
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRIMR: VERIFIER-BASED TRAINING-FREE THINKING
TRIMMING FOR EFFICIENT TEST-TIME SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) demonstrate exceptional capability in tack-
ling complex mathematical and logical tasks by leveraging extended Chain-of-
Thought (CoT) reasoning. Test-time scaling methods—such as prolonging CoT
with explicit token-level exploration—can push LRMs’ accuracy boundaries, but
they incur significant decoding overhead. A key inefficiency source is LRMs of-
ten generate redundant thinking CoTs, which demonstrate clear structured over-
thinking and underthinking patterns. Inspired by human cognitive reasoning pro-
cesses and numerical optimization theories, we propose TrimR, a verifier-based,
training-free, efficient framework to trim reasoning and enhance test-time
scaling, explicitly tailored for production-level deployment. Our method employs
a lightweight, pretrained, instruction-tuned verifier to detect and truncate redun-
dant intermediate thoughts of LRMs without any LRM or verifier fine-tuning.
We present both the core algorithm and asynchronous online system engineered
for high-throughput industrial applications. Empirical evaluations on Ascend
NPUs and vLLM show that our framework delivers substantial gains in infer-
ence efficiency under large-batch workloads. In particular, on the four MATH500,
AIME24/25, and GPQA benchmarks, the reasoning runtime of QwQ-32B,
DeepSeek-R1-Distill-Qwen-32B, and Pangu-R-38B is improved by up to 70%
with negligible impact on accuracy.

<think>\nOkay, so I have this problem about Aya's
morning walk ... Let me try to parse it step by step. ...

\n\nWait, ... so total time is 3 hours 24 minutes,
which is 204 minutes. So is that the answer?

\n\nWait, ... so 204 is correct. Hmm. Alternatively,
maybe I made a mistake in interpreting the total time?

\n\nAlternatively, maybe I need to present the answer
in hours converted to minutes ..., so 204 is the answer.

\n\n I think I already thought for a long time, ... deduce the
final answer from the content above. </think>\n\n

Training-Free Smaller Verifier Model

Overthinking
Trimming

Underthinking
Trimming

Repetition Truncation

Guidance Prompts to Stop LRMs
Thinking Forcefully/Gently

Large Reasoning Models
Seamlessly Thinking Generation

TrimR: Think Trimming
Asyn. redundant thinking detection and intervention

External Verifier Model Based

Check if the two answers provided are logically or mathematically
equivalent, regardless of formatting or phrasing.
\n\n$N-SHOT_COTs \n\nQuestion: $QUESTION \nAnswer 1:
$ANSWER1 \nAnswer 2: $ANSWER2 \nAre they equivalent?\n

Thought w/o Answer Thought with Answer Guidance Prompt to Stop Thinking Conclusion

Check if the following sentences from a reasoning model reach a
conclusion, regardless of formatting or phrasing, and solve the
question. \n\n$N-SHOT_COTs \n\nQuestion:
$QUESTION \nContent: $CONTENT\n[Yes/No]\n
Answer Equivalence Checking Prompt

Answer Existence Checking Prompt

\n\nGiven that Aya walks 9 kilometers ... \n\nThus, the
number of minutes the walk ... is \(\boxed{204}\).

0 0 11 1
Thinking CoT

No conclusion
solution 204
solution=204

Existence checking

Equivalence checking Overthinking
detected !!

Example of Overthinking Detection with Verifiers3

1

2a

4

2b

5

Solutions
Converge

Can't Converge
within Budget

......
0
1

Figure 1: The TrimR framework. (1) CoTs are divided into sub-thoughts with reflection tokens in Sec. 3.1; (2a)
Over/underthinking detection through answer convergence analysis in Sec. 3.2, 3.3 (2b) repetition truncation in
Sec. 3.4; (3) By simplifying redundant detection as the binary answer existence and equivalence classification
with prompts p1 and p2 in Appendix F, 7B instruction models replace PRMs/ORMs, avoiding instability from
full-sequence scoring; (4) The verifier applies p1 to assess conclusion completeness in individual thoughts and
p2 to identify overthinking when consecutive thoughts yield identical answers. Early termination is triggered
with Algorithm 1, 2; (5) Thinking termination prompts for LRMs are generated based on verifier decisions to
halt redundant reasoning gently or forcefully in Sec. 3.5.

1 INTRODUCTION

Large Reasoning Models (LRMs) such as OpenAI o1 (OpenAI, 2024), DeepSeek R1 (Guo et al.,
2025), and Qwen QwQ (Team, 2025) achieve expert-level performance on mathematical and sci-
entific reasoning tasks by decomposing problems into manageable subproblems, conducting step-
by-step analysis, detecting and correcting errors, and exploring alternative solutions. However, this
extended “thinking” incurs substantial decoding overhead and inference cost, hindering deployment
in resource-constrained settings (Guo et al., 2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0~5
5~10

10~15
15~20

20~25
25~30

30~35

#Generated Tokens (units: K)

0

100

200

300

Co
un

ts
 &

 A
cc

ur
ac

y

98.03%

96.04%

92.00%
66.67% 33.33% 50.00% 0.00%

All
Correct

Overthinking

Underthinking

(a) MATH500 Accuracy

0~5
5~10

10~15
15~20

20~25
25~30

#Generated Tokens (units: K)

0

2

4

6

8

10

Co
un

ts
 &

 A
cc

ur
ac

y

100.00%

90.91%

100.00%

66.67%
25.00%

33.33%

All
Correct

Overthinking Underthinking

(b) AIME24 Accuracy

0 20 40 60 80 100 120 140
#Thoughts

0

5000

10000

15000

20000

25000

30000

#G
en

er
at

ed
 to

ke
ns

Overthinking

Underthinking
Repetition

(c) MATH500 #Thoughts

20 40 60 80 100 120 140
#Thoughts

5000

10000

15000

20000

25000

30000

#G
en

er
at

ed
 to

ke
ns

Overthinking

Underthinking

(d) AIME24 #Thoughts

Figure 2: Correlation between occurrence, accuracy, and the number of generated thoughts/tokens of QwQ-
32B on MATH500 (Hendrycks et al., 2021) and AIME24 (AIME2024). For hard questions, QwQ can spin out
up to 140 lengthy yet incorrect thoughts—indicating a need for underthinking trimming. For easier questions,
QwQ delivers brief, highly accurate answers—yet there’s still room to make them even more concise by over-
thinking trimming.

Benchmarking on AIME24 (AIME2024) and MATH500 (Hendrycks et al., 2021) reveals two key
inefficiencies: overthinking and underthinking (Marjanović et al., 2025). Overthinking mani-
fests as redundant verification of already-correct steps—often signaled by reflection tokens such as
“Wait” or “Alternatively”—which increases output length without accuracy gains (as in Fig. 1, 2).
Underthinking occurs on harder problems when the model oscillates among incomplete reasoning
chains and fails to converge, producing lengthy yet inaccurate responses (Fig. 2). Representative
examples are provided in Appendix G.

The extended Chain-of-Thought (CoT) reasoning in LRMs poses deployment challenges: decoding
lengths vary widely and runtime scales superlinearly with sequence length. Training-based methods
such as (Yan et al., 2025; Chen et al., 2024; Munkhbat et al., 2025; Yu et al., 2024) reduce token
generation in LRMs but impose heavy training and computational costs on large models and may
degrade their general capabilities. In contrast, training-free techniques integrate seamlessly and
preserve original behavior: TokenBudget (Han et al., 2024) dynamically adjusts token budgets via
prompting, and Chain of Draft (Xu et al., 2025) uses concise instructions to shorten output, yet both
require invasive inference-time modifications.

We thus propose TrimR, a verifier-based, training-free approach for online thinking trimming
while maintaining reasoning performance. We detect overthinking and underthinking in intermedi-
ate thought answers with a lightweight verifier and trigger prompt-based LRM thinking early
termination upon redundancy detection. By simply checking answer existence and equivalence
in brief thought segments, our method leverages compact verifier models instead of complex Pro-
cess Reward Models (PRMs) or Outcome Reward Models (ORMs) (Lightman et al., 2024). The
non-invasive early termination preserves original LRM capabilities. Finally, we present an online
asynchronous system collaborating LRMs and small verifiers to support industrial-scale workloads.
TrimR offers a significant advantage by maintaining the performance and knowledge of LRMs
through a targeted intervention strategy that is activated only when redundant reasoning is detected.

Notations. Given an input X , the LRM Π generates a response Y = Π(X). We denote y<t =
[y1, y2, ..., yt−1] as the previously generated tokens. Each time yt = pΠ(X,y<t). With a slight
abuse of notation, let Π(X,y<t) denote full response including y<t.

Theoretical Foundation. Our method unifies human cognitive heuristics—overthinking and under-
thinking as confidence-threshold and diminishing-returns processes—with mathematical optimiza-
tion. People typically stop thinking further after finding answers to simple questions and give up on
complex tasks after too many unsuccessful attempts. We model reasoning process as an optimization
problem in “language space”, where LRMs traverse token trajectories and converge to an optimal
solution. Mirroring numerical optimizers’ early-stopping, we introduce a termination criterion that
halts reasoning once reasoning converges or marginal gains fall below a preset threshold. Formally,
given an input X with a partial response y<t, the reasoning performance of LRM Π is denoted as
Perf(X,y<t|Π). We derive a compression rule c to determine the stopping time t′ ∈ {0, ..., t−1}.
The goal is to minimize the inference cost of y<t′ referred to as Infer Cost(y<t′) without degrad-
ing reasoning performance.

min
c(·)

Infer Cost(y<t′) s.t. t′ = c(y<t)

Perf(X,y<t′ |Π) ≥ Perf(X,y<t|Π)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Contributions.
• We propose a lightweight, training-free method for dynamic thinking trimming in

LRMs—mitigating both over- and underthinking—via a small verifier, enabling efficient
test-time scaling with negligible loss of reasoning accuracy.

