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Abstract

Node tokenized graph Transformers (GTs) have shown promising performance
in node classification. The generation of token sequences is the key module in
existing tokenized GTs which transforms the input graph into token sequences,
facilitating the node representation learning via Transformer. In this paper, we
observe that the generations of token sequences in existing GTs only focus on
the first-order neighbors on the constructed similarity graphs, which leads to the
limited usage of nodes to generate diverse token sequences, further restricting the
potential of tokenized GTs for node classification. To this end, we propose a new
method termed SwapGT. SwapGT first introduces a novel token swapping operation
based on the characteristics of token sequences that fully leverages the semantic
relevance of nodes to generate more informative token sequences. Then, SwapGT
leverages a Transformer-based backbone to learn node representations from the
generated token sequences. Moreover, SwapGT develops a center alignment loss
to constrain the representation learning from multiple token sequences, further
enhancing the model performance. Extensive empirical results on various datasets
showcase the superiority of SwapGT for node classification. Code is available at
https://github.com/JHL-HUST/SwapGT.

1 Introduction

Node classification [22], the task of predicting node labels in a graph, is a fundamental problem in
graph data mining with numerous real-world applications. Graph Neural Networks (GNNs) [42, 23]
have traditionally been the dominant approaches. However, the message passing mechanism inherent
to GNNs suffers from some limitations, such as over-smoothing [5], which prevents them from
effectively capturing deep graph structural information and hinders their performance in downstream
tasks. In contrast, Graph Transformers (GTs), which adapt the Transformer framework for graph-
based learning, have emerged as a promising alternative, demonstrating impressive performance in
node classification. Existing GTs can be broadly classified into two categories based on their model
architecture: hybrid GTs and tokenized GTs.

Hybrid GTs combine the strengths of GNN and Transformer, using GNNs to capture local graph
topology and Transformers to model global semantic relationships. However, recent studies have
highlighted a key issue with this approach: directly modeling semantic correlations among all node
pairs using Transformers can lead to the over-globalization problem [39], which compromises model
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Figure 1: The toy example of token generation on the constructed k-NN graph. Previous methods
only focus on 1-hop neighborhood to construct a single token sequence. While our method can
flexibly select tokens from multi-hop neighborhoods to generate diverse token sequences.

performance. Tokenized GTs, on the other hand, generate independent token sequences for each node,
which encapsulate both local topological and global semantic information. Transformer models are
then utilized to learn node representations from these token sequences. The advantage of tokenized
GTs is that they limit the token sequences to a small, manageable number of tokens, naturally
avoiding the over-globalization issue. In tokenized GTs, the token sequences typically include two
types of tokens: neighborhood tokens and node tokens. Neighborhood tokens aggregate multi-hop
neighborhood information of a target node, while node tokens are sampled based on the similarity
between nodes.

However, recent studies [17] have shown that neighborhood tokens often fail to preserve complex
graph properties such as long-range dependencies and heterophily, limiting the richness of node
representations. On the other hand, node tokens, generated through various sampling strategies, can
better capture correlations between nodes in both feature and topological spaces [44, 7], making them
more effective in preserving complex graph information. As a result, this paper focuses on node
token-based GTs.

A recent study [7] formalized the node token generation process as two key steps: similarity evaluation
and top-k sampling. In the first step, similarity scores between node pairs are calculated based on
different similarity measures to preserve the relations of nodes in different feature spaces. While
in the second step, the top k nodes with the highest similarity scores are selected as node tokens to
construct the token sequence. In this paper, we provide a new perspective on token generation in
existing tokenized GTs. We identify that the token generation process can be viewed as a neighbor
selection operation on the k-nearest neighbor (k-NN) graph. Specifically, a k-NN graph is constructed
based on node pair similarities, and the neighbor nodes within the first-order neighborhood of each
node are selected to form the token sequence.

Figure 1 illustrates this idea with a toy example. We can observe that only a small subset of nodes
is selected via existing token generation strategies, which indicates that existing methods have
limited exploitation of the k-NN graph and are unable to comprehensively utilize the correlations
between node pairs to explore more informative nodes with potential association to construct token
sequences. This situation inevitably restricts the ability of tokenized GTs to capture informative
node representations. Furthermore, in scenarios with sparse training data, relying on token sequences
generated from a limited set of nodes may lead to over-fitting, as Transformers, being complex
models, may struggle to generalize effectively.

This leads to the following research question: How can we more comprehensively and effectively
exploit node pair correlations to generate diverse token sequences, thus improving the performance of
tokenized GTs for node classification? To address this, we introduce a novel method called SwapGT.
Specifically, SwapGT introduces a new operation, token swapping, which leverages the semantic
correlations of nodes in the k-NN to swap tokens in different token sequences, generating more
diverse token sequences. By incorporating multiple token sequences, SwapGT enables the model to
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learn more comprehensive node representations. Additionally, SwapGT employs a Transformer-based
backbone and introduces a tailored readout function to learn node representations from the generated
token sequences. To handle the case where a node is assigned multiple token sequences, we propose
a center alignment loss to guide the training process. The main contributions of this paper are
summarized as follows:

• We propose a novel token swapping operation that fully exploits semantic correlations of
nodes to generate diverse token sequences.

• We develop a Transformer-based backbone with a center alignment loss to learn node
representations from the generated diverse token sequences.

• Extensive experiments on various datasets with different training data ratios showcase the
effectiveness of SwapGT in node classification.

