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Abstract

Multilingual transfer ability, which reflects001
how well the models fine-tuned on one source002
language can be applied to other languages,003
has been well studied in multilingual pre-004
trained models (e.g., BLOOM (Scao et al.,005
2022)). However, such ability has not been006
investigated for English-centric models (e.g.,007
LLaMA (Touvron et al., 2023)). To fill this008
gap, we study the following research questions.009
First, does multilingual transfer ability exist010
in English-centric models and how does it011
compare with multilingual pretrained models?012
Second, does it only appears when English013
is the source language for the English-centric014
model? Third, how does it vary in different015
tasks? We take multilingual reasoning ability016
as our focus and conduct extensive experiments017
across four types of reasoning tasks. We018
find that the multilingual pretrained model019
does not always outperform an English-centric020
model. Furthermore, English appears to be a021
less suitable source language, and the choice022
of source language becomes less important023
when the English-centric model scales up.024
In addition, different types of tasks exhibit025
different multilingual transfer abilities. These026
findings demonstrate that English-centric mod-027
els not only possess multilingual transfer ability028
but may even surpass the transferability of029
multilingual pretrained models if well-trained.030
By showing the strength and weaknesses, the031
experiments also provide valuable insights into032
enhancing multilingual reasoning abilities for033
the English-centric models.034

1 Introduction035

Multilingual pre-training has become a standard036

technique to equip a language model with cross-037

lingual transfer ability, through which it is possible038

to improve the performance on low-resource lan-039

guages by leveraging high-resource languages (De-040

vlin et al., 2019; Conneau et al., 2018a, 2020; Lin041

et al., 2021; Scao et al., 2022). However, there042

have been looming concerns regarding multilingual 043

pre-training. For instance, Conneau et al. (2020) 044

uncovered the curse of multilinguality, suggesting 045

for a fixed model size, cross-lingual performance 046

increases with additional pretraining languages 047

only up to a certain point, after which the 048

performance begins to decline. Additionally, Wang 049

et al. (2020) also reported a phenomenon called 050

negative interference, meaning the performance 051

on both high-resource and low-resource languages 052

degrade due to joint multilingual learning. 053

English-centric models (Brown et al., 2020; 054

Chowdhery et al., 2022; Black et al., 2021; 055

Wang and Komatsuzaki, 2021; Black et al., 2022; 056

Biderman et al., 2023; Zhang et al., 2022; Touvron 057

et al., 2023), on the other hand, have demonstrated 058

strong performance on downstream English tasks, 059

but their cross-lingual abilities have not been 060

systematically analyzed.1 While it may seem 061

intuitive to assume that English-centric models are 062

not well-suited in cross-lingual transfer, this is not 063

necessarily the case in practice. Research evidence 064

suggests that monolingual models are capable of 065

learning certain abstractions that can generalize 066

across languages, as demonstrated by Artetxe et al. 067

(2020). In addition, it should be noted that English- 068

centric models are not limited to English only, as 069

they have been exposed to some other languages, 070

albeit to a much lesser extent (Brown et al., 2020; 071

Gao et al., 2020; Chowdhery et al., 2022; Touvron 072

et al., 2023). 073

The investigation of multilingual models and 074

English-centric models is especially meaningful 075

in many practical settings. Suppose the goal is 076

to develop a model with excellent multilingual 077

reasoning skills such as arithmetic, commonsense, 078

and logical reasoning. In that case, how should 079

we approach this goal? Should we start from 080

1In this paper, we refer to a model pre-trained primarily on
English corpus as English-centric model.
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an English-centric model which has potentially081

superior English reasoning abilities and hope these082

can be transferred to other languages? Or should083

we start with the multilingual models which are084

generally assumed to have better multilingual085

transferability, but may lag behind in English086

reasoning skills?087

In this paper, we investigate the following three088

research questions:089

• How does the backbone (e.g., a multilin-090

gual pre-trained model or an English-centric091

model) affect multilingual reasoning?092

• How does the source language used for down-093

stream task finetuning affect multilingual094

reasoning on other target languages? For095

example, will English always be the most096

effective source language for English-centric097

models?098

• How does task type affect multilingual rea-099

soning, e.g., will the reasoning ability be100

transferred better across languages in some101

reasoning tasks?102

To answer these questions, we consider four103

tasks that require distinct types of reasoning,104

namely Natural Language Inference, Logical105

Reasoning, Commonsense Reasoning, and Arith-106

metic Reasoning, and three popular multilingual107

and English-centric models, i.e., BLOOM (Scao108

et al., 2022), Pythia (Biderman et al., 2023) and109

LLaMA (Touvron et al., 2023). We conduct exten-110

sive experiments in these multilingual downstream111

tasks, and have the following key observations:112

• The multilingual pre-trained model does not113

always outperform an English-centric model,114

especially for languages seen or rarely seen115

for both models. For instance, LLaMA116

achieves a maximum of 9.9% and a minimum117

of 0.54% more average accuracy gain than118

BLOOM on Turkish and Greek, respectively,119

both are rarely seen for the two models (§3.2);120

• Incorporating a small amount of multilingual121

data during the pre-training stage can have a122

significant impact on English-centric models.123

For example, though LLaMA is trained on124

French and Spanish data with a size of125

approximately 50 times less than BLOOM,126

it still outperforms BLOOM by up to 23% on127

these languages (§3.2);128

• The choice of language utilized during fine- 129

tuning becomes less important when the 130

English-centric model scales up (§3.3); 131

• Different types of tasks show different multi- 132

lingual transfer abilities, e.g., logical reason- 133

ing knowledge can be transferred better across 134

languages than others. However, as the model 135

size increases, this gap tends to narrow (§3.4). 136

The experiment code is publicly available 137

to promote reproducibility and facilitate further 138

research.2 139

2 Language Versatilists and Specialists 140

In this section, we describe multilingual pre- 141

training, with a focus on the curse of multilin- 142

gual pretraining, and then discuss English-centric 143

pretraining, with a series of evidence to show 144

the potential of English-centric model possessing 145

multilingual transfer ability. 146

Multilingual pre-training Multilingual pre- 147

training offers a straightforward way to create 148

language versatilists (Devlin et al., 2019; Conneau 149

et al., 2018a; Xue et al., 2021; Shliazhko et al., 150

2022; Lin et al., 2021; Scao et al., 2022). The main 151

idea is to combine monolingual corpora in different 152

languages, upsampling those with less data, and 153

training a regular language model on the combined 154

data. After learning multiple languages that use 155

diverse scripts and belong to various language 156

families, the models are expected to possess 157

cross-lingual transfer ability, i.e., the model can 158

generalize to target languages (Pires et al., 2019; 159

Wu and Dredze, 2019; Hu et al., 2020; Zhu et al., 160

2023) when downstream labeled training data 161

is only available in the source language, which 162

is especially important for low-resource target 163

languages (Conneau et al., 2018a). 164

Curse of multilingual pre-training Conneau 165

et al. (2018a) demonstrated that including more 166

languages in a single model can improve per- 167

formance for low-resource languages but hurt 168

performance for high-resource languages. Fur- 169

thermore, Wang et al. (2020) shows that negative 170

interference between languages also leads to 171

degraded performance on low-resource languages. 172

As such, prior work had to find a trade-off between 173

supporting more languages and obtaining better 174

performance on a certain set of languages, such as 175

2URL is anonymized pending the reviewing process.
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Language Script BLOOM LLaMA
English (EN) Latin 0.485 ∼4.666
Chinese (ZH) ZH-ideograms 0.261 -
French (FR) Latin 0.208 ∼0.004
Spanish (ES) Latin 0.175 ∼0.004
Arabic (AR) Arabic 0.075 -
Vietnamese (VI) Latin 0.043 -
Hindi (HI) Devanagari 0.025 -
Urdu (UR) Perso-Arabic 0.003 -
Swahili (SW) Latin <0.001 -
Bulgarian (BG) Cyrillic - ∼0.004
Russian (RU) Cyrillic - ∼0.004
German (DE) Latin - ∼0.004
Turkish (TR) Latin - -
Greek (EL) Greek - -
Thai (TH) Brahmic - -

Table 1: Disk size (TB) of the pre-training data per
language. 15 languages in the XNLI dataset are shown
and sorted by their size in BLOOM. The numbers for
LLaMA are roughly estimated based on Touvron et al.
(2023).

