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ABSTRACT

Skeleton-based human action recognition leverages sequences of human joint co-
ordinates to identify actions performed in videos. Owing to the intrinsic spa-
tiotemporal structure of skeleton data, Graph Convolutional Networks (GCNs)
have been the dominant architecture in this field. However, recent advances in
transformer models and masked pretraining frameworks open new avenues for
representation learning. In this work, we propose CascadeFormer, a family of
two-stage cascading transformers for skeleton-based human action recognition.
Our framework consists of a masked pretraining stage to learn generalizable skele-
ton representations, followed by a cascading fine-tuning stage tailored for discrim-
inative action classification. We evaluate CascadeFormer across three benchmark
datasets—Penn Action, N-UCLA, and NTU RGB+D 60—achieving competitive
performance on all tasks. To promote reproducibility, we will release our code
and model checkpoints.

1 INTRODUCTION

Human action recognition is a fundamental computer vision task that aims to identify the action
performed by a target person in a given video, represented as a sequence of frames. Human actions
can be interpreted through various modalities, such as raw RGB images Zhang et al. (2021), skeletal
joint coordinates Zhao et al. (2019), or a fusion of both Kim et al. (2023). Compared to RGB-based
approaches, skeleton-based action recognition offers distinct advantages Zhou et al. (2023): it is
computationally efficient due to relying solely on human joint coordinate data, and it is more robust
to environmental noise and variations in camera viewpoints. Using these strengths, skeleton-based
action recognition has been explored through various methods, including probabilistic models Zhao
et al. (2019), recurrent neural networks (Shahroudy et al., 2016; Liu et al., 2016), and graph convo-
lutional networks (GCN) Yan et al. (2018). Nevertheless, the rapid advancement of attention mech-
anisms Vaswani et al. (2023) in natural language processing has driven the widespread adoption of
transformer architectures in computer vision. The success of vision transformers Dosovitskiy et al.
(2021); Rao et al. (2021) across tasks such as image classification Ridnik et al. (2021), multimodal
learning Radford et al. (2021), and visual instruction tuning Liu et al. (2023) underscores the po-
tential of transformers for skeleton-based action recognition. Recent approaches incorporate novel
attention designs tailored to spatiotemporal data Bertasius et al. (2021); Zhou et al. (2023); Wang
et al. (2023); however, these transformer-based models are predominantly trained in an end-to-end
manner.

However, instead of relying on end-to-end training, which may risk overfitting on downstream tasks,
both language modeling Devlin et al. (2019) and multimodal learning Srivastava & Sharma (2023;
2024) have widely embraced masked pretraining as a precursor to supervised adaptation. Motivated
by the goal of equipping simple transformers with masked pretraining, we propose Cascade-
Former, a family of two-stage cascading transformers for skeleton-based human action recogni-
tion. CascadeFormer comprises a lightweight transformer for masked pretraining and an additional
transformer for fine-tuning on action labels. In this paper, we begin with a review of prior work
in masked pretraining with transformers and skeleton-based action recognition, followed by a brief
overview of the input skeleton data format. We then present our key contributions:
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1. We introduce CascadeFormer, a framework comprising three model variants that share a
unified pipeline involving masked pretraining followed by cascading fine-tuning.

2. We conducted extensive evaluations of CascadeFormer on three widely used and diverse
datasets: Penn Action, N-UCLA, and NTU RGB+D 60.

3. We performed extensive ablation studies, summarized in the main paper and further ex-
panded in the Appendix, to analyze the impact of architectural choices and training config-
urations.

Finally, we conclude with a discussion of the implications of our work.

2 RELATED WORK

In this section, we first provide a brief overview of the development of masked pretraining frame-
works in various fields. We then review widely adopted approaches in the recognition of human
action based on skeletons.

Masked Pretraining Framework The masked pre-training was first introduced in the domain of
language modeling, most notably with BERT Devlin et al. (2019). By randomly masking 15% of
the input tokens and training the model to predict them in a self-supervised manner, BERT can learn
deep bidirectional representations Devlin et al. (2019). A similar paradigm has been extended to
computer vision with masked autoencoders (MAEs) He et al. (2021), which apply a significantly
higher masking ratio (up to 80%), enabling effective self-supervised pretraining for vanilla vision
transformers Dosovitskiy et al. (2021). More recently, the masked pretraining framework has been
rapidly adopted in multimodal learning. Models such as OmniVec Srivastava & Sharma (2023) and
OmniVec2 Srivastava & Sharma (2024) take advantage of masked auto-encoding techniques to learn
unified representations in diverse modalities, including image, text, video, and audio.