2 Relation Work

2.1 Graph Neural Networks

GNNs [41, 43, 19, 9, 8, 21] have shown remarkable performance in this task. Previous studies [33, 40,
36, 24] have primarily concentrated on the incorporation of diverse graph structural information into
the message-passing framework. Classic deep learning techniques, such as the attention mechanism
[33, 4] and residual connections [40, 14], have been exploited to enhance the information aggregation
on graphs. Moreover, aggregating information from high-order neighbors [24, 1, 46, 47] or nodes
with high similarity across different feature spaces [30] has been demonstrated to be efficacious in
improving model performance. Follow-up GNNs have focused on the utilization of complex graph
features to extract distinctive node representations. A prevalent strategy entails the utilization of
signed aggregation weights [3, 15, 25, 20, 13] to optimize the aggregation operation. In addition,
Zhang et al. [42] have excellently integrated LLMs with GNNs, employing causal inference to
mitigate biases introduced by the LLMs. Nevertheless, restricted by the inherent limitations of
message-passing mechanism, the potential of GNNs for graph data mining has been inevitably
weakened. Developing a new graph deep learning paradigm has attracted great attention in graph
representation learning.

2.2 Graph Transformers

GTs [16, 28, 39, 48] have emerged as a novel architecture for graph representation learning and have
exhibited substantial potential in node classification. A commonly adopted design paradigm for
GTs is the combination of Transformer modules with GNN-style modules to construct hybrid neural
network layers, called hybrid GTs [37, 38, 2]. In this design, Transformer is employed to capture
global information, while GNNs are utilized for local information extraction [32, 16, 10]. Despite
effectiveness, directly utilizing Transformer to model the interactions of all node pairs could occur the
over-globalization issue [39], inevitably weakening the potential for graph representation learning.

An alternative yet effective design of GTs involves transforming the input graph into independent
token sequences termed tokenized GTs [44, 6, 17, 27, 7, 12], which are then fed into the Transformer
layer for node representation learning. Neighborhood tokens [6, 11, 27, 17, 7] and node tokens [44,
7, 17] are two typical elements in existing tokenized GTs. The former, generally constructed by
propagation approaches, such as random walk [6, 11] and personalized PageRank [17]. The latter is
generated by diverse sampling methods based different similarity measurements, such as PageRank
score [17] and attribute similarity [44]. Since tokenized GTs only focus on the generated tokens, they
naturally avoiding the over-globalization issue.

As pointed out in previous study [17], node token oriented GTs are more efficient in capturing various
graph information, such as long-range dependencies and heterophily, compared to neighborhood
token oriented GTs. However, we identify that previous methods only leverage a small subset of
nodes as tokens for node representation learning, which could limit the model ability of deeply
exploring graph information. In this paper, we develop a new method SwapGT that introduces a
novel token swapping operation to produce more informative token sequences, further enhancing the
model performance.

3



Init. seq.

Token
swapping

Target
token sequence

Transformer
layer

Attribute view

Init. seq.

Token
swapping

Target
token sequence

Topology view

Readout

Readout

+

Figure 2: The overall framework of SwapGT. First, we generate the initial token sequences from
both the attribute view and topology view. Then, we utilize the proposed token swapping operation
to generate new token sequences for each target node. These generated token sequences are then
fed into a Transformer-based backbone to learn node representations and generate predicted labels.
Additionally, a center alignment loss is adopted to further constrain the representations extracted
from different token sequences.

3 Preliminaries

Suppose an attributed graph is denoted as G = (V,E,X) where V and E are the sets of nodes and
edges in the graph. X ∈ Rn×d is the attribute feature matrix, where n and d are the number of
nodes and the dimension of the attribute feature vector, respectively. We also have the adjacency
matrix A = {0, 1}n×n. If there is an edge between nodes vi and vj , Aij = 1; otherwise, Aij = 0.
Â denotes the normalized version calculated as Â = (D + I)−1/2(A + I)(D + I)−1/2 where D
and I are the diagonal degree matrix and the identity matrix, respectively. In the scenario of node
classification, each node is associated with a one-hot vector to identify the unique label information,
resulting in a label matrix Y ∈ Rn×c where c is the number of labels. Given a set of labeled nodes
VL, the goal of the task is to predict the labels of the rest nodes in V − VL.

4 Methodology

In this section, we detail our proposed SwapGT, involving two main stages: token sequences
generation via token swapping and token representation learning with Transformer-based backbone.
The overall framework of SwapGT is shown in Figure 2.

4.1 Token Sampling

Token sampling, which aims to select relevant nodes from input graph to construct a token sequence
for each target node, is a crucial operation in recent GTs [44, 17]. Generally speaking, the token
sampling operation for the target node vi can be summarized as follows:

Ni = {vj |vj ∈ Top(Si, k)}, (1)

where Ni denotes the token set of node vi. Top(·) denotes the top-k sampling operation and k is
the number of sampled tokens. Si ∈ R1×n denotes the vector of similarity scores between vi and
other nodes. Obviously, different strategies for measuring node similarity will result in different sets
of sampled tokens. According to empirical results in previous studies [44, 17], measuring the node
similarity from different feature spaces to sample different types of tokens can effectively enhance
the model performance. Hence, in this paper, we sample the tokens from both the attribute feature
space and the topology feature space, resulting in two token sets NA

i and NT
i , respectively.

