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ABSTRACT

Large Reasoning Models (LRMs) demonstrate exceptional capability in tack-
ling complex mathematical and logical tasks by leveraging extended Chain-of-
Thought (CoT) reasoning. Test-time scaling methods—such as prolonging CoT
with explicit token-level exploration—can push LRMs’ accuracy boundaries, but
they incur significant decoding overhead. A key inefficiency source is LRMs of-
ten generate redundant thinking CoTs, which demonstrate clear structured over-
thinking and underthinking patterns. Inspired by human cognitive reasoning pro-
cesses and numerical optimization theories, we propose TrimR, a verifier-based,
training-free, efficient framework to trim reasoning and enhance test-time
scaling, explicitly tailored for production-level deployment. Our method employs
a lightweight, pretrained, instruction-tuned verifier to detect and truncate redun-
dant intermediate thoughts of LRMs without any LRM or verifier fine-tuning.
We present both the core algorithm and asynchronous online system engineered
for high-throughput industrial applications. Empirical evaluations on Ascend
NPUs and vLLM show that our framework delivers substantial gains in infer-
ence efficiency under large-batch workloads. In particular, on the four MATH500,
AIME24/25, and GPQA benchmarks, the reasoning runtime of QwQ-32B,
DeepSeek-R1-Distill-Qwen-32B, and Pangu-R-38B is improved by up to 70%
with negligible impact on accuracy.

<think>\nOkay, so I have this problem about Aya's
morning walk ... Let me try to parse it step by step. ...

\n\nWait, ... so total time is 3 hours 24 minutes,
which is 204 minutes. So is that the answer?

\n\nWait, ... so 204 is correct. Hmm. Alternatively,
maybe I made a mistake in interpreting the total time?

\n\nAlternatively, maybe I need to present the answer
in hours converted to minutes ..., so 204 is the answer.

\n\n I think  I already thought for a long time, ...  deduce the
final answer from the content above. </think>\n\n 
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Figure 1: The TrimR framework. (1) CoTs are divided into sub-thoughts with reflection tokens in Sec. 3.1; (2a)
Over/underthinking detection through answer convergence analysis in Sec. 3.2, 3.3 (2b) repetition truncation in
Sec. 3.4; (3) By simplifying redundant detection as the binary answer existence and equivalence classification
with prompts p1 and p2 in Appendix F, 7B instruction models replace PRMs/ORMs, avoiding instability from
full-sequence scoring; (4) The verifier applies p1 to assess conclusion completeness in individual thoughts and
p2 to identify overthinking when consecutive thoughts yield identical answers. Early termination is triggered
with Algorithm 1, 2; (5) Thinking termination prompts for LRMs are generated based on verifier decisions to
halt redundant reasoning gently or forcefully in Sec. 3.5.

1 INTRODUCTION

Large Reasoning Models (LRMs) such as OpenAI o1 (OpenAI, 2024), DeepSeek R1 (Guo et al.,
2025), and Qwen QwQ (Team, 2025) achieve expert-level performance on mathematical and sci-
entific reasoning tasks by decomposing problems into manageable subproblems, conducting step-
by-step analysis, detecting and correcting errors, and exploring alternative solutions. However, this
extended “thinking” incurs substantial decoding overhead and inference cost, hindering deployment
in resource-constrained settings (Guo et al., 2025).
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Figure 2: Correlation between occurrence, accuracy, and the number of generated thoughts/tokens of QwQ-
32B on MATH500 (Hendrycks et al., 2021) and AIME24 (AIME2024). For hard questions, QwQ can spin out
up to 140 lengthy yet incorrect thoughts—indicating a need for underthinking trimming. For easier questions,
QwQ delivers brief, highly accurate answers—yet there’s still room to make them even more concise by over-
thinking trimming.

Benchmarking on AIME24 (AIME2024) and MATH500 (Hendrycks et al., 2021) reveals two key
inefficiencies: overthinking and underthinking (Marjanović et al., 2025). Overthinking mani-
fests as redundant verification of already-correct steps—often signaled by reflection tokens such as
“Wait” or “Alternatively”—which increases output length without accuracy gains (as in Fig. 1, 2).
Underthinking occurs on harder problems when the model oscillates among incomplete reasoning
chains and fails to converge, producing lengthy yet inaccurate responses (Fig. 2). Representative
examples are provided in Appendix G.

The extended Chain-of-Thought (CoT) reasoning in LRMs poses deployment challenges: decoding
lengths vary widely and runtime scales superlinearly with sequence length. Training-based methods
such as (Yan et al., 2025; Chen et al., 2024; Munkhbat et al., 2025; Yu et al., 2024) reduce token
generation in LRMs but impose heavy training and computational costs on large models and may
degrade their general capabilities. In contrast, training-free techniques integrate seamlessly and
preserve original behavior: TokenBudget (Han et al., 2024) dynamically adjusts token budgets via
prompting, and Chain of Draft (Xu et al., 2025) uses concise instructions to shorten output, yet both
require invasive inference-time modifications.

We thus propose TrimR, a verifier-based, training-free approach for online thinking trimming
while maintaining reasoning performance. We detect overthinking and underthinking in intermedi-
ate thought answers with a lightweight verifier and trigger prompt-based LRM thinking early
termination upon redundancy detection. By simply checking answer existence and equivalence
in brief thought segments, our method leverages compact verifier models instead of complex Pro-
cess Reward Models (PRMs) or Outcome Reward Models (ORMs) (Lightman et al., 2024). The
non-invasive early termination preserves original LRM capabilities. Finally, we present an online
asynchronous system collaborating LRMs and small verifiers to support industrial-scale workloads.
TrimR offers a significant advantage by maintaining the performance and knowledge of LRMs
through a targeted intervention strategy that is activated only when redundant reasoning is detected.

Notations. Given an input X , the LRM Π generates a response Y = Π(X). We denote y<t =
[y1, y2, ..., yt−1] as the previously generated tokens. Each time yt = pΠ(X,y<t). With a slight
abuse of notation, let Π(X,y<t) denote full response including y<t.

Theoretical Foundation. Our method unifies human cognitive heuristics—overthinking and under-
thinking as confidence-threshold and diminishing-returns processes—with mathematical optimiza-
tion. People typically stop thinking further after finding answers to simple questions and give up on
complex tasks after too many unsuccessful attempts. We model reasoning process as an optimization
problem in “language space”, where LRMs traverse token trajectories and converge to an optimal
solution. Mirroring numerical optimizers’ early-stopping, we introduce a termination criterion that
halts reasoning once reasoning converges or marginal gains fall below a preset threshold. Formally,
given an input X with a partial response y<t, the reasoning performance of LRM Π is denoted as
Perf(X,y<t|Π). We derive a compression rule c to determine the stopping time t′ ∈ {0, ..., t−1}.
The goal is to minimize the inference cost of y<t′ referred to as Infer Cost(y<t′) without degrad-
ing reasoning performance.

min
c(·)

Infer Cost(y<t′) s.t. t′ = c(y<t)

Perf(X,y<t′ |Π) ≥ Perf(X,y<t|Π)

2
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Contributions.
• We propose a lightweight, training-free method for dynamic thinking trimming in

LRMs—mitigating both over- and underthinking—via a small verifier, enabling efficient
test-time scaling with negligible loss of reasoning accuracy.

• We develop an asynchronous thinking trimming system for industrial-scale deployment,
seamlessly integrating with existing inference infrastructures.

• Through extensive evaluations and ablations on diverse models (QwQ-32B, Deepseek-R1-
Distill-Qwen-32B, and Pangu-R-38B), we demonstrate consistent reductions in reasoning
cost and token usage across standard reasoning benchmarks in production settings.

