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ABSTRACT

We explore the universality of neural encodings in convolutional neural networks
trained on image classification tasks. We develop a procedure to directly compare
the learned weights rather than their representations. It is based on a factorization
of spatial and channel dimensions and measures the similarity of aligned weight
covariances. We show that, for a range of layers of VGG-type networks, the learned
eigenvectors appear to be universal across different natural image datasets. Our
results suggest the existence of a universal neural encoding for natural images. They
explain, at a more fundamental level, the success of transfer learning. Our work
shows that, instead of aiming at maximizing the performance of neural networks,
one can alternatively attempt to maximize the universality of the learned encoding,
in order to build a principled foundation model.

1 INTRODUCTION

Deep neural networks reliably achieve high performance on visual tasks such as image classification,
with remarkable robustness to the exact details of the architecture, initialization, and training proce-
dure. Furthermore, transfer learning results show that, in some cases, networks trained on one task
can perform well on other tasks by simply retraining the last few layers. In the context of computer
vision tasks, this raises the question: to what extent do networks share a universal encoding of images,
irrespective of their architecture and training dataset? What does this encoding look like? Can one
identify generic learned features across datasets and tasks?

Deep networks can be studied through two main points of view: one can compare their representations
(how an input image is expressed through neural activations) or their encodings (how a training dataset
is encoded in network weights). The dominant approach to studying the properties of neural networks
has been through representations. It has been shown that representations learned by networks trained
from different initializations appear to be similar over many layers (Raghu et al., 2017; Kornblith
et al., 2019). Similar observations have been made in the context of human neural representations
by studying fMRI response patterns in visual cortex (Haxby et al., 2011), as well as between neural
network representations and IT spiking responses (Yamins et al., 2014). Here, we ask whether this
similarity at the level of network representations arises from a more fundamental similarity between
their learned weights, i.e., in the functions implemented by different networks rather than their outputs.
In addition, we explore which aspects of the encoding are similar.

Neural encodings (or network weights) are less easily prone to analysis than hidden representations
and have thus been less studied. The weights of convolutional neural networks (CNNs) learn to
exploit simultaneous correlations across channels and between neighboring pixels to solve numerous
tasks. The first layer of CNNs can be directly visualized and the learned spatial filters are known to be
Gabor-like filters (Krizhevsky et al., 2012) for a wide range of settings. Recent work by Cazenavette
et al. (2022) pointed out that, in CNNs, most of the learning deals with channel mixing: the spatial
filters can be kept frozen from their random initializations, and the remaining learning of channel
mixing leads to similar performance. Exploring the structure of all weights, including channel-mixing
dimensions, is more challenging. While the input basis of the first layer is fixed (for images, it is
aligned with the pixel coordinate system), the other layers are expressed in random bases set by the
neurons of the previous layers. This random shuffling has been a challenge to explore the properties
of encodings and, to a great extent, is at the origin of the black box qualification of neural networks.
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Recently, Guth et al. (2023) have shown that this random shuffling can be canceled by aligning the
hidden representations to a common reference.

In this paper, we explore the statistical properties of CNN weight tensors following the approach of
Guth et al. (2023). We first find that the learned eigenvectors of spatial filters are surprisingly simple.
They are low-dimensional and, to first order, they do not depend on the filter size, dataset or task over
a wide range of settings. In other words, a universal set of spatial filter eigenvectors emerges. It is
therefore possible to factorize CNN weight tensors to separate the information processing between
space and channels. We do so using a frozen set of such spatial filters and only learn weights along
channels. It then becomes possible to compare learned channel eigenvectors between networks
and we show that, in the context of natural images, the learned channel-mixing features also show
signatures of universality: they are similar across datasets well beyond the first few layers.

Our main contribution is to characterize the joint processing of CNNs along spatial and channel
dimensions and show that they typically use a preferred encoding strategy:

• We develop a procedure to compare the weights of networks rather than their representations.
This can be applied to measure similarities between neural encodings of different datasets
and thus, indirectly, measure similarities between datasets.