Skeleton-based Action Recognition Human action recognition can be explored through various
modalities, including raw RGB images Zhang et al. (2021), skeletal joint coordinates Zhao et al.
(2019), or a fusion of both Kim et al. (2023). In contrast to RGB-based methods, skeleton-based
action recognition is characterized by its computational efficiency, owing to its reliance solely on
human joint coordinate data, and its robustness to environmental noise and camera viewpoint vari-
ations, since it preserves only the spatiotemporal information of keypoints Zhou et al. (2023). Al-
though probabilistic models Zhao et al. (2019) demonstrated promising performance, deep learning
approaches have become dominant in this domain. Given the temporal nature of video sequences,
recurrent neural networks (RNN) Shahroudy et al. (2016); Liu et al. (2016) have proven effective in
modeling temporal dynamics. Furthermore, convolutional neural networks (CNNs) Cai et al. (2023);
Duan et al. (2022) have been adapted to this task by transforming skeleton data into pseudo-images,
allowing convolutional operations to be applied. Furthermore, graph-based neural networks, includ-
ing graph neural networks (GNNs) Shi et al. (2019) and graph convolutional networks (GCNs) Yan
et al. (2018), have gained popularity due to the natural graph structure of human skeletons, where
joints and bones are represented as vertices and edges, respectively. More recently, transformer ar-
chitectures Vaswani et al. (2023) have attracted increasing attention in skeleton-based action recog-
nition. These models are often enhanced with efficient spatiotemporal attention mechanisms Zhou
et al. (2023); Do & Kim (2024); Bertasius et al. (2021); Wang et al. (2023), and are typically trained
in an end-to-end fashion.

3 PRELIMINARIES

Skeleton Data Skeletons, or pose maps, refer to sets of Cartesian coordinates representing the
key joints of the human body. Formally, given a batch of B video sequences, each consisting of
T frames, with J joints per frame in a C-dimensional space, the input skeleton data X is typically
structured as: X ∈ RB×C×T× J . Although certain datasets such as Penn Action define skeletons in
a two-dimensional space (C = 2), the most recent data sets—including N-UCLA and NTU RGB+D
60—represent joint coordinates in a three-dimensional space (C = 3) to more accurately capture 3D
motion. Since video lengths may vary across samples, it is common to either sample a fixed number
of frames or apply dynamic padding based on the longest sequence in the batch.
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Multi-person Skeleton Data Some datasets, such as NTU RGB+D 60, include actions involving
multiple individuals. In these cases, assuming up to M persons appear in each video, the input
skeleton data X can be extended to: X ∈ RB×C×T× J× M . When multiple persons are present,
many approaches Do & Kim (2024); Zhou et al. (2023) encode all detected individuals. However,
some methods Shahroudy et al. (2016) opt to retain only the most active person in the scene to
reduce computational complexity or avoid noise from irrelevant actors.

4 CASCADEFORMER

To equip vanilla transformers with masked pretraining, a technique widely adopted in language mod-
eling and multimodal learning, we propose CascadeFormer, a family of two-stage cascading trans-
formers for skeleton-based human action recognition. As illustrated in Figure 1, CascadeFormer
employs a lightweight transformer for masked pre-training, which is then followed by an additional
transformer to fine-tune the action labels (Figure 2). We design a family of three model variants that
differ in their feature extraction modules, as shown in Figure 3. The architecture is composed of
three key components: masked pre-training, cascading fine-tuning, and feature extraction, each of
which is described in detail in the following subsections.

4.1 MASKED PRETRAINING COMPONENT

Figure 1: Overview of the masked pretraining component in CascadeFormer. A fixed percent-
age of joints are randomly masked across all frames in each video. The partially masked skeleton
sequence is passed through a feature extraction module to produce frame-level embeddings, which
are then input into a temporal transformer (T1). A lightweight linear decoder is applied to recon-
struct the masked joints, and the model is optimized using mean squared error over the masked
positions. This stage enables the model to learn generalizable spatiotemporal representations prior
to supervised finetuning.