2 RELATED WORKS

This section reviews recent advancements in efficient reasoning techniques for LRMs. For a more
detailed discussion, see comprehensive surveys (Sui et al., 2025; Qu et al., 2025; Su et al., 2025).
The slight difference of the fast and slow thinking models motivates efficient long-to-short reasoning
with model merging, which directly fuse weights of models with different thinking patterns using
carefully designed algorithms (Team et al., 2025; Wu et al., 2025a). Apart from it, there are three
types of commonly used efficient reasoning methods.

Training-based Methods. Approaches in this category modify or fine-tune LRMs to generate con-
cise reasoning. Reinforcement learning with length-based rewards prunes verbose chains (Hou et al.,
2025; Xia et al., 2025; Zhang et al., 2025a; Team et al., 2025; Chen et al., 2024; Arora & Zanette,
2025; Chen et al., 2025; Fang et al., 2025), while supervised fine-tuning teaches models to compress
explanations (Munkhbat et al., 2025; Yu et al., 2024). Latent-space techniques further minimize
token usage by operating in a compact semantic embedding space (Hao et al., 2024). Although ef-
fective, these methods demand substantial compute, risk task-specific overfitting, and may degrade
general-purpose capabilities.

Self-Evaluation Methods. These techniques prompt LRMs to assess their own confidence and
decide when to stop reasoning. Adaptive schemes ask the model to predict the benefit of restart-
ing (Manvi et al., 2024) or to estimate certainty at key junctures (Yang et al., 2025). SelfThink (Zeyu
et al., 2025) is proposed to facilitate LRMs’ intrinsic task complexity classification capabilities to
dynamically switch between fast and slow thinking. ST-BoN leverages embedding-distance metrics
for early truncation (Wang et al., 2025b). While they avoid external models, the added inference
steps may introduce latency. Some contemporaneous works intervene in inference to reduce token
usage in reasoning: SpeedAdapt (Lin et al., 2025) adjusts hidden states dynamically to control the
reasoning speed; NoThink (Ma et al., 2025) suppresses reasoning entirely; AlphaOne (Zhang et al.,
2025b) modulates slow and fast thinking at test time based on average thinking length.

Model Collaboration. Hybrid frameworks use auxiliary evaluation models, reward models, or
thought proposers to guide decoding. Dynasor monitors semantic entropy and reward-model outputs
for early stopping (Fu et al., 2024; Kuhn et al., 2023). Speculative Rejection uses partial-output
scores from a reward model to terminate best-of-N search (Sun et al., 2024). However, above works
heavily rely on the performance of the reward model. Another work (Xi et al., 2024) trains a critique
model which provides step-level feedback to guide the reasoning model on the fly. There are also
concurrent works on improve LRM efficiency by generating thoughts with smaller reasoning models
for speculative reasoning (Pan et al., 2025; Wang et al., 2025a). CoThink (Fan et al., 2025) leverages
an instruction model to guide reasoning and reduce reasoning steps.

Unlike prior work, our TrimR framework is training-free and non-invasive: a lightweight verifier
dynamically detects and helps truncate redundant reasoning. No extra self-evaluation steps are in-
troduced, so our method can be easily integrated into existing inference frameworks.

3 METHOD

We propose an efficient, verifier-based, training-free thinking trimming algorithm that dynam-
ically prunes redundant CoT generation during online inference. Our algorithm replicates human
cognitive mechanisms which utilize internal verifiers to check and stop thinking. We introduce
smaller verifiers to detect redundant thinking without fine-tuning verifiers or LRMs. Designed for
industrial-scale batch processing, our framework (Fig. 1) comprises three modules: overthinking

3
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trimming (Sec. 3.2), underthinking trimming (Sec. 3.3), and repetition truncation (Sec. 3.4).
Guidance prompts for halting reasoning are detailed in Sec. 3.5. The online system is presented in
Sec. 3.6.

3.1 THOUGHT DETECTION AND ANSWER EXTRACTION

The reasoning thoughts have clear structured patterns and are usually separated with reflection to-
kens, such as “\n\nWait”, “\n\nBut”, and “\n\nAlternatively”. In addition, LRMs normally gen-
erate answers at the end of thoughts and then verify them as in Fig. 1.

During thinking, we periodically segment the thinking process into sub-thoughts [r1, r2, ..., rk]:

Think Seg(y<t) = [r1, r2, ..., rk].

Here, we separate it by reflection tokens (full list in Appendix E). When new reflection tokens
are detected asynchronously, we split the whole thought between two consecutive reflection tokens
into sentences and concatenate the last several sentences of the current thought as the extracted
intermediate thought answers. Formally, The last Nsent sentences of each sub-thought rl are
denoted as sl, i.e. sl = Last sentences(rl, Nsent). The last several sentences are shorter but more
informative than the whole sub-thought and normally contain answers as demonstrated in Fig. 1.
We do not further process the answer but only skip the extremely short thoughts, which normally do
not contain useful thoughts.

We detect predefined reflection tokens asynchronously so that LRMs continue generating tokens
without throughput loss. Since reflection tokens account for only 0.5% of all outputs and thoughts
are significantly less than tokens as in Fig. 2, the verifier is invoked infrequently and can serve
multiple LRMs concurrently as analyzed in Appendix M. It makes the overhead of redundancy
checks negligible compared to the gains from thinking compression.

3.2 OVERTHINKING TRIMMING

Algorithm 1: Overthinking Compression
Input: Input X , repeat-threshold M
Output: Generated output Y
stopped← False; yt ← pΠ(X);
prev concluded thought← None; count← 0;
while yt ̸= ¡eos¿ do // LRM iteratively generates
yt

// Periodically segment and check for a
new concluded thought

// Fv(p1(sl)) defined in Eqn. 1, r(si, sj)
defined in Eqn. 2.

if yt = </think> then
stopped = True, break;

end
if a new segment sℓ is found and Fv(p1(sl)) = 1 and
stopped = False then

if prev concluded thought ̸= None then
if r(prev concluded thought, sℓ) = 1

then
count← count + 1;

else
// reset on any mismatch
count← 0;

end
end
if count ≥M then

// early-stop after M repeats
yt ← pΠ((X,y<t, stop tokens));
stopped← True, break;

end
prev concluded thought← sℓ;

else
yt ← pΠ((X,y<t, yt));

end
end
return (y<t, yt)

In overthinking scenarios, LRMs typically ar-
rive at correct solutions using only 30 ∼ 50%
of the total generated tokens, yet continue pro-
ducing redundant reasoning paths or alternative
justifications before finalizing an answer (Chen
et al., 2024). While this may aid complex or
uncertain tasks, it burdens simpler ones with
uninformative content and higher latency and
inference costs without accuracy gains. We
propose an overthinking detection and com-
pression algorithm that uses lightweight veri-
fier models to prune redundant reasoning while
preserving LRM accuracy. It emulates veri-
fier confidence based human thinking termina-
tion and convergence-based early termination
mechanisms of numerical optimizers.

Simple Tasks to Utilize Smaller Models. We
simplify overthinking detection as answer ex-
isting and equivalence checking, which are sim-
pler binary classification problems than scor-
ing the whole sequences. By reducing detec-
tion to checking answer existence and com-
paring final outputs of consecutive intermedi-
ate thought answers, we can deploy compact
(7B) verifiers with satisfactory language com-
prehension and instruction following capabil-
ities without fine-tuning, greatly lowering in-
ference overhead compared to full-sequence re-
ward models (Lightman et al., 2024; Liu et al., 2025). Moreover, training PRMs/ORMs for accurate
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scoring is complex and often yields unstable rewards on identical sequences, undermining reliable
overthinking detection (Sun et al., 2024).

Two-Stage Verification. To minimize intervention from answerless intermediate checks, we in-
troduce two-stage verification. First, we confirm the candidate solution is present in the current
reasoning thought. We then verify that intermediate thought answers are semantically or logically
equivalent, regardless of correctness. Both tasks can be handled by the lightweight verifier Fv: x

(1) Answer existence checking: The set of thoughts with solutions S∗ is defined as:

S∗ = { si | Fv(p1(si))}; Fv(p1(si)) = I
[
pFv

(y = “Yes” | p1(si)) > pFv
(y = “No” | p1(si))

]
,

(1)
where p1(si) = p1(X, si) (X omitted for simplicity) is the verifier prompt for answer existence
taking the problem X and thought answer si as parameters.