increasing model and vocabulary size (Conneau176

et al., 2018a; Wang et al., 2020), and learning177

additional language-specific parameters through178

adapters (Pfeiffer et al., 2022).179

English-centric pre-training While only 13%180

of the world’s population speaks English, the vast181

majority of NLP research is done on English.182

Consequently, numerous models are pre-trained183

using a corpus that is primarily in English, while184

without explicitly excluding other languages during185

data collection (Brown et al., 2020; Chowdhery186

et al., 2022; Black et al., 2021; Wang and Komat-187

suzaki, 2021; Black et al., 2022; Biderman et al.,188

2023; Zhang et al., 2022; Touvron et al., 2023).189

For example, English accounts for approximately190

97.4% in the Pile (Gao et al., 2020), an 825GB191

dataset used by many pre-trained models (Black192

et al., 2021; Wang and Komatsuzaki, 2021; Black193

et al., 2022; Biderman et al., 2023), 93% in training194

data of GPT-3 (Brown et al., 2020), and around195

99% in training data of LLaMA (Touvron et al.,196

2023). In comparison, the largest constitution,197

i.e., English, only accounts for 30% in the198

ROOTS (Laurençon et al., 2022), which is the199

multilingual corpus for pretraining BLOOM (Scao200

et al., 2022). Table 1 compares the data size of the201

pretraining corpus for BLOOM and LLaMA model202

across 15 languages from XNLI dataset (Conneau203

et al., 2018b).204

Harbingers of multilingual transfer ability205

in English-centric models Multiple lines of206

evidence suggest that English-centric models have 207

the potential for multilingual transfer capability. 208

On the one hand, large English-centric models 209

perform comparably with multilingual models on 210

multilingual question-answering tasks (Chowdhery 211

et al., 2022) and translating other languages into 212

English (Brown et al., 2020; Chowdhery et al., 213

2022), though still lagging behind in translating 214

into other languages. On the other hand, prior 215

work suggests that the source of multilingual 216

transfer ability may not be solely attributed to the 217

multilingual pretraining process, as monolingual 218

models also learn some abstractions that generalize 219

across languages (Artetxe et al., 2020). High- 220

level knowledge-transferring phenomena have 221

been observed in other modalities, such as from 222

English to Python (Hernandez et al., 2021), from 223

‘non-linguistic data with grammatical structure’ 224

to language (Papadimitriou and Jurafsky, 2020; 225

Ri and Tsuruoka, 2022), and from language to 226

vision (Lu et al., 2021). Similarly, the presence 227

of innate biological properties of the brain that 228

constrain possible human languages was posited 229

to explain why children learn languages so quickly 230

despite the poverty of the stimulus (Chomsky, 231

1981; Legate and Yang, 2002). 232

3 Experiments 233

3.1 Setup 234

Models We consider both multilingual models 235

and English-centric models and choose the three 236

most popular models as the backbone in our 237

experiments. The details of them are listed as 238

follows: 239

• BLOOM (Scao et al., 2022): a series of 240

models trained on ROOTS (Laurençon et al., 241

2022), a multilingual corpus containing 341 242

billion tokens from 46 natural languages and 243

13 programming languages. We consider 244

three model sizes, i.e., 560M, 1.7B, and 7.1B, 245

in our experiments; 246

• Pythia (Biderman et al., 2023): a family 247

of models trained on the Pile (Gao et al., 248

2020), an English-centric corpus contains 207 249

billion tokens after deduplication. The overall 250

number of tokens of the deduplicated Pile 251

is on par with ROOTS. We consider three 252

model sizes, i.e., 410M, 1.4B, and 6.5B, in 253

our experiments; 254

• LLaMA (Touvron et al., 2023): a series 255

of models trained on various English-centric 256
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Model XNLI

en zh fr es ar vi hi ur sw bg ru de tr el th Ave(15) Ave(3)

BLOOM-7.1B 81.38 70.72 75.25 77.96 69.46 69.96 62.75 57.33 56.25 50.52 59.60 59.72 44.15 51.22 46.59 62.19 75.78
Pythia-6.9B 83.77 61.84 70.10 70.84 56.03 55.91 47.31 46.31 45.59 61.88 61.10 65.89 54.39 61.50 51.42 59.59 71.90
LLaMA-6.7B 86.85 61.82 76.99 77.56 52.69 54.71 46.97 45.51 40.58 72.79 73.09 75.81 51.12 57.39 46.57 61.36 75.22

Model GSM8K LogiQA XCOPA

en zh fr Ave(3) en zh fr Ave(3) en zh fr Ave(3)

BLOOM-7.1B 11.60 8.80 14.00 11.47 25.81 23.35 23.96 24.37 54.00 51.40 48.80 51.40
Pythia-6.9B 12.80 6.00 10.00 9.60 32.10 27.96 30.26 30.11 50.80 50.00 53.40 51.40
LLaMA-6.7B 27.20 7.20 18.00 17.47 37.63 31.34 33.79 34.25 85.60 59.80 71.40 72.27

Table 2: Accuracy of similar-sized multilingual and English-centric models on each test language after finetuning
on English task data. The language is sorted by the pre-train data size in BLOOM as shown in Table 1. Ave(15)
refers to the average results of all 15 test languages and Ave(3) is the average of the top three resourced languages
(EN, ZH, FR) in BLOOM. Best result is in bold for each language. Full results of all model sizes and all the training
languages are shown in the Appendix B.

corpus, summing up to tokens (1.4 trillion),257

much larger than that in ROOTS (341 billion)258

and the Pile (207 billion). Currently, LLaMAs259

are one of the most well-performed open-260

sourced models among similar-sized models.261

We consider three model sizes, i.e., 6.7B, 13B,262

and 32.5B, in our experiments.263

Datasets We focus on multilingual reasoning264

ability in different models and consider four265

datasets that require distinct reasoning abilities, i.e.,266

XNLI (Conneau et al., 2018b), LogiQA (Liu et al.,267

2021), XCOPA (Ponti et al., 2020) and GSM8K268

dataset (Cobbe et al., 2021). We create multilingual269

versions of a dataset through Google Translate270

API3 if it doesn’t have. We elaborate more details271

in Appendix A for each dataset.272

Implementation Details We separately fine-tune273

the above 9 models on each language from the274

four datasets. As full fine-tuning becomes less275

feasible when the model gets larger, we adopt276

Low-Rank Adaptation (LoRA; (Hu et al., 2022))277

and Int8 quantization (Dettmers et al., 2022) to278

perform compute and memory-efficient fine-tuning.279

With the above techniques, the finetuning and280

inference for the considered largest 32.5B model281

can be accomplished on a single NVIDIA A100-282

80GB GPU. Additionally, instead of using all the283

400k training instances for each language in the284

XNLI dataset, we limit the number of training285

instances to 9k, with 3k for each class, to reduce286

computation. We set the batch size to 32, the287

learning rate to 3e-4, and the number of epochs288

to 3. We adopt instruction fine-tuning (Wei et al.,289

3https://cloud.google.com/translate

2021; Sanh et al., 2021) instead of classifier-based 290

fine-tuning (Devlin et al., 2019) for classification 291

tasks, which injects certain abilities without adding 292

additional modules. The number of instances and 293

instruction templates for each dataset are listed 294

in the Appendix Table 3. During inference, we 295

compare the perplexity of each option to decide the 296

label for classification tasks following (Brown et al., 297

2020) , and we adopt the open-sourced OpenICL 298

toolkit (Wu et al., 2023) for implementation. We 299

always use English prompts as suggested by prior 300

works (Lin et al., 2021; Muennighoff et al., 2022). 301

3.2 Findings for RQ1 302

"RQ1: How does the backbone (e.g., a multilingual 303

pre-trained model or an English-centric model) 304

affect multilingual reasoning?" 305

To facilitate the discussion, we use three models 306

of similar parameters, i.e., BLOOM-7.1B, Pythia- 307

6.9B, and LLaMA-6.7B. We begin by showing 308

the overall accuracy of the three models on 309

all the languages after training on English task 310

data, as shown in Table 2. Then, we split the 311

train languages into four categories based on the 312

pretraining languages of BLOOM and LLaMA as 313

listed in Table 1: (1) seen for both, (2) rarely 314

seen for both, (3) seen for BLOOM but rarely 315

for LLaMA, and (4) seen for LLaMA but rarely 316

for BLOOM. We visualize the results in Figure 1, 317

where the zero-shot accuracy is subtracted to better 318

reflect performance gain brought from additional 319

training on the certain source language. 320

A minimal amount of multilingual data makes 321

a lot in English-centric models As shown in 322

Table 2, LLaMA achieves comparable or better 323
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Figure 1: Evaluating BLOOM-7.1B and LLaMA-6.7B on four groups of languages, i.e., both seen during pre-
training, both rarely seen during pre-training, seen for BLOOM but rarely seen for LLaMA, and seen for LLaMA
but rarely seen for BLOOM. The zero-shot accuracy is subtracted to better reflect performance gain brought from
additional training on the certain source language.