The masked pretraining component, illustrated in Figure 1, enables the model to learn generaliz-
able spatiotemporal dependencies in a self-supervised manner prior to any supervised training on
action labels. Inspired by masked modeling strategies in other domains, we apply a joint-level
masking scheme: specifically, 30% of the joints across all frames are randomly selected and masked
by setting their coordinates to zero, while the remaining 70% retain their original Cartesian val-
ues. The partially masked skeleton sequence is then passed through a feature extraction module
to generate frame-level embeddings. Although the three variants of CascadeFormer differ in their
feature extraction designs, they all follow a common principle: each frame is treated as a token
and projected into a high-dimensional embedding space. Formally, given a batch of B video se-
quences, each containing T frames with J joints per frame in a C-dimensional space, the resulting
embedding tensor is denoted as E ∈ RB×T×embed dim, where embed dim denotes the transformer
embedding dimension. These frame embeddings are then input into a vanilla temporal transformer
backbone (T1), as shown in Figure 1. The output of T1, denoted as Epretrain, maintains the same
shape: Epretrain ∈ RB×T×embed dim. To reconstruct missing joint information, a lightweight linear
decoder is applied to the output of T1. This decoder is used exclusively during pretraining and is
discarded during downstream fine-tuning. The model is trained to minimize the reconstruction error
only in the masked joints. Let masked X ∈ RB×C×T×J represent the masked input skeletons and
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masked X ′ ∈ RB×C×T×J be the reconstructed output. The loss function is defined as the mean
squared error (MSE) over the masked joints:

LMSE = ∥masked X −masked X ′∥2

4.2 CASCADING FINETUNING COMPONENT

Figure 2: Overview of the cascading finetuning component in CascadeFormer. The frame em-
beddings produced by the pretrained temporal transformer backbone (T1) are passed into a task-
specific transformer (T2) for hierarchical refinement. The output of T2 is fused with the origi-
nal embeddings via a cross-attention module. The resulting fused representations are aggregated
through frame-level average pooling and passed to a lightweight classification head. The entire
model—including T1, T2, and the classification head—is optimized using cross-entropy loss on ac-
tion labels during finetuning.

After masked pretraining, we introduce a cascading finetuning stage, as illustrated in Figure 2.
This design is inspired by the hierarchical adaptation strategy proposed in OmniVec2 Srivastava
& Sharma (2024) for multimodal learning. Unlike conventional fine-tuning, where a lightweight
classification head is attached directly to a pre-trained transformer, CascadeFormer incorporates an
additional task-specific transformer (T2) to refine features in a hierarchical manner.

Specifically, the frame embeddings E ∈ RB×T×embed dim obtained from the pretrained backbone
(T1) are passed into the task-specific transformer (T2), which maps them into a new embedding
space of the same dimensionality: Efinetune ∈ RB×T×embed dim. These refined embeddings Efinetune
are then fused with the original pretrained embeddings Epretrain via a cross-attention module, as
shown in Figure 2. Following the standard attention mechanism Vaswani et al. (2023), cross atten-
tion is computed as:

Attention(Q,K, V ) = softmax
(
QK⊤
√
d

)
V

Ecross = Attention(Epretrain, Efinetune, Efinetune)

To obtain a fixed-size video-level representation, we apply frame-level average pooling over the
cross-attended embeddings:

Eavg =
1

T

∑
T
t=1Ecross[:, t, :] ∈ RB×embed dim

Finally, a lightweight classification head is applied to the pooled embeddings, and the model is
optimized using the standard cross-entropy loss with respect to the ground-truth action labels. All
parameters of the pre-trained transformer backbone (T1), as well as the newly introduced T2 module
and classification head, are trainable during the cascading fine-tuning stage.
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4.3 FEATURE EXTRACTION MODULE

Figure 3: Feature extraction module in CascadeFormer. All variants convert input skeleton se-
quences into frame-level embeddings for downstream temporal modeling. CascadeFormer 1.0 (pur-
ple) applies a simple frame-level linear projection. CascadeFormer 1.1 (red) enhances this by first
applying a joint-level 1D convolution to capture spatial locality before linear projection. Cascade-
Former 1.2 (blue) constructs joint-level embeddings via a linear layer, refines them using a joint-level
spatial transformer, and aggregates the outputs into frame-level embeddings.