(2) Equivalence checking: The equivalence r between two consecutive thoughts in S∗ is computed
as:

r(s∗i , s
∗
i+1) = Fv(p2(s

∗
i , s
∗
i+1)} = I

[
pFv (y = “Yes” | p2(s∗i , s∗i+1)) > pFv (y = “No” | p2(s∗i , s∗i+1))

]
,

(2)
where p2(si, sj) = p2(X, si, sj) (X omitted for simplicity) is the verifier prompt for answer equiva-
lence, taking the problem X and two consecutive thought answers in S∗ that both achieve solutions.

Verifier Prompts. Verifiers take the answer existence prompt p1 and answer equivalence prompt
p2 and directly return the binary classification results with the probabilities of ”Yes” and ”No”
tokens. Therefore, only prefilling of verifiers is required, which reduces the computational cost.
The two prompts for verifiers (p1 and p2) in Fig. 1 with placeholders are available here. Details of
placeholders are in Appendix F. The answer existence checking prompt p1 consists of system prompt
for ignoring unimportant formats and phrases, n-shot CoTs with positive and negative examples, the
current question, and the intermediate answer. Similarly, the verifier only checks if two consecutive
intermediate thought answers are semantically or logically equivalent with the prompt p2.

Verifier Prompt p1 for Answer Existence:
Check if the following sentences from a rea-
soning model reach an answer, regardless of
formatting or phrasing, and solve the question.
Return ’Yes’ if the content finds a solution, oth-
erwise ’No’. Return only ’Yes’ or ’No’ with no
explanation.
$N-SHOT COTs (details in Appendix)
Question: $QUESTION
Content: $CONTENT\n [Yes/No]:

Verifier Prompt p2 for Answer Equivalence
Check if the two answers provided are logically or mathematically
equivalent, regardless of formatting or phrasing. Return ’Yes’ if they
are equal in meaning/value and valid solutions to the question, other-
wise ’No’. Return only ’Yes’ or ’No’ with no explanation.
$N-SHOT COTs (details in Appendix)
Question: $QUESTION
Answer 1: $ANSWER1
Answer 2: $ANSWER2
Are they equivalent? [Yes/No]:

Early Termination. We implement early termination through the prompt mechanism introduced in
Sec. 3.5, specifically when the model consecutively agrees with previous reasoning steps M times.
The process is described in Algorithm 1. We only consider thoughts in S∗ to bypass intermediate
thoughts lacking definitive solutions. Such a protocol analogously replicates human cognitive pat-
terns where reasoning halts upon achieving M + 1 consecutive consistent solutions, paralleling the
convergence termination criterion in optimization algorithms.

Resource Saving. By limiting inputs to 200–400 tokens instead of processing full reasoner outputs
(8K–128K tokens) as did in PRMs/ORMs (Sun et al., 2024), we drastically cut memory and com-
pute overhead, boosting batch throughput and reducing verification latency with shorter verifier
prompts. Also, we always reuse the KV cache for the system prompt and question with pre-
fix caching, then batch answers in triplets—remapping the second answer to a fixed placeholder
($ANSWER1 in p2). This lets us retain its cache across examples, so only the cache for the other
placeholder ($ANSWER2, used by the first and third answers) needs updating.

3.3 UNDERTHINKING TRIMMING

In particularly difficult tasks, LRMs repeatedly verify intermediate steps—an indicator of uncer-
tainty that leads to divergent, redundant reasoning. We find that when the model oscillates between
different thought paths, it seldom converges: proposed solutions often fail verification, triggering

5
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further exploration that inflates latency (Fig. 6) without boosting accuracy, and excessive diversity
can even hinder convergence (Chen et al., 2024).

To mitigate this, we repurpose the verifier’s answer-existence/consistency feedback to detect hesitant
overthinking. Concretely, if after Rthres% of the token budget and Nthres reasoning rounds, the
model has not produced at least three consecutive answer-bearing chains that agree on the same
solution, we flag the run as underthinking (Appendix B Algorithm 2). At that point, a guidance
prompt instructs the model to halt further reasoning and summarize its existing insights. It mimics
human tendency to abandon difficult tasks that exceed its capabilities after multiple failed attempts.

This mechanism relies on two principles: (1) repeated convergence on the same solution indicates
that the reasoning process is coherent and sufficiently thorough; and (2) the thresholds Rthres and
Nthres must be calibrated to afford the model adequate opportunity to explore alternative solution
paths before termination. Ablation studies on these thresholds are presented in Appendix J.

3.4 REPETITION TRUNCATION

Recurrent token loops in LRMs often persist despite probabilistic sampling tweaks (e.g., high tem-
perature), especially when sequence length increases. Robust repetition detection and truncation is
therefore essential to prevent wasted computation and improve user experience. Our solution uses a
rolling-hash–based detector to identify repeating token-ID subsequences in real time. By updating
hashes incrementally for each new token, we avoid recomputing whole-sequence hashes, enabling
efficient, on-the-fly repetition checks. This dynamic algorithm is enabled by default unless otherwise
specified. The effectiveness of this module is provided in Appendix I.

3.5 GUIDANCE PROMPTS FOR LRMS THINKING COMPRESSION

We devised two gentle and forceful guidance prompts (presented in Appendix F) to guide termi-
nating the reasoner’s thought process. The gentle prompt curbs overthinking by steering the model
toward concluding its reasoning with **Final Answer**\n, whereas the forceful prompt both
prevents underthinking and breaks any repetitive loops that occur before the designated “think end”
token (e.g. </think>) is emitted. In our experiments, the forceful prompt consistently halted
endless generation during the reasoning stage.

3.6 ONLINE SYSTEM DESIGN

Our inference system is built on vLLM (Kwon et al., 2023) (v0.6.0) running on Ascend-910B-
64GB NPUs, though it can be integrated equally well with other inference frameworks (e.g.
SGLang (Zheng et al., 2024)) or hardware platforms (e.g. GPUs). As shown in Fig. 3, it com-
prises two tightly coupled elements: the inference engine itself, which orchestrates decoding via
vLLM, and the Test-Time Thinking Trimming System (T4S), which performs real-time reasoning
compression in parallel. T4S is structured around a Reasoning Verifier—responsible for detok-

Verifier Model

Seq 1: So all seems consistent.\n\nTherefore, I think the answer is 809. Wait, but let me check with another number.      \n\nPlease put the simple final answer after
Seq 2: yes, consistent.\n\nBut then r1 is the radius of the first circle (closest to B), which is tangent to both AB and BC. \n\nI think I already thought for a long time,   

Message ControllerInference
Engine

LabelSend Data

T4S
Process

Sampling Controller

Detokenization Chain Split
Repetition Detection Check Consistent Solution

                                 Overthinking/underthinking Detection Thread

Get 
Message

Check Solution Existence

Seq 3:  The answer seems to be 4.  Wait, no, The answer seems to be 4.  Wait, no, The answer seems to be 4. \n\nI think I already thought for a long time, and I   

Data Transmission
Async API Call and Data Return
Operations in Different Threads

Sampling Control

Found
Overthinking/Underthinking

External Lightweight VerifierFound Repetition

Time/Aysnc. Workflow

Reasoning Verifier

Figure 3: System design for the Test-Time Thinking Trimming System (T4S). The figure shows three se-
quences that are flagged as (1) overthinking; (2) underthinking; and (3) repetitive generation. The inference
engine streams updates through the Message Controller into the external T4S process, which issues asyn-
chronous API calls to a lightweight verifier.
enizing output into discrete reasoning chains, detecting overthinking or underthinking, and using an
external small verifier model to confirm solution validity—a Message Controller that exchanges
operational data (prompt and generated token IDs) with the verifier at configurable intervals, and a
Sampling Controller that adaptively modifies output logits to enforce specific token generations.
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4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Benchmarks. This work focuses on mathematical and scientific problems: Mathematical bench-
marks: MATH500 (Hendrycks et al., 2021), AIME24 (AIME2024), AIME25 (AIME2025) and
Scientific benchmarks: GPQA Diamond (Rein et al., 2024). Details are available in Appendix H.
We additionally include results on LiveCodeBench (Jain et al., 2024) for dense and MoE models.
As the primary emphasis of this work is on mathematical and scientific reasoning, code tasks are
included for supplementary reference in Appendix O.