• We show the emergence of a seemingly universal encoding of natural images, through both
spatial filters and to a lesser extent channel weights. We find encoding similarity across
datasets and tasks over an appreciable range of layers. It explains at a more fundamental
level the success of transfer learning, self-supervised learning, and foundation models.

2 EXPLORING LEARNED SPATIAL FILTERS

2.1 SPATIAL FILTERS IN CNNS

At each layer, a convolutional neural network simultaneously mixes information across the spatial and
channel dimensions of a representation by learning a weight tensor W containing Cout×Cin× k× k
trainable parameters. In general, the respective importance of spatial and channel mixing is unclear
as the two are entangled in a single linear operation. How does the training process use this multi-
dimensional capacity? How much and what kind of information emerges in the spatial and channel
domains?

The first layer of CNNs, which can be directly visualized, is known to learn Gabor-like filters
(Krizhevsky et al., 2012) in a wide range of settings. However, the properties of learned spatial filters
at deeper layers have not yet been exposed clearly. To gain some insight, we first train a VGG-11
(Simonyan & Zisserman, 2015) (which has L = 8 convolutional layers) on the ImageNet dataset
(Russakovsky et al., 2015). We first set the filter size k to 7 to ease interpretation. We slightly simplify
the architecture by removing biases and using a linear classifier, see Appendix B for details. A visual
inspection of the spatial filters of each layer reveals a set of rather smooth and redundant spatial
filters, suggesting a low-dimensional statistical description. A subset is shown in Appendix A.

2.2 SPATIAL EIGENVECTORS

To perform a statistical comparison, we compute eigenvectors of spatial filters at all layers for
different filter sizes. More precisely, we diagonalize the k2 × k2 “spatial” covariance obtained by
averaging over the Cout×Cin channel dimensions as in Trockman et al. (2023). The resulting leading
eigenvectors are shown in panel (a) of Figure 1. Interestingly, for layers l ≥ 2, we observe very
consistent sets of eigenvectors, dominated by a low-dimensional subset, which was not apparent on
visual inspection of the individual filters. This means that the main difference between the covariances
of the layers (as seen in Appendix A) originates from the eigenvalues rather than the eigenvectors. We
also note a slight dilation of the filters affecting all eigenvectors with depth. On occasions, subsequent
ranks appear in flipped order. This happens when consecutive eigenvalues are similar. Panel (a) also
shows the eigenvectors of filters learned with smaller filter sizes k = 3 and 5. Although the resulting
filters are in different spaces R3×3,R5×5,R7×7, their visual correspondence is clear. It suggests
that these eigenvectors are determined by a mechanism that does not depend on layer depth nor
filter size. Pushing the exploration further, we show in panel (c) similar measurements for different
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Figure 1: Visualization of spatial filter eigenvectors learned by VGG networks in various settings.
(a) Learned spatial eigenvectors on ImageNet for different filter sizes. For larger filter sizes, only
the first 9 eigenvectors are shown. The same set of eigenvector patterns can be seen for all layers
l ≥ 2, while the first layer (shown separately) displays a different behavior. On occasions, subsequent
ranks appear in flipped order due to similar eigenvalues, as indicated with arrows. (b) When training
with random labels on ImageNet, we recover the same set of filters, slightly distorted. The spatial
eigenvectors can thus be mostly learned without labels. (c) Spatial eigenvectors for VGG networks
trained on different datasets. The ImageNet dataset was resized to the 32× 32 resolution for direct
comparison with the other datasets. The learned spatial eigenvectors are similar across datasets (and
depth), and are similar to the filters learned on higher-resolution images. Note that only the first 6
convolutional layers are relevant given the smaller size of the images.