As illustrated in Figure 3, input skeleton sequences are first passed through a feature extraction mod-
ule to obtain preliminary frame-level embeddings E, which are then processed by the transformer
backbone (T1). We design a family of three CascadeFormer variants, each differing in how frame
embeddings are extracted:

CascadeFormer 1.0 This baseline variant employs a simple linear projection to generate frame
embeddings directly from the input skeleton. Formally, given the input skeleton tensor X ∈
RB×C×T×J , where B is the batch size, C the coordinate dimension, T the number of frames, and J
the number of joints, the linear projection outputs: E ∈ RB×T×embed dim.

CascadeFormer 1.1 To better capture spatial locality among joints, this variant prepends a
lightweight convolutional module prior to linear projection. The input skeletons X ∈ RB×C×T×J

are reshaped in batch and temporal dimensions into X ∈ R(B·T )×C×J , and then passed through a 1D
convolutional layer: Xconvoluted ∈ R(B·T )×C×J . The resulting activations are passed into the same
linear projection as in CascadeFormer 1.0 to yield frame-level embeddings: E ∈ RB×T×embed dim.

CascadeFormer 1.2 In this variant, we first construct embeddings for each individual joint using a
linear layer, producing: Ejoint ∈ R(B·T )×J×(embed dim/J) A single layer spatial transformer (denoted
as ST) is then applied to the joint embeddings. Ejoint ST ∈ R(B·T )×J×(embed dim/J). Finally, we
aggregate joint-level output into full frame-level embeddings E ∈ RB×T×embed dim. Note that for
CascadeFormer 1.2, the total embedding dimension embed dim must be divisible by the number of
joints J to allow for an even allocation across the joints. All three variants differ only in their feature
extraction mechanisms; the remainder of the architecture, including masked pre-training (Figure 1)
and cascading finetuning (Figure 2)—remains shared across all models.

5 EXPERIMENT SETUP

In this section, we introduce the datasets used for evaluation, followed by dataset-specific prepro-
cessing steps and training configurations.

5
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5.1 DATASETS

We conduct a comprehensive evaluation of CascadeFormer on three widely-used benchmark datasets
for human action recognition. Penn Action Zhang et al. (2013) dataset contains 2,326 video clips
that span 15 human action classes. Each frame is annotated with 13 human joints in a 2D space.
The dataset provides a standard 50/50 train/test split, ensuring mutually exclusive samples in both
sets. N-UCLA wang et al. (2014) comprises 1,494 video clips categorized into 12 action classes.
Skeletons are annotated with 20 joints in a 3D space. The dataset is collected from three camera
viewpoints: two are used for training, and the third is reserved for evaluation, following the standard
cross-view evaluation protocol. NTU-RGB+D 60 Shahroudy et al. (2016), a large-scale dataset
includes 56,880 video samples covering 60 action classes, with each skeleton containing 25 joints in
3D space. NTU-RGB+D 60 offers two evaluation protocols: cross-subject (where subjects are split
between training and testing) and cross-view (where specific camera angles are held out for testing).
We adopted both protocols in our experiments.

5.2 DATA PREPROCESSING

Due to differences in scale, format, and split protocols across datasets, we apply dataset-specific
preprocessing strategies. For Penn Action, we take advantage of the visibility flags provided with
the annotations and remove occluded skeletons. Given the relatively small size of the dataset, we
pad each video sequence within a batch to match the longest sequence in that batch. For N-UCLA,
following the data pre-processing strategy in SkateFormer Do & Kim (2024), we virtually repeat
the dataset multiple times to increase the diversity of the training. Each skeleton is normalized by
centering it at the hip joint and applying scale normalization. Data augmentation techniques such
as random rotation, scaling, and joint/axis dropping are applied. To avoid computational overhead
from batch-level padding, we randomly sampled a fixed length of 64 frames per sequence. For
NTU-RGB+D 60, we adopt the preprocessing pipeline from CTR-GCN Chen et al. (2021), which
includes random rotation augmentation. To handle variable-length sequences, we uniformly sample
64 frames around the temporal center of each clip.