Metrics. Apart from accuracy (Acc.), we mainly care about the efficiency metrics. Runtime denotes
the total wall-clock time to process all requests in each dataset. TPR is the average Time Per
Request, while TPR-T90 is the TPR of the fastest/top 90% requests. #Tokens(M) is the number
of generated tokens in millions. Runtime represents the total waiting time of requests, while lower
TPR and TPR-T90 indicate better single user experience and higher Queries-per-Second (QPS).

Configurations. All the experiments are conducted on servers with 8 Ascend 910B-64GB NPUs
and 192-cores Kunpeng-920 CPUs with 1.5TB memory. All dataset requests (e.g., the 500 ques-
tions in MATH500)1 are submitted to vLLM concurrently, and we record key metrics such as total
wall-clock time and per-request latency. We benchmark two open-source models (QwQ-32B and
DeepSeek-R1-Distill-Qwen-32B(R1Q-32B)) alongside the closed-source Pangu-R-38B, using fixed
input/output lengths of 2K/30K tokens. For readers’ interest, the results on Pangu Pro MoE (Tang
et al., 2025), publicly released after the date of this study, are presented in Appendix N. Although
extending outputs to ∼128K tokens yields marginal gains, such settings are impractical for produc-
tion, so we cap the output at 30K. M=2, Nsend=50. The verifier is Pangu-7B (open-sourced) (Pangu
Team, 2025) (by default) and Qwen2.5-7B-Instruct (Qwen Team, 2024) (Table 4).

4.2 MAIN RESULTS

Table 1 shows that introducing TrimR delivers consistent and substantial efficiency gains across
all three models and four benchmarks (up to 70% runtime reduction), with accuracy largely unaf-
fected (less than 1.7% drop). Specifically, runtime is reduced by 16–39% for QwQ-32B (e.g., from
4,413s to 3,118s on MATH500, –29.3%), 19–39% for Pangu-R-38B(–33.8% on MATH500), and
an impressive 53–70% for R1Q-32B (–67.0% on MATH500; –70.0% on GPQA Diamond). Similar
reductions are seen in TPR (e.g., R1Q-32B’s TPR on AIME24 drops from 3,717.6s to 1,433.9s,
–61.4%). Token usage also drops by 8–46% overall, with R1Q-32B showing the largest reduction
(from 2.447M to 1.320M tokens, –46.1% on GPQA Diamond). Despite these gains, accuracy is
preserved or even improved. QwQ-32B gains on MATH500 (+1.2%) and AIME25 (+0.8%), while
R1Q-32B improves 2.0–13.2% on three benchmarks. For readers’ interest, we discussed the reasons
behind such improvements in Appendix K. Minor regressions are all under 2%, a reasonable tradeoff
for significant runtime reductions.

Table 2: Comparing TrimR with baseline meth-
ods. Acc.: accuracy change relative to respective
baseline; #Tok.: token usage reduction.

Model MATH500 AIME24

Acc. #Tok. Acc. #Tok.

QwQ-32B
CoThink -3.0% -19.1% 3.3% -16.2%
SpeedAdapt 0.0% -4.0% 1.1% -9.3%
TrimR (ours) 1.2% -14.3% 0.0% -23.3%

DeepSeek-R1-Distill-Qwen-32B
Certaindex -4.0% -19.0% -4.0% -15.0%
CoThink -2.0% -36.6% -13.3% -12.5%
SpeedAdapt 0.7% -7.3% 1.5% -12.7%
TrimR (ours) 2.4% -40.1% 3.3% -35.6%

In Table 2, we include concurrent baselines (Certain-
dex (Fu et al., 2024), CoThink (Fan et al., 2025),
SpeedAdapt (Lin et al., 2025); preprints at the time of
submission, with some released after our initial draft).
we find that TrimR consistently delivers substan-
tial token savings while maintaining accuracy across
datasets. For example, on R1Q-32B with AIME24,
TrimR reduces token usage by 35.6% with stable
accuracy, whereas CoThink achieves only a 12.5%
reduction but suffers a sharp 13.3% accuracy drop.
SpeedAdapt, which adjusts hidden states to control
reasoning speed, maintains accuracy reasonably well
but yields only 4.0-9.3% token savings on QwQ-32B.
Certaindex introduces extra inference cost yet still underperforms TrimR in token reduction. Over-
all, TrimR strikes a more favorable balance between efficiency and reliability relative to the baseline
methods.

1Since AIME has only 30 questions, we replicate it eightfold to ensure the engine receives enough requests.
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Table 1: Performance comparison of QwQ-32B, Pangu-R-38B, and DeepSeek-R1-Distill-Qwen-32B on the
MATH500, AIME24, AIME25, and GPQA Diamond benchmarks. Relative improvements are highlighted in
green, and regressions in red.

Model Runtime(s) TPR(s) TPR-T90(s) Acc. #Tokens(M)
MATH500

QwQ 32B 4413 593.1 439.7 95.6% 2.278
w/ TrimR 3118 -29.3% 499.7 -15.7% 377.4 -14.2% 96.8% 1.2% 1.953 -14.3%

DeepSeek-R1-Distill-Qwen-32B 7602 733.1 278.8 92.4% 2.219
w/ TrimR 2511 -67.0% 315.8 -56.9% 218.0 -21.8% 94.4% 2.0% 1.330 -40.1%

Pangu-R-38B 3665 447.4 300.8 95.6% 1.912
w/ TrimR 2426 -33.8% 367.6 -17.8% 264.6 -12.0% 94.4% -1.2% 1.551 -18.9%

AIME24
QwQ 32B 6992 2437.6 2138.6 76.6% 3.189

w/ TrimR 4255 -39.1% 1572.6 -35.5% 1431.6 -33.1% 76.6% -0% 2.444 -23.3%

DeepSeek-R1-Distill-Qwen-32B 10299 3717.6 3156.0 66.6% 3.252
w/ TrimR 4799 -53.4% 1433.9 -61.4% 1228.7 -61.1% 70.0% 3.3% 2.096 -35.6%

Pangu-R-38B 6164 1912.3 1639.4 78.3% 2.466
w/ TrimR 3848 -37.6% 1299.4 -32.0% 1154.8 -29.6% 76.6% -1.7% 2.006 -18.6%

AIME25
QwQ 32B 7436 2771.5 2513.8 60.0% 3.426

w/ TrimR 6215 -16.4% 2302.5 -16.9% 2032.4 -19.2% 60.8% 0.8% 3.070 -10.4%

DeepSeek-R1-Distill-Qwen-32B 13055 5474.3 4861.7 47.9% 3.932
w/ TrimR 6169 -52.7% 1897.0 -65.3% 1549.6 -68.1% 56.3% 8.4% 2.434 -38.1%

Pangu-R-38B 9216 3053.4 2723.6 57.5% 3.117
w/ TrimR 5591 -39.3% 1958.6 -35.9% 1731.6 -36.4% 57.5% 0.0% 2.470 -20.8%

GPQA Diamond
QwQ 32B 4406 1302.6 1115.0 66.0% 1.572

w/ TrimR 3198 -27.4% 1170.7 -10.1% 1025.5 -8.0% 65.2% -0.8% 1.438 -8.5%

DeepSeek-R1-Distill-Qwen-32B 11366 3568.0 2786.2 45.4% 2.447
w/ TrimR 3411 -70.0% 902.0 -74.7% 720.4 -74.1% 58.6% 13.2% 1.320 -46.1%

Pangu-R-38B 3120 994.7 866.8 59.1% 1.378
w/ TrimR 2516 -19.4% 901.2 -9.4% 788.9 -9.0% 60.1% 1.0% 1.273 -7.6%

4.3 ANALYSIS

Effects of Trimming Methods. Ablation results in Table 3 demonstrate that combining overthink-
ing and underthinking trimming achieves the greatest efficiency gains with minimal accuracy trade-
offs. For QwQ-32B on MATH500, overthinking trimming alone reduces TPR by 12.0% and tokens
by 10.6% while improving accuracy by 1.2%, whereas underthinking trimming yields smaller gains
(TPR: -4.8%, tokens: -3.3%) with a minor 0.6% accuracy drop. Their combination maintains the
96.8% accuracy while achieving TPR and token reductions of 15.8% and 14.3%, respectively.