datasets (CIFAR10, CIFAR100, and ImageNet) on standard classification tasks and resized to the
same 32 × 32 resolution. In all cases, the eigenvectors show again the same canonical set. It is
slightly noisier than the version presented above due to the lower resolution of the images. We also
note that the effective spatial support of the filters is slightly smaller for lower-resolution images,
as can be expected. Finally, we explore the effect of the training task: we train our network on
ImageNet (at 224×224 resolution) on random labels (Zhang et al., 2021), which can be considered as
a self-supervised training task leading to a compressed representation of the data. The corresponding
eigenvectors, shown in panel (b), reveal that even with random labels, the same set of eigenvectors
emerges again (Maennel et al., 2020). In summary, this canonical set is observed for different filter
sizes, datasets and tasks: it shows signatures of universality.

Several researchers have proposed that certain aspects of the weights of CNNs may be determined
by symmetry groups of the data (Cohen & Welling, 2016; Kondor & Trivedi, 2018; Marchetti et al.,
2023). Both Trockman et al. (2023) with artificial networks and Pandey et al. (2022) in the context of
receptive fields of biological sensory neurons have shown that the covariance of learned spatial filters
can be mathematically modeled. In summary, the existence of a canonical set of spatial filters which
can be defined mathematically implies that most of the learning ends up taking place along channel
dimensions.

2.3 FACTORIZING SPACE AND CHANNELS

Motivated by the existence of a canonical set of spatial filters, we introduce a simplified architecture:
we factorize the standard 2D convolution operation into a depthwise and pointwise (1×1) convolution
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Figure 2: A schematic view of the first two layers of two networks trained from different random
initializations. At layer one, the weight eigenvectors are aligned by default as the input originates from
the aligned image pixels. Collectively, the neurons act as an operator filtering certain directions of
variation. Individually, each neuron defines an axis for the next layer. Expressed in this random basis,
layer-two weight eigenvectors are no longer aligned between the two networks. An activation-based
representation alignment can be used to meaningfully rotate one basis onto the other. The middle
panels show the cosine similarities between weight covariance eigenvectors of the two networks
trained on CIFAR10, with and without activation-based alignment. The bottom-right panel shows that
almost all the performance originates from the range of ranks for which the correlation is detected.

so that each layer operates only across spatial or channel dimensions, similar to separable architectures
(Sifre & Mallat, 2013; Chollet, 2017). The depthwise convolution convolves each channel with a
fixed set of frozen (non-learned) filters, which we set to be the universal spatial eigenvectors observed
in the previous section. The non-linearity is applied after the depthwise convolution so that there is no
linear combination of these spatial filters across channels. It is followed by the pointwise convolution,
which is simply a 1× 1 convolution, i.e., a linear operation along channels applied at each spatial
location. Interestingly, this simplified architecture can recover most of the network performance,
similarly to Cazenavette et al. (2022); Trockman et al. (2023). See Appendix B for more details on
this architecture.

3 EXPLORING LEARNED CHANNEL WEIGHTS

Our goal is now to investigate what is being learned in the channel domain, using the factorized
architecture introduced in the previous section. We explain in Section 3.1 how this can be reduced
to comparing covariances of channel weights through an alignment procedure. We then define in
Section 3.2 measures of dimensionality and similarity of these learned covariances. Finally, we use
this approach to characterize neural encodings of different datasets and evaluate their universality in
Section 3.3.