5.3 TRAINING SETUP

All models are implemented in PyTorch Paszke et al. (2019) and trained on a single NVIDIA
GeForce RTX 3090 GPU. We adopt dataset-specific hyperparameters to ensure optimal performance
across different datasets. For Penn Action and N-UCLA, we use AdamW Loshchilov & Hutter
(2019) as the optimizer. For masked pre-training, the learning rate is fixed at 1.0×10−4. During the
cascading fine-tuning stage, we reduce the learning rate to 1.0 × 10−5 and apply cosine annealing
scheduling Loshchilov & Hutter (2017). For NTU-RGB+D 60, masked pretraining is performed
with a constant learning rate of 1.0× 10−4 and cosine annealing. During cascading fine-tuning, we
switch to SGD Ruder (2017) as the optimizer. For cross-subject evaluation, we use a base learning
rate of 3.0× 10−5, while for cross-view evaluation, we set it to 1.0× 10−4. The number of epochs
for both pre-training and fine-tuning varies across the three CascadeFormer variants.

6 RESULTS

6.1 DATASET-WISE EVALUATION

We present the performance of the CascadeFormer variants in three benchmark datasets in Table 1.
In general, each variant demonstrates competitive performance, with certain variants better suited
to specific datasets. In the Penn Action dataset, CascadeFormer 1.0 achieves the highest accuracy
at 94.66%, while both 1.1 and 1.2 closely follow at 94.10%. On the N-UCLA dataset, Cascade-
Former 1.1 leads with an accuracy of 91.16%, while variants 1.2 and 1.0 reach 90.73% and 89.66%,
respectively. For the large-scale NTU RGB+D 60 dataset , which includes two evaluation protocols
- cross-subject (CS) and cross-view (CV)—CascadeFormer 1.0 again outperforms the others with
81.01% (CS) and 88.17% (CV). Variant 1.2 closely follows, while 1.1 lags slightly behind on both
splits. These results suggest that, perhaps surprisingly, the simplest feature extraction design (Cas-
cadeFormer 1.0 with a linear frame encoder) can be as effective, if not more, than more complex
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designs involving convolutions or spatial transformers. All model checkpoints used in Table 1 are
publicly released via HuggingFace for further analysis and reproducibility.

Model Variant Penn Action N-UCLA NTU60/CS NTU60/CV
accuracy
CascadeFormer 1.0 94.66% 89.66% 81.01% 88.17%
CascadeFormer 1.1 94.10% 91.16% 79.62% 86.86%
CascadeFormer 1.2 94.10% 90.73% 80.48% 87.24%
precision
CascadeFormer 1.0 94.36% 90.72% 80.86% 88.34%
CascadeFormer 1.1 93.63% 91.63% 79.53% 87.01%
CascadeFormer 1.2 93.94% 91.57% 80.33% 87.46%
F1 score
CascadeFormer 1.0 94.18% 89.59% 80.82% 88.18%
CascadeFormer 1.1 93.66% 91.12% 79.40% 86.84%
CascadeFormer 1.2 93.88% 90.75% 80.28% 87.26%

Table 1: Overall accuracy, precision, and F1 score evaluation results of CascadeFormer vari-
ants on three datasets. All checkpoints are open-sourced for reproducibility.

6.2 MULTI-PERSON ACTION ANALYSIS

Unlike Penn Action and N-UCLA, which feature only single-person actions, NTU RGB+D 60 in-
cludes 11 classes involving interactions between two individuals (e.g., hugging, handshaking, push-
ing). Following the recommendation of the NTU authors Shahroudy et al. (2016), we retain the per-
son with the greatest variance in motion for all actions. As shown in Table 2, CascadeFormer 1.0
achieves 81.81% accuracy in two-person actions (CS split), slightly higher than the 80.82% obtained
in single-person actions. This suggests strong generalization across subjects for interaction-based
actions, despite a smaller number of classes. However, on the CV split, the model performs better
on single-person actions (88.92%) than on two-person actions (84.86%), indicating that generalizing
interactions across varying camera viewpoints remains more challenging than across different indi-
viduals. These findings reveal that cross-view generalization of social interactions may benefit from
additional structural modeling of inter-person dynamics, which could be explored in future work.

Action Type NTU60/CS accuracy NTU60/CV accuracy
Single-person 80.82% 88.92%
Two-persons 81.81% 84.86%

Overall 81.01% 88.17%

Table 2: Performance of CascadeFormer 1.0 on multi-person actions in NTU RGB+D 60. Accu-
racy is broken down into single-person actions and two-person interactions under both cross-subject
and cross-view splits.