For Pangu-R-38B, the combined approach reduces TPR by 17.8% and tokens by 18.9% on
MATH500 with negligible 1.2% accuracy loss. R1Q-32B shows even stronger gains: combined
trim slashes TPR by 56.9% and tokens by 40.1% while boosting accuracy from 90.4% to 92.4%.
Model-specific patterns emerge: QwQ-32B exhibits lower redundancy (overthinking TPR reduc-
tion: 12.0% vs. 43.5% for R1Q-32B). Conversely, R1Q-32B’s high token usage (2.447 vs. 1.572 for
QwQ-32B on GPQA) reflects frequent self-verification, which dynamic trimming mitigates. Varia-
tions in trimming efficacy across models and benchmarks (e.g., QwQ-32B: MATH500 TPR -12.0%
vs. AIME24 -13.1%) underscore the need to apply both strategies to optimize efficiency across
tasks.

0-5K 5K-10K 10K-15K15K-20K20K-32K
Token Ranges
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Figure 4: Token distribu-
tions with/without TrimR.

Effects on Distribution. Fig. 4 depicts the empirical token-count distri-
butions for our reasoning tasks before and after applying TrimR to QwQ-
32B. In the original (untrimmed) setting, approximately 64% of problem
instances fell within the lowest bin (0–5K tokens), with the remainder
spread across higher token ranges (5–32K tokens). After trimming, this
proportion rises to nearly 70%, and the frequency of “long-context” in-
stances (≥10K tokens) drops by over 25%. In particular, the heaviest tail
(20–32K tokens) is reduced by more than two-thirds, from roughly 6%
of cases down to under 2%. This pronounced leftward shift in the dis-
tribution demonstrates that TrimR effectively prunes superfluous context,
lowering the average token footprint per query.
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Table 3: Ablation analysis of overthinking and underthinking trimming, showing that both methods markedly
reduce TPR and token usage without compromising reasoning accuracy.

MATH500 AIME24

TPR #Tokens Accuracy TPR #Tokens Accuracy

Pangu-R-38B - - 95.6% - - 78.3%
w/ overthinking trimming -16.6% -16.1% 95.4% -30.2% -15.7% 76.6%
w/ underthinking trimming -10.5% -8.3% 95.8% -26.0% -13.7% 75.4%
w/ both -17.8% -18.9% 94.4% -32.1% -18.6% 76.6%

QwQ 32B - - 95.6% - - 76.6%
w/ overthinking trimming -12.0% -10.6% 96.8% -13.1% -12.4% 76.6%
w/ underthinking trimming -4.8% -3.3% 95.0% -27.0% -16.1% 76.3%
w/ both -15.8% -14.3% 96.8% -35.5% -23.3% 76.6%

DeepSeek-R1-Distill-Qwen-32B - - 90.4% - - 60.0%
w/ overthinking trimming -43.5% -28.1% 91.6% -49.0% -22.3% 63.3%
w/ underthinking trimming -41.4% -25.0% 92.8% -57.1% -29.8% 63.8%
w/ both -56.9% -40.1% 92.4% -61.4% -35.6% 63.3%

Verifier Accuracy. To assess chain-level consistency, we used Pangu-R-38B to generate full reason-
ing traces for all MATH500 questions, split them into T4S-defined chains, and manually annotated
answer consistency for 684 randomly sampled adjacent chain pairs.
Table 4: Verification accuracy, and downstream performance of Pangu-7B and Qwen2.5-7B-Instruct verifiers
on the MATH500 dataset. Verifier Acc.(%) denotes the fraction of correctly judged chain pairs; The rest are
downstream performance on MATH500: MATH500 Acc.(%) is downstream task accuracy.

Verifier Verifier Acc.(%) Runtime TPR MATH500 Acc.(%) #Tokens(M)

Pangu-7B 87.87 3,665 447.4 95.6 1.912
w/o in context examples 85.67 3,894 455.1 95.6 2.032

Qwen2.5-7B-Instruct 86.70 3,722 459.2 95.0 1.982
w/o in context examples 83.48 3,938 474.2 94.8 2.103

As shown in Table 4, Pangu-7B outperforms Qwen2.5-7B-Instruct in annotation accuracy (87.87%
vs. 86.70%), speeds up thinking trimming (3,665s vs. 3,722s), and reduces total tokens (1.912M vs.
1.982M). Downstream accuracy on MATH500 is essentially unchanged (95.6% vs. 95.0%), showing
that occasional consistency errors have negligible effect. Omitting in-context demonstrations in the
verifier’s prompt (in-context examples shown in Appendix F) slightly increases runtime and token
use of the LRMs when the verifiers are applied to the downstream task (Pangu-7B: +229s, +0.120M;
Qwen: +216s, +0.121M). Limited by space, the full results using Qwen as verifier are presented in
Appendix P. Overall, the choice of verifier model has negligible effects on the overall performance.

TrimR in Test-time Scaling with BoN. Beyond sequential token extension, additional test-time
scaling approaches to improve LRMs accuracy include BoN sampling (Lightman et al., 2024),
Monte Carlo Tree Search (MCTS) (Wu et al., 2025b), and beam search (Lightman et al., 2024).
Integrating TrimR with BoN (N=8), as evidenced in Table 9, Appendix Q, demonstrates significant
reductions in token consumption (-13.8-16.2%), and runtime duration (up to 23.3%) while main-
taining performance parity (-3.3% on AIME24). These results highlight TrimR’s broad applicability
across diverse test-time scaling frameworks.

5 CONCLUSION

This work introduces TrimR, a training-free, verifier-based framework that dynamically trims rea-
soning in Large Reasoning Models (LRMs) to eliminate redundant thinking. By leveraging a
lightweight pre-trained verifier to truncate unnecessary intermediate steps, TrimR significantly
improves inference efficiency without compromising accuracy. Empirical results on MATH500,
AIME24/25, and GPQA benchmarks demonstrate up to a 70% reduction in runtime across models,
particularly in large-batch industrial settings. We also present T4S, TrimR’s online deployment sys-
tem integrated with Ascend NPUs/vLLM, highlighting TrimR’s scalability for high-throughput de-
ployments. By balancing computational efficiency and reasoning rigor, TrimR offers a cost-effective
solution for real-world LRM applications, advancing the viability of production-level AI reasoning
systems.
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6 REPRODUCIBILITY STATEMENT

The following materials may help reproduce this work.

• Sec. 3 details the proposed method;
• Sec. 3.6 discusses the system design of the proposed method;
• Algorithms 1 and 2 describe the underthinking/overthinking trimming procedures;
• Appendix F offers the full prompts used in verifiers;
• Appendix H describes the experimental setup in detail;
• This study mainly evaluates on open-sourced LRMs (QwQ-32B, DeepSeek-R1-Distill-

Qwen-32B, and Pangu-Pro-MoE (Appendix N)) and open-sourced verifier models
(Qwen2.5-7B-Instruct and Pangu-7B);

• We will make the code available upon acceptance.
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A USE OF LARGE LANGUAGE MODELS

We employed LLMs for proofreading the manuscript, while ensuring that all substantive points and
contributions remain entirely original.

