one hand, PCR is capable of predicting future states through a forward dynamics
model. On the other, this dynamics model is forced to be consistent across multiple views of the
input observation. Empirically, PCR achieves state-of-the-art performance on both DMControl100k
and DMControl500k benchmarks. With careful ablation studies, we verify the effectiveness of the
Predictive Consistency itself and against other similar approaches like Contrastive Consistency. We
hope this paper can lead researchers to rethink the fundamental assumptions made by self-supervised
learning and bootstrapping more from the online decision nature of Reinforcement Learning.
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Hjelm. Unsupervised state representation learning in atari. NeurlIPS, 2019.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal
Józefowicz, Scott Gray, Catherine Olsson, Jakub W. Pachocki, Michael Petrov, Henrique Pondé
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A PROOF OF PROPOSITION 1

For the input, let I(A;B) denote the mutual information, I(A;B|C) denote conditional mutual
information, H(A) denote entropy, and H(A|B) denote conditional entropy for random variables
A/B/C.

We show that minimizing objective Lcons is equivalent to maximizing a lower bound of the condi-
tional mutual information I(z′t; ẑt+1|at)/I(ẑ′t+1; ẑt+1|at). By the chain rule,

I(z′t; ẑt+1|at) = H(ẑt+1|at)−H(ẑt+1|at, z′t),

11
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where H(ẑt+1|at) is irrelevant to z′t due to the distinction between two encoders fθ and fξ. Maxi-
mizing I(z′t; ẑt+1|at) is thus equivalent to maximizing −H(ẑt+1|at, z′t). We introduce a variational
distribution Qϕ(ẑt+1|at, z′t) parameterized by ϕ to make computing such entropy tractable. Then
we obtain a variational lower bound of −H(ẑt+1|at, z′t) as:

−H(ẑt+1|at, z′t) = Eẑt+1,at,z′t

[
logP (ẑt+1|at, z′t)

]
= max

Qϕ
Eẑt+1,at,z′t

[
logQϕ(ẑt+1|at, z′t) +DKL

(
P (ẑt+1|at, z′t)||Qϕ(ẑt+1|at, z′t)

)]
≥ max

Qϕ
Eẑt+1,at,z′t

[
logQϕ(ẑt+1|at, z′t)

]
,

where DKL(·||·) denotes the Kullback–Leibler divergence.

Further assumption is made that Qϕ(ẑt+1|at, z′t) follows a Gaussian N
(
ẑt+1|qβ(h(z′t, at))

)
with a

diagonal identical covariance matrix σI (Haarnoja et al., 2018; Kingma & Welling, 2013). Then it
reaches the final expression of the lower bound:

L′cons , max
h,qβ

Eẑt+1,at,z′t

[
− ‖ẑt+1 − qβ(h(z′t, at)‖22

]
,

which is equivalent to the consistent loss Lcons in Eq. 6. One can similar show that same results
hold for I(ẑ′t+1; ẑt+1|at).

This nature renders us more insights into the predictive consistency of dynamic model. Specifically,
one can rewrite I(z′t; ẑt+1|at) as I

(
fθ(o

′
t);h(fξ(ot), at)|at

)
. Since fξ is irrelevant to h and fθ,

maximizing such mutual information is essentially to maximally maintain the information shared
between multiple views of ot, which excludes action information. Accordingly, we jointly learn
online encoder and dynamic model to achieve this purpose via gradient descent. The discussion of
avoiding trivial solution is presented in Section 4.

B IMPLEMENTATION DETAILS OF PCR

We provide an implementation in the supplementary material. All the data and scripts for generating
figures are included as well.

B.1 PCR HYPERPARAMETERS

Most of the hyperparameters follow previous best practice[rad]. Beyond that, we add the hyperpa-
rameters for predictive consistency.
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Hyperparameter Value
Augmentation Crop - walker, walk; Translate - otherwise
Observation rendering (100, 100)
Observation down/upsampling (84, 84)(crop); (108, 108) (translate)
Replay buffer size 100000
Initial steps 1000
Stacked frames 3
Action repeat 2 finger, spin; walker, walk

8 cartpole, swingup
4 otherwise

Optimizer Adam
Learning rate (fθ, πψ, Qφ) 2e− 4 cheetah, run

1e− 3 otherwise
Batch Size 512
Critic target update freq 2
Actor & Critic hidden dim 1024
Q function EMA τ 0.01
Reward discount γ .99
Encoder CNN layers 4
Number of filters 32
Encoder & Predictor feature dim 50
Non-linearity ReLU
Encoder EMA τ 0.05
λpred 1
λcons 1

B.2 DATA AUGMENTATION

We reuse the official open-source implementation of augmentation modules mentioned in Laskin
et al. (2020b). The augmentations includes crop and random translate.