7 PERFORMANCE COMPARISON

In this section, we compare the performance of the three CascadeFormer variants across different
datasets with other representative models in skeleton-based action recognition. Table 3 compares the
model accuracy in the Penn Action dataset Zhang et al. (2013). AOG Nie et al. (2015), a hierarchical
graph model, reaches 85.5% accuracy. HDM-BG Zhao et al. (2019), a probabilistic model within
a Bayesian framework, achieves 93.4%. All three CascadeFormer variants exceed 94% accuracy,
with CascadeFormer 1.0 achieving the best performance at 94.66%. These results demonstrate
the effectiveness of CascadeFormer on compact 2D skeleton datasets like Penn Action. Table 4
shows the results on the N-UCLA dataset wang et al. (2014). ESV Liu et al. (2017), a CNN-based
visualization method, obtains 86.09%, while Ensemble TS-LSTM Lee et al. (2017), an RNN-based
model, reaches 89.22%. CascadeFormer 1.0 already exceeds this with 89.66%, and 1.1 and 1.2
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Model Penn Action
accuracy

AOG 85.5%
HDM-BG 93.4%
CascadeFormer 1.0 94.66%
CascadeFormer 1.1 94.10%
CascadeFormer 1.2 94.10%

Table 3: Comparison on Penn Action Zhang et al. (2013). AOG Nie et al. (2015) is a hierarchical
graph-based model. HDM-BG Zhao et al. (2019) is a probabilistic Bayesian approach. Cascade-
Former variants achieve top accuracy, with 1.0 reaching the highest.

Model N-UCLA acc
ESV 86.09%
Ensemble TS-LSTM 89.22%
CascadeFormer 1.0 89.66%
CascadeFormer 1.1 91.16%
CascadeFormer 1.2 90.73%

Table 4: Comparison on N-UCLA wang et al. (2014). ESV Liu et al. (2017) is a CNN-based
visualization method. TS-LSTM Lee et al. (2017) is a recurrent model ensemble. CascadeFormer
1.1 achieves the highest accuracy.

further improve to 91.16% and 90.73%, respectively. These results confirm that CascadeFormer
performs robustly on small-scale 3D skeleton datasets as well.

Model N-UCLA accuracy
ESV 86.09%
Ensemble TS-LSTM 89.22%
CascadeFormer 1.0 89.66%
CascadeFormer 1.1 91.16%
CascadeFormer 1.2 90.73%

Model NTU60/CS accuracy
ST-LSTM 69.2%
ST-GCN 81.5%
CascadeFormer 1.0 81.01%
CascadeFormer 1.1 79.62%
CascadeFormer 1.2 80.48%

Table 5: Comparison on NTU RGB+D 60 (both Cross-Subject and Cross-View). ST-LSTMLiu
et al. (2016) uses recurrent modeling. ST-GCN Yan et al. (2018) adopts graph convolutions. Cas-
cadeFormer 1.0 achieves performance comparable to ST-GCN without graph structures.

On the NTU RGB+D 60 dataset, we evaluate both cross-subject (CS) and cross-view (CV) splits.
As shown in Table 5, ST-LSTM Liu et al. (2016) achieves 69.2% (CS) and 77.7% (CV), while
ST-GCN Yan et al. (2018), a graph-based method, improves performance to 81.5% and 88.3%,
respectively. CascadeFormer 1.0 delivers comparable performance—81.01% (CS) and 88.17%
(CV)—despite not using any explicit graph structure. CascadeFormer 1.2 follows closely behind,
achieving 80.48% and 87.24%. These results validate CascadeFormer scalability and robustness in
complex large-scale 3D datasets. Even without spatial graphs, our model competes with state-of-
the-art graph convolutional approaches.

8 ABLATION HIGHLIGHTS

This section presents two key ablation studies that highlight the effectiveness of our proposed design
choices. Additional ablation results and comprehensive analyses can be found in the appendix.