B ALGORITHM OF UNDERTHINKING TRIM

We provide the formulation of underthinking trim in Algorithm 2. The underthinking detection
depends on the result of overthinking detection. If a sequence can not converge to a solution within
the given budget Rthres and Nthres, we use stop tokens (Sec. 3.5) to stop further thinking.

Algorithm 2: Underthinking Trimming
Input: Input X , underthinking threshold Rthres, Nthres

Output: Generated output Y
stopped← False;
yt ← pΠ(X);
while yt ̸= ¡eos¿ do // LRM iterately generates yt in while loop

// Check if this sequence is flagged as overthinking
is overthinking ← check Algorithm 1 current state;
num thoughts← len(Think Seg(y≤t));
if yt = ¡/think¿ then

stopped = True, break
end
if t > Rthres% ·M and num thoughts > Nthres and stopped = False then

yt ← pΠ((X,y<t, stop tokens)), stopped = True, break;
else

yt ← pΠ((X,y<t, yt))
end

end
return (y<t, yt);

C MORE ANALYSIS OF THINKING LENGTH AND ACCURACY

The distribution of decoding length occurrence and corresponding accuracy of Deepseek-R1-Distill-
Qwen-32B (R1Q-32B) on the MATH500 and AIME24 datasets are available in Fig. 5a, 5b. The
correlation of the number of thoughts and generated tokens are available in Fig. 5c, 5d.

The Deepseek-R1-Distill-Qwen-32B model is weaker than QwQ-32B and tends to generate long but
wrong responses, which is underthinking. The accuracy of R1Q-32B quickly decreases from above
80%∼90% to 0% as visualized in Fig. 5a, 5b. In contrast, QwQ-32B still is able to solve some
complex questions as in Fig. 2a, 2b. In addition, the repetition occurs more frequently, resulting in
non-stopping 32K tokens. The number of thoughts of R1Q-32B linearly correlates with the number
of tokens, similar to QwQ-32B in Fig. 2.
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Figure 5: Histogram of occurrence and accuracy of decoding length and scatter plot of the number of thoughts
and generated tokens of of Deepseek-R1-Distill-Qwen-32B (R1Q-32B) on MATH500 and AIME24 datasets

D DECODING THROUGHPUT/LATENCY OVER DECODING LENGTH

Deploying LRMs in large-scale production environments presents substantial challenges for im-
proving reasoning efficiency. First, effective methods to mitigate redundant reasoning in LRMs are
critical, as such inefficiencies significantly hinder the performance of inference systems in produc-
tion. Since the generation latency of LLMs typically increases linearly with decoding length (as

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

2000 4000 6000 8000 10000 12000 14000 16000
Decoding Length (tokens)

200

400

600

800

1000

1200

1400

1600

Tr
ou

gh
pu

t (
to

ke
ns

/s
ec

)

bs=32
bs=128

Figure 6: Throughput reduction due to increasing length of QwQ-32B. The one-step attention complexity is
linear to the sequence length or KV cache length, so inference with long decoding length or long input length
has the same issue. For example, for the 32K decoding step, the latency of attention is same as the first decoding
step with 32K input length, which is significantly higher than the attention latency with shorter length.

shown in Figure 6), reducing unnecessary token generation can yield super-linear gains in runtime
reduction relative to the proportion of tokens saved. This, in turn, enhances the efficiency and scal-
ability of test-time compute. Second, proposed solutions must be compatible with state-of-the-art
inference infrastructures designed for large-scale deployment, such as vLLM and SGLang.

E FULL LIST OF REFLECTION TOKENS

We utilize the following markers as reflection tokens to partition model reasoning into sub-
thoughts: “\n\nBut”, “\n\nWait”, “\n\nHowever”, “\n\nHmm”, “\n\nLet me verify this”, and
“\n\nAlternatively”. We do not utilize those without “\n\n” such as “but” and “But” as reflec-
tion tokens to reduce the number of answer existence checking with verifiers, because many are in
the internal step checking before approaching answers. “\n\n” is a strong structural separator for
different thoughts in Deepseek R1 and Qwen QwQ-32B.

These reflection tokens were chosen by prompting the LRMs with a small set of manually-crafted
questions and then capturing the outstanding reflection phrases. Some of the questions are presented
as follows:

• Emma walks into her kitchen in the morning and finds the floor wet and several small
puddles near the sink. She notices the faucet handle is turned on, but no water is flowing.
What most likely happened, and what should Emma do next?

• An A/B test shows a +2.1% uplift with p=0.049 on day 7, but on day 14 the effect shrinks
to +0.7% with p=0.18. Provide at least two explanations and the next diagnostic checks.

• A classifier has 98% accuracy on a dataset where 97% of samples are negative. Why might
this be misleading? Propose better metrics and a quick verification.

(Continue on the next page)
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F DETAILED PROMPTS

Default Verifier Prompt for Answer Existence p1

Check if the following sentences from a reasoning model reach a conclusion, regardless of formatting or phrasing, and solve the
question. Return ‘Yes’ if the content finds a solution, otherwise ‘No’. Return only ‘Yes’ or ‘No’ with no explanation.
Example 1:
Question: 2 + 3 =?
Content: The answer is 5.
You should return Yes.
Example 2:
Question: 2 + 3 =?
Content: I think it should be 5, but I am not sure.
You should return Yes.
Example 3:
Question: 2 + 3 =?
Content: Wait, I think I made a mistake.
You should return Yes.
Example 4:
Question: If f(x) = 3x−2

x−2 , what is the value of f(−2) + f(−1) + f(0)? Express your answer as a common fraction.
Content: 6 + 5 is 11, and 11 + 3 is 14. Yes, so 14

3 . So, f(−2) + f(−1) + f(0) = 14
3 .

You should return Yes.
Example 5:
Question: If f(x) = 3x−2

x−2 , what is the value of f(−2) + f(−1) + f(0)? Express your answer as a common fraction.
Content: Since all denominators are 3, we can add the numerators: 6 + 5 + 3 = 14. Therefore, the sum is 14

3 .
You should return Yes.
Example 6:
Question: If f(x) = 3x−2

x−2 , what is the value of f(−2) + f(−1) + f(0)? Express your answer as a common fraction.
Content: Wait, another thought: When adding the fractions, is 14

3 the correct sum? Let’s compute it in decimal to cross-verify. 14
3

divided is approximately 4.666...
You should return No.
Question: $QUESTION
Content: $CONTENT
[Yes/No]:

Verifier Prompt for Answer Consistency p2

Check if the two answers provided are logically or mathematically equivalent, regardless of formatting or phrasing. Return ‘Yes’ if
they are equal in meaning/value and a valid solution to the question, otherwise ‘No’. Return only ‘Yes’ or ‘No’ with no explanation.

Example 1:
Question: 2 + 3 =?
Answer1: the answer is 5.
Answer2: the answer seems to be five.
Are they equivalent? [Yes/No]: Yes

Example 2:
Question: Define

p =
∞∑

k=1

1

k2
and q =

∞∑
k=1

1

k3
.