3.1 COMPARING CHANNEL WEIGHTS OF DEEP NETWORKS

How does one meaningfully compare (channel) weights of two trained deep networks? Here, we
briefly review the approach introduced by Guth et al. (2023) and present the main ideas. The analysis
is more challenging than for the spatial filters: the latter are expressed in fixed spatially-aligned axes,
while channel weights are expressed in random bases set by the (randomly initialized) neurons of
the previous layer. This requires an alignment procedure between hidden representations before
comparing the weights. These concepts are illustrated in Figure 2.
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Aligning hidden layers and weights. We begin by comparing two hidden representations ϕ(x) and
ϕ′(x) learned by two different networks. In general, ϕ(x) and ϕ′(x) are not directly comparable (they
might even have different dimensionalities). Representational similarity analysis (Kriegeskorte et al.,
2008) instead compares their similarity structures (or kernels) ⟨ϕ(x), ϕ(y)⟩ and ⟨ϕ′(x), ϕ′(y)⟩, which
have empirically been found to be close in various settings (Raghu et al., 2017; Kornblith et al., 2019).
This implies that the variability in the representation between ϕ and ϕ′ must preserve this similarity
structure, and is thus limited to an orthogonal transform. In other words, when ⟨ϕ(x), ϕ(y)⟩ ≈
⟨ϕ′(x), ϕ′(y)⟩, there exists an orthogonal alignment matrix A such that ϕ′(x) ≈ Aϕ(x) (Guth et al.,
2023). It is defined by minimizing the mean-squared error

min
A

T
A=Id

E
[∥∥Aϕ(x)− ϕ′(x)

∥∥2], (1)

over orthogonal matrices A. This is also known as the Procrustes problem (Hurley & Cattell, 1962)
and can be solved in closed form (Schönemann, 1966). It corresponds to a so-called “shape metric”
(Williams et al., 2021) on the kernels defined by the representations (Harvey et al., 2023).

Now consider two neurons w and w′ in the next layer of the two different networks. What does it
mean for w and w′ to be equivalent? It seems natural to ask that the two neurons compute similar
outputs: ⟨w, ϕ(x)⟩ ≈ ⟨w′, ϕ′(x)⟩. Because ϕ(x) ̸= ϕ′(x), this condition is not equivalent to w ≈ w′.
Rather, using the fact that ϕ′(x) ≈ Aϕ(x), we have

⟨w′, ϕ′(x)⟩ ≈ ⟨w′, Aϕ(x)⟩ = ⟨ATw′, ϕ(x)⟩, (2)

so that the two neurons compute similar outputs when w ≈ ATw′, or equivalently, when w′ ≈ Aw.
Just like the alignment A maps representations in the first network to representations in the second
network, it maps next-layer neurons in the first network to equivalent neurons in the second network.
Comparing hidden neurons from different networks thus requires aligning their hidden representations
and taking this alignment into account in the comparison.

Comparing weight distributions through covariances. Comparing individual neurons in two
different networks amounts to searching for a one-to-one mapping between them. If the two networks
had the same neurons, but possibly in a different order, then their representations would differ by
a permutation (Entezari et al., 2022; Benzing et al., 2022; Ainsworth et al., 2022). The use of
rotations when aligning representations suggests that more variability might be present. Rather than
comparing individual neurons from two different networks, we search for similarities between the
neural populations at a global level, i.e., whether they have the same statistics. This corresponds to
testing whether the neurons in both networks can be modeled as samples from the same distribution,
as done in so-called “mean-field” analyses of neural networks.

Which statistics of the neural populations should we then measure and compare? Guth et al. (2023)
have shown that the covariance of neuron weights captures most of the encoding properties, as knowl-
edge of the weight covariances can be sufficient to generate new networks with similar performance.
In particular, the covariances at the end of training are the sum of a “learned” component and a
“random” component, the latter mostly resulting from the initialization. The learned component is
spanned by the leading eigenvectors and is rather low-dimensional, as low-rank approximations of
the learned weights result in negligible performance loss (see Figure 2).

Summary. Though the overall behavior of the network only depends on the collective properties of
the neurons, their weights are expressed in a basis defined by the individual neurons of the previous
layer. To compare weights between two networks, for each layer, we thus compute the alignment
matrix A between the input representations and use it to align the neuron weights of both networks.
The learned encodings can then be characterized by the leading eigenvectors (and eigenvalues) of the
weight covariances.