8.1 NECESSITY OF STRONG PRETRAINING

In this ablation study, we examine the necessity of employing a strong transformer backbone (T1)
through masked pre-training. Its advantages of lie in the ability to decouple generic representation
learning from task-specific adaptation. Specifically, we conducted a case study on CascadeFormer
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1.0 using the cross-subject split of the NTU RGB+D 60 dataset, a large-scale and complex bench-
mark that is well suited to reveal performance differences under varying pre-training strengths. We
pre-train the T1 backbone for 1, 50, 100, and 200 epochs, followed by 100 epochs of fine-tuning
in all settings to ensure fair comparison. A weak backbone pretrained for only 1 epoch yields an
accuracy of 76.38%; A medium backbone pretrained for 50 epochs leads to 80.06% accuracy. Ex-
tending pretraining to 100 epochs results in a further improvement to 81.01%. Although training
for 200 epochs yields a marginal increase to 81.09%, the additional computational cost outweighs
the negligible performance gain. Therefore, we adopted 100 epochs of masked pretraining for all
subsequent experiments. This study confirms that strong backbone, achieved by sufficient masked
pre-training, is necessary and beneficial for robust performance in challenging action recognition
tasks.

# Epochs of Pretraining # Epochs of Pretraining NTU60/CS accuracy
1 epoch 100 epochs 76.38%
50 epoch 100 epochs 80.06%
100 epochs 100 epochs 81.01%
200 epochs 100 epochs 81.09%

Table 6: Effect of pretraining duration on NTU RGB+D 60 (cross-subject) performance. We
report accuracy on the cross-subject split after pretraining CascadeFormer 1.0 for 1, 50, 100, and
200 epochs. Performance improves significantly with longer pretraining, but plateaus after 100
epochs, indicating diminishing returns beyond this point.

8.2 PRETRAINING STRATEGY

In this ablation study, we further explore two alternative pretraining strategies using Cascade-
Former 1.0 on the Penn Action dataset Zhang et al. (2013), with results summarized in Table 7.
Our proposed strategy applies random masking to 30% of joints across the entire video sequence,
and optimizes a reconstruction loss in order to learn the most robust skeleton representations. This
method achieves a high accuracy of 94.66% on Penn Action. As a comparison, we evaluated a
frame-level masking strategy, where 30% of entire frames are randomly masked. This results in a
lower accuracy of 89.98%, indicating that reconstructing full frames is significantly more challeng-
ing, less stable, and therefore less reliable for the transformer backbone than reconstructing scattered
joint positions. We also investigate a non-masked variant in which the full skeleton sequence is re-
constructed without any masking. This strategy achieves 91.10% accuracy, suggesting that while
full reconstruction may be effective, it can lead to overfitting on smaller datasets, such as Penn Ac-
tion, due to hard skeleton memorization without any regularization. Based on these observations,
we adopt the random joint masking strategy as our default pretraining approach for all subsequent
experiments.

Pretraining Strategy Penn Action accuracy
random joint masking 94.66%
random frame masking 89.98%
regular reconstruction 91.10%

Table 7: Effect of pretraining strategy on Penn Action performance. We compare three pretrain-
ing objectives for CascadeFormer 1.0: random joint masking, random frame masking, and regular
(unmasked) reconstruction. Random joint masking yields the best downstream performance, high-
lighting the benefit of fine-grained spatial masking.

9 CONCLUSION

In this paper, we introduced CascadeFormer, a transformer-based model for skeleton-based action
recognition with masked pretraining and cascading finetuning. Evaluated on Penn Action, N-UCLA,
and NTU RGB+D 60, CascadeFormer consistently achieved strong performance on spatial modali-
ties and dataset scales. Our results demonstrate the effectiveness of unified transformer pipelines for
generalizable action recognition. Future directions include scaling to longer sequences, incorporat-
ing graph-aware modules, and extending to multimodal settings with RGB or depth inputs.

9
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A APPENDIX

A.1 BROADER IMPACTS

The empirical results across all three datasets provide a couple of insights into the design and perfor-
mance of CascadeFormer: First, the effectiveness of the cascading fine-tuning strategy is consistent
across model variants and datasets. CascadeFormer variants demonstrate clear improvements over
strong baselines in both 2D and 3D skeleton-based action recognition tasks. Second, CascadeFormer
demonstrates competitive scalability to large-scale and complex datasets. On NTU RGB+D 60, de-
spite the absence of an explicit graph structure, CascadeFormer achieves competitive accuracy per-
formance. This suggests that transformer-based architectures, when paired with effective pretraining
strategies, can be comparable to graph-based methods in modeling human motion dynamics.