• We develop an asynchronous thinking trimming system for industrial-scale deployment,
seamlessly integrating with existing inference infrastructures.

• Through extensive evaluations and ablations on diverse models (QwQ-32B, Deepseek-R1-
Distill-Qwen-32B, and Pangu-R-38B), we demonstrate consistent reductions in reasoning
cost and token usage across standard reasoning benchmarks in production settings.

2 RELATED WORKS

This section reviews recent advancements in efficient reasoning techniques for LRMs. For a more
detailed discussion, see comprehensive surveys (Sui et al., 2025; Qu et al., 2025; Su et al., 2025).
The slight difference of the fast and slow thinking models motivates efficient long-to-short reasoning
with model merging, which directly fuse weights of models with different thinking patterns using
carefully designed algorithms (Team et al., 2025; Wu et al., 2025a). Apart from it, there are three
types of commonly used efficient reasoning methods.

Training-based Methods. Approaches in this category modify or fine-tune LRMs to generate con-
cise reasoning. Reinforcement learning with length-based rewards prunes verbose chains (Hou et al.,
2025; Xia et al., 2025; Zhang et al., 2025a; Team et al., 2025; Chen et al., 2024; Arora & Zanette,
2025; Chen et al., 2025; Fang et al., 2025), while supervised fine-tuning teaches models to compress
explanations (Munkhbat et al., 2025; Yu et al., 2024). Latent-space techniques further minimize
token usage by operating in a compact semantic embedding space (Hao et al., 2024). Although ef-
fective, these methods demand substantial compute, risk task-specific overfitting, and may degrade
general-purpose capabilities.

Self-Evaluation Methods. These techniques prompt LRMs to assess their own confidence and
decide when to stop reasoning. Adaptive schemes ask the model to predict the benefit of restart-
ing (Manvi et al., 2024) or to estimate certainty at key junctures (Yang et al., 2025). SelfThink (Zeyu
et al., 2025) is proposed to facilitate LRMs’ intrinsic task complexity classification capabilities to
dynamically switch between fast and slow thinking. ST-BoN leverages embedding-distance metrics
for early truncation (Wang et al., 2025b). While they avoid external models, the added inference
steps may introduce latency. Some contemporaneous works intervene in inference to reduce token
usage in reasoning: SpeedAdapt (Lin et al., 2025) adjusts hidden states dynamically to control the
reasoning speed; NoThink (Ma et al., 2025) suppresses reasoning entirely; AlphaOne (Zhang et al.,
2025b) modulates slow and fast thinking at test time based on average thinking length.

Model Collaboration. Hybrid frameworks use auxiliary evaluation models, reward models, or
thought proposers to guide decoding. Dynasor monitors semantic entropy and reward-model outputs
for early stopping (Fu et al., 2024; Kuhn et al., 2023). Speculative Rejection uses partial-output
scores from a reward model to terminate best-of-N search (Sun et al., 2024). However, above works
heavily rely on the performance of the reward model. Another work (Xi et al., 2024) trains a critique
model which provides step-level feedback to guide the reasoning model on the fly. There are also
concurrent works on improve LRM efficiency by generating thoughts with smaller reasoning models
for speculative reasoning (Pan et al., 2025; Wang et al., 2025a). CoThink (Fan et al., 2025) leverages
an instruction model to guide reasoning and reduce reasoning steps.

Unlike prior work, our TrimR framework is training-free and non-invasive: a lightweight verifier
dynamically detects and helps truncate redundant reasoning. No extra self-evaluation steps are in-
troduced, so our method can be easily integrated into existing inference frameworks.

3 METHOD

We propose an efficient, verifier-based, training-free thinking trimming algorithm that dynam-
ically prunes redundant CoT generation during online inference. Our algorithm replicates human
cognitive mechanisms which utilize internal verifiers to check and stop thinking. We introduce
smaller verifiers to detect redundant thinking without fine-tuning verifiers or LRMs. Designed for
industrial-scale batch processing, our framework (Fig. 1) comprises three modules: overthinking

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

trimming (Sec. 3.2), underthinking trimming (Sec. 3.3), and repetition truncation (Sec. 3.4).
Guidance prompts for halting reasoning are detailed in Sec. 3.5. The online system is presented in
Sec. 3.6.

3.1 THOUGHT DETECTION AND ANSWER EXTRACTION

The reasoning thoughts have clear structured patterns and are usually separated with reflection to-
kens, such as “\n\nWait”, “\n\nBut”, and “\n\nAlternatively”. In addition, LRMs normally gen-
erate answers at the end of thoughts and then verify them as in Fig. 1.

During thinking, we periodically segment the thinking process into sub-thoughts [r1, r2, ..., rk]:

Think Seg(y<t) = [r1, r2, ..., rk].

Here, we separate it by reflection tokens (full list in Appendix E). When new reflection tokens
are detected asynchronously, we split the whole thought between two consecutive reflection tokens
into sentences and concatenate the last several sentences of the current thought as the extracted
intermediate thought answers. Formally, The last Nsent sentences of each sub-thought rl are
denoted as sl, i.e. sl = Last sentences(rl, Nsent). The last several sentences are shorter but more
informative than the whole sub-thought and normally contain answers as demonstrated in Fig. 1.
We do not further process the answer but only skip the extremely short thoughts, which normally do
not contain useful thoughts.

We detect predefined reflection tokens asynchronously so that LRMs continue generating tokens
without throughput loss. Since reflection tokens account for only 0.5% of all outputs and thoughts
are significantly less than tokens as in Fig. 2, the verifier is invoked infrequently and can serve
multiple LRMs concurrently as analyzed in Appendix M. It makes the overhead of redundancy
checks negligible compared to the gains from thinking compression.

3.2 OVERTHINKING TRIMMING

Algorithm 1: Overthinking Compression
Input: Input X , repeat-threshold M
Output: Generated output Y
stopped← False; yt ← pΠ(X);
prev concluded thought← None; count← 0;
while yt ̸= ¡eos¿ do // LRM iteratively generates
yt

// Periodically segment and check for a
new concluded thought

// Fv(p1(sl)) defined in Eqn. 1, r(si, sj)
defined in Eqn. 2.

if yt = </think> then
stopped = True, break;

end
if a new segment sℓ is found and Fv(p1(sl)) = 1 and
stopped = False then

if prev concluded thought ̸= None then
if r(prev concluded thought, sℓ) = 1

then
count← count + 1;

else
// reset on any mismatch
count← 0;

end
end
if count ≥M then

// early-stop after M repeats
yt ← pΠ((X,y<t, stop tokens));
stopped← True, break;

end
prev concluded thought← sℓ;

else
yt ← pΠ((X,y<t, yt));

end
end
return (y<t, yt)

In overthinking scenarios, LRMs typically ar-
rive at correct solutions using only 30 ∼ 50%
of the total generated tokens, yet continue pro-
ducing redundant reasoning paths or alternative
justifications before finalizing an answer (Chen
et al., 2024). While this may aid complex or
uncertain tasks, it burdens simpler ones with
uninformative content and higher latency and
inference costs without accuracy gains. We
propose an overthinking detection and com-
pression algorithm that uses lightweight veri-
fier models to prune redundant reasoning while
preserving LRM accuracy. It emulates veri-
fier confidence based human thinking termina-
tion and convergence-based early termination
mechanisms of numerical optimizers.

Simple Tasks to Utilize Smaller Models. We
simplify overthinking detection as answer ex-
isting and equivalence checking, which are sim-
pler binary classification problems than scor-
ing the whole sequences. By reducing detec-
tion to checking answer existence and com-
paring final outputs of consecutive intermedi-
ate thought answers, we can deploy compact
(7B) verifiers with satisfactory language com-
prehension and instruction following capabil-
ities without fine-tuning, greatly lowering in-
ference overhead compared to full-sequence re-
ward models (Lightman et al., 2024; Liu et al., 2025). Moreover, training PRMs/ORMs for accurate

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

scoring is complex and often yields unstable rewards on identical sequences, undermining reliable
overthinking detection (Sun et al., 2024).

Two-Stage Verification. To minimize intervention from answerless intermediate checks, we in-
troduce two-stage verification. First, we confirm the candidate solution is present in the current
reasoning thought. We then verify that intermediate thought answers are semantically or logically
equivalent, regardless of correctness. Both tasks can be handled by the lightweight verifier Fv: x

(1) Answer existence checking: The set of thoughts with solutions S∗ is defined as:

S∗ = { si | Fv(p1(si))}; Fv(p1(si)) = I
[
pFv

(y = “Yes” | p1(si)) > pFv
(y = “No” | p1(si))

]
,

(1)
where p1(si) = p1(X, si) (X omitted for simplicity) is the verifier prompt for answer existence
taking the problem X and thought answer si as parameters.

(2) Equivalence checking: The equivalence r between two consecutive thoughts in S∗ is computed
as:

r(s∗i , s
∗
i+1) = Fv(p2(s

∗
i , s
∗
i+1)} = I

[
pFv (y = “Yes” | p2(s∗i , s∗i+1)) > pFv (y = “No” | p2(s∗i , s∗i+1))

]
,

(2)
where p2(si, sj) = p2(X, si, sj) (X omitted for simplicity) is the verifier prompt for answer equiva-
lence, taking the problem X and two consecutive thought answers in S∗ that both achieve solutions.

Verifier Prompts. Verifiers take the answer existence prompt p1 and answer equivalence prompt
p2 and directly return the binary classification results with the probabilities of ”Yes” and ”No”
tokens. Therefore, only prefilling of verifiers is required, which reduces the computational cost.
The two prompts for verifiers (p1 and p2) in Fig. 1 with placeholders are available here. Details of
placeholders are in Appendix F. The answer existence checking prompt p1 consists of system prompt
for ignoring unimportant formats and phrases, n-shot CoTs with positive and negative examples, the
current question, and the intermediate answer. Similarly, the verifier only checks if two consecutive
intermediate thought answers are semantically or logically equivalent with the prompt p2.