overall performance on the multilingual test sets,324

with an average accuracy of 61.39% compared to325

62.19% of BLOOM. Even on languages frequently326

seen by BLOOM (i.e., EN, ZH, and FR), the327

average performance of LLaMA can still match328

(XNLI) or outperform (GSM8K, LogiQA, and329

XCOPA) BLOOM. During pre-training, LLaMA330

only sees French and Spanish data with individual331

sizes equal to roughly 4 GB. By contrast, BLOOM332

has seen about 50 times data in these languages333

in the pre-training stage. Nevertheless, when eval-334

uating LLaMA on French, the accuracy exceeds335

that of BLOOM by more than 1.7%, 4%, 10%,336

and 23% on XNLI, GSM8K, LogiQA and XCOPA,337

respectively. LLaMA also achieves a very similar338

accuracy on Spanish, with BLOOM performing339

slightly better by a margin of 0.4% on XNLI.340

However, for languages without any pre-training341

data (e.g., Chinese, Arabic, Vietnamese, etc.), the342

performance lags behind BLOOM by around 15%343

on XNLI but is still comparable or better on other344

tasks. Our findings suggest that incorporating a345

minimal amount of diverse low-resource language346

data during pre-training can result in a more347

capable multilingual pre-trained model, which348

outperforms models not trained on any data in those349

languages.350

LLaMA possesses better transfer ability across351

seen languages than BLOOM. The first subplot352

of Figure 1 shows the accuracy improvements from353

directly zero-shot testing on the three languages354

seen by all models (i.e., EN, FR, ES) to first355

training on the three languages and then testing356

on these languages. LLaMA demonstrates better357

or comparable multilingual transfer ability for358

all the training languages. Since LLaMA was359

trained on mostly English texts, it is natural to360

expect that it learns English data in finetuning 361

better than multi-lingual models like BLOOM. 362

This is consistent with the experimental result, 363

where both minimum and maximum improvements 364

for LLaMA are greater than those for BLOOM. 365

Among the three models, Pythia has consistently 366

lower improvements over zero-shot learning. We 367

conjecture that the size of the English pre-training 368

corpus has a positive correlation with a model’s 369

multilingual transfer ability. 370

Both English-centric models transfer better on 371

rarely seen languages than BLOOM. As illus- 372

trated in the second subplot of Figure 1, on the one 373

hand, LLaMA exhibits more effective knowledge 374

acquisition from Turkish (TR) and Greek (EL) data 375

than BLOOM, which enhances its reasoning ability 376

regardless of the language in which it is evaluated. 377

This implies that a deep understanding of a single 378

language could potentially enhance a model’s 379

ability to comprehend unfamiliar languages more 380

than a shallow understanding of multiple languages. 381

On the other hand, Pythia emerges as the best- 382

performing model when trained and evaluated on 383

rarely seen languages by LLaMA and BLOOM. 384

Considering the performance difference between 385

Pythia and LLaMA, which are both English-centric 386

models, we argue that the former’s superiority can 387

partially be attributed to the different language 388

distributions of their pre-training dataset excluding 389

English data. This suggests that even with fewer 390

overall pre-training data, models can have a better 391

transfer result after pre-training in the specific 392

language. 393

Language coverage in pre-training is still im- 394

portant for multilingual transfer. As illustrated 395

in the third subplot of Figure 1, we found that 396

BLOOM overall performed the best, surpassing 397
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Figure 2: Average number of superior training languages compared with English and the test language.

the other two models by a great margin. This398

is not surprising because BLOOM is trained on399

them while others are rarely. Pythia comes as400

the second, with LLaMA being the last. The401

superiority of Pythia over LLaMA can be attributed402

to the difference in their pre-train datasets. For403

Pythia, its dataset consists of 97.4% of English data404

with the remaining for other languages, whereas405

for LLaMA, more than 99% of its pre-train data is406

in English. Therefore, we suspect that a slightly407

more diverse pre-train dataset in languages benefits408

Pythia towards capturing linguistic universals.409

Finally, as illustrated in the fourth subplot410

of Figure 1, we show that when training and411

evaluating in languages that LLaMA has seen but412

BLOOM hasn’t, the test accuracies of LLaMA are413

significantly higher than the other two models, with414

Pythia being the second. This further suggests415

language coverage in pre-training is important416

for both multilingual models and English-centric417

models.418

3.3 Findings for RQ2419

"RQ2: How does the source language used for420

downstream task finetuning affect multilingual421

reasoning on other languages?"422

For both multilingual and English-centric mod-423

els, English appears to be a less suitable424

source language when the model scales up. To425

investigate how the source language used for fine-426

tuning behaves on different models with different427

model sizes. We calculate the average number of428

superior source languages compared with English429

and the target language on the XNLI dataset.430

The value varies from 0 to 14, indicating the431

certain source language (i.e., English or the target432

language) is from the best to the worst among433

the total 15 languages, respectively. We show the434

results in Figure 2. 435

As the model scales up, our experiments reveal 436

that for all three models, there is a general increas- 437

ing trend for the number of superior languages 438

compared to English as model parameters grow. 439

This observation can be attributed to the increasing 440

capacity of the model, which enables it to capture 441

more nuanced linguistic features. A possible 442

explanation is as the increase of model capacity, 443

the learning of other source languages becomes 444

easier and consequently enhances the chances 445

of identifying a more suitable source language 446

other than English. These findings are applicable 447

not only to multilingual models but also to both 448

English-centric models. 449

Training on target language may not be the 450

best choice but can be a safe option. While 451

training in the target language is not always the 452

optimal choice, we find it consistently yields good 453

performance. Based on Figure 2, there are a small 454

fraction of cases, with a number of approximately 455

2, where the accuracy difference is obtained by 456

subtracting the accuracy of the model trained on 457

each target language itself from trained on other 458

languages, is positive. This finding suggests that 459

incorporating target language data during training 460

allows the model to better adapt to the specific 461

characteristics of that language. 462

We further delve into each language to see if 463

the on-average two superior languages are always 464

the same for different models. To achieve this, 465

we set the performance of the model trained 466

on the target language as the baseline (0), and 467

compute the relative performance gap of the 468

model trained on each other source language. As 469

shown in Figure 3, we find that such occurrences 470

are primarily observed in Chinese (ZH), French 471

(FR), Spanish (ES), and Urdu (UR), for LLaMA. 472
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Figure 3: Accuracy gain of BLOOMs and LLaMAs on test languages by subtracting the performance of models
trained on each test language from those trained on other languages.