A.2 MORE ABLATION STUDIES

We conduct further ablation studies to examine the effects of input representations, decoder archi-
tectures, backbone freezing strategies, and masking ratios.

A.2.1 INPUT DATA REPRESENTATION

We investigate alternative input data representations beyond the original joint coordinates using
CascadeFormer 1.0, as shown in Table 8. Surprisingly, the use of raw joint coordinates yields the
highest accuracy of 94.66% on the Penn Action dataset. To explore the effectiveness of bone-based
representations, we develop three variants. The first approach constructs each bone by subtracting
the coordinates of one joint from its adjacent joint, resulting in an accuracy of 92.32%. The second
method concatenates the coordinates of two consecutive joints, achieving 93.16% accuracy. The
third approach linearly parameterizes each bone segment using its slope and intercept, which attains
93.91% accuracy. Overall, although all bone-based variants perform competitively, the original joint
representation proves to be the most effective for our model on this task.

Data Representation Accuracy
Joints 94.66%
Bones (Subtraction) 92.32%
Bones (Concatenation) 93.16%
Bones (Parameterization) 93.91%

Table 8: Comparison of different input data representations on Penn Action. Using the original
joint coordinates achieves the highest accuracy (94.66%), outperforming all three alternative bone-
based variants.

A.2.2 DECODER ARCHITECTURE

We conduct an ablation study to compare alternative decoder architectures for masked pretraining on
the CascadeFormer 1.0 using the Penn Action dataset. As shown in Table 9, our default choice—a
simple linear layer to reconstruct masked joints—achieves the highest accuracy of 94.66%. We then
evaluate an MLP decoder composed of two linear layers with a ReLU activation in between, which
yields a reduced accuracy of 92.51%. Finally, we test an MLP decoder with a residual connection
to facilitate gradient flow, resulting in an even lower accuracy of 91.20%. These results suggest that
the linear decoder not only provides the most effective reconstruction but also generalizes better,
likely due to its lower risk of overfitting on small-scale datasets. Based on this finding, we adopt the
linear decoder for all experiments throughout this work.
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Decoder Architecture Accuracy
linear 94.66%
MLP 92.51%
MLP + residual 91.20%

Table 9: Comparison of decoder architectures during masked pretraining on Penn Action. A
simple linear decoder outperforms both MLP and MLP with residual connection, indicating that
increased decoder complexity may lead to overfitting on smaller datasets.

A.2.3 BACKBONE FREEZING DECISION

In this ablation study, we examine the impact of parameter-freezing strategies for the transformer
backbone during the cascading finetuning stage. Using CascadeFormer 1.0 on the Penn Action
dataset, we present our findings in Table 10. Our primary approach involves fully finetuning the
entire backbone, allowing all transformer parameters to be updated during training. This strategy
yields the best performance with an accuracy of 94.66%. In contrast, freezing the entire backbone
results in a significant drop in accuracy to 85.11%. We also explore partial finetuning by training
only the final transformer layer, which achieves 88.39% accuracy. These results suggest that full
backbone finetuning is crucial for effective downstream adaptation in action recognition. Conse-
quently, we adopt full backbone finetuning for all experiments.

Backbone Freezing Decision Accuracy
fully finetune 94.66%
fully freeze 85.11%
finetune the last layer 88.39%

Table 10: Effect of different backbone freezing strategies during cascading finetuning on Penn
Action. Fully finetuning the transformer backbone yields the highest accuracy, while freezing all
layers significantly degrades performance.

A.2.4 MASKING RATIOS

The ablation study on masking ratios highlights the importance of selecting an appropriate level of
input corruption during masked pretraining. As shown in Table 11, a 30% masking ratio achieves the
highest accuracy of 94.66%, substantially outperforming both lower (20%) and higher (40%) ratios.
This indicates that too little masking may not provide sufficient pretraining signal to encourage
robust feature learning, while excessive masking reduces the availability of contextual information
and hinders accurate reconstruction. The results suggest that an intermediate masking ratio strikes
the optimal balance between learning meaningful representations and maintaining adequate context
for recovery, consistent with findings in related masked modeling literature.

Masking Ratio Accuracy
30% 94.66%
20% 89.04%
40% 88.20%

Table 11: Effect of masking ratios during pretraining. An intermediate ratio of 30% yields the
best downstream accuracy, while both lower (20%) and higher (40%) ratios degrade performance.
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