Verifier Prompt p1 for Answer Existence:
Check if the following sentences from a rea-
soning model reach an answer, regardless of
formatting or phrasing, and solve the question.
Return ’Yes’ if the content finds a solution, oth-
erwise ’No’. Return only ’Yes’ or ’No’ with no
explanation.
$N-SHOT COTs (details in Appendix)
Question: $QUESTION
Content: $CONTENT\n [Yes/No]:

Verifier Prompt p2 for Answer Equivalence
Check if the two answers provided are logically or mathematically
equivalent, regardless of formatting or phrasing. Return ’Yes’ if they
are equal in meaning/value and valid solutions to the question, other-
wise ’No’. Return only ’Yes’ or ’No’ with no explanation.
$N-SHOT COTs (details in Appendix)
Question: $QUESTION
Answer 1: $ANSWER1
Answer 2: $ANSWER2
Are they equivalent? [Yes/No]:

Early Termination. We implement early termination through the prompt mechanism introduced in
Sec. 3.5, specifically when the model consecutively agrees with previous reasoning steps M times.
The process is described in Algorithm 1. We only consider thoughts in S∗ to bypass intermediate
thoughts lacking definitive solutions. Such a protocol analogously replicates human cognitive pat-
terns where reasoning halts upon achieving M + 1 consecutive consistent solutions, paralleling the
convergence termination criterion in optimization algorithms.

Resource Saving. By limiting inputs to 200–400 tokens instead of processing full reasoner outputs
(8K–128K tokens) as did in PRMs/ORMs (Sun et al., 2024), we drastically cut memory and com-
pute overhead, boosting batch throughput and reducing verification latency with shorter verifier
prompts. Also, we always reuse the KV cache for the system prompt and question with pre-
fix caching, then batch answers in triplets—remapping the second answer to a fixed placeholder
($ANSWER1 in p2). This lets us retain its cache across examples, so only the cache for the other
placeholder ($ANSWER2, used by the first and third answers) needs updating.

3.3 UNDERTHINKING TRIMMING

In particularly difficult tasks, LRMs repeatedly verify intermediate steps—an indicator of uncer-
tainty that leads to divergent, redundant reasoning. We find that when the model oscillates between
different thought paths, it seldom converges: proposed solutions often fail verification, triggering

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

further exploration that inflates latency (Fig. 6) without boosting accuracy, and excessive diversity
can even hinder convergence (Chen et al., 2024).

To mitigate this, we repurpose the verifier’s answer-existence/consistency feedback to detect hesitant
overthinking. Concretely, if after Rthres% of the token budget and Nthres reasoning rounds, the
model has not produced at least three consecutive answer-bearing chains that agree on the same
solution, we flag the run as underthinking (Appendix B Algorithm 2). At that point, a guidance
prompt instructs the model to halt further reasoning and summarize its existing insights. It mimics
human tendency to abandon difficult tasks that exceed its capabilities after multiple failed attempts.

This mechanism relies on two principles: (1) repeated convergence on the same solution indicates
that the reasoning process is coherent and sufficiently thorough; and (2) the thresholds Rthres and
Nthres must be calibrated to afford the model adequate opportunity to explore alternative solution
paths before termination. Ablation studies on these thresholds are presented in Appendix J.

3.4 REPETITION TRUNCATION

Recurrent token loops in LRMs often persist despite probabilistic sampling tweaks (e.g., high tem-
perature), especially when sequence length increases. Robust repetition detection and truncation is
therefore essential to prevent wasted computation and improve user experience. Our solution uses a
rolling-hash–based detector to identify repeating token-ID subsequences in real time. By updating
hashes incrementally for each new token, we avoid recomputing whole-sequence hashes, enabling
efficient, on-the-fly repetition checks. This dynamic algorithm is enabled by default unless otherwise
specified. The effectiveness of this module is provided in Appendix I.

3.5 GUIDANCE PROMPTS FOR LRMS THINKING COMPRESSION

We devised two gentle and forceful guidance prompts (presented in Appendix F) to guide termi-
nating the reasoner’s thought process. The gentle prompt curbs overthinking by steering the model
toward concluding its reasoning with **Final Answer**\n, whereas the forceful prompt both
prevents underthinking and breaks any repetitive loops that occur before the designated “think end”
token (e.g. </think>) is emitted. In our experiments, the forceful prompt consistently halted
endless generation during the reasoning stage.

3.6 ONLINE SYSTEM DESIGN

Our inference system is built on vLLM (Kwon et al., 2023) (v0.6.0) running on Ascend-910B-
64GB NPUs, though it can be integrated equally well with other inference frameworks (e.g.
SGLang (Zheng et al., 2024)) or hardware platforms (e.g. GPUs). As shown in Fig. 3, it com-
prises two tightly coupled elements: the inference engine itself, which orchestrates decoding via
vLLM, and the Test-Time Thinking Trimming System (T4S), which performs real-time reasoning
compression in parallel. T4S is structured around a Reasoning Verifier—responsible for detok-

Verifier Model

Seq 1: So all seems consistent.\n\nTherefore, I think the answer is 809. Wait, but let me check with another number. \n\nPlease put the simple final answer after
Seq 2: yes, consistent.\n\nBut then r1 is the radius of the first circle (closest to B), which is tangent to both AB and BC. \n\nI think I already thought for a long time,

Message ControllerInference
Engine

LabelSend Data

T4S
Process

Sampling Controller

Detokenization Chain Split
Repetition Detection Check Consistent Solution

 Overthinking/underthinking Detection Thread

Get
Message

Check Solution Existence

Seq 3: The answer seems to be 4. Wait, no, The answer seems to be 4. Wait, no, The answer seems to be 4. \n\nI think I already thought for a long time, and I

Data Transmission
Async API Call and Data Return
Operations in Different Threads

Sampling Control

Found
Overthinking/Underthinking

External Lightweight VerifierFound Repetition

Time/Aysnc. Workflow

Reasoning Verifier

Figure 3: System design for the Test-Time Thinking Trimming System (T4S). The figure shows three se-
quences that are flagged as (1) overthinking; (2) underthinking; and (3) repetitive generation. The inference
engine streams updates through the Message Controller into the external T4S process, which issues asyn-
chronous API calls to a lightweight verifier.
enizing output into discrete reasoning chains, detecting overthinking or underthinking, and using an
external small verifier model to confirm solution validity—a Message Controller that exchanges
operational data (prompt and generated token IDs) with the verifier at configurable intervals, and a
Sampling Controller that adaptively modifies output logits to enforce specific token generations.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Benchmarks. This work focuses on mathematical and scientific problems: Mathematical bench-
marks: MATH500 (Hendrycks et al., 2021), AIME24 (AIME2024), AIME25 (AIME2025) and
Scientific benchmarks: GPQA Diamond (Rein et al., 2024). Details are available in Appendix H.
We additionally include results on LiveCodeBench (Jain et al., 2024) for dense and MoE models.
As the primary emphasis of this work is on mathematical and scientific reasoning, code tasks are
included for supplementary reference in Appendix O.

Metrics. Apart from accuracy (Acc.), we mainly care about the efficiency metrics. Runtime denotes
the total wall-clock time to process all requests in each dataset. TPR is the average Time Per
Request, while TPR-T90 is the TPR of the fastest/top 90% requests. #Tokens(M) is the number
of generated tokens in millions. Runtime represents the total waiting time of requests, while lower
TPR and TPR-T90 indicate better single user experience and higher Queries-per-Second (QPS).

Configurations. All the experiments are conducted on servers with 8 Ascend 910B-64GB NPUs
and 192-cores Kunpeng-920 CPUs with 1.5TB memory. All dataset requests (e.g., the 500 ques-
tions in MATH500)1 are submitted to vLLM concurrently, and we record key metrics such as total
wall-clock time and per-request latency. We benchmark two open-source models (QwQ-32B and
DeepSeek-R1-Distill-Qwen-32B(R1Q-32B)) alongside the closed-source Pangu-R-38B, using fixed
input/output lengths of 2K/30K tokens. For readers’ interest, the results on Pangu Pro MoE (Tang
et al., 2025), publicly released after the date of this study, are presented in Appendix N. Although
extending outputs to ∼128K tokens yields marginal gains, such settings are impractical for produc-
tion, so we cap the output at 30K. M=2, Nsend=50. The verifier is Pangu-7B (open-sourced) (Pangu
Team, 2025) (by default) and Qwen2.5-7B-Instruct (Qwen Team, 2024) (Table 4).

4.2 MAIN RESULTS

Table 1 shows that introducing TrimR delivers consistent and substantial efficiency gains across
all three models and four benchmarks (up to 70% runtime reduction), with accuracy largely unaf-
fected (less than 1.7% drop). Specifically, runtime is reduced by 16–39% for QwQ-32B (e.g., from
4,413s to 3,118s on MATH500, –29.3%), 19–39% for Pangu-R-38B(–33.8% on MATH500), and
an impressive 53–70% for R1Q-32B (–67.0% on MATH500; –70.0% on GPQA Diamond). Similar
reductions are seen in TPR (e.g., R1Q-32B’s TPR on AIME24 drops from 3,717.6s to 1,433.9s,
–61.4%). Token usage also drops by 8–46% overall, with R1Q-32B showing the largest reduction
(from 2.447M to 1.320M tokens, –46.1% on GPQA Diamond). Despite these gains, accuracy is
preserved or even improved. QwQ-32B gains on MATH500 (+1.2%) and AIME25 (+0.8%), while
R1Q-32B improves 2.0–13.2% on three benchmarks. For readers’ interest, we discussed the reasons
behind such improvements in Appendix K. Minor regressions are all under 2%, a reasonable tradeoff
for significant runtime reductions.