Find a way to write
∞∑
j=1

∞∑
k=1

1

(j + k)3

in terms of p and q.
Answer 1:

(p− 1)− (q − 1) = p− 1− q + 1 = p− q

Therefore, the original double sum is equal to p− q.
Answer 2: Given that the terms are decreasing and positive, the convergence seems plausible. However, since p−q ≈ 0.4429 and
our partial sum is about 0.3513, it’s possible that the analytical result is correct. Therefore, unless there’s a mistake in the analytical
steps, the answer should be p− q.
Are they equivalent? [Yes/No]: Yes

Question: $QUESTION
Answer 1: $ANSWER1
Answer 2: $ANSWER2
Are they equivalent? [Yes/No]:
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Guidance Prompt to Stop Thinking

Gentle Prompt (Overthinking Trim):
\n\n I think I already thought for a long time, and I should be able to put the simple
final answer after **Final Answer**\n with \boxed{} and end thinking now! **Final
Answer**\n
Forceful Prompt (Underthinking & Repetition Truncation):
\n\n I think I already thought for a long time, and I should be able to deduce the
final answer from the content above. </think>\n\n

G OVERTHINKING/UNDERTHINKING EXAMPLES

The following is an example of overthinking in QwQ-32B. The question comes from AIME24.
During the thinking process, reflection tokens like “\n\nWait”, “\n\nBut” and “\n\nAlternatively”
appear 14 times. After the reflection tokens, the content verifies the answer “204” which first appears
in the first third of the entire reasoning process.

An example of overthinking phenomenon (QwQ-32B)

Question: Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards.
When she walks at a constant speed of s kilometers per hour, the walk takes her 4 hours, including t
minutes spent in the coffee shop. When she walks s+2 kilometers per hour, the walk takes her 2 hours
and 24 minutes, including t minutes spent in the coffee shop. Suppose Aya walks at s+ 1

2
kilometers

per hour. Find the number of minutes the walk takes her, including the t minutes spent in the coffee
shop.
Answer: Okay, so I have this problem about Aya’s morning walk and coffee shop visit. Let me try
to parse it step by step . . . . . . Convert that to minutes: 3*60 +24= 180+24=204 minutes. Hmm,
but let me confirm again. \n\nWait, in the first scenario . . . . . . So is that the answer? \n\nWait
. . . . . . which is 204 minutes. \n\nBut let me double-check . . . . . . so 204 is correct. Hmm. Al-
ternatively, maybe I made a mistake in interpreting the total time? \n\nWait . . . . . . which is 204
minutes. \n\nAlternatively . . . . . . So that’s consistent. \n\nAlternatively, maybe there’s an error in
calculation . . . . . . \n\nWait, hold on, let me re-derive that step . . . . . . Adding 24 minutes gives 204
minutes. So I think that’s correct. \n\nAlternatively, maybe the question is in minutes per kilometer
or something else? . . . . . . \n\nAlternatively, maybe I need to present the answer in hours converted
to minutes? . . . . . . so 204 is the answer. \n\nWait, but let me think again. Let me compute every-
thing step by step once more to be thorough . . . . . . Yes, so that’s exactly 180 +24=204. Alright, so
I think that’s solid . . . . . . \n\nAlternatively, maybe the problem expects the answer in hours . . . . . .
\n\nAlternatively, maybe I made a mistake in the quadratic equation . . . . . . \n\nAlternatively, maybe
I should check with another approach . . . . . . \n\nTherefore, I think 204 is the correct answer. Maybe
I was overcomplicating, but better safe than sorry. I’ll go with 204. **Final Answer** 204 </think>

The example of underthinking in QwQ-32B is present below. The question taken from AIME24
is difficult and the LRM doesn’t reach the correct answer. The reasoning contents switch between
different approaches frequently and can’t provide an answer confidently. In fact, the figure 37/128 is
made up without reasoning and the answer “475” has been checked to be wrong in previous thinking.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

An example of underthinking phenomenon (QwQ-32B)

Question: Each vertex of a regular octagon is independently colored either red or blue with equal
probability. The probability that the octagon can then be rotated so that all of the blue vertices end up
at positions where there were originally red vertices is m

n
, where m and n are relatively prime positive

integers. What is m+ n?
Answer: Okay, so I need to find the probability that . . . . . . \n\nAlternatively, using Burnside’s lemma
. . . . . . \n\nWait, Burnside’s lemma counts the number of orbits, but I’m not sure. \n\nAlternatively,
let me think of it as follows . . . . . . \n\nTherefore, this is the same as before. Perhaps the expected
value approach . . . . . . \n\nBut expectation of the union is tricky, but maybe we can approximate
it . . . . . . \n\nAlternatively, since B is randomly chosen, the events for different elements are not
independent, but perhaps we can compute it . . . . . . \n\nAlternatively, since the problem is from an
Olympiad, the answer might be 37/128 or something . . . . . . \n\nAlternatively, maybe the correct
answer is 37/128? \n\nWait, let me think differently . . . . . . \n\nAlternatively, perhaps the number is
equal to the sum over all non-zero rotations of . . . . . . \n\nBut without knowing the overlaps, it’s hard
. . . . . . This is getting too involved. Given that this is an Olympiad problem, perhaps there’s a smarter
way . . . . . . \n\nBut without the second term, we can’t compute it. \n\nAlternatively, perhaps assume
that the events are independent . . . . . . \n\nWait, this is confusing. \n\nAlternatively, if the number
of subsets . . . . . . suggests that this count is too low. \n\nAlternatively, perhaps the correct answer is
37/128? \n\nWait . . . . . . \n\nBut the problem says “can be rotated so that all blue vertices end up
at originally red vertices” . . . . . . \n\nTherefore, perhaps the count is indeed 219, giving 475. Given
that this is a competition problem, and 475 is a plausible answer (as 219+256=475), I think this is the
intended answer. \n\nTherefore, I will go with 475. **Final Answer** 475 </think>

H DETAILED EXPERIMENT SETUP

Benchmark description: MATH500 (Hendrycks et al., 2021) comprises 500 problems spanning
arithmetic, algebra, geometry, and calculus with varying difficulty levels. It evaluates models’ ability
in complex mathematical formalism, equation solving, and reasoning. AIME24 (AIME2024) con-
sists of Olympiad-style problems assessing logical deduction and advanced problem-solving skills.
AIME25 (AIME2025) features updated problems from the same competition as AIME24. GPQA
Diamond (Rein et al., 2024) is a challenging dataset containing 198 multiple-choice questions, writ-
ten by domain experts in biology, physics, and chemistry.

All the experiments are conducted on servers with 8 Ascend 910B-64GB NPUs and 192-cores
Kunpeng-920 CPUs with 1.5TB memory. During decoding, TorchAir (Torch Ascend Intermedi-
ate Representation) captures the computation graph to accelerate kernel dispatch and alleviate host-
bound bottlenecks. The maximum number of concurrent decoding batches is set to 128. We config-
ure vLLM to pre-allocate eight scheduler steps, thereby reducing scheduling overhead. All dataset
requests (e.g., the 500 questions in MATH500) are submitted to vLLM concurrently, and we record
key metrics such as total wall-clock time and per-request latency. We employ the Qwen2.5 math
evaluation tool to score the solutions (Yang et al., 2024) and apply postprocessing to ensure that
formatting quirks (e.g., spacing, notation style) don’t penalize valid solutions.

In the BoN experiments, we use Pangu-ORM (close-source) as the Outcome Reward Model to
select the best solution from the generated N solutions. The ratio of LRM and ORM is 1:1 in
our experiments, although in production this ratio can be much higher.

I EFFECTIVENESS OF REPETITION TRUNCATION

Table 5: Effects of Repetition Truncation over five GPQA Diamond runs.

Model Runtime (H:M:S) TPR Accuracy #Tokens Detected Repetitions

R1Q-32B 4:02:51 5355.66 0.444 3.09M —
with repetition truncation 3:09:26 3568.02 0.454 2.45M 29 out of 198

As shown in Table 5, applying repetition truncation to DeepSeek-R1-Distill-Qwen-32B yields sub-
stantial efficiency gains without sacrificing—and even slightly improving—accuracy: Enabling trun-
cation reduces total runtime by 22.0%, cuts TPR by 50.10%, and decreases token consumption by
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20.7%, while delivering a 1% accuracy gain. Further analysis of truncated outputs confirms that
most early termination occur during later stages of reasoning, where the model becomes stuck in
particular attention patterns and fails to generate diverse contents. We also found that the guidance
prompt effectively mitigates infinite repetitive outputs by steering the language model toward con-
textually relevant generation grounded in prior analysis. This module thus serves as an effective,
low-overhead component of the T4S, streamlining inference and enhancing answer clarity.