While for BLOOM, they are mostly English (EN),473

Chinese (ZH), and Urdu (UR). The results appear474

to be complex as they are not highly correlated475

with the language frequency observed during the476

pre-training stage. For instance, LLaMA has seen477

English, French, and Spanish, while BLOOM478

has seen English and Chinese. One possible479

explanation for this can be the distinctive language480

scripts used in Chinese (Chinese ideograms) and481

Urdu (Perso-Arabic), which may not be well-suited482

for acquiring knowledge related to reasoning.483

Languages used in finetuning become increas-484

ingly irrelevant as an English-centric model485

scales up. In terms of Figure 3, as the pa-486

rameters of LLaMA grow, the distribution of Y-487

coordinates (i.e., accuracy improvements) becomes488

more concentrated around the line y = 0, which489

corresponds to training and testing on the same490

language. Through a comparison between the491

LLaMA-6.7B and LLaMA-32.5B models, we find492

that the larger model not only exhibited fewer493

negative outliers, which were mostly associated494

with SW, UR, and TH as train languages, but also495

demonstrates significant accuracy improvements496

for other languages. As a result, the difference in497

accuracy between training on the target language498

and training on other languages is reduced when the499

model gets larger. In contrast, we does not observe500

a clear trend with BLOOM as the model size 501

increased from 560M to 7.1B. Additionally, we find 502

the results on Pythia as shown in Appendix Figure 7 503

to be less conclusive than those on LLaMA, and 504

we attribute this to both the model size and the 505

English-centric pre-training. 506

3.4 Findings for RQ3 507

"RQ3: How does task type affect multilingual 508

reasoning, e.g., will the reasoning ability be trans- 509

ferred better across languages in some reasoning 510

tasks?" 511

Previous work finds the transfer performance on 512

‘lower-level’ tasks (e.g., POS-tagging, dependency 513

parsing, and NER) to be better correlated with 514

the syntactic similarity between languages, while 515

‘high-level’ tasks (e.g., NLI and QA) rely more on 516

other factors such as the size of pretraining corpora 517

of the target language (Lauscher et al., 2020). We 518

are interested to see whether transfer performance 519

also differs in different high-level reasoning tasks. 520

Logical reasoning knowledge can be transferred 521

better across languages than others, and such 522

transferability on most tasks can be enhanced 523

by scaling model size, even with a fixed English- 524

centric pretraining corpus. To measure the 525

multilingual reasoning transfer ability for different 526

tasks, we calculate the performance gap between 527
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Figure 4: Average accuracy on other languages (i.e., FR and ZH) of each model trained on English task data across
the four tasks.
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Figure 5: Performance gap between the average
accuracy on other languages (i.e., FR and ZH) and
English using the Engligh-trained model. 0 refers to
no performance gap, meaning the task ability transfers
well from English to others.

the average accuracy on other languages and528

English using the English-trained model. We529

consider three languages, i.e., English, French, and530

Chinese for all the tasks. A value of 0 refers to531

no performance gap, meaning the reasoning ability532

transfers well from English to others. We show533

the results on LLaMA with various model sizes in534

Figure 5. The results indicate that LogiQA, which535

focuses on logical reasoning, exhibits the highest536

transferability across all the model sizes considered.537

On the other hand, XNLI, which tests with natural538

language inference, and GSM8K, which tests539

arithmetic reasoning, demonstrate comparatively540

lower levels of effectiveness. Furthermore, the541

figure indicates that increasing the model size542

generally leads to improved performance across543

most of the tasks, suggesting that multilingual544

reasoning transferability can be enhanced by545

increasing the model size, even if the training546

corpus remains constant. However, the results are547

fairly stable when the model scales up for LogiQA,548

with around 5% lower than the performance549

of testing on English, suggesting that solely550

increasing the model size only improves the551

transfer ability to a certain amount. 552

Multilingual pre-trained models fail on some 553

multilingual reasoning tasks that English- 554

centric models can handle. We further study the 555

multilingual reasoning transfer ability of different 556

types of models on the four tasks. We show the 557

average accuracy of the English-trained model 558

when testing other languages in Figure 4. Notably, 559

BLOOM-7.1B failed on the LogiQA dataset, 560

exhibiting a level of performance that was no better 561

than random guessing, while both Pythia-6.9B 562

and LLaMA-6.7B, two English-centric models, 563

achieves better performance. This suggests that 564

a multilingual model may not possess sufficient 565

capability to learn certain types of reasoning tasks 566

as an English-centric model does. Additionally, 567

both BLOOM-7.1B and Pythia-6.9B failed on 568

the XCOPA dataset. In contrast, LLaMA-7B 569

performed significantly better on both of these 570

tasks, highlighting the importance of considering 571

the fundamental capabilities of a language model 572

in the context of multilingual reasoning tasks. 573

4 Conclusion 574

In this work, we investigate the multilingual trans- 575

fer capabilities of both multilingual pre-trained 576

and English-centric models, on four multilingual 577

reasoning tasks. Our findings suggest that English- 578

centric models possess significant multilingual 579

transferability. We also found that English 580

may not be the most effective source language 581

for English-centric models, and different types 582

of reasoning tasks exhibit varying multilingual 583

transfer abilities. These findings offer practical 584

insights for both pre-training and fine-tuning of the 585

multilingual and English-centric models. We hope 586

that our study will inspire further investigations and 587

advancements in the development of more effective 588

multilingual models. 589
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Limitation590

In this section, we discuss some potential lim-591

itations in our work. BLOOM and LLaMA,592

taken as representatives for language versatilist593

and specialist respectively, might not be strictly594

comparable because they were trained on different595

quantities of data. Hence, the results derived in596

our paper could tend to favor LLaMA which was597

pre-trained on more data considering all languages.598

To alleviate this inequality, we have conducted599

experiments on Pythia with a smaller pre-train600

dataset. If the corresponding result is still better601

than that of BLOOM, then we can conclude with602

stronger confidence that the specialist approach603

is superior. Nevertheless, noting that the quality604

of pre-train datasets can also vary, which makes605

Pythia and BLOOM still not strictly comparable.606

We acknowledge such possible deviations in the607

amount and quality of the pre-training corpus for608

the three models, and we recommend that future609

research pays more attention to it. In addition, we610

only evaluated the performance of supervised task611

fine-tuning in our study. In future work, it would be612

worthwhile to consider other learning paradigms613

such as in-context learning (Brown et al., 2020).614
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A Datasets and Templates852

We consider the following four types of tasks that853

require distinct reasoning abilities:854

• Natural Language Inference: we use XNLI855

dataset (Conneau et al., 2018b), which is856

created by crowd-translating the dev and857

test portions of the English Multi-NLI858

dataset (Williams et al., 2018) into 14859

languages (French (fr), Spanish (ES), German860

(DE), Greek (EL), Bulgarian (BG), Russian861

(RU), Turkish (TR), Arabic (AR), Vietnamese862

(VI), Thai (TH), Chinese (ZH), Hindi (HI),863

Swahili (SW), and Urdu (UR));864

• Logical Reasoning: we adopt LogiQA865

dataset (Liu et al., 2021), which is sourced866

from expert-written questions for testing867

human logical reasoning. As the training set868

is only available in English and Chinese, we869

further translate both training and test splits870

into French with Google Translate API4;871

• Commonsense Reasoning: we choose872

XCOPA dataset (Ponti et al., 2020), which873

is a causal commonsense reasoning task in874

which a model is given a premise sentence875

and must determine either the cause or effect876

of the premise from two possible choices.877

4https://cloud.google.com/translate

Since the dataset only provides multilingual 878

test sets, we utilize the training set from the 879

original English COPA release (Roemmele 880

et al., 2011) and translate it into Chinese and 881

French with Google Translate API; 882

• Arithmetic Reasoning: we use GSM8K 883

dataset (Cobbe et al., 2021), which contains 884

linguistically diverse grade school math word 885

problems. Shi et al. (2022) construct a 886

multilingual test set which we directly adopt 887

for our test set. To construct a multilingual 888

training set, we further translate the English 889

training set into French and Chinese with 890

Google Translate API. 891

We show the number of instances and the template 892

used in each dataset in Table 3. 893

B Detailed Results 894

The detailed results for the three BLOOM, Pythia, 895

and LLaMA models across 15 languages on the 896

XNLI dataset are shown in Table 4, Table 5, and 897

Table 6, respectively. The results on other three 898

datasets (i.e., GSM8K, XCOPA and LogiQA) are 899

listed in Table 7. 900

C Additional Figures 901

We show the accuracy gain of BLOOMs and 902

LLaMAs on test languages by subtracting the 903

performance of models trained on each test 904

language from those trained on other languages 905

in Figure 6. This figure is complementary to Figure 906

3 which only shows the results for BLOOMs and 907

LLaMAs in the paper. Similarly, we also show 908

the accuracy gain by subtracting the performance 909

of models trained on English from those trained 910

on other languages in Figure 7. This figure 911

corresponds to the average number of superior 912

training languages compared with English in 913

Figure 2 of the paper, and shows specifically which 914

languages are better used for training given a test 915

language. 916

11
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https://cloud.google.com/translate


#Train/#Test Template

XNLI 9,000/5010

Question:
{premise} Based on the previous passage, is it true that "{hypothesis}"? Yes, No, or Maybe?