Table 2: Comparing TrimR with baseline meth-
ods. Acc.: accuracy change relative to respective
baseline; #Tok.: token usage reduction.

Model MATH500 AIME24

Acc. #Tok. Acc. #Tok.

QwQ-32B
CoThink -3.0% -19.1% 3.3% -16.2%
SpeedAdapt 0.0% -4.0% 1.1% -9.3%
TrimR (ours) 1.2% -14.3% 0.0% -23.3%

DeepSeek-R1-Distill-Qwen-32B
Certaindex -4.0% -19.0% -4.0% -15.0%
CoThink -2.0% -36.6% -13.3% -12.5%
SpeedAdapt 0.7% -7.3% 1.5% -12.7%
TrimR (ours) 2.4% -40.1% 3.3% -35.6%

In Table 2, we include concurrent baselines (Certain-
dex (Fu et al., 2024), CoThink (Fan et al., 2025),
SpeedAdapt (Lin et al., 2025); preprints at the time of
submission, with some released after our initial draft).
we find that TrimR consistently delivers substan-
tial token savings while maintaining accuracy across
datasets. For example, on R1Q-32B with AIME24,
TrimR reduces token usage by 35.6% with stable
accuracy, whereas CoThink achieves only a 12.5%
reduction but suffers a sharp 13.3% accuracy drop.
SpeedAdapt, which adjusts hidden states to control
reasoning speed, maintains accuracy reasonably well
but yields only 4.0-9.3% token savings on QwQ-32B.
Certaindex introduces extra inference cost yet still underperforms TrimR in token reduction. Over-
all, TrimR strikes a more favorable balance between efficiency and reliability relative to the baseline
methods.

1Since AIME has only 30 questions, we replicate it eightfold to ensure the engine receives enough requests.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of QwQ-32B, Pangu-R-38B, and DeepSeek-R1-Distill-Qwen-32B on the
MATH500, AIME24, AIME25, and GPQA Diamond benchmarks. Relative improvements are highlighted in
green, and regressions in red.

Model Runtime(s) TPR(s) TPR-T90(s) Acc. #Tokens(M)
MATH500

QwQ 32B 4413 593.1 439.7 95.6% 2.278
w/ TrimR 3118 -29.3% 499.7 -15.7% 377.4 -14.2% 96.8% 1.2% 1.953 -14.3%

DeepSeek-R1-Distill-Qwen-32B 7602 733.1 278.8 92.4% 2.219
w/ TrimR 2511 -67.0% 315.8 -56.9% 218.0 -21.8% 94.4% 2.0% 1.330 -40.1%

Pangu-R-38B 3665 447.4 300.8 95.6% 1.912
w/ TrimR 2426 -33.8% 367.6 -17.8% 264.6 -12.0% 94.4% -1.2% 1.551 -18.9%

AIME24
QwQ 32B 6992 2437.6 2138.6 76.6% 3.189

w/ TrimR 4255 -39.1% 1572.6 -35.5% 1431.6 -33.1% 76.6% -0% 2.444 -23.3%

DeepSeek-R1-Distill-Qwen-32B 10299 3717.6 3156.0 66.6% 3.252
w/ TrimR 4799 -53.4% 1433.9 -61.4% 1228.7 -61.1% 70.0% 3.3% 2.096 -35.6%

Pangu-R-38B 6164 1912.3 1639.4 78.3% 2.466
w/ TrimR 3848 -37.6% 1299.4 -32.0% 1154.8 -29.6% 76.6% -1.7% 2.006 -18.6%

AIME25
QwQ 32B 7436 2771.5 2513.8 60.0% 3.426

w/ TrimR 6215 -16.4% 2302.5 -16.9% 2032.4 -19.2% 60.8% 0.8% 3.070 -10.4%

DeepSeek-R1-Distill-Qwen-32B 13055 5474.3 4861.7 47.9% 3.932
w/ TrimR 6169 -52.7% 1897.0 -65.3% 1549.6 -68.1% 56.3% 8.4% 2.434 -38.1%

Pangu-R-38B 9216 3053.4 2723.6 57.5% 3.117
w/ TrimR 5591 -39.3% 1958.6 -35.9% 1731.6 -36.4% 57.5% 0.0% 2.470 -20.8%

GPQA Diamond
QwQ 32B 4406 1302.6 1115.0 66.0% 1.572

w/ TrimR 3198 -27.4% 1170.7 -10.1% 1025.5 -8.0% 65.2% -0.8% 1.438 -8.5%

DeepSeek-R1-Distill-Qwen-32B 11366 3568.0 2786.2 45.4% 2.447
w/ TrimR 3411 -70.0% 902.0 -74.7% 720.4 -74.1% 58.6% 13.2% 1.320 -46.1%

Pangu-R-38B 3120 994.7 866.8 59.1% 1.378
w/ TrimR 2516 -19.4% 901.2 -9.4% 788.9 -9.0% 60.1% 1.0% 1.273 -7.6%

4.3 ANALYSIS

Effects of Trimming Methods. Ablation results in Table 3 demonstrate that combining overthink-
ing and underthinking trimming achieves the greatest efficiency gains with minimal accuracy trade-
offs. For QwQ-32B on MATH500, overthinking trimming alone reduces TPR by 12.0% and tokens
by 10.6% while improving accuracy by 1.2%, whereas underthinking trimming yields smaller gains
(TPR: -4.8%, tokens: -3.3%) with a minor 0.6% accuracy drop. Their combination maintains the
96.8% accuracy while achieving TPR and token reductions of 15.8% and 14.3%, respectively.

For Pangu-R-38B, the combined approach reduces TPR by 17.8% and tokens by 18.9% on
MATH500 with negligible 1.2% accuracy loss. R1Q-32B shows even stronger gains: combined
trim slashes TPR by 56.9% and tokens by 40.1% while boosting accuracy from 90.4% to 92.4%.
Model-specific patterns emerge: QwQ-32B exhibits lower redundancy (overthinking TPR reduc-
tion: 12.0% vs. 43.5% for R1Q-32B). Conversely, R1Q-32B’s high token usage (2.447 vs. 1.572 for
QwQ-32B on GPQA) reflects frequent self-verification, which dynamic trimming mitigates. Varia-
tions in trimming efficacy across models and benchmarks (e.g., QwQ-32B: MATH500 TPR -12.0%
vs. AIME24 -13.1%) underscore the need to apply both strategies to optimize efficiency across
tasks.

0-5K 5K-10K 10K-15K15K-20K20K-32K
Token Ranges

0

50

100

150

200

250

300

350

Sa
m

pl
e

Co
un

t

Original Distribution
Distribution w/ TrimR

Figure 4: Token distribu-
tions with/without TrimR.

Effects on Distribution. Fig. 4 depicts the empirical token-count distri-
butions for our reasoning tasks before and after applying TrimR to QwQ-
32B. In the original (untrimmed) setting, approximately 64% of problem
instances fell within the lowest bin (0–5K tokens), with the remainder
spread across higher token ranges (5–32K tokens). After trimming, this
proportion rises to nearly 70%, and the frequency of “long-context” in-
stances (≥10K tokens) drops by over 25%. In particular, the heaviest tail
(20–32K tokens) is reduced by more than two-thirds, from roughly 6%
of cases down to under 2%. This pronounced leftward shift in the dis-
tribution demonstrates that TrimR effectively prunes superfluous context,
lowering the average token footprint per query.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation analysis of overthinking and underthinking trimming, showing that both methods markedly
reduce TPR and token usage without compromising reasoning accuracy.

MATH500 AIME24

TPR #Tokens Accuracy TPR #Tokens Accuracy

Pangu-R-38B - - 95.6% - - 78.3%
w/ overthinking trimming -16.6% -16.1% 95.4% -30.2% -15.7% 76.6%
w/ underthinking trimming -10.5% -8.3% 95.8% -26.0% -13.7% 75.4%
w/ both -17.8% -18.9% 94.4% -32.1% -18.6% 76.6%

QwQ 32B - - 95.6% - - 76.6%
w/ overthinking trimming -12.0% -10.6% 96.8% -13.1% -12.4% 76.6%
w/ underthinking trimming -4.8% -3.3% 95.0% -27.0% -16.1% 76.3%
w/ both -15.8% -14.3% 96.8% -35.5% -23.3% 76.6%

DeepSeek-R1-Distill-Qwen-32B - - 90.4% - - 60.0%
w/ overthinking trimming -43.5% -28.1% 91.6% -49.0% -22.3% 63.3%
w/ underthinking trimming -41.4% -25.0% 92.8% -57.1% -29.8% 63.8%
w/ both -56.9% -40.1% 92.4% -61.4% -35.6% 63.3%

Verifier Accuracy. To assess chain-level consistency, we used Pangu-R-38B to generate full reason-
ing traces for all MATH500 questions, split them into T4S-defined chains, and manually annotated
answer consistency for 684 randomly sampled adjacent chain pairs.
Table 4: Verification accuracy, and downstream performance of Pangu-7B and Qwen2.5-7B-Instruct verifiers
on the MATH500 dataset. Verifier Acc.(%) denotes the fraction of correctly judged chain pairs; The rest are
downstream performance on MATH500: MATH500 Acc.(%) is downstream task accuracy.

Verifier Verifier Acc.(%) Runtime TPR MATH500 Acc.(%) #Tokens(M)

Pangu-7B 87.87 3,665 447.4 95.6 1.912
w/o in context examples 85.67 3,894 455.1 95.6 2.032

Qwen2.5-7B-Instruct 86.70 3,722 459.2 95.0 1.982
w/o in context examples 83.48 3,938 474.2 94.8 2.103

As shown in Table 4, Pangu-7B outperforms Qwen2.5-7B-Instruct in annotation accuracy (87.87%
vs. 86.70%), speeds up thinking trimming (3,665s vs. 3,722s), and reduces total tokens (1.912M vs.
1.982M). Downstream accuracy on MATH500 is essentially unchanged (95.6% vs. 95.0%), showing
that occasional consistency errors have negligible effect. Omitting in-context demonstrations in the
verifier’s prompt (in-context examples shown in Appendix F) slightly increases runtime and token
use of the LRMs when the verifiers are applied to the downstream task (Pangu-7B: +229s, +0.120M;
Qwen: +216s, +0.121M). Limited by space, the full results using Qwen as verifier are presented in
Appendix P. Overall, the choice of verifier model has negligible effects on the overall performance.