Crop: Extracts a random patch from the original frame. As our experiments will confirm, the intu-
ition behind random cropping is primarily to imbue the agent with additional translation invariance.
Translate: random translation renders the full image within a larger frame and translates the im-
age randomly across the larger frame. In DMControl we render 100 × 100 pixel frames and crop
randomly to 84× 84 pixels.

The pseudo-code for the above augmentations are as follows:

1 def random_crop(imgs, size):
2 n, c, h, w = imgs.shape
3 w1 = torch.randint(0, w - size + 1, (n,))
4 h1 = torch.randint(0, h - size + 1, (n,))
5 cropped = torch.empty((n, c, size, size),
6 dtype=imgs.dtype, device=imgs.device)
7 for i, (img, w11, h11) in enumerate(zip(imgs, w1, h1)):
8 cropped[i][:] = img[:, h11:h11 + size, w11:w11 + size]
9 return cropped

10

11 def random_translate(imgs, size):
12 n, c, h, w = imgs.shape
13 outs = np.zeros((n, c, size, size))
14 h1s = np.random.randint(0, size - h + 1, n)
15 w1s = np.random.randint(0, size - w + 1, n)
16 for out, img, h1, w1 in zip(outs, imgs, h1s, w1s):
17 out[:, h1:h1 + h, w1:w1 + w] = img
18 return outs
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Figure 3: Scores of PCR and PCR without Predictive Consistency.The results is averaged cross five
different training seeds.The solid line and shaded regions represent the mean and standard devia-
tion, respectively, across five runs. Without the Predictive Consistency, PCR performs worse and
more unstable on complex tasks like Walker-walk, Cheetah-run and Reacher-easy, but all surpasses
previous SOTA like DrQ (Yarats et al., 2020).
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Figure 4: Comparison of the score between PCR and its variant with a Contrastive Loss. The
results are averaged across five different training seeds. The solid line and shaded regions repre-
sent the mean and standard deviation, respectively, across five runs. Replacing Predictive loss with
Contrastive loss leads to inferior performance on complex tasks like Finger-spin, Cheetah-run and
Reacher-easy

.

B.3 PCR WITH CONTRASTIVE LOSS

The implementation of PCR with contrastive loss mentioned in ablation Studies is similar to Laskin
et al. (2020a), which is the first to adopt contrastive learning objective in RL with visual observation.
Contrastive learning can be understood as learning a differentiable dictionary look-up task. Given
a query q and keys K = {k0, k1, . . . } and an explicitly known partition of K (with respect to q)
P (K) = ({k+},K \ {k+}), the goal of contrastive learning is to ensure that q matches with k+

relatively more than any of the keys in K \ {k+}. Following Laskin et al. (2020a), we model the
similarities between the anchor (q) and targets (K) with bilinear products (qTWk). An InfoNCE
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loss (van den Oord et al., 2018) is used here :

Lq = log
exp(qTWk+)

exp(qTWk+) +
∑K−1
i=0 exp(qTWki)

(8)

For PCR with contrastive loss, we simply replace the predictive consistency loss with the above
InfoNCE loss, and all other hyperparameters remain the same.

B.4 LOSS CURVE
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Figure 5: Comparison of Loss between contrastive PCR and Predictive PCR. The y-axis shows the
log-loss for a fair comparison. The solid line and shaded regions represent the mean and standard
deviation, respectively, across five runs.

Figure B.4 shows the training curve of original PCR (left, inherently adopts predictive loss) and PCR
with contrastive loss (right). For the left figure, the definition of predictive loss and consistency loss
follows Eq (7). Here point out an interesting observation that learning predictive loss is much more
difficult than the consistent loss, as the absolute value of the consistent loss is much lower than the
predictive loss.
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