Answer:
{output}

XCOPA 400/500

Question:
{premise} Based on the previous passage, choose the most reasonable {cause | effect}.
A:{choice1}
B:{choice2}

Answer:
{output}

LogiQA 7,376/651

Question:
{context} {question}
A: {choice1}
B: {choice2}
C: {choice3}
D: {choice4}

Answer:
{output}

GSM8K 7,473/250

Question:
{input}

Answer:
{output}

Table 3: Number of training and test instances for each dataset, as well as the templates used during fine-tuning and
inference.
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Model Train Test Averagear bg de el en es fr hi ru sw th tr ur vi zh

BLOOM-560M

Zero-shot 33.29 34.53 34.81 34.61 35.01 34.53 33.99 33.71 34.71 33.79 34.05 33.49 33.17 34.03 33.73 34.10
Average 50.80 50.21 50.92 48.22 55.37 56.03 54.58 52.01 52.00 45.19 44.55 41.44 47.36 53.38 52.59 50.31
ar 64.97 52.08 56.01 50.74 68.42 67.92 67.43 61.80 56.53 51.54 48.24 39.00 57.21 65.83 64.83 58.17
bg 45.97 56.83 50.32 50.46 42.83 47.92 42.83 46.79 54.17 39.34 47.11 41.38 39.84 44.29 43.87 46.26
de 45.89 52.67 60.02 54.05 49.96 50.34 46.77 52.95 54.73 41.68 40.14 44.99 47.80 49.42 50.10 49.43
el 40.74 49.02 42.89 56.75 39.94 42.65 37.45 39.02 49.16 39.00 47.68 38.74 35.61 40.58 37.64 42.46
en 50.06 48.02 49.68 40.14 62.26 61.16 57.25 53.89 46.77 46.29 39.16 43.49 45.93 47.54 53.57 49.68
es 60.58 54.61 56.15 50.50 70.86 70.86 70.80 61.42 58.02 50.80 48.72 44.65 56.71 65.85 66.31 59.12
fr 62.10 55.19 56.47 48.82 71.04 69.58 70.36 56.75 57.72 49.98 49.78 45.01 54.21 66.85 62.83 58.45
hi 61.44 51.48 54.69 52.42 63.93 62.97 62.61 62.12 56.17 50.32 44.63 40.50 58.10 62.18 61.88 56.36
ru 46.27 55.03 54.31 53.23 49.98 53.01 53.23 56.03 56.15 46.57 49.84 43.17 50.64 53.97 53.31 51.65
sw 48.26 51.72 53.09 46.99 57.01 60.56 59.72 50.02 51.32 52.20 43.31 44.15 45.85 57.54 55.77 51.83
th 34.61 42.71 38.74 44.43 42.00 41.86 38.72 35.95 43.07 38.36 54.05 35.71 34.31 38.70 34.29 39.83
tr 37.68 45.69 44.97 44.19 42.28 41.94 38.90 39.42 44.57 39.54 40.52 51.66 34.19 37.58 37.84 41.40
ur 47.84 41.88 45.55 40.60 47.80 49.82 51.42 53.89 46.69 41.20 35.01 35.87 51.66 48.64 50.80 45.91
vi 62.04 52.53 53.39 47.84 67.64 66.29 66.51 58.90 56.71 50.42 44.53 37.90 52.48 66.51 63.51 56.48
zh 53.51 43.69 47.58 42.16 54.63 53.55 54.75 51.16 48.20 40.56 35.57 35.33 45.87 55.19 52.30 47.60

BLOOM-1.7B

Zero-shot 33.21 33.63 33.35 34.05 33.45 33.21 33.27 33.41 32.87 33.27 33.35 33.33 33.21 33.25 32.91 33.32
Average 59.07 53.05 54.84 52.24 64.00 62.63 62.97 57.94 55.41 52.07 48.42 44.14 54.54 60.36 58.89 56.04
ar 70.42 55.65 61.78 55.31 76.37 75.09 75.85 67.43 61.50 59.88 48.44 47.58 61.96 72.77 68.42 63.90
bg 50.06 60.08 57.21 56.83 53.53 52.95 52.63 50.34 59.36 47.27 54.13 42.12 50.46 50.54 52.20 52.65
de 61.06 56.43 62.85 57.90 69.64 66.55 67.84 58.50 59.52 55.65 52.26 47.11 55.05 62.10 60.64 59.54
el 47.33 54.97 52.16 58.74 50.80 49.58 49.86 46.45 56.25 45.23 53.21 39.20 46.17 48.46 45.53 49.60
en 62.04 48.56 52.50 46.15 73.49 68.96 69.56 59.36 53.87 54.17 45.33 40.92 55.69 63.83 60.98 57.03
es 69.12 50.18 56.31 46.01 76.93 76.37 75.19 64.63 51.46 57.41 41.60 44.77 60.96 71.06 70.34 60.82
fr 70.84 55.29 60.54 51.08 77.45 74.99 75.25 66.37 58.36 58.10 37.94 46.87 59.64 72.20 66.13 62.07
hi 64.71 55.15 53.63 55.33 63.31 65.81 66.43 65.51 56.61 55.09 48.30 43.49 59.76 64.69 67.01 58.99
ru 61.92 58.70 60.68 58.36 69.20 67.68 67.84 61.70 62.67 56.65 52.18 47.11 57.19 63.57 63.47 60.59
sw 61.22 57.11 58.28 55.73 67.39 64.49 65.95 60.36 58.82 57.09 51.84 46.27 55.87 63.67 60.38 58.96
th 40.28 43.45 41.34 45.45 41.90 42.46 41.68 42.93 41.38 38.24 54.13 35.59 40.30 41.74 38.52 41.96
tr 45.01 48.68 48.08 46.45 49.04 46.03 47.03 43.37 46.17 43.05 46.35 55.47 42.77 44.85 43.95 46.42
ur 50.98 44.11 48.10 44.69 51.50 51.04 52.16 56.05 48.68 43.67 42.50 36.09 55.55 51.00 54.01 48.68
vi 68.66 56.83 59.62 55.73 76.21 74.29 73.57 65.15 60.76 58.16 50.00 46.53 60.66 71.86 68.86 63.13
zh 62.34 50.60 49.56 49.90 63.29 63.23 63.71 60.90 55.73 51.42 48.06 42.99 56.03 63.03 62.91 56.25

BLOOM-7.1B

Zero-shot 33.15 33.29 32.57 33.33 33.33 33.55 32.79 33.13 33.21 33.33 33.31 33.33 33.65 33.31 33.33 33.24
Average 68.48 58.18 63.16 57.09 73.95 72.49 71.96 66.16 63.34 59.95 53.14 49.46 61.97 69.20 69.23 63.85
ar 75.63 61.14 67.27 58.78 82.67 80.78 79.28 72.63 67.80 64.23 54.37 51.82 68.12 76.15 75.69 69.09
bg 66.67 64.97 66.09 60.34 70.98 68.10 68.04 66.61 66.95 58.56 56.69 52.48 63.17 66.41 65.77 64.12
de 72.53 61.18 71.32 60.50 81.12 77.47 77.01 68.94 67.19 65.21 53.27 51.58 64.83 73.23 73.53 67.93
el 56.83 61.58 64.13 62.14 63.45 59.44 61.44 59.54 63.59 52.50 56.57 51.10 56.87 59.92 61.02 59.34
en 69.46 50.52 59.72 51.22 81.38 77.96 75.25 62.75 59.60 56.25 46.59 44.15 57.33 69.96 70.72 62.19
es 76.61 56.61 64.21 55.51 83.95 80.98 80.20 72.32 65.43 64.03 51.92 48.32 66.87 76.01 76.63 67.97
fr 75.77 55.55 62.71 54.59 82.20 80.76 80.00 71.96 64.03 63.29 50.58 46.75 66.57 76.13 76.63 67.17
hi 75.05 61.84 67.52 61.16 80.14 78.56 77.58 73.09 68.46 65.39 54.87 51.58 68.92 75.29 75.83 69.02
ru 73.29 63.23 69.68 58.78 80.26 77.33 77.09 69.10 68.76 65.65 54.57 51.58 66.07 73.85 73.39 68.18
sw 72.22 61.80 67.27 58.04 77.39 76.43 76.01 68.74 65.99 64.73 55.27 52.02 64.21 72.83 72.73 67.05
th 48.10 49.98 48.04 52.77 53.85 51.20 51.14 51.06 48.90 45.13 56.83 40.58 46.85 49.56 50.96 49.66
tr 54.33 54.57 55.69 52.81 53.97 57.01 56.05 50.62 53.97 53.35 50.94 56.85 46.91 55.59 50.44 53.54
ur 62.99 50.22 51.96 51.58 55.95 64.89 65.41 63.35 56.39 51.94 47.05 42.12 60.40 65.03 64.49 56.92
vi 75.97 59.98 65.91 58.52 82.89 80.58 80.10 72.36 67.31 65.67 53.01 51.02 67.68 75.63 76.33 68.86
zh 71.76 59.54 65.91 59.66 79.06 75.85 74.79 69.26 65.69 63.39 54.55 50.02 64.79 72.44 74.29 66.73