TrimR in Test-time Scaling with BoN. Beyond sequential token extension, additional test-time
scaling approaches to improve LRMs accuracy include BoN sampling (Lightman et al., 2024),
Monte Carlo Tree Search (MCTS) (Wu et al., 2025b), and beam search (Lightman et al., 2024).
Integrating TrimR with BoN (N=8), as evidenced in Table 9, Appendix Q, demonstrates significant
reductions in token consumption (-13.8-16.2%), and runtime duration (up to 23.3%) while main-
taining performance parity (-3.3% on AIME24). These results highlight TrimR’s broad applicability
across diverse test-time scaling frameworks.

5 CONCLUSION

This work introduces TrimR, a training-free, verifier-based framework that dynamically trims rea-
soning in Large Reasoning Models (LRMs) to eliminate redundant thinking. By leveraging a
lightweight pre-trained verifier to truncate unnecessary intermediate steps, TrimR significantly
improves inference efficiency without compromising accuracy. Empirical results on MATH500,
AIME24/25, and GPQA benchmarks demonstrate up to a 70% reduction in runtime across models,
particularly in large-batch industrial settings. We also present T4S, TrimR’s online deployment sys-
tem integrated with Ascend NPUs/vLLM, highlighting TrimR’s scalability for high-throughput de-
ployments. By balancing computational efficiency and reasoning rigor, TrimR offers a cost-effective
solution for real-world LRM applications, advancing the viability of production-level AI reasoning
systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

The following materials may help reproduce this work.

• Sec. 3 details the proposed method;
• Sec. 3.6 discusses the system design of the proposed method;
• Algorithms 1 and 2 describe the underthinking/overthinking trimming procedures;
• Appendix F offers the full prompts used in verifiers;
• Appendix H describes the experimental setup in detail;
• This study mainly evaluates on open-sourced LRMs (QwQ-32B, DeepSeek-R1-Distill-

Qwen-32B, and Pangu-Pro-MoE (Appendix N)) and open-sourced verifier models
(Qwen2.5-7B-Instruct and Pangu-7B);

• We will make the code available upon acceptance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

AIME2024. American invitational mathematics examination (aime), 2024.

AIME2025. American invitational mathematics examination (aime), 2025.

Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025. URL
https://arxiv. org/abs/2502.04463, 2025.

Qiguang Chen, Dengyun Peng, Jinhao Liu, HuiKang Su, Jiannan Guan, Libo Qin, and Wanxiang
Che. Aware first, think less: Dynamic boundary self-awareness drives extreme reasoning effi-
ciency in large language models. arXiv preprint arXiv:2508.11582, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

Siqi Fan, Peng Han, Shuo Shang, Yequan Wang, and Aixin Sun. Cothink: Token-efficient reasoning
via instruct models guiding reasoning models. arXiv preprint arXiv:2505.22017, 2025.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. arXiv preprint
arXiv:2505.13379, 2025.

Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and Hao Zhang.
Efficiently serving llm reasoning programs with certaindex. arXiv preprint arXiv:2412.20993,
2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024.

Zhengkai Lin, Zhihang Fu, Ze Chen, Chao Chen, Liang Xie, Wenxiao Wang, Deng Cai, Zheng
Wang, and Jieping Ye. Controlling thinking speed in reasoning models. arXiv preprint
arXiv:2507.03704, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling. arXiv preprint arXiv:2504.02495, 2025.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can
predict if they can do better, even mid-generation. arXiv preprint arXiv:2410.02725, 2024.

Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad BehnamGhader,
Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han Lù, et al. Deepseek-r1
thoughtology: Let’s¡ think¿ about llm reasoning. arXiv preprint arXiv:2504.07128, 2025.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
training elicits concise reasoning in large language models. arXiv preprint arXiv:2502.20122,
2025.

OpenAI. Openai o1 system card, December 2024. URL https://openai.com/index/
openai-o1-system-card/.

Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specrea-
son: Fast and accurate inference-time compute via speculative reasoning. arXiv preprint
arXiv:2504.07891, 2025.

Pangu Team. openpangu-embedded-7b-model, 2025. URL https://ai.gitcode.com/
ascend-tribe/openpangu-embedded-7b-model. Ascend-native open-source reposi-
tory for the openPangu Embedded 7B model.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning models:
Language, multimodality, and beyond. arXiv preprint arXiv:2503.21614, 2025.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Jinyan Su, Jennifer Healey, Preslav Nakov, and Claire Cardie. Between underthinking and over-
thinking: An empirical study of reasoning length and correctness in llms. arXiv preprint
arXiv:2505.00127, 2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Hanjie Chen, Xia Hu, et al. Stop overthinking: A survey on efficient reasoning for
large language models. arXiv preprint arXiv:2503.16419, 2025.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024.

Yehui Tang, Xiaosong Li, Fangcheng Liu, Wei Guo, Hang Zhou, Yaoyuan Wang, Kai Han, Xianzhi
Yu, Jinpeng Li, Hui Zang, Fei Mi, Xiaojun Meng, Zhicheng Liu, Hanting Chen, Binfan Zheng,
Can Chen, Youliang Yan, Ruiming Tang, Peifeng Qin, Xinghao Chen, Dacheng Tao, and Yunhe
Wang. Pangu pro moe: Mixture of grouped experts for efficient sparsity, 2025. URL https:
//arxiv.org/abs/2505.21411.

Kimi Team, A Du, B Gao, B Xing, C Jiang, C Chen, C Li, C Xiao, C Du, C Liao, et al. Kimi k1. 5:
Scaling reinforcement learning with llms, 2025. URL https://arxiv. org/abs/2501.12599, 2025.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

12

https://openai.com/index/openai-o1-system-card/
https://openai.com/index/openai-o1-system-card/
https://ai.gitcode.com/ascend-tribe/openpangu-embedded-7b-model
https://ai.gitcode.com/ascend-tribe/openpangu-embedded-7b-model
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2505.21411
https://arxiv.org/abs/2505.21411
https://qwenlm.github.io/blog/qwq-32b/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jikai Wang, Juntao Li, Lijun Wu, and Min Zhang. Efficient reasoning for llms through speculative
chain-of-thought. arXiv preprint arXiv:2504.19095, 2025a.

Yiming Wang, Pei Zhang, Siyuan Huang, Baosong Yang, Zhuosheng Zhang, Fei Huang, and Rui
Wang. Sampling-efficient test-time scaling: Self-estimating the best-of-n sampling in early de-
coding. arXiv preprint arXiv:2503.01422, 2025b.

Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen,
Tao Zhong, and Mingxuan Yuan. Unlocking efficient long-to-short llm reasoning with model
merging. arXiv preprint arXiv:2503.20641, 2025a.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for llm problem-solving. In The Thirteenth
International Conference on Learning Representations, 2025b.

Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang, Guanyu Li, Yiwen Ding, Wei He, Boyang
Hong, Shihan Do, Wenyu Zhan, et al. Enhancing llm reasoning via critique models with test-time
and training-time supervision. arXiv preprint arXiv:2411.16579, 2024.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025.

Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
Inftythink: Breaking the length limits of long-context reasoning in large language models. arXiv
preprint arXiv:2503.06692, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and Weip-
ing Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895, 2025.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023, 2024.

XING Zeyu, Xing Li, Huiling Zhen, Xianzhi Yu, Mingxuan Yuan, and Sinno Jialin Pan. Large
reasoning models know how to think efficiently. In ES-FoMo III: 3rd Workshop on Efficient
Systems for Foundation Models, 2025.

Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, Shuofei Qiao, Lun Du, Da Zheng, Huajun
Chen, and Ningyu Zhang. Lightthinker: Thinking step-by-step compression. arXiv preprint
arXiv:2502.15589, 2025a.

Junyu Zhang, Runpei Dong, Han Wang, Xuying Ning, Haoran Geng, Peihao Li, Xialin He, Yutong
Bai, Jitendra Malik, Saurabh Gupta, et al. Alphaone: Reasoning models thinking slow and fast at
test time. arXiv preprint arXiv:2505.24863, 2025b.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in Neural Information Processing Systems, 37:
62557–62583, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS

We employed LLMs for proofreading the manuscript, while ensuring that all substantive points and
contributions remain entirely original.

B ALGORITHM OF UNDERTHINKING TRIM

We provide the formulation of underthinking trim in Algorithm 2. The underthinking detection
depends on the result of overthinking detection. If a sequence can not converge to a solution within
the given budget Rthres and Nthres, we use stop tokens (Sec. 3.5) to stop further thinking.

Algorithm 2: Underthinking Trimming
Input: Input X , underthinking threshold Rthres, Nthres

Output: Generated output Y
stopped← False;
yt ← pΠ(X);
while yt ̸= ¡eos¿ do // LRM iterately generates yt in while loop

// Check if this sequence is flagged as overthinking
is overthinking ← check Algorithm 1 current state;
num thoughts← len(Think Seg(y≤t));
if yt = ¡/think¿ then

stopped = True, break
end
if t > Rthres% ·M and num thoughts > Nthres and stopped = False then

yt ← pΠ((X,y<t, stop tokens)), stopped = True, break;
else

yt ← pΠ((X,y<t, yt))
end

end
return (y<t, yt);

C MORE ANALYSIS OF THINKING LENGTH AND ACCURACY

The distribution of decoding length occurrence and corresponding accuracy of Deepseek-R1-Distill-
Qwen-32B (R1Q-32B) on the MATH500 and AIME24 datasets are available in Fig. 5a, 5b. The
correlation of the number of thoughts and generated tokens are available in Fig. 5c, 5d.