3.2 MEASURING AND COMPARING WEIGHT COVARIANCES

Similarly to our approach for spatial covariances in Section 2.2, we can compare the eigenvectors
of two channel covariance matrices after alignment. These eigenvectors however cannot be easily
visualized and interpreted, though can be compared by measuring cosine similarities between them.
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Another challenge is that channel covariance matrices are significantly higher-dimensional than
spatial covariance matrices, and the number of neurons (which here correspond to samples) is
comparable to or even smaller than the dimension. This results in inconsistent estimations of the
covariance matrices: in particular, their eigenvalues and eigenvectors deviate significantly from their
“ground-truth” values (if the number of neurons were infinite). Assessing whether two networks have
the same channel covariances thus requires some care. The dimensionality and similarity measures
of weight covariances we now introduce thus rely on a shrinkage of the covariance eigenvalues.

Eigenvalue shrinkage. The decomposition of the weight covariance in “learned” and “random”
components corresponds to the so-called “spiked” covariance model (Johnstone, 2001), under which
only eigenvectors with sufficiently large eigenvalues can be estimated (Baik et al., 2005). The learned
component of the covariance is thus optimally estimated by shrinking the eigenvalues of the empirical
covariance matrix (Donoho et al., 2018). More precisely, for a weight matrix of size Cout × Cin,
let γ = Cin/Cout, which measures the “sampling noise”. The eigenvalues of the Cin × Cin weight
covariance matrix are shrunk according to the formula

λ 7−→

{
λ−1−γ

2 +
√
(λ+1−γ

2 )2 − λ if λ > (1 +
√
γ)2,

0 otherwise,
(3)

with a normalization so that the initialization variance is equal to 1. This removes most of the noise
resulting from the limited number of neurons. We can thus meaningfully compare aligned weight
covariances through their estimated “learned” components.

Dimensionality of covariances. A first, indirect way to compare the resulting learned covariances
is by comparing their dimensionality. We define the effective rank reff of a matrix as its eigenvalue-
weighted mean rank. More precisely, if the covariance eigenvalues are λ1 ≥ · · · ≥ λd after shrinking,
we have

reff =

∑d
k=1 λk k∑d
k=1 λk

. (4)

We will see that this dimensionality measure is correlated with the difficulty of task (e.g., the number
of classes).

Similarity of covariances. A more direct and fine-grained comparison can be done by comparing
individual eigenvectors, as in Section 2.2. However, this suffers from instabilities, e.g. when individual
eigenvalues are too close. A more quantitative, summarized measure of similarity may be desired,
which can also more easily reveal trends as a function of hyper-parameters.

First, we wish to quantify the level of similarity between two covariance matrices C1 and C2 after
eigenvalue shrinkage. A relevant metric is the Bures-Wasserstein distance (Bhatia et al., 2019),
which corresponds to the optimal transport distance between two centered Gaussian distributions
of respective covariances C1 and C2 (Peyré & Cuturi, 2019, Remark 2.31). It thus measures the
displacement of individual neuron weights that is needed to change their global covariance from C1

to C2. It allows us to compare neural encodings by accounting for their statistical shapes and overlap.
This distance is defined as d2(C1, C2) = trC1 + trC2 − 2∥C1/2

1 C
1/2
2 ∥1, where ∥·∥1 is the nuclear

norm (the sum of the singular values). It can be turned into a cosine similarity with

cos θ(C1, C2) =
∥C1/2

1 C
1/2
2 ∥1√

trC1 trC2

. (5)

This metric allows quantifying similarities at the level of covariances rather than individual eigen-
vectors and is therefore better suited at revealing correlations potentially diluted over ranks. For
meaningful comparisons across varying layer dimensionalities, we normalize the resulting value. Its
zero point is defined as the cosine similarity cos θ(C1, O C1 O