Table 4: Detailed results of BLOOM on XNLI dataset.
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Model Train Test Averagear bg de el en es fr hi ru sw th tr ur vi zh

Pythia-410m

Zero-shot 33.27 32.24 32.93 33.87 32.71 33.43 33.59 33.43 32.46 33.01 33.43 33.29 33.05 32.63 33.39 33.12
Average 46.21 47.57 47.94 47.68 49.94 48.46 48.80 42.27 46.98 40.19 45.58 41.28 40.49 47.15 47.55 45.87
ar 50.64 45.31 44.67 44.35 42.99 43.35 43.93 41.08 45.15 42.26 43.27 42.55 38.94 44.91 44.61 43.87
bg 47.29 51.86 49.04 49.36 45.57 48.44 48.48 40.82 50.24 41.10 43.93 42.26 37.76 48.98 49.72 46.32
de 46.53 53.49 59.56 49.50 63.39 59.60 58.96 41.48 50.82 45.11 47.31 45.07 38.50 51.08 53.31 50.91
el 48.24 48.88 50.98 54.17 44.29 51.60 51.98 46.43 49.06 41.68 48.12 44.35 43.63 51.16 46.99 48.10
en 49.26 52.77 55.69 52.93 74.13 60.94 60.80 45.07 52.97 43.47 47.50 43.17 43.59 50.74 52.48 52.37
es 53.81 57.01 60.60 55.21 69.28 63.71 63.95 49.90 56.33 40.84 52.30 46.97 46.59 55.11 58.66 55.35
fr 52.81 55.93 58.20 53.63 65.63 61.12 61.54 48.20 54.81 44.25 52.89 45.67 44.27 54.01 55.97 53.93
hi 42.36 41.96 39.36 45.47 39.58 40.80 40.86 49.20 42.97 38.54 46.39 38.54 43.87 44.89 41.88 42.44
ru 49.56 56.63 55.91 53.69 55.83 56.59 56.49 43.61 55.47 41.30 47.60 44.95 39.48 51.40 55.63 50.94
sw 38.86 35.73 37.43 38.56 37.50 37.56 37.70 34.69 36.67 44.57 35.37 38.72 35.61 38.38 36.25 37.57
th 42.06 37.45 37.80 41.92 39.12 39.84 38.10 38.76 36.55 33.57 49.64 34.51 38.08 43.53 42.40 39.56
tr 44.33 45.13 43.71 45.17 44.83 43.51 43.95 41.28 43.27 44.09 43.71 47.92 40.38 42.99 43.41 43.85
ur 35.21 36.95 35.75 35.99 35.09 33.95 34.99 34.93 35.75 33.21 35.91 33.61 40.80 36.17 36.71 35.67
vi 46.15 45.39 41.40 48.38 41.86 39.42 41.98 37.80 44.47 33.77 44.37 36.25 36.59 48.42 42.44 41.91
zh 46.07 49.04 49.06 46.93 50.06 46.49 48.32 40.74 50.18 35.07 45.37 34.71 39.20 45.45 52.77 45.30

Pythia-1.4b

Zero-shot 34.15 33.35 33.37 33.21 33.53 33.35 33.49 33.41 33.33 33.33 33.33 33.31 33.27 33.33 33.33 33.41
Average 52.96 57.12 58.93 55.67 63.49 60.73 60.37 50.34 55.73 45.06 52.86 53.09 49.49 55.33 56.51 55.18
ar 59.50 62.04 62.04 61.54 62.02 63.19 60.58 53.41 59.86 44.81 56.03 57.01 51.62 60.52 61.48 58.38
bg 53.67 61.60 62.87 56.09 67.39 63.73 64.21 49.56 58.86 47.05 54.17 53.01 49.08 56.67 61.80 57.32
de 54.61 61.54 67.13 57.31 76.13 68.18 68.62 50.14 59.92 46.95 53.81 57.45 49.24 57.19 62.73 59.40
el 57.31 62.02 66.05 62.04 71.02 66.97 66.83 53.87 60.78 48.12 56.47 58.40 52.83 59.82 63.11 60.38
en 45.67 52.26 58.50 50.28 78.66 64.07 63.55 44.29 50.96 44.67 49.84 50.14 43.45 52.14 54.97 53.56
es 54.93 62.26 66.75 60.08 78.56 71.12 69.82 48.32 61.66 46.45 55.37 54.79 49.70 60.16 62.91 60.19
fr 56.45 62.99 66.77 60.94 77.29 70.32 70.14 50.66 62.20 46.87 54.97 56.91 48.76 59.18 59.06 60.23
hi 51.18 50.38 48.46 51.48 48.96 51.58 50.22 54.91 49.96 40.14 49.74 47.03 50.18 52.71 46.97 49.59
ru 55.65 61.56 63.47 60.74 70.16 64.77 64.47 50.04 61.10 44.33 55.03 54.63 48.88 58.44 59.30 58.17
sw 52.50 52.95 51.28 53.69 49.60 51.72 51.02 49.90 51.24 50.46 48.58 52.26 48.16 50.78 44.77 50.59
th 53.21 53.45 51.20 51.98 50.08 52.95 53.43 50.26 51.70 43.95 56.59 49.12 49.78 53.29 56.51 51.83
tr 51.66 52.81 55.97 54.59 50.98 56.79 56.31 53.79 52.77 44.83 52.16 58.10 49.22 52.50 49.04 52.77
ur 35.75 36.99 36.27 36.15 34.05 35.11 36.97 38.64 36.49 33.63 37.84 35.17 46.91 37.33 40.18 37.16
vi 56.17 61.28 63.09 58.88 67.05 63.13 62.87 54.61 58.22 45.87 56.37 56.87 51.66 61.42 59.58 58.47
zh 56.17 62.63 64.13 59.24 70.48 67.25 66.57 52.65 60.24 47.70 55.93 55.47 52.93 57.76 65.29 59.63

Pythia-6.9b

Zero-shot 33.33 33.33 33.33 33.33 33.33 33.21 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33
Average 61.61 65.37 67.14 65.38 72.44 69.35 69.23 54.97 64.61 49.66 57.88 60.41 54.36 62.42 64.92 62.65
ar 65.47 68.66 70.18 68.84 72.18 70.66 71.56 55.85 68.32 52.14 60.18 62.73 55.07 66.47 68.66 65.13
bg 63.33 69.06 70.66 67.92 76.05 73.93 73.35 55.71 67.49 51.42 60.02 63.19 53.89 65.09 68.82 65.33
de 64.19 69.30 73.43 69.30 80.72 76.75 76.25 55.87 69.30 51.62 61.26 63.91 56.59 65.97 68.56 66.87
el 63.67 70.42 71.58 68.52 77.19 74.95 73.73 56.41 68.28 52.20 58.92 63.67 55.07 63.63 68.60 65.79
en 56.03 61.88 65.89 61.50 83.77 70.84 70.10 47.31 61.10 45.59 51.42 54.39 46.31 55.91 61.84 59.59
es 64.41 68.98 73.05 68.74 83.41 76.77 76.15 55.29 68.42 50.20 57.80 61.24 53.55 64.57 68.50 66.07
fr 62.85 68.50 72.12 68.80 81.36 77.68 75.89 54.31 68.34 49.92 57.25 62.59 53.83 62.71 69.54 65.71
hi 60.00 60.54 59.40 62.51 60.00 57.84 59.64 60.08 59.26 48.00 57.41 59.18 56.25 61.02 57.68 58.59
ru 62.55 68.52 70.74 68.06 79.18 75.25 73.99 54.79 69.22 50.52 57.31 61.82 54.77 64.53 68.18 65.30
sw 58.48 59.36 61.10 60.22 60.96 61.00 61.50 53.03 57.35 54.25 56.31 58.34 53.03 60.70 58.30 58.26
th 62.38 62.73 63.87 65.13 68.80 62.67 64.07 58.46 62.57 50.28 62.50 59.96 56.37 64.27 64.67 61.92
tr 62.18 65.73 69.08 65.89 72.55 70.00 70.62 56.05 65.15 50.92 58.04 63.41 55.23 63.43 65.17 63.56
ur 50.14 47.56 43.49 46.77 37.84 44.05 44.35 48.22 46.37 35.05 48.50 45.07 53.21 44.29 47.37 45.49
vi 63.33 68.76 69.96 68.40 71.96 72.26 72.34 54.65 67.58 52.18 60.30 63.01 55.47 66.67 66.47 64.89
zh 65.13 70.48 72.57 70.08 80.56 75.61 74.97 58.48 70.40 50.66 61.04 63.67 56.81 67.11 71.50 67.27