The Deepseek-R1-Distill-Qwen-32B model is weaker than QwQ-32B and tends to generate long but
wrong responses, which is underthinking. The accuracy of R1Q-32B quickly decreases from above
80%∼90% to 0% as visualized in Fig. 5a, 5b. In contrast, QwQ-32B still is able to solve some
complex questions as in Fig. 2a, 2b. In addition, the repetition occurs more frequently, resulting in
non-stopping 32K tokens. The number of thoughts of R1Q-32B linearly correlates with the number
of tokens, similar to QwQ-32B in Fig. 2.

0~5
5~10

10~15
15~20

20~25
25~30

30~35

#Generated Tokens (units: K)

0

100

200

300

400

Co
un

ts
 &

 A
cc

ur
ac

y

95.90%

83.72%
66.67% 0.00% 0.00%

0.00% 0.00%

All
Correct

Overthinking

Underthinking

(a) MATH500 Accuracy

0~5
5~10

10~15
15~20

20~25
25~30

30~35

#Generated Tokens (units: K)

0

2

4

6

8

10

Co
un

ts
 &

 A
cc

ur
ac

y

100.00%

80.00%

100.00% 0.00% 0.00%
0.00%

0.00%

All
Correct

Overthinking Underthinking

(b) AIME24 Accuracy

0 20 40 60 80 100 120 140
#Thoughts

0

5000

10000

15000

20000

25000

30000

#G
en

er
at

ed
 to

ke
ns

Overthinking

Underthinking

Repetition

(c) MATH500 #Thoughts

0 20 40 60 80 100 120 140
#Thoughts

5000

10000

15000

20000

25000

30000

#G
en

er
at

ed
 to

ke
ns

Overthinking

Underthinking

Repetition

(d) AIME24 #Thoughts

Figure 5: Histogram of occurrence and accuracy of decoding length and scatter plot of the number of thoughts
and generated tokens of of Deepseek-R1-Distill-Qwen-32B (R1Q-32B) on MATH500 and AIME24 datasets

D DECODING THROUGHPUT/LATENCY OVER DECODING LENGTH

Deploying LRMs in large-scale production environments presents substantial challenges for im-
proving reasoning efficiency. First, effective methods to mitigate redundant reasoning in LRMs are
critical, as such inefficiencies significantly hinder the performance of inference systems in produc-
tion. Since the generation latency of LLMs typically increases linearly with decoding length (as

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

2000 4000 6000 8000 10000 12000 14000 16000
Decoding Length (tokens)

200

400

600

800

1000

1200

1400

1600

Tr
ou

gh
pu

t (
to

ke
ns

/s
ec

)

bs=32
bs=128

Figure 6: Throughput reduction due to increasing length of QwQ-32B. The one-step attention complexity is
linear to the sequence length or KV cache length, so inference with long decoding length or long input length
has the same issue. For example, for the 32K decoding step, the latency of attention is same as the first decoding
step with 32K input length, which is significantly higher than the attention latency with shorter length.

shown in Figure 6), reducing unnecessary token generation can yield super-linear gains in runtime
reduction relative to the proportion of tokens saved. This, in turn, enhances the efficiency and scal-
ability of test-time compute. Second, proposed solutions must be compatible with state-of-the-art
inference infrastructures designed for large-scale deployment, such as vLLM and SGLang.

E FULL LIST OF REFLECTION TOKENS

We utilize the following markers as reflection tokens to partition model reasoning into sub-
thoughts: “\n\nBut”, “\n\nWait”, “\n\nHowever”, “\n\nHmm”, “\n\nLet me verify this”, and
“\n\nAlternatively”. We do not utilize those without “\n\n” such as “but” and “But” as reflec-
tion tokens to reduce the number of answer existence checking with verifiers, because many are in
the internal step checking before approaching answers. “\n\n” is a strong structural separator for
different thoughts in Deepseek R1 and Qwen QwQ-32B.

These reflection tokens were chosen by prompting the LRMs with a small set of manually-crafted
questions and then capturing the outstanding reflection phrases. Some of the questions are presented
as follows:

• Emma walks into her kitchen in the morning and finds the floor wet and several small
puddles near the sink. She notices the faucet handle is turned on, but no water is flowing.
What most likely happened, and what should Emma do next?

• An A/B test shows a +2.1% uplift with p=0.049 on day 7, but on day 14 the effect shrinks
to +0.7% with p=0.18. Provide at least two explanations and the next diagnostic checks.

• A classifier has 98% accuracy on a dataset where 97% of samples are negative. Why might
this be misleading? Propose better metrics and a quick verification.

(Continue on the next page)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F DETAILED PROMPTS

Default Verifier Prompt for Answer Existence p1

Check if the following sentences from a reasoning model reach a conclusion, regardless of formatting or phrasing, and solve the
question. Return ‘Yes’ if the content finds a solution, otherwise ‘No’. Return only ‘Yes’ or ‘No’ with no explanation.
Example 1:
Question: 2 + 3 =?
Content: The answer is 5.
You should return Yes.
Example 2:
Question: 2 + 3 =?
Content: I think it should be 5, but I am not sure.
You should return Yes.
Example 3:
Question: 2 + 3 =?
Content: Wait, I think I made a mistake.
You should return Yes.
Example 4:
Question: If f(x) = 3x−2

x−2 , what is the value of f(−2) + f(−1) + f(0)? Express your answer as a common fraction.
Content: 6 + 5 is 11, and 11 + 3 is 14. Yes, so 14

3 . So, f(−2) + f(−1) + f(0) = 14
3 .

You should return Yes.
Example 5:
Question: If f(x) = 3x−2

x−2 , what is the value of f(−2) + f(−1) + f(0)? Express your answer as a common fraction.
Content: Since all denominators are 3, we can add the numerators: 6 + 5 + 3 = 14. Therefore, the sum is 14

3 .
You should return Yes.
Example 6:
Question: If f(x) = 3x−2

x−2 , what is the value of f(−2) + f(−1) + f(0)? Express your answer as a common fraction.
Content: Wait, another thought: When adding the fractions, is 14

3 the correct sum? Let’s compute it in decimal to cross-verify. 14
3

divided is approximately 4.666...
You should return No.
Question: $QUESTION
Content: $CONTENT
[Yes/No]:

Verifier Prompt for Answer Consistency p2

Check if the two answers provided are logically or mathematically equivalent, regardless of formatting or phrasing. Return ‘Yes’ if
they are equal in meaning/value and a valid solution to the question, otherwise ‘No’. Return only ‘Yes’ or ‘No’ with no explanation.

Example 1:
Question: 2 + 3 =?
Answer1: the answer is 5.
Answer2: the answer seems to be five.
Are they equivalent? [Yes/No]: Yes

Example 2:
Question: Define

p =
∞∑

k=1

1

k2
and q =

∞∑
k=1

1

k3
.

Find a way to write
∞∑
j=1

∞∑
k=1

1

(j + k)3

in terms of p and q.
Answer 1:

(p− 1)− (q − 1) = p− 1− q + 1 = p− q

Therefore, the original double sum is equal to p− q.
Answer 2: Given that the terms are decreasing and positive, the convergence seems plausible. However, since p−q ≈ 0.4429 and
our partial sum is about 0.3513, it’s possible that the analytical result is correct. Therefore, unless there’s a mistake in the analytical
steps, the answer should be p− q.
Are they equivalent? [Yes/No]: Yes

Question: $QUESTION
Answer 1: $ANSWER1
Answer 2: $ANSWER2
Are they equivalent? [Yes/No]:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Guidance Prompt to Stop Thinking

Gentle Prompt (Overthinking Trim):
\n\n I think I already thought for a long time, and I should be able to put the simple
final answer after **Final Answer**\n with \boxed{} and end thinking now! **Final
Answer**\n
Forceful Prompt (Underthinking & Repetition Truncation):
\n\n I think I already thought for a long time, and I should be able to deduce the
final answer from the content above. </think>\n\n

G OVERTHINKING/UNDERTHINKING EXAMPLES

The following is an example of overthinking in QwQ-32B. The question comes from AIME24.
During the thinking process, reflection tokens like “\n\nWait”, “\n\nBut” and “\n\nAlternatively”
appear 14 times. After the reflection tokens, the content verifies the answer “204” which first appears
in the first third of the entire reasoning process.