Specifically, for NA
i , we utilize the raw attribute features to calculate the cosine similarity of each

node pair to obtain the similarity scores. For NT
i , we adopt the neighborhood features to represent

the topology features of nodes. The neighborhood feature matrix is calculated as X′ = ϕ(Â,X,K)
where K denotes the number of propagation steps and ϕ(·) denotes the personalized PageRank
propagation [24]. The influence of K on the model performance is discussed in Appendix A.1. Then
we leverage the neighborhood features to measure the similarity of nodes in the topology feature
space via the cosine similarity.
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Algorithm 1 The Token Swapping Algorithm
Input: Sampled token set of all nodes N ∈ Rn×k; Target node vi; Probability p; Swapping times t
Output: The new token set N ′

i ∈ R1×k of vi
1: Initialize N ′

i = Ni;
2: for t0 = 1 to t do
3: Initialize Nnew = {};
4: for vj ∈ N ′

i do
5: if random(0, 1) > p then
6: Nnew = Nnew ∪ {vj};
7: else
8: vnew = ζ(Nj);
9: Nnew = Nnew ∪ {vnew};

10: end if
11: end for
12: N ′

i = Nnew;
13: end for
14: return N ′

i

4.2 Token Swapping

As discussed in Figure 1, existing node token generators [45, 44, 17] could be regarded as selecting
the 1-hop neighborhood nodes in the constructed k-NN graph, which is inefficient in fully leveraging
the semantic relevance between nodes and restricts the diversity of the token sequences, further
limiting the model performance. To effectively obtain diverse token sequences, SwapGT introduces a
novel operation based on the unique characteristic of token sequences, called token swapping. The
key idea is to swap tokens in different sequences to construct new token sequences. Specifically, for
each node token vj in the token set of node vi, we generate a new node token vnew = ζ(Nj) based
on the token set Nj of vj , where ζ(·) denotes the random sampling operation. Then, the new token
set N ′

i of vi is generated as follows:

N ′
i = {ζ(Nj)|vj ∈ Ni}. (2)

Equation 2 indicates that for each node token vj , we swap it with a random node vnew in its node
token set Nj to construct the new token set N ′

i for the target node vi. Appendix B provides a toy
example to illustrate the token swapping operation.

Here, we provide deep insights for the token swapping operation. According to Figure 1, nodes in
the token set are the 1-hop neighbors of the target node in the k-NN graph. Therefore, the selected
node vnew is within the 2-hop neighborhoods of vi. Therefore, performing the swapping operation t
times is equal to enlarge the sampling space from 1-hop neighborhood to (t+ 1)-hop neighborhood.
Hence, the swapping operation effectively utilizes the semantic relevance between nodes to generate
diverse token sequences. The overall algorithm of token swapping is summarized in Algorithm 1.
Moreover, we theoretically analyze the probability of sampling neighbors from different k-NN hops
on the constructed k-NN graph:

Fact 1. If we guarantee that (t + 1)p < 1, in the generated token sequences, the probability of
sampling lower-order neighbors is greater than sampling higher-order neighbors on the constructed
k-NN graph, where t denotes the maximum swapping times, and p denotes the probability of swapping
tokens per time in Algorithm 1.

The detailed proof of Fact 1 is provided in Appendix C. Fact 1 indicates that SwapGT prefers to
sample low-order neighbors on the constructed k-NN graph which are more likely to be relevant,
reducing the potential noise and effectively generating relevant token sequences for each node.

After generating various token sets, we utilize them to construct the input token sequence for
representation learning. Given a token set Ni, the input token sequence Zin

i of node vi is as:

Zin
i = [Xi,XNi,0

, . . . ,XNi,k−1
]. (3)

By performing Algorithm 1 s times, we can finally obtain 1 + s token sets for the target node vi. We
combine all token sequences generated by Equation 3 based on different token sets to obtain the final
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input token sequences Zi ∈ R(1+s)×(1+k)×d. Following the same process, the input token sequences
generated by NA

i and NT
i are denoted as ZA

i and ZT
i , respectively.

4.3 Transformer-based Backbone

The proposed Transformer-based backbone aims to learn node representations and predict the node
labels according to the input token sequences. Take the input sequence ZA

i for example, we first
utilize the projection layer to obtain the model input:

Z
A,(0)
i = ρ(ZA

i ), (4)

where ρ(·) denotes the projection layer and Z
A,(0)
i ∈ R(1+s)×(k+1)×d0 denotes the model input of

node vi. Then, a Transformer layer-based encoder is applied to learn node representations from the
model input:

Z
′A,(l)
i = MSA

(
LN

(
Z

A,(l−1)
i

))
+ Z

A,(l−1)
i , (5)

Z
A,(l)
i = FFN

(
LN

(
Z

′A,(l)
i

))
+ Z

′A,(l)
i , (6)

where l = 1, . . . , L indicates the l-th Transformer layer. MSA,FFN and LN(·) denote the multi-head
self-attention mechanism, feed-forward networks and the LayerNorm operation in the standard
Transformer layer.

Through the encoder, we obtain the representations of input token sequences Z
A,(L)
i ∈

R(1+s)×(1+k)×dL . Then, we take the representation of the first item in each token sequence as
the final representation of the input sequence. This is because the first item in each token sequence
is the target node itself, and the output representation has learned necessary information from other
sampling tokens in the input sequence via the Transformer encoder.