Table 5: Detailed results of Pythia on XNLI dataset.
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Model Train Test Averagear bg de el en es fr hi ru sw th tr ur vi zh

LLaMA-6.7B

Zero-shot 33.47 33.83 33.45 33.35 33.75 34.47 34.45 33.65 33.85 33.19 33.33 33.31 33.49 33.33 33.41 33.62
Average 58.32 70.74 70.68 60.90 75.32 72.25 71.99 55.28 70.04 45.79 52.19 54.42 50.98 56.71 65.52 62.07
ar 64.75 76.55 76.75 65.27 82.83 78.64 78.04 58.96 75.47 49.36 57.43 59.04 54.51 61.30 71.60 67.37
bg 61.22 79.36 79.86 64.93 85.53 81.94 80.92 56.33 77.54 46.69 52.59 57.37 50.98 60.00 71.14 67.09
de 61.04 79.32 80.92 64.99 87.78 82.99 81.96 54.89 78.24 46.11 50.60 56.53 48.82 58.50 70.38 66.87
el 64.03 76.79 77.78 68.00 80.70 78.76 78.18 62.08 76.43 49.84 54.99 58.92 56.23 61.90 71.66 67.75
en 52.69 72.79 75.81 57.39 86.85 77.56 76.99 46.97 73.09 40.58 46.57 51.12 45.51 54.71 61.82 61.36
es 55.99 76.57 79.22 60.66 86.55 81.00 81.22 52.89 76.31 42.63 46.59 53.91 46.63 56.09 67.62 64.26
fr 58.20 76.73 79.88 60.20 86.59 81.38 80.04 52.91 77.05 44.05 49.56 54.71 48.38 57.60 68.56 65.06
hi 61.82 70.58 71.32 66.17 73.81 72.18 72.79 63.23 71.50 47.82 56.31 57.21 57.41 59.08 68.78 64.67
ru 61.54 77.78 79.42 64.35 85.87 82.10 80.66 57.98 77.96 47.68 52.26 56.75 51.46 59.36 70.06 67.02
sw 53.33 53.47 47.35 52.67 52.20 49.52 49.32 50.08 52.30 52.57 50.70 47.19 48.12 48.46 54.53 50.79
th 50.40 53.77 50.04 51.30 50.52 49.72 51.98 48.32 52.20 45.29 57.41 45.99 46.65 48.38 56.83 50.59
tr 60.50 72.10 72.22 64.35 71.90 73.55 73.01 57.94 70.74 47.86 54.81 61.12 52.48 59.84 64.83 63.82
ur 50.28 48.98 41.72 50.08 43.61 44.25 44.65 52.69 47.27 35.57 47.92 42.28 53.31 45.47 47.84 46.39
vi 60.84 73.11 74.01 63.09 75.77 74.31 74.63 57.41 72.69 47.60 52.42 58.10 50.48 61.78 67.37 64.24
zh 58.20 73.19 73.95 59.98 79.24 75.79 75.41 56.45 71.76 43.17 52.63 56.01 53.79 58.16 69.84 63.84

LLaMA-13B

Zero-shot 32.95 33.39 33.35 33.33 33.95 33.49 33.23 33.31 33.11 33.23 33.37 33.35 33.29 33.37 33.17 33.33
Average 62.07 75.50 76.25 63.31 80.75 77.85 77.52 60.64 74.30 47.24 56.55 60.73 55.51 60.57 70.81 66.64
ar 66.89 78.70 79.26 66.77 83.93 81.50 81.00 64.53 77.03 49.88 59.96 63.79 58.56 63.65 74.69 70.01
bg 64.77 80.66 81.36 67.64 86.91 83.47 82.93 62.63 79.58 48.74 58.72 63.27 56.91 63.29 73.95 70.32
de 64.65 80.46 82.51 66.81 88.68 84.33 83.65 60.22 79.06 48.62 56.77 63.15 54.11 62.00 73.53 69.90
el 65.93 79.26 80.36 69.24 85.89 82.71 81.36 64.69 78.80 50.22 59.20 64.47 58.66 64.43 74.31 70.64
en 55.65 73.37 76.97 56.71 87.88 78.04 77.90 54.41 73.73 43.25 52.22 55.57 48.70 56.75 68.32 63.96
es 62.42 79.58 80.96 64.89 87.19 82.93 82.20 59.42 77.50 44.41 53.91 60.28 52.30 59.78 72.00 67.98
fr 62.57 80.52 82.18 64.19 89.66 83.99 83.03 60.48 79.52 46.13 55.97 61.16 54.23 61.28 73.95 69.26
hi 65.09 75.69 75.55 67.64 79.26 77.96 78.30 66.45 74.87 47.94 59.68 62.69 60.06 62.83 73.51 68.50
ru 63.65 80.44 81.74 66.71 88.12 83.43 82.48 60.96 78.80 46.77 56.77 64.11 55.43 62.10 73.91 69.69
sw 58.66 64.87 63.83 60.32 64.27 64.79 66.55 56.05 63.13 53.51 56.51 57.47 53.51 57.41 61.60 60.17
th 62.77 73.65 72.85 63.31 73.09 75.03 74.81 60.68 72.89 47.56 60.84 60.80 56.25 61.74 71.32 65.84
tr 63.65 76.69 77.80 66.25 84.05 80.18 79.14 62.24 74.25 49.76 56.71 64.79 57.90 62.14 70.74 68.42
ur 49.62 53.99 53.69 42.36 48.08 53.61 53.25 56.31 54.23 38.52 43.37 46.85 55.17 46.55 54.05 49.98
vi 64.35 77.52 78.08 67.37 81.44 80.62 80.04 62.06 76.21 50.18 60.06 63.01 57.33 64.75 73.13 69.08
zh 60.38 77.03 76.67 59.40 82.79 75.09 76.23 58.54 74.91 43.15 57.49 59.54 53.51 59.78 73.19 65.85