An example of overthinking phenomenon (QwQ-32B)

Question: Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards.
When she walks at a constant speed of s kilometers per hour, the walk takes her 4 hours, including t
minutes spent in the coffee shop. When she walks s+2 kilometers per hour, the walk takes her 2 hours
and 24 minutes, including t minutes spent in the coffee shop. Suppose Aya walks at s+ 1

2
kilometers

per hour. Find the number of minutes the walk takes her, including the t minutes spent in the coffee
shop.
Answer: Okay, so I have this problem about Aya’s morning walk and coffee shop visit. Let me try
to parse it step by step Convert that to minutes: 3*60 +24= 180+24=204 minutes. Hmm,
but let me confirm again. \n\nWait, in the first scenario So is that the answer? \n\nWait
. which is 204 minutes. \n\nBut let me double-check so 204 is correct. Hmm. Al-
ternatively, maybe I made a mistake in interpreting the total time? \n\nWait which is 204
minutes. \n\nAlternatively So that’s consistent. \n\nAlternatively, maybe there’s an error in
calculation \n\nWait, hold on, let me re-derive that step Adding 24 minutes gives 204
minutes. So I think that’s correct. \n\nAlternatively, maybe the question is in minutes per kilometer
or something else? \n\nAlternatively, maybe I need to present the answer in hours converted
to minutes? so 204 is the answer. \n\nWait, but let me think again. Let me compute every-
thing step by step once more to be thorough Yes, so that’s exactly 180 +24=204. Alright, so
I think that’s solid \n\nAlternatively, maybe the problem expects the answer in hours
\n\nAlternatively, maybe I made a mistake in the quadratic equation \n\nAlternatively, maybe
I should check with another approach \n\nTherefore, I think 204 is the correct answer. Maybe
I was overcomplicating, but better safe than sorry. I’ll go with 204. **Final Answer** 204 </think>

The example of underthinking in QwQ-32B is present below. The question taken from AIME24
is difficult and the LRM doesn’t reach the correct answer. The reasoning contents switch between
different approaches frequently and can’t provide an answer confidently. In fact, the figure 37/128 is
made up without reasoning and the answer “475” has been checked to be wrong in previous thinking.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

An example of underthinking phenomenon (QwQ-32B)

Question: Each vertex of a regular octagon is independently colored either red or blue with equal
probability. The probability that the octagon can then be rotated so that all of the blue vertices end up
at positions where there were originally red vertices is m

n
, where m and n are relatively prime positive

integers. What is m+ n?
Answer: Okay, so I need to find the probability that \n\nAlternatively, using Burnside’s lemma
. \n\nWait, Burnside’s lemma counts the number of orbits, but I’m not sure. \n\nAlternatively,
let me think of it as follows \n\nTherefore, this is the same as before. Perhaps the expected
value approach \n\nBut expectation of the union is tricky, but maybe we can approximate
it \n\nAlternatively, since B is randomly chosen, the events for different elements are not
independent, but perhaps we can compute it \n\nAlternatively, since the problem is from an
Olympiad, the answer might be 37/128 or something \n\nAlternatively, maybe the correct
answer is 37/128? \n\nWait, let me think differently \n\nAlternatively, perhaps the number is
equal to the sum over all non-zero rotations of \n\nBut without knowing the overlaps, it’s hard
. This is getting too involved. Given that this is an Olympiad problem, perhaps there’s a smarter
way \n\nBut without the second term, we can’t compute it. \n\nAlternatively, perhaps assume
that the events are independent \n\nWait, this is confusing. \n\nAlternatively, if the number
of subsets suggests that this count is too low. \n\nAlternatively, perhaps the correct answer is
37/128? \n\nWait \n\nBut the problem says “can be rotated so that all blue vertices end up
at originally red vertices” \n\nTherefore, perhaps the count is indeed 219, giving 475. Given
that this is a competition problem, and 475 is a plausible answer (as 219+256=475), I think this is the
intended answer. \n\nTherefore, I will go with 475. **Final Answer** 475 </think>

H DETAILED EXPERIMENT SETUP

Benchmark description: MATH500 (Hendrycks et al., 2021) comprises 500 problems spanning
arithmetic, algebra, geometry, and calculus with varying difficulty levels. It evaluates models’ ability
in complex mathematical formalism, equation solving, and reasoning. AIME24 (AIME2024) con-
sists of Olympiad-style problems assessing logical deduction and advanced problem-solving skills.
AIME25 (AIME2025) features updated problems from the same competition as AIME24. GPQA
Diamond (Rein et al., 2024) is a challenging dataset containing 198 multiple-choice questions, writ-
ten by domain experts in biology, physics, and chemistry.

All the experiments are conducted on servers with 8 Ascend 910B-64GB NPUs and 192-cores
Kunpeng-920 CPUs with 1.5TB memory. During decoding, TorchAir (Torch Ascend Intermedi-
ate Representation) captures the computation graph to accelerate kernel dispatch and alleviate host-
bound bottlenecks. The maximum number of concurrent decoding batches is set to 128. We config-
ure vLLM to pre-allocate eight scheduler steps, thereby reducing scheduling overhead. All dataset
requests (e.g., the 500 questions in MATH500) are submitted to vLLM concurrently, and we record
key metrics such as total wall-clock time and per-request latency. We employ the Qwen2.5 math
evaluation tool to score the solutions (Yang et al., 2024) and apply postprocessing to ensure that
formatting quirks (e.g., spacing, notation style) don’t penalize valid solutions.

In the BoN experiments, we use Pangu-ORM (close-source) as the Outcome Reward Model to
select the best solution from the generated N solutions. The ratio of LRM and ORM is 1:1 in
our experiments, although in production this ratio can be much higher.

I EFFECTIVENESS OF REPETITION TRUNCATION

Table 5: Effects of Repetition Truncation over five GPQA Diamond runs.

Model Runtime (H:M:S) TPR Accuracy #Tokens Detected Repetitions

R1Q-32B 4:02:51 5355.66 0.444 3.09M —
with repetition truncation 3:09:26 3568.02 0.454 2.45M 29 out of 198

As shown in Table 5, applying repetition truncation to DeepSeek-R1-Distill-Qwen-32B yields sub-
stantial efficiency gains without sacrificing—and even slightly improving—accuracy: Enabling trun-
cation reduces total runtime by 22.0%, cuts TPR by 50.10%, and decreases token consumption by

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

20.7%, while delivering a 1% accuracy gain. Further analysis of truncated outputs confirms that
most early termination occur during later stages of reasoning, where the model becomes stuck in
particular attention patterns and fails to generate diverse contents. We also found that the guidance
prompt effectively mitigates infinite repetitive outputs by steering the language model toward con-
textually relevant generation grounded in prior analysis. This module thus serves as an effective,
low-overhead component of the T4S, streamlining inference and enhancing answer clarity.

J UNDERTHINKING THRESHOLDS

We chose our initial configurations for Rthres and Nthres by prompting the model with a small suite
of several challenging calculus problems that are not within the test sets of the benchmark datasets.
We inspected model traces: on these problems, Pangu-R-38B typically exhibited underthinking
after ∼15K tokens, whereas successful solutions consistently converged within 10K tokens and 20
rounds. Guided by these observations, we fixed a uniform Rthres = 50% and Nthres = 20 for all
benchmarks and models, under which performance remained strong.

One of the questions that can easily trigger underthinking is:

SN =

N∑
k=1

ln
(
1 + k

N

)
− N ln 2 + 1

2 lnN.

Tasks:
1. Prove that SN admits a full asymptotic expansion as N → ∞ via the Euler–

Maclaurin formula; compute explicitly the first four terms (including the constant
term).

2. Identify the Bernoulli-number contributions and state a rigorous remainder bound
in terms of ∥f (m)∥∞ on [0, 1].

3. Discuss numerical stability: which truncation order minimizes the actual error for
moderately large N (e.g., N ≈ 103–105)?

30 40 50 60 70
Rthres (%)

2.2

2.4

2.6

2.8

3.0

#T
ok

en
s (

M
)

2.280

2.404 2.444
2.515 2.518

#Tokens (M)
Accuracy

70

72

74

76

78

80

Ac
cu

ra
cy

 (%
)

73.3%

76.6% 76.6% 77.1% 76.6%

(a) Tokens and Acc. vs. Rthres.

10 15 20 25 30
Nthres

2.2

2.4

2.6

2.8

3.0

#T
ok

en
s (

M
)

2.396 2.406 2.444 2.464 2.458

#Tokens (M)
Accuracy

70

72

74

76

78

80

Ac
cu

ra
cy

 (%
)

75.3% 75.3%
76.6%

75.8%
76.6%

(b) Tokens and Acc. vs. Nthres.

Figure 7: Effect of token- and round-budget thresholds on token count and accuracy (QwQ-32B on AIME24).
Although performance is largely insensitive to Rthres and Nthres, accuracy degrades when Rthres < 40%.

After setting the hyperparameters used for deriving the main results, we change these values and
observe the performance as an ablation study. Figure 7 plots accuracy and token usage against the
token threshold Rthres and round threshold Nthres. Raising Rthres from 30% to 40% increases ac-
curacy from 73.3% to 76.6% while tokens rise modestly (2.28 M to 2.40 M). Beyond 50%, accuracy
plateaus but token count continues to grow. Likewise, increasing Nthres from 10 to 20 rounds boosts
accuracy to 76.6% (2.44 M tokens) with no clear gains thereafter. Though lowering the threshold to
Rthres = 40% yields greater token savings without sacrificing accuracy, our default operating point
set by inspection, though not optimal, already offers a reasonably good trade-off between token
efficiency and accuracy.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

K DISCUSSION ON PERFORMANCE CHANGES

We performed a case-by-case review of all instances in which correctness shifted—either positively
or negatively—after applying TrimR.

In those cases where accuracy improved, two phenomena were at work. First, on some occasions
(approximately 30%), the model would descend into repetitive or lengthy generation and exhaust
its token budget without ever producing a final answer; TrimR’s early-exit mechanism enables the
model to stop and emit its best partial solution instead, turning non-answers into correct outputs.
Second, we observed that very long chains of thought can degrade model performance, as global
attention becomes less effective over extended sequences. In such samples, the model arrived at a
correct solution midway through its reasoning but then later contradicted itself; by detecting conver-
gence and triggering a timely exit, TrimR preserves that correct intermediate answer.

On the other hand, a small fraction of samples saw a slight drop in accuracy. In these cases, the
verifier identified a premature convergence on an incorrect hypothesis—often when the model re-
peatedly reaffirmed the same wrong answer—thereby cutting off subsequent reflections that might
have corrected the error. While such instances are uncommon, they highlight a trade-off inher-
ent in any early-exit strategy between minimizing wasted computation and allowing extra time for
late-stage corrections. Overall, however, the net effect of TrimR remains strongly positive, yielding
significant token savings with only minimal impact on accuracy.