Hence, the final output of the Transformer encoder is denoted as ZA,i ∈ R(1+s)×dL . Then, we utilize
the following readout function to obtain the node representation learned from multi token sequences:

ZA,F
i = ZA,i

0 ||(1
s

s∑
j=1

ZA,i
j ), (7)

where || denotes the concatenation operation, ZA,F
i ∈ R1×dL denotes the representation of vi learned

from token sequences generated from the attribute feature space. Similarly, we can obtain ZT
i from

the topology feature space. To effectively utilize information of different feature spaces, we leverage
the following strategy to fuse the learned representations:

ZF
i = α · ZA,F

i + (1− α) · ZA,T
i , (8)

where α ∈ [0, 1] is a hyper-parameter to balance the contribution from attribute features and topology
features on the final node representation. At the end, we adopt Multi-Layer Perception-based predictor
for label prediction and the cross-entropy loss for model training:

Lce = −
∑
i∈VL

c∑
j=0

Yi,j lnY
′
i,j ,Y

′
i = MLP(ZF

i ). (9)

4.4 Center Alignment Loss

To further enhance the model’s generalization, we develop a center alignment loss to constrain
the representations learned from different token sequences for each node. Specifically, given the
representations of multi-token sequences Zi ∈ R(1+s)×dL , we first calculate the center representation
Zi

c =
1

(1+s)

∑s
j=0 Z

i
j . Then, the center alignment loss is calculated as follows:

CAL(Zi,Zi
c) = 1− 1

(1 + s)

s∑
j=0

Cosine(Zi
j ,Z

i
c), (10)
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Table 1: Comparison of all models in terms of mean accuracy ± stdev (%) under dense splitting. The
best results appear in bold. The second results appear in underline.

Dataset Photo ACM Computer Citeseer WikiCS BlogCatalog UAI2010 Flickr
H 0.83 0.82 0.78 0.74 0.66 0.40 0.36 0.24
SGC 93.74±0.07 93.24±0.49 88.90±0.11 76.81±0.26 76.67±0.19 72.61±0.07 69.87±0.17 47.48±0.40

APPNP 94.98±0.41 93.00±0.55 91.31±0.29 77.52±0.22 81.96±0.14 94.77±0.19 77.41±0.47 84.66±0.31

GPRGNN 94.57±0.44 93.42±0.20 90.15±0.34 77.59±0.36 82.43±0.29 94.36±0.29 76.94±0.64 85.91±0.51

FAGCN 94.06±0.03 93.37±0.24 83.17±1.81 76.19±0.62 79.89±0.93 79.92±4.39 72.17±1.57 82.03±0.40

BM-GCN 95.10±0.20 93.68±0.34 91.28±0.96 77.91±0.58 83.90±0.41 94.85±0.42 77.39±1.13 83.97±0.87

ACM-GCN 94.56±0.21 93.04±1.28 85.19±2.26 77.62±0.81 83.95±0.41 94.53±0.53 76.87±1.42 83.85±0.73

ANS-GT 94.88±0.17 93.92±0.41 89.58±0.34 77.54±0.26 82.53±0.28 91.93±0.38 74.16±1.28 85.94±0.58

NAGphormer 95.47±0.29 93.32±0.30 90.79±0.45 77.68±0.73 83.61±0.28 94.42±0.63 76.36±1.12 86.85±0.85

SGFormer 92.93±0.12 93.79±0.34 81.86±3.82 77.86±0.76 79.65±0.31 94.33±0.19 57.98±3.95 61.05±0.68

Specformer 95.22±0.13 93.63±1.94 85.47±1.44 77.96±0.89 83.74±0.62 94.21±0.23 73.06±0.77 86.55±0.40

VCR-Graphormer 95.38±0.51 93.11±0.79 90.47±0.58 77.21±0.65 80.82±0.72 94.19±0.17 76.08±0.52 85.96±0.55

CoBFormer 95.29±0.35 93.82±0.58 90.21±0.89 77.74±0.72 83.28±0.68 93.98±0.72 76.85±0.69 86.84±0.78

PolyFormer 95.45±0.21 94.27±0.44 90.87±0.74 78.03±0.86 83.79±0.75 95.08±0.43 77.92±0.82 87.01±0.57

SwapGT 95.92±0.18 94.98±0.41 91.73±0.72 78.49±0.95 84.52±0.63 95.93±0.56 79.06±0.73 87.56±0.61

where Cosine(·) denotes the cosine similarity function.

The rationale of Equation 10 is that the representations learned from different token sequences can be
regarded as different views of the target node. Therefore, these representations should naturally be
close to each other in the latent space. In practice, we separately calculate the center alignment loss
of token sequences from different feature spaces:

Lca = CAL(ZA,i,ZA,i
c ) + CAL(ZT,i,ZT,i

c ). (11)

The overall loss of SwapGT is as follows:

L = Lce + λ · Lca, (12)

where λ is a coefficient controlling the balance between the two loss functions.

5 Experiments

5.1 Dataset

We adopt eight widely used datasets, involving homophily and heterophily graphs: Photo [6],
ACM [34], Computer [6], BlogCatalog [29], UAI2010 [35], Flickr [29] and Wiki-CS [31]. The edge
homophily ratio [25] H(G) ∈ [0, 1] is adopted to evaluate the graph’s homophily level. H(G) →
1 means strong homophily, while H(G) → 0 means strong heterophily. Statistics of datasets
are summarized in Appendix D.1. To comprehensively evaluate the model performance in node
classification, we provide two strategies to split datasets, called dense splitting and sparse splitting. In
dense splitting, we randomly choose 50% of each label as the training set, 25% as the validation set,
and the rest as the test set, which is a common setting is previous studies [37, 38]. While in sparse
splitting [15], we adopt 2.5%/2.5%/95% splitting for training set, validation set and test set.

5.2 Baseline

We adopt 13 representative approaches as the baselines: SGC [36], APPNP [24], GPRGNN [15],
FAGCN [3], BM-GCN [18], ACM-GCN [26], ANS-GT [44], NAGphormer [6], SGFormer [38],
Specformer [2], VCR-Graphormer [17], CoBFormer [39] and PolyFormer [27]. The first six are
mainstream GNNs and others are representative GTs. Implementation details are summarized in
Appendix D.2.