T) between C1 and a random rotation
O ∈ O(Rd) of it, leading to non-zero but minimal eigenvector correlations. The upper bound is
defined as the cosine similarity cos θ(C1, Ĉ1) after a “resampling” of the covariance C1. We define
Ĉ1 as the estimated (shrunk) covariance obtained from Cout random Gaussian vectors of covariance
C1 + σ2Id, where σ2Id is the initialization variance. This leads to the normalized cosine similarity

S(C1, C2) =
cos θ(C1, C2)− cos θ(C1, O C1 O

T)

cos θ(C1, Ĉ1)− cos θ(C1, O C1 O
T)

. (6)
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This normalization enables comparisons of similarity levels at different layers, and can thus be used
to reveal trends across depth.

3.3 UNIVERSALITY OF WEIGHT EIGENVECTORS LEARNED FROM NATURAL IMAGES

We now compare the properties of neural encodings for networks trained on different datasets and
tasks. To do so, we measure the absolute value of the cosine similarity between eigenvectors of the
(aligned) weight covariances for the same factorized VGG architecture with frozen spatial filters but
different training contexts. We present our results in Figure 3. Each panel shows encoding similarities
of a given convolutional layer as a function of rank. We consider different training datasets and use
subsets of CIFAR10, CIFAR100, and ImageNet all downsampled to 32 × 32 resolution. We use
different tasks: true labels or random labels. The suffix (bis) refers to a different random initialization.
Using the same image resolution and architecture for all datasets ensures that all networks have the
same number of layers and receptive field sizes, allowing meaningful comparisons. For each trained
network, the effective rank reff is indicated by an arrow overlaid on the rank axis.

We begin our exploration by considering two networks trained on ImageNet but with different random
initializations. The encoding similarities are shown in the top row of the figure. First, we can
observe that, as depth increases, layer-based encodings become higher-dimensional. In addition, the
eigenvector similarities shown as a function of ranks show that the learned channel eigenvectors of
the two networks are very similar. This similarity will be quantified below. This comparison, for
which only the random initialization changed, provides a reference for our next experiments. This is
the maximum level of similarity one can expect.

We now consider networks trained on different datasets: CIFAR5 is the subset of CIFAR10 composed
of the first 5 classes and ImageNet100a/100b are two randomly chosen but disjoint subsets of
ImageNet classes. We present the encoding similarities in the bottom block of the figure. Interestingly,
within the relevant ranks, we find a high level of weight eigenvector similarity for all pairs of training
sets and over an appreciable range of layers. We can observe that datasets with more classes or
more diversity (such as ImageNet100 compared to CIFAR100) lead to encodings with more relevant
eigenvectors. Deeper into the networks, these similarities gradually vanish. This is expected as the
encodings have to become task-specific toward the final classifier. This overview shows that, over
a range of layers, networks learn a universal and relatively low-dimensional encoding of natural
image datasets. This implies that, in principle, such encodings do not need to be learned and could
be originally preset in a given architecture. Only the deeper task-dependent layers encodings would
have to be learned. Figure 3 suggests that, for a range of layers, different trained networks provide
us with different samplings of what could be a universal encoding of natural image datasets. These
results reveal the origin of transfer learning capabilities.

We then consider networks trained on different classification tasks: using true or random labels with
ImageNet downsampled to 32 × 32 resolution. For these experiments, we use data augmentation
with random labels: it thus encourages the network to be invariant to horizontal flips and small spatial
shifts while compressing the training dataset. The results are presented in the top block of the figure.
Interestingly, for our VGG-type architecture, the weak correlation between the encodings of true and
random label classification tasks reveals that the corresponding encoding strategies are significantly
different. However, when comparing different realizations of random labels (“a” and “b”), one finds
a common encoding scheme over a range of layers.