LLaMA-32.5B

Zero-shot 33.03 34.01 33.31 33.01 38.92 33.83 33.95 33.69 33.53 32.46 31.92 32.30 33.19 34.29 33.57 33.67
Average 68.63 80.68 81.27 72.29 86.00 83.36 82.51 66.20 79.37 50.63 60.15 65.88 59.56 67.47 76.65 72.04
ar 71.48 82.32 81.78 75.09 84.87 84.39 83.93 68.94 80.26 52.67 63.39 67.58 62.24 70.58 78.46 73.87
bg 70.84 83.27 84.57 74.45 89.92 86.59 85.93 68.46 82.30 51.82 60.50 67.07 61.12 69.82 78.84 74.37
de 67.94 82.53 83.49 72.22 90.18 85.97 85.07 65.05 81.20 49.96 58.54 65.79 57.17 67.49 77.05 72.64
el 73.07 82.63 82.63 76.87 86.53 85.29 84.47 69.58 80.90 50.52 65.27 68.58 63.35 71.28 79.18 74.68
en 59.92 78.46 80.14 64.29 90.58 82.97 82.00 57.82 78.94 44.01 49.20 58.70 51.04 59.36 74.41 67.46
es 66.79 81.42 84.01 70.46 90.36 85.85 84.89 63.97 81.00 49.88 56.71 65.65 56.95 65.93 77.41 72.09
fr 66.15 81.62 83.93 70.84 90.02 85.73 84.53 63.31 80.42 51.16 58.86 65.43 55.77 64.29 77.49 71.97
hi 71.12 81.22 81.88 75.17 85.53 84.17 83.47 70.48 80.14 50.90 63.29 67.94 63.15 69.46 78.20 73.74
ru 69.58 83.03 84.39 72.79 90.08 87.03 85.77 66.05 82.12 51.70 59.86 66.97 59.96 68.86 78.34 73.77
sw 64.35 77.56 79.34 66.61 84.25 81.12 80.20 62.67 76.37 57.15 58.46 64.77 56.53 66.13 74.03 69.97
th 71.20 81.24 80.56 75.03 82.16 82.34 81.64 68.16 78.86 50.32 64.19 66.61 62.16 69.90 78.08 72.83
tr 69.40 81.40 82.48 73.13 88.20 85.17 83.99 67.80 80.40 52.44 60.94 69.42 60.68 69.22 76.73 73.43
ur 65.31 68.62 65.47 67.72 66.99 65.07 64.83 64.25 66.71 43.15 57.19 58.46 59.06 59.72 64.39 62.46
vi 71.78 82.32 82.42 76.17 84.57 84.27 83.09 69.14 80.14 53.49 64.65 67.76 63.25 71.98 77.90 74.20
zh 70.48 82.53 82.00 73.57 85.83 84.41 83.87 67.29 80.78 50.28 61.18 67.49 60.92 68.04 79.24 73.19

Table 6: Detailed results of LLaMA on XNLI dataset.
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Model Train XCOPA LogiQA GSM8K

en fr zh Average en fr zh Average en fr zh Average

BLOOM-560M

Zero-shot 50.00 50.00 50.00 50.00 20.28 20.28 20.28 20.28 2.40 2.00 1.20 1.87
Average 48.73 50.13 51.13 50.00 22.63 24.37 22.43 23.14 3.07 1.73 1.33 2.04
en 49.00 52.00 48.80 49.93 23.50 25.19 22.27 23.66 4.80 2.00 0.00 2.27
fr 48.80 51.40 51.40 50.53 23.20 25.35 20.43 22.99 2.00 1.60 0.80 1.47
zh 48.40 47.00 53.20 49.53 21.20 22.58 24.58 22.79 2.40 1.60 3.20 2.40

BLOOM-1.7B

Zero-shot 49.20 49.80 50.00 49.67 19.97 20.58 20.28 20.28 1.60 2.40 2.40 2.13
Average 49.13 50.20 51.00 50.11 25.14 26.11 22.32 24.53 4.40 4.27 4.27 4.31
en 48.20 50.20 50.20 49.53 25.65 25.35 21.04 24.01 5.60 5.20 4.00 4.93
fr 49.60 49.80 50.60 50.00 26.73 28.11 22.73 25.86 4.00 4.80 2.80 3.87
zh 49.60 50.60 52.20 50.80 23.04 24.88 23.20 23.71 3.60 2.80 6.00 4.13

BLOOM-7.1B

Zero-shot 49.80 51.60 50.00 50.47 23.04 20.89 19.97 21.30 2.80 3.20 2.40 2.80
Average 52.00 49.33 50.67 50.67 26.16 26.73 24.83 25.91 11.07 12.00 8.27 10.44
en 54.00 48.80 51.40 51.40 25.81 23.96 23.35 24.37 11.60 14.00 8.80 11.47
fr 50.20 49.00 50.40 49.87 26.27 28.73 25.81 26.93 11.20 10.00 7.60 9.60
zh 51.80 50.20 50.20 50.73 26.42 27.50 25.35 26.42 10.40 12.00 8.40 10.27

Pythia-410M

Zero-shot 50.00 49.80 50.00 49.93 20.28 23.50 20.28 21.35 2.80 2.00 3.20 2.67
Average 50.13 50.80 48.93 49.96 23.76 21.76 21.81 22.44 2.53 2.27 2.00 2.27
en 50.20 50.40 49.80 50.13 25.65 22.12 21.66 23.14 2.40 2.80 2.00 2.40
fr 50.20 50.80 50.20 50.40 25.19 21.66 21.66 22.84 2.80 2.80 1.20 2.27
zh 50.00 51.20 46.80 49.33 20.43 21.51 22.12 21.35 2.40 1.20 2.80 2.13

Pythia-1.4B

Zero-shot 50.00 50.00 50.00 50.00 20.28 20.89 20.28 20.48 2.00 2.00 1.60 1.87
Average 49.73 50.73 49.53 50.00 22.63 21.30 21.61 21.85 6.27 4.00 4.67 4.98
en 49.60 51.60 50.20 50.47 21.20 20.12 19.97 20.43 8.40 3.20 3.20 4.93
fr 49.80 51.00 49.80 50.20 25.04 19.51 23.50 22.68 6.80 8.00 1.60 5.47
zh 49.80 49.60 48.60 49.33 21.66 24.27 21.35 22.43 3.60 0.80 9.20 4.53

Pythia-6.9B

Zero-shot 50.00 50.40 50.00 50.13 21.97 22.27 20.28 21.51 4.80 3.20 2.00 3.33
Average 50.33 51.93 49.20 50.49 28.21 27.96 26.01 27.39 10.27 8.67 7.07 8.67
en 50.80 53.40 50.00 51.40 32.10 30.26 27.96 30.11 12.80 10.00 6.00 9.60
fr 50.00 51.00 49.20 50.07 25.65 27.19 24.42 25.76 10.80 11.60 4.40 8.93
zh 50.20 51.40 48.40 50.00 26.88 26.42 25.65 26.32 7.20 4.40 10.80 7.47

LLaMA-6.7B

Zero-shot 54.40 51.00 52.00 52.47 21.97 24.88 22.27 23.04 4.00 3.20 3.20 3.47
Average 72.00 63.67 54.07 63.24 33.59 32.10 29.03 31.58 22.93 18.00 10.13 17.02
en 85.60 71.40 59.80 72.27 37.63 33.79 31.34 34.25 27.20 18.00 7.20 17.47
fr 72.20 65.40 51.00 62.87 37.79 36.41 33.03 35.74 24.40 21.60 7.20 17.73
zh 58.20 54.20 51.40 54.60 25.35 26.11 22.73 24.73 17.20 14.40 16.00 15.87

LLaMA-13.0B

Zero-shot 62.20 52.20 50.60 55.00 25.35 26.42 20.28 24.01 5.20 3.20 3.20 3.87
Average 85.40 76.33 61.40 74.38 38.91 37.22 34.66 36.93 30.93 25.73 16.93 24.53
en 89.20 76.80 63.80 76.60 39.78 37.63 33.03 36.82 34.40 27.60 13.20 25.07
fr 83.00 75.20 58.80 72.33 40.40 36.87 35.18 37.48 31.60 30.40 15.20 25.73
zh 84.00 77.00 61.60 74.20 36.56 37.17 35.79 36.51 26.80 19.20 22.40 22.80

LLaMA-32.5B

Zero-shot 50.00 50.00 50.00 50.00 20.58 27.19 21.20 22.99 15.20 10.00 3.20 9.47
Average 95.13 91.27 76.07 87.49 49.51 46.80 43.57 46.63 46.80 43.60 29.87 40.09
en 95.40 90.00 73.80 86.40 50.54 45.93 43.32 46.59 46.80 46.40 26.00 39.73
fr 95.40 93.00 77.20 88.53 51.15 47.93 41.32 46.80 51.20 45.60 28.40 41.73
zh 94.60 90.80 77.20 87.53 46.85 46.54 46.08 46.49 42.40 38.80 35.20 38.80

Table 7: Detailed results of BLOOM, Pythia, and LLaMA on XCOPA, LogiQA, and GSM8K datasets.
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Figure 6: Accuracy gain of BLOOMs and LLaMAs on test languages by subtracting the performance of models
trained on each test language from those trained on other languages.
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Figure 7: Accuracy gain of BLOOMs and LLaMAs on test languages by subtracting the performance of models
trained on English from those trained on other languages.
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