5.3 Performance Comparison

To evaluate the model performance in node classification, we run each model ten times with random
initializations. The results in terms of mean accuracy and standard deviation are reported in Table 1
and Table 2.

First, we can observe that SwapGT achieves the best performance on all datasets with different data
splitting strategies, demonstrating the effectiveness of SwapGT in node classification. Then, we
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Table 2: Comparison of all models in terms of mean accuracy ± stdev (%) under sparse splitting.
The best results appear in bold. The second results appear in underline.

Dataset Photo ACM Computer Citeseer WikiCS BlogCatalog UAI2010 Flickr
H 0.83 0.82 0.78 0.74 0.66 0.40 0.36 0.24
SGC 91.90±0.35 89.57±0.28 86.79±0.19 66.41±0.59 74.99±0.19 71.23±0.06 51.61±0.41 39.43±0.50

APPNP 92.24±0.28 89.91±0.89 87.64±0.39 66.70±0.11 77.42±0.31 81.76±0.38 61.65±0.71 71.39±0.62

GPRGNN 92.13±0.32 89.47±0.90 86.38±0.44 66.50±0.62 77.59±0.49 84.57±0.35 58.75±0.75 71.89±0.89

FAGCN 92.02±0.18 88.47±0.31 83.99±1.95 64.54±0.66 75.21±0.84 76.38±0.82 54.67±0.96 63.68±0.72

BM-GCN 91.19±0.39 90.11±0.60 86.14±0.51 66.11±0.47 77.39±0.37 84.05±0.54 57.51±1.14 60.82±0.76

ACM-GCN 91.71±0.64 89.68±0.45 86.64±0.59 64.85±1.19 77.68±0.57 77.17±1.34 56.05±2.11 64.58±1.53

ANS-GT 90.42±0.74 88.58±0.68 84.95±0.37 62.94±1.16 75.72±0.47 78.26±0.53 55.85±1.64 64.42±1.28

NAGphormer 91.65±0.80 89.73±0.48 85.31±0.65 63.66±1.68 76.93±0.75 79.19±0.41 58.36±1.01 67.48±1.04

SGFormer 90.13±0.56 88.03±0.60 80.07±0.21 62.41±0.94 74.69±0.52 78.15±0.69 50.19±1.72 51.01±1.05

Specformer 90.57±0.55 88.20±1.05 85.55±0.63 62.64±1.54 75.24±0.71 79.75±1.29 57.42±1.06 56.94±1.48

VCR-Graphormer 91.39±0.75 86.81±0.84 85.06±0.64 57.61±0.60 72.81±1.44 74.90±1.18 56.43±1.10 50.93±1.12

CoBFormer 91.21±0.62 89.18±0.89 85.06±0.79 63.82±1.34 76.28±1.28 79.44±0.98 58.23±0.82 66.94±1.18

PolyFormer 91.52±0.78 89.83±0.62 85.75±0.78 64.77±1.27 75.12±1.16 81.02±0.81 58.89±0.77 67.85±1.43

SwapGT 92.93±0.26 90.92±0.69 88.14±0.52 69.91±1.02 78.11±0.83 88.11±0.58 63.96±1.09 72.16±1.19
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Figure 3: Performances of SwapGT with or without the center alignment loss.

can find that advanced GTs obtain more competitive performance than GNNs on over half datasets
under dense splitting. But under sparse splitting, the situation reversed. An intuitive explanation is
that Transformer has more learnable parameters than GNNs, which bring more powerful modeling
capacity. However, it also requires more training data than GNNs in the training stage to ensure the
performance. Therefore, when the training data is sufficient, GTs can achieve promising performance.
And when the training data is sparse, GTs usually leg behind GNNs. Our proposed SwapGT addresses
this issue by introducing the token swapping operation to generate diverse token sequences. This
operation effectively augments the training data, ensuring the model training even in the sparse data
scenario. In addition, the tailored center alignment loss also constrains the model parameter learning,
further enhancing the model performance.

Moreover, the performance gain of SwapGT in the sparse setting is larger than in the dense setting.
Specifically, SwapGT can achieve around 3.5% and 3.2% performance improvement on BlogCatalog
and Citeseer, respectively. This is because the token swapping operation in SwapGT can leverage the
semantic relevance of node tokens to generate more informative token sequences, which could be
regarded as a data augmentation strategy. These augmented token sequences can improve the data
utilization efficiency and significantly enhance the quality of node representation learning, especially
in the data sparse splitting. Hence, SwapGT can bring more significant improvement in the sparse
splitting.

5.4 Study on the center alignment loss

The center alignment loss, proposed to constrain the representation learning from multiple token
sequences, is a key design of SwapGT. Here, we validate the effectiveness of the center alignment loss
in node classification. Specifically, we develop a variant of SwapGT by removing the center alignment
loss, called SwapGT-O. Then, we evaluate the performance of SwapGT-O on all datasets under dense
splitting and sparse splitting. Due to the space limitation, we only report the results on four datasets
in Figure 3, other results are reported in Appendix A.2. Based on the experimental results, we can
have the following observations: 1) SwapGT beats SwapGT-O on all datasets, indicating that the
developed center alignment loss can effectively enhance the performance of SwapGT. 2) Adopting
the center alignment loss can bring more significant improvements in sparse setting than those in
dense setting. This situation implies that introducing the reasonable constraint loss function based on
the property of node token sequences can effectively improve the model training when the training
data is sparse.
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Figure 4: Performances of SwapGT with different token sequence generation strategies.
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5.5 Study on the token sequence generation

The generation of token sequences is another key module of SwapGT, which develops a novel token
swapping operation can fully leverage the semantic relevance of nodes to generate informative token
sequences. In this section, we evaluate the effectiveness of the proposed strategy by comparing it with
two naive strategies. One is to enlarge the sampling size k. We propose a variant called SwapGT-L
by sampling 2k tokens to construct token sequences. The other is to randomly sample k tokens from
the enlarged 2k token set to construct multiple token sequences, called SwapGT-R. Performance of
these variants are shown in Figure 4 and results on other datasets are reported in Appendix A.3.