L EXTENDED ANALYSIS ON DISTRIBUTION

0 5000 1000015000200002500030000
#Tokens

0

20

40

60

80

100

120

140

160

180

#S
am

pl
es

original distribution
distribution w/ TrimR
unchanged samples
overthinking samples
underthinking samples

(a) The distribution of number of tokens with and
without TrimR

0 50 100 150 200
#Rounds

0

50

100

150

200

250

300

#S
am

pl
es

original distribution
distribution w/ TrimR
unchanged samples
overthinking samples
underthinking samples

(b) The distribution of number of rounds with and
without TrimR

Figure 8: The distribution of tokens and reasoning rounds with and without TrimR (QwQ-32B on MATH500).
The original distribution is indicated by the black curve, while the unchanged, overthinking, and underthinking
samples are shown as stacked bars. After applying dynamic think trim, both the total tokens and number of
reasoning rounds are substantially reduced compared to the original distribution.

As shown in Figure 8a, dynamic thinking trim produces a marked leftward shift in the token–usage
distribution. In the uncompressed model, the “knee” lies around 3,500 tokens, with a substantial
tail beyond 10,000 tokens. After truncation, over 80% of samples require fewer than 6,000 tokens,
a roughly 30% increase. Also, the heavy tails (>15,000 tokens) are nearly eliminated. Decompos-
ing the stacked bars reveals that unchanged samples remain tightly clustered in the low-token bins
(≤4,000 tokens), overthinking samples are effectively truncated into the lower-range bins (0–8,000
tokens), and underthinking samples (<5% of cases) occupy lengths that are modest relative to the
original tail.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A parallel effect appears in the reasoning-round distribution (Figure 8b). Prior to trimming, a non-
trivial fraction extends beyond 50 rounds (with outliers over 200), whereas after trimming over 85%
of samples complete within 30 rounds—an increase of nearly 20 percentage points in the ≤20-round
regime. Overthinking cases shift from the heavy tail into the 0–30-round interval, while underthink-
ing cases, though rare, have been truncated to mid-range (50–120 rounds).

Taken together, these results show that TrimR preserves valid reasoning, curtails redundant over-
thinking, and minimally affects cases needing additional confirmation—thus markedly improving
inference efficiency in both token and round dimensions.

M ONE VERIFIER CAN SERVE MULTIPLE LRMS

A single verifier model can simultaneously support multiple LRM instances. Runtime performance
data indicates that when serving a single LRM instance, the verifier’s computational workload re-
mains within manageable thresholds. Each LRM instance generates an average request rate of 9
requests per second, while the verifier demonstrates an average processing capacity of approxi-
mately 128 requests per second - establishing an LRM-to-verifier request ratio of 14:1 under ideal
conditions. However, production systems adopt a conservative 8:1 deployment ratio to maintain
operational safety margins.

When accounting for verifier infrastructure costs, TPR (Time Per Request) improvements must be
adjusted by a cost-efficiency factor: 14×8

14×8+1 = 99.1% (8 Ascend 910-64GB per LRM instance, 1
Ascend 910-64GB per verifier instance). This calculation demonstrates that the performance gains
per computational instance remain effectively preserved (99.1%) despite the additional verification
overhead. It is noteworthy that enhancements in token utilization and user-perceived TPR cannot
be further optimized by scaling the number of computing instances within the cluster. In contrast,
TrimR demonstrates significant performance gains by reducing user waiting times, achieving mea-
surable improvements in latency reduction.

N PERFORMANCE ON PANGU PRO MOE

We present the results on an open-sourced Pangu model, Pangu Pro MoE, released after the date of
this study, in Table 6. The results show that TrimR can readily reduce the token usage with very
minor or no performance regression.
Table 6: Performance comparison of Pangu–Pro-MoE on the MATH500, AIME24, AIME25, and GPQA
Diamond benchmarks. Relative improvements are highlighted in green, and regressions in red.

Model Runtime(s) TPR(s) TPR-T90(s) Acc. #Tokens(M)
MATH500

Pangu Pro MoE 6520 805.4 569.2 95.2% 1.618
w/ TrimR 4900 -24.8% 662.2 -17.8% 488.3 -14.2% 95.6% +0.4% 1.383 -14.5%

AIME24
Pangu Pro MoE 3047 1263.9 1096.3 80.0% 0.269

w/ TrimR 2231 -26.8% 1111.0 -12.1% 989.1 -9.8% 76.7% -3.3% 0.231 -14.1%

AIME25
Pangu Pro MoE 3273 1361.7 1194.4 70.0% 0.290

w/ TrimR 2256 -31.1% 1225.8 -10.0% 1112.3 6.9% 66.7% -3.3% 0.256-11.7%

GPQA Diamond
Pangu Pro MoE 7729 1068.0 927.3 76.6% 1.347

w/ TrimR 6415 -17.0% 924.3 -13.5% 878.8 -15.3% 76.0% -0.6% 1.146 -14.9%

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

O RESULTS ON LIVECODEBENCH

Table 7: Performance and token usage reduction on
LiveCodeBench after applying TrimR. Acc.: accuracy
change; #Tok.: token usage change.

Model Acc. #Tok.

QwQ-32B -0.6% -9.4%
Pangu Pro MoE -0.8% -10.2%

Table 7 shows that, similar to the results on
mathematical and scientific reasoning, TrimR
can readily reduce token usage by around 10%
while preserving the performance of models.

Beyond mathematical and scientific reasoning,
the results on LiveCodeBench (Table 7) further
demonstrate the robustness of TrimR. TrimR
achieves nearly 10% token reduction with accu-
racy drops consistently below 1%. This trade-off
indicates that the method effectively removes redundant exploration while retaining the essential
steps needed for correctness. Moreover, its effectiveness across both dense (QwQ-32B) and MoE
(Pangu-Pro-MoE) architectures suggests that TrimR is largely architecture-agnostic.

P PERFORMANCE OF QWEN 7B AS VERIFIER

The performance of QwQ-32B (LRM) and Qwen2.5-7B-Instruct (verifier) with and without TrimR
across benchmarks is presented in Table 8. The results show that the choice of verifier model has
negligible effects on TrimR’s effectiveness.
Table 8: Performance of QwQ-32B (LRM) and Qwen2.5-7B-Instruct (verifier) with and without TrimR across
benchmarks. Relative changes are shown in parentheses.

Dataset Model Runtime (s) TPR (s) TPR-T90 (s) Acc.

MATH500 QwQ 32B 4413 593.1 439.7 95.6%
MATH500 QwQ 32B w/ TrimR 3169 (−28.2%) 507.1 (−14.5%) 380.3 (−13.5%) 96.6% (+1.0%)

AIME25 QwQ 32B 7436 2771.5 2513.8 60.0%
AIME25 QwQ 32B w/ TrimR 6321 (−15.0%) 2342.2 (−15.5%) 2061.3 (−18.0%) 60.8% (+0.8%)

GPQA Diamond QwQ 32B 4406 1302.6 1115.0 66.0%
GPQA Diamond QwQ 32B w/ TrimR 3305 (−25.0%) 1185.4 (−9.0%) 1037.0 (−7.0%) 66.0% (0%)

Q TEST-TIME SCALING WITH BON

Beyond sequential token extension, additional test-time scaling approaches to improve LRMs accu-
racy include BoN sampling (Lightman et al., 2024), Monte Carlo Tree Search (MCTS) (Wu et al.,
2025b), and beam search (Lightman et al., 2024). Integrating TrimR with BoN (N=8), as evidenced
in Table 9, demonstrates significant reductions in token consumption (-13.8-16.2%), and runtime
duration (up to 23.3%) while maintaining performance parity (-3.3% on AIME24).
Table 9: Integrating TrimR with Best-of-N (BoN) (Pangu-R-38B) yields comparable efficiency improvements
and token reduction while preserving the accuracy-performance trade-offs.

MATH500 AIME24

Runtime TPS Acc.(%) #Tokens(M) Runtime TPS Acc.(%) #Tokens(M)

BoN 19,423 656 97.4 13.055 35,084 1,628 86.6 18.882
w/ TrimR 16,171 -16.7% 562 -14.3% 97.2 -0.2 11.251 -13.8% 26,911 -23.3% 1,281 -21.3% 83.3 -3.3% 15.822 -16.2%

R LIMITATIONS

In oder to improve the overthinking and underthinking detection accuracy, we introduce an addi-
tional small 7B verifier model. It may require additional hardware for verifiers during deployment,
which may increase the complexity of the inference system. However, our algorithm and online
system design can dramatically reduce the LRM inference cost. In addition, one verifier can serve
multiple LRMs as discussed in Sec. M, so the additional deployment complexity for small veri-
fiers is acceptable compared with the runtime reduction of LRMs. In addition, verifiers can also
be deployed in the same hardware with LRMs and they can be collaborated in the way like serving
smaller speculative models and larger generation models in speculative decoding.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

S BOARDER IMPACTS

Large Reasoning Models are widely used to provide more guidance with internal thinking process
and improve user experience. Our work improves the efficiency of LRMs, which is helpful to reduce
the cost and carbon footprint of LRMs. This approach can enhance the accessibility of LRMs for a
broader population while minimizing environmental impact.

23

	Introduction
	Related Works
	Method
	Thought Detection and Answer Extraction
	Overthinking Trimming
	Underthinking Trimming
	Repetition Truncation
	Guidance Prompts for LRMs Thinking Compression
	Online System Design

	Experiments
	Experiment Setup
	Main Results
	Analysis

	Conclusion
	Reproducibility Statement
	Use of Large Language Models
	Algorithm of Underthinking Trim
	More Analysis of Thinking Length and Accuracy
	Decoding throughput/latency over decoding length
	Full List of Reflection Tokens
	Detailed Prompts
	Overthinking/Underthinking examples
	Detailed Experiment Setup
	Effectiveness of Repetition Truncation
	Underthinking Thresholds
	Discussion on Performance Changes
	Extended Analysis on Distribution
	One Verifier Can Serve Multiple LRMs
	Performance on Pangu Pro MoE
	Results on LiveCodeBench
	Performance of Qwen 7B as Verifier
	Test-time Scaling with BoN
	Limitations
	Boarder Impacts