This overview of encoding similarities is summarized in Figure 4. It shows the normalized cosine
similarity between the covariances of two trained networks (eq. 6), allowing a more quantitative
comparison. In the left panel, we start by showing the encoding similarity for two networks trained
on ImageNet but with different random initializations (blue curve). We then show the encoding
similarities in the case of random labels (red and green curves). Similarly, we observe a high level
of similarity up to the layer ℓ = 5, showing that learning on different sets of random labels leads to
similar encodings. In contrast, as mentioned above, when we compare what is learned with true and
random labels, we find a much lower correlation: the two encodings are mainly different. We detect a
subset of shared eigenvectors leading to a correlation amplitude of about 0.2, showing the existence
of some channel eigenvectors systematically learned in these two tasks. In the right panel, we show
the encoding similarity for all of the pairs of datasets considered above. It reveals a continuous trend
with depth and shows the existence of a shared encoding at most layers. In summary, our exploration
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Figure 3: Universality of the leading covariance eigenvectors. Each panel shows pairwise cosine
similarities between the first weight covariance eigenvectors as a function of rank, for VGG networks
with frozen spatial filters trained on different classification tasks. The colormap range is defined in
terms of the expected level of correlation between two random vectors (which is 1/

√
d), so that this

base level corresponds to the color white and statistically significant correlations (5 times this base
level) correspond to the color black. The axis arrows indicate the effective rank of the corresponding
weight covariance spectra. They show how the dimensionality of the learned subspaces increases
with depth. Top: Networks are trained on ImageNet at 32× 32 resolution with different labels. The
first row indicates the similarity between learned encodings when only the random initialization
is changed (indicated by the suffix “bis”). The subsequent rows show that the channel encodings
emerging during training with true versus random labels are fundamentally different. However, the
channel eigenvectors learned on different realizations of random labels are similar to each other,
suggesting a consistent encoding strategy for random label tasks. Bottom: Networks are trained on
various subsets of the CIFAR10, CIFAR100 and ImageNet datasets. The panels show that similar
weight eigenvectors are consistently learned across datasets for a range of layers.

indicates the existence of some level of universality and two rather distinct encoding strategies which
are shared across disjoint sets of tasks, when true or random labels are considered.

4 DISCUSSION

Does a universal encoding of natural images emerge in networks trained on different datasets? What
does it look like? Answering these questions at the most fundamental level requires an investigation
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Figure 4: Normalized covariance similarities (eq. 6) for pairs of training tasks as a function of depth.
The left panel confirms that the network learns different encodings when trained on true and random
labels, but that this encoding does not depend on the realization of the random labels. The right panel
quantifies the level of universality observed at each layer.

of the network weights. To do so, we have developed a procedure to compare the weights of networks
rather than their representations. It extends the work of Guth et al. (2023) by including a space-
channel weight factorization of standard CNN architectures, as well as dimensionality and similarity
metrics which rely on optimal shrinkage of covariance eigenvalues. Our approach can be used to
measure similarities between learned network weights and, equivalently, similarities between different
datasets through their neural encodings. It can be used to define universality classes of datasets.

We have found that space and channel dimensions can be considered separately. In both cases, the
relevant learned features are encoded through weight eigenvectors. Along spatial dimensions, we
have evidenced a compact set of spatial filter eigenvectors which appears to be universal. It does not
depend on filter size, layer depth, or training dataset over a wide range of settings. The same spatial
filters also emerge when a network is trained on random labels. The learned channel eigenvectors also
show signatures of universality. We show that they display a high level of correlation between datasets
and tasks over an appreciable range of layers. Interestingly, we also show that when trained on
random labels, VGG-type networks use a different encoding strategy. This second encoding however
does not depend on the realization of the random labels, hinting that universality classes only depend
on the amount of label noise. We do not attempt to characterize channel eigenvectors individually. In
addition, assessing whether they are similar across layers is more challenging than along space and
beyond the scope of this work. We do not yet know if similar functions are implemented at different
layers. If so, one could develop architectures with weight-sharing across layers, greatly simplifying
the learning process.