We can observe that SwapGT-R outperforms SwapGT-L on most cases, indicating that constructing
multiple token sequences is better for node representation learning of tokenized GTs than generating
single long token sequence. Moreover, SwapGT surpasses SwapGT-R on all cases, showcasing the
superiority of the proposed token swapping operation in generation of multiple token sequences. This
observation also implies that constructing informative token sequences can effectively improve the
performance of tokenized GTs.

5.6 Analysis on the swapping times t

As discussed in Section 4.2, t determines the range of candidate tokens from the constructed k-NN
graph, further affecting the model performance. To validate the influence of t on model performance,
we vary t in {1, 2, 3, 4} and observe the changes of model performance. Results are shown in Figure 5
and Appendix A.5. We can clearly observe that SwapGT can achieve satisfied performance on all
datasets when t is no less than 2. This situation indicates that learning from tokens with semantic
associations beyond the immediate neighbors can effectively enhancing the model performance. This
phenomenon also reveals that reasonably enlarging the sampling space to seek more informative
tokens is a promising way to improve the effect of node tokenized GTs.

5.7 Analysis on the augmentation times s

The augmentation times s determines how many token sequences are adopted for node representation
learning. Similar to t, we vary s in {1, 2, . . . , 8} and report the performance of SwapGT. Results
are shown in Figure 6 and Appendix A.6. Generally speaking, sparse splitting requires a larger s to
achieve the best performance, compared to dense splitting. This is because SwapGT needs more token
sequences for model training in the sparse data scenario. This situation indicates that a tailored data
augmentation strategy can effectively improve the performance of tokenized GTs when training data
is sparse. Moreover, the optimal s varies on different graphs. This is because different graphs exhibit
different topology features and attribute features, which affects the generation of token sequences,
further influencing the model performance.
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6 Conclusion

In this paper, we introduced a novel tokenized Graph Transformer SwapGT for node classification.
In SwapGT, we developed a novel token swapping operation that flexibly swaps tokens in different
token sequences, thereby generating diverse token sequences. This enhances the model’s ability
to capture rich node representations. Furthermore, SwapGT employs a tailored Transformer-based
backbone with a center alignment loss to learn node representations from the generated multiple
token sequences. The center alignment loss helps guide the learning process when nodes are
associated with multiple token sequences, ensuring that the learned representations are consistent and
informative. Experimental results demonstrate that SwapGT significantly improves node classification
performance, outperforming several representative GT and GNN models.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction accurately reflect that this
paper focuses on the tokenized graph Transformer. This paper develops a novel token
swapping operation to construct informative token sequences, enhancing the generalization
of tokenized graph Transformers.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a deep discussion about the limitation of SwapGT in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: In Appendix C, we theoretically analyze the elements in token sequences
generated by the token swapping operation.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: We provide detailed information about the experimental setup in the main text
and Appendix D, including datasets and implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Please refer to https://github.com/JHL-HUST/SwapGT.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed information about the experimental setup in the main text
and Appendix D, including datasets and implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average accuracy results as well as the corresponding standard
deviation values following the previous studies.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the detailed information of compute resources in Appendix D.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on enhancing the performance of tokenized graph Trans-
formers in node classification, which is a foundational research and has no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to point out that an improvement in the quality of generative models could be used to
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technology is being used as intended but gives incorrect results, and harms following
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the public datasets in experiments.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
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provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A Additional Experimental Results

In this section, we provide the additional experimental results of ablation studies and parameter
studies.

A.1 Study of the propagation step

SwapGT leverages the graph diffusion strategy to calculate the topological features of nodes, which
are further utilized to generate token sequences in the topology feature space. Here, we investigate the
influence of the propagation step K on the model performance. Specifically, we vary K in {1, 2, 3, 4}
and observe the performance of SwapGT. The results under dense splitting and sparse splitting are
shown in Figure 7 and Figure 8.
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Figure 7: Performances of SwapGT with different propagation steps under dense splitting.
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Figure 8: Performances of SwapGT with different propagation steps under sparse splitting.

Generally speaking, the influence of propagation steps is greater in the sparse splitting due to the
heightened sensitivity of sparse splitting to input data during model training. Moreover, we can
observe that the optimal propagation steps consistently fall within the range of 3 on almost all
datasets under different splitting strategies. This is because that excessively large K values risk
over-smoothing while insufficient values fail to capture meaningful structural patterns. In practice,
we utilize the grid search to determine the optimal K within a constrained parameter space (K<=4).

A.2 Study of the center alignment loss

The experimental results of SwapGT and SwapGT-O on the rest datasets are shown in Figure 9.
We can observe that SwapGT outperforms SwapGT-O on most datasets. Moreover, the effect of
applying the center alignment loss on SwapGT in sparse splitting is more significant than that in
dense splitting. The above observations are in line with those reported in the main text. Therefore,
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we can conclude that the center alignment loss can effectively enhance the performance of SwapGT
in node classification.