Our similarity metric can be used to identify trained networks with different or unexpected properties.
It is now possible to measure the effect of architecture and training recipes on what is learned. For
instance, it would be interesting for future work to look at the effects of adversarial training on the
learned weight covariances as well as the type of task (classification versus generation). The metrics
we introduce can also be computed at various points during training, and can thus be used to compare
learning trajectories instead of just endpoints. Our results explain at a more fundamental level the
success of transfer learning, self-supervised learning and foundation models. Instead of aiming at
maximizing performance when training, one can also attempt to maximize the universality of the
learned encoding and get closer to a foundation model. What are the architectural components that
lead to increased universality of the learned features? Furthermore, an ensemble of trained networks
can be viewed as a set of partial projections of such a foundation model. What would be the best
strategy to define this universal encoding?
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A VISUALIZATION OF LEARNED SPATIAL FILTERS

We show a portion of the spatial filters learned by VGG on ImageNet in Figure 5.

Figure 5: Visualization of the spatial filters learned by a VGG-11 network with 8 convolutional layers and filters
of size 7× 7. At each layer, we only show the filters corresponding to the first 16 input and output channels.

B EXPERIMENTAL DETAILS

B.1 SIMPLIFIED VGG ARCHITECTURE

We perform several modifications on the VGG-11 architecture (Simonyan & Zisserman, 2015) with
batch normalization layers (Ioffe & Szegedy, 2015) to simplify the analysis:

• We remove all learned biases from convolutional and linear layers.

• The batch normalization layers are positioned after the non-linearity (rather than before), and
we remove their parameters learned by gradient descent (achieved with affine=False
in the PyTorch library (Paszke et al., 2019)).

• We replace the MLP classifier with a single fully-connected linear layer (except in Figure 1
(a,b).

The first two modifications have a negligible effect on the classification performance of the trained
networks. The third modification ensures that the vast majority of the parameters are in the convolu-
tional layers so that our comparisons are as exhaustive as possible. However, our analysis could also
be applied to the linear layers in the MLP classifier as-is.

B.2 FACTORIZED ARCHITECTURES

In Section 3, we introduce factorized architectures. At each stage, the standard block JointConv–
ReLU–BatchNorm (recall that we swapped the order between the non-linearity and the batch normal-
ization layer) is replaced with DepthwiseConv–ReLU–BatchNorm–PointwiseConv. The depthwise
convolution has K = 10 frozen (non-learned) filters. It can be implemented as a group convolu-
tion where the number of groups is equal to the number of input channels Cin (resulting in K Cin

output channels). We use the first 5 universal eigenvectors f1, . . . , f5 together with their opposites
−f1, . . . ,−f5. Note that this equivalent to using an absolute value non-linearity concatenated with an
identity skip-connection. The pointwise (or 1× 1) convolution reduces the number of channels from
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K Cin to Cout and is applied over channels only. It is thus a Cout ×KCin matrix, and corresponds
to setting the kernel size of the convolution layer to 1.

B.3 TRAINING HYPERPARAMETERS

Network weights are initialized with i.i.d. samples from a uniform distribution (Glorot & Bengio,
2010) with so-called Kaiming variance scaling (He et al., 2015), which is the default in the PyTorch
library (Paszke et al., 2019). Networks are trained for 90 epochs, with an initial learning rate of 0.005
that is divided by 10 every 30 epochs. We use the SGD optimizer with a momentum of 0.9 and no
weight decay. We use classical data augmentations: horizontal flips and random crops for CIFAR10
and CIFAR100, and random resized crops of size 224 and horizontal flips for ImageNet and subsets.

For the random label experiments in Figure 1 (b), following Zhang et al. (2021), we disabled data
augmentation, removed batch normalization layers, and doubled training time (with learning decays
being performed every 60 epochs). We also increased the initial learning rate to 0.02. For the random
label experiments in Figures 3 and 4, we kept data augmentation and batch normalization layers, and
quadrupled the training time with an initial learning rate of 0.005.
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