A.3 Study of the token sequence generation

The experimental results of SwapGT with different token sequence generation strategies on the rest
datasets are shown in Figure 10. We can find that the additional experimental results exhibit similar
observations shown in the main text. This situation demonstrates the effectiveness of the token
sequence generation with the proposed token swapping operation in enhancing the performance of
tokenized GTs. Moreover, we can also observe that the gains of introducing the token swapping
operation vary on different graphs based on the results shown in Figure 4 and Figure 10. This
phenomenon may attribute to that different graphs possess unique topology and attribute information,
which further impact the selection of node tokens. While SwapGT applies the uniform strategy for
selecting node tokens, which could lead to varying gains of token swapping. This situation also
motivates us to consider different strategies of token selection on different graphs as the future work.
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Figure 9: Performances of SwapGT with or without the center alignment loss.
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Figure 10: Performances of SwapGT with different token sequence generation strategies.
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Figure 11: Performances of SwapGT with different sampling sizes under dense splitting.
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Figure 12: Performances of SwapGT with different sampling sizes under sparse splitting.

A.4 Study of the token sampling size

To investigate the influence of token sampling size on model performance, we vary the sampling
size in {4, 6, 8, 10, 15, 20, 30} and report the corresponding results of SwapGT on all datasets under
different splitting strategies. Figure 11 and Figure 12 show the results. We can observe that the best
choice of the sampling size falls within 10 on almost all datasets, which implies that enlarging the
length of token sequences cannot enhance the model performance on most cases whether in dense
splitting or sparse splitting. This may because that a large sampling size is more easily to introduce
irrelevant nodes as tokens, which further hurt the model performance.

A.5 Analysis of the swapping times t

Here we report the rest results of SwapGT with varying t, which are shown in Figure 13. Similar
to the phenomenons shown in Figure 5, SwapGT can achieve the best performance on all datasets
when t > 2. Based on the results shown in Figure 13 and Figure 5, we can conclude that introducing
tokens beyond first-order neighbors via the proposed token swapping operation can effective improve
the performance of SwapGT in node classification.
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Figure 13: Performances of SwapGT with varying t.

A.6 Analysis of the augmentation times s

Similar to analysis of t, the rest results of SwapGT with varying s are shown in Figure 14. We can
also observe the similar situations shown in Figure 6 that SwapGT requires a larger value of s under
sparse splitting compared to dense splitting. The situation demonstrates that introducing augmented
token sequences can bring more significant performance gain in sparse splitting than that in dense
splitting.

A.7 Analysis of readout functions

The readout function is also an important module in SwapGT. According to Equation 7, we regard
the combination of the raw token sequence and the augmented token sequences as the final node

23



1 2 3 4 5 6 7 8
86.00

88.00

90.00

92.00

94.00

1 2 3 4 5 6 7 8
60.00

65.00

70.00

75.00

80.00

1 2 3 4 5 6 7 8
70.00

75.00

80.00

85.00

90.00

1 2 3 4 5 6 7 8
60.00

70.00

80.00

90.00

100.00

Sparse Dense

Computer

A
cc

ur
ac

y
(%

)

s

Citeseer

A
cc

ur
ac

y
(%

)

s

WikiCS

A
cc

ur
ac

y
(%

)

s

Flickr

A
cc

ur
ac

y
(%

)

s

Figure 14: Performances of SwapGT with varying s.

Table 3: Comparison of SwapGT and its variant under dense splitting.

Dataset Photo ACM Computer Citeseer WikiCS BlogCatalog UAI2010 Flickr
SwapGT-AT 95.58 94.61 91.35 77.92 83.95 95.47 78.32 87.11
SwapGT 95.92 94.98 91.73 78.49 84.52 95.93 79.06 87.56

representation. This strategy can ensure the independence of the information from the original token
sequence and generated token sequences. Moreover, we utilize the mean function to obtain the
information of generated token sequences, which is a simple but efficient strategy and has been
widely adopted in GNNs.

Here, we conduct experiments to validate the effectiveness of the proposed readout function, Specifi-
cally, we develop a variant named SwapGT-AT which leverages the attention-based readout function
from NAGphormer[6] for node representation learning. The results are reported in Table 3 and
Table 4.

We can observe that SwapGT beats this variant on all datasets. The reason may be that the neighbor-
hood tokens in NAGphormer have varying importance. In this situation, the attention-based readout
function can enhance the model performance. However, the augmented token sequences generated
by the token swapping operation do not have this characteristic. Hence, the simple readout function
may be more suitable for SwapGT.

B Illustration of Token Swapping

Here, we provide a toy example to understand the operation of token swapping. As shown in
Figure 15, node 1 is the target node. We first select node 3 and consider the tokens in its token
sequences as candidates. Then we select node 6 from the candidates to swap node 3, and construct
the new token sequence.

6
1 432

5 7
9 4

3

6 8 5 6 73

Select

Sample
6

Replace

Init. seq. Swapping Output

Token swapping

421 6

4321

Figure 15: Illustration of the token swapping.

C Proof of Fact 1

Here we provide the detailed proof for Fact 1.

Fact 1. If we guarantee that (t + 1)p < 1, in the generated token sequences, the probability of
sampling lower-order neighbors is greater than sampling higher-order neighbors on the constructed
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Table 4: Comparison of SwapGT and its variant under sparse splitting.

Dataset Photo ACM Computer Citeseer WikiCS BlogCatalog UAI2010 Flickr
SwapGT-AT 92.32 89.65 87.30 68.13 77.86 87.25 63.18 71.21
SwapGT 92.93 90.92 88.14 69.91 78.11 88.11 63.96 72.16

k-NN graph, where t denotes the maximum swapping times, and p denotes the probability of swapping
tokens per time in Algorithm 1.

Proof. First, as discussed in Section 4.2, performing the swapping operation t times enlarges the
sampling space from 1-hop neighborhood to (t+1)-hop neighborhood on the constructed k-NN graph.
Then, for an arbitrary node i, the probability of sampling its m-hop neighbors on the constructed
k-NN graph (i.e., swapping for (m− 1) times and maintaining for (t−m+1) times) is described as
follows:

Pm
i = C(t,m− 1) · pm−1 · (1− p)t−m+1. (13)

Here, C is the symbol of the combination number. In the augmented token sequences, neighbors of
node i from different k-NN hops all may be sampled. To reduce the noise caused by sampling too
many high-hop neighbors on the constructed k-NN graph, the probability of sampling lower-order
neighbors is expected to be greater, i.e., Pm

i > Pm+1
i .

According to Equation 13,

Pm
i > Pm+1

i ⇐⇒ C (t,m− 1) · pm−1 · (1− p)
t−m+1

> C (t,m) · pm · (1− p)
t−m

⇐⇒ t!

(m− 1)! (t−m+ 1)!
· pm−1 · (1− p)

t−m+1
>

t!

m! (t−m)!
· pm · (1− p)

t−m

⇐⇒ 1− p

t−m+ 1
>

p

m
⇐⇒ m > (t+ 1) p

where 1 ≤ m,m+ 1 ≤ t+ 1, i.e., 1 ≤ m ≤ t. If we guarantee that (t+ 1)p < 1, it is obvious that
(t+ 1)p < 1 ≤ m. Finally, we can obtain Fact 1. □

Fact 1 suggests that with suitable maximum swapping times t and probability of swapping tokens per
time p, SwapGT is capable of well handling the potential noise and effectively enlarging the sampling
space.

D Experimental Settings

D.1 Dataset

Here we introduce datasets adopted for experiments. The detailed statistics of all datasets are reported
in Table 5.

• Academic graphs: This type of graph is formed by academic papers or authors and the
citation relationships among them. Nodes in the graph represent academic papers or authors,
and edges represent the citation relationships between papers or co-author relationships
between two authors. The features of nodes are composed of bag-of-words vectors, which
are extracted and generated from the abstracts and introductions of the academic papers.
The labels of nodes correspond to the research fields of the academic papers or authors.
ACM, Citeseer, WikiCS and UAI2010 belong to this type.

• Co-purchase graphs: This type of graph is constructed based on users’ shopping behaviors.
Nodes in the graph represent products. The edges between nodes indicate that two products
are often purchased together. The features of nodes are composed of bag-of-words vectors
extracted from product reviews. The category of a node corresponds to the type of goods
the product belongs to. Computer and Photo belong to this type.
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• Social graphs: This type of graph is formed by the activity records of users on social
platforms. Nodes in the graph represent users on the social platform. The edges between
nodes indicate the social relations between two users. Node features represent the text
information extracted from the authors’ homepage. The label of a node refers to the interest
groups of users. BlogCatalog and Flickr belong to this type.

Table 5: Statistics of datasets, ranked by the homophily level.

Dataset # nodes # edges # features # labels H ↓
Photo 7,650 238,163 745 8 0.83
ACM 3,025 1,3128 1,870 3 0.82
Computer 13,752 491,722 767 10 0.78
Citeseer 3,327 4,552 3,703 6 0.74
WikiCS 11,701 216,123 300 10 0.66
BlogCatalog 5,196 171,743 8,189 6 0.40
UAI2010 3,067 28,311 4,973 19 0.36
Flickr 7,575 239,738 12,047 9 0.24

D.2 Implementation Details

For baselines, we refer to their official implementations and conduct a systematic tuning process on
each dataset. For SwapGT, we employ a grid search strategy to identify the optimal parameter settings.
Specifically, We try the learning rate in {0.001, 0.005, 0.01}, dropout in {0.3, 0.5, 0.7}, dimension
of hidden representations in {256, 512}, k in {4, 6, 8}, α in {0.1, . . . , 0.9}. All experiments are
implemented using Python 3.8, PyTorch 1.11, and CUDA 11.0 and executed on a Linux server with
an Intel Xeon Silver 4210 processor, 256 GB of RAM, and a 2080TI GPU.

D.3 Baselines

In this paper, we select mainstream GNNs and GTs as baselines. For GNNs, there are two categories of
them, coupled GNNs and decoupled GNNs. FAGCN [3], BM-GCN [18], ACM-GCN [26] are recent
coupled GNNs for node classification. SGC [36], APPNP [24], GPRGNN [15] are representative
decoupled GNNs. For GTs, we select methods from tokenized GTs and hybrid GTs. ANS-GT [44],
NAGphormer [6], VCR-Graphormer [17] and PolyFormer [27] are powerful tokenized GTs. While
SGFormer [38], Specformer [2] and CoBFormer [39] are representative hybrid GTs.

E Limitation of SwapGT

A potential limitation in SwapGT could be that SwapGT applies a uniform swapping probability p to
all tokens in the sequence. A hierarchical probability swapping framework may be a better solution,
where nodes within the top-k most relevant subset (e.g., the top k/3 nodes) are assigned higher
swapping probabilities, while others receive lower probabilities. This refinement could mitigate noise
interference.
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