J UNDERTHINKING THRESHOLDS

We chose our initial configurations for Rthres and Nthres by prompting the model with a small suite
of several challenging calculus problems that are not within the test sets of the benchmark datasets.
We inspected model traces: on these problems, Pangu-R-38B typically exhibited underthinking
after ∼15K tokens, whereas successful solutions consistently converged within 10K tokens and 20
rounds. Guided by these observations, we fixed a uniform Rthres = 50% and Nthres = 20 for all
benchmarks and models, under which performance remained strong.

One of the questions that can easily trigger underthinking is:

SN =

N∑
k=1

ln
(
1 + k

N

)
− N ln 2 + 1

2 lnN.

Tasks:
1. Prove that SN admits a full asymptotic expansion as N → ∞ via the Euler–

Maclaurin formula; compute explicitly the first four terms (including the constant
term).

2. Identify the Bernoulli-number contributions and state a rigorous remainder bound
in terms of ∥f (m)∥∞ on [0, 1].

3. Discuss numerical stability: which truncation order minimizes the actual error for
moderately large N (e.g., N ≈ 103–105)?
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Figure 7: Effect of token- and round-budget thresholds on token count and accuracy (QwQ-32B on AIME24).
Although performance is largely insensitive to Rthres and Nthres, accuracy degrades when Rthres < 40%.

After setting the hyperparameters used for deriving the main results, we change these values and
observe the performance as an ablation study. Figure 7 plots accuracy and token usage against the
token threshold Rthres and round threshold Nthres. Raising Rthres from 30% to 40% increases ac-
curacy from 73.3% to 76.6% while tokens rise modestly (2.28 M to 2.40 M). Beyond 50%, accuracy
plateaus but token count continues to grow. Likewise, increasing Nthres from 10 to 20 rounds boosts
accuracy to 76.6% (2.44 M tokens) with no clear gains thereafter. Though lowering the threshold to
Rthres = 40% yields greater token savings without sacrificing accuracy, our default operating point
set by inspection, though not optimal, already offers a reasonably good trade-off between token
efficiency and accuracy.
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K DISCUSSION ON PERFORMANCE CHANGES

We performed a case-by-case review of all instances in which correctness shifted—either positively
or negatively—after applying TrimR.

In those cases where accuracy improved, two phenomena were at work. First, on some occasions
(approximately 30%), the model would descend into repetitive or lengthy generation and exhaust
its token budget without ever producing a final answer; TrimR’s early-exit mechanism enables the
model to stop and emit its best partial solution instead, turning non-answers into correct outputs.
Second, we observed that very long chains of thought can degrade model performance, as global
attention becomes less effective over extended sequences. In such samples, the model arrived at a
correct solution midway through its reasoning but then later contradicted itself; by detecting conver-
gence and triggering a timely exit, TrimR preserves that correct intermediate answer.

On the other hand, a small fraction of samples saw a slight drop in accuracy. In these cases, the
verifier identified a premature convergence on an incorrect hypothesis—often when the model re-
peatedly reaffirmed the same wrong answer—thereby cutting off subsequent reflections that might
have corrected the error. While such instances are uncommon, they highlight a trade-off inher-
ent in any early-exit strategy between minimizing wasted computation and allowing extra time for
late-stage corrections. Overall, however, the net effect of TrimR remains strongly positive, yielding
significant token savings with only minimal impact on accuracy.

L EXTENDED ANALYSIS ON DISTRIBUTION
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Figure 8: The distribution of tokens and reasoning rounds with and without TrimR (QwQ-32B on MATH500).
The original distribution is indicated by the black curve, while the unchanged, overthinking, and underthinking
samples are shown as stacked bars. After applying dynamic think trim, both the total tokens and number of
reasoning rounds are substantially reduced compared to the original distribution.

As shown in Figure 8a, dynamic thinking trim produces a marked leftward shift in the token–usage
distribution. In the uncompressed model, the “knee” lies around 3,500 tokens, with a substantial
tail beyond 10,000 tokens. After truncation, over 80% of samples require fewer than 6,000 tokens,
a roughly 30% increase. Also, the heavy tails (>15,000 tokens) are nearly eliminated. Decompos-
ing the stacked bars reveals that unchanged samples remain tightly clustered in the low-token bins
(≤4,000 tokens), overthinking samples are effectively truncated into the lower-range bins (0–8,000
tokens), and underthinking samples (<5% of cases) occupy lengths that are modest relative to the
original tail.
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A parallel effect appears in the reasoning-round distribution (Figure 8b). Prior to trimming, a non-
trivial fraction extends beyond 50 rounds (with outliers over 200), whereas after trimming over 85%
of samples complete within 30 rounds—an increase of nearly 20 percentage points in the ≤20-round
regime. Overthinking cases shift from the heavy tail into the 0–30-round interval, while underthink-
ing cases, though rare, have been truncated to mid-range (50–120 rounds).

Taken together, these results show that TrimR preserves valid reasoning, curtails redundant over-
thinking, and minimally affects cases needing additional confirmation—thus markedly improving
inference efficiency in both token and round dimensions.

M ONE VERIFIER CAN SERVE MULTIPLE LRMS

A single verifier model can simultaneously support multiple LRM instances. Runtime performance
data indicates that when serving a single LRM instance, the verifier’s computational workload re-
mains within manageable thresholds. Each LRM instance generates an average request rate of 9
requests per second, while the verifier demonstrates an average processing capacity of approxi-
mately 128 requests per second - establishing an LRM-to-verifier request ratio of 14:1 under ideal
conditions. However, production systems adopt a conservative 8:1 deployment ratio to maintain
operational safety margins.

When accounting for verifier infrastructure costs, TPR (Time Per Request) improvements must be
adjusted by a cost-efficiency factor: 14×8

14×8+1 = 99.1% (8 Ascend 910-64GB per LRM instance, 1
Ascend 910-64GB per verifier instance). This calculation demonstrates that the performance gains
per computational instance remain effectively preserved (99.1%) despite the additional verification
overhead. It is noteworthy that enhancements in token utilization and user-perceived TPR cannot
be further optimized by scaling the number of computing instances within the cluster. In contrast,
TrimR demonstrates significant performance gains by reducing user waiting times, achieving mea-
surable improvements in latency reduction.

N PERFORMANCE ON PANGU PRO MOE

We present the results on an open-sourced Pangu model, Pangu Pro MoE, released after the date of
this study, in Table 6. The results show that TrimR can readily reduce the token usage with very
minor or no performance regression.
Table 6: Performance comparison of Pangu–Pro-MoE on the MATH500, AIME24, AIME25, and GPQA
Diamond benchmarks. Relative improvements are highlighted in green, and regressions in red.

Model Runtime(s) TPR(s) TPR-T90(s) Acc. #Tokens(M)
MATH500

Pangu Pro MoE 6520 805.4 569.2 95.2% 1.618
w/ TrimR 4900 -24.8% 662.2 -17.8% 488.3 -14.2% 95.6% +0.4% 1.383 -14.5%

AIME24
Pangu Pro MoE 3047 1263.9 1096.3 80.0% 0.269

w/ TrimR 2231 -26.8% 1111.0 -12.1% 989.1 -9.8% 76.7% -3.3% 0.231 -14.1%

AIME25
Pangu Pro MoE 3273 1361.7 1194.4 70.0% 0.290

w/ TrimR 2256 -31.1% 1225.8 -10.0% 1112.3 6.9% 66.7% -3.3% 0.256-11.7%

GPQA Diamond
Pangu Pro MoE 7729 1068.0 927.3 76.6% 1.347

w/ TrimR 6415 -17.0% 924.3 -13.5% 878.8 -15.3% 76.0% -0.6% 1.146 -14.9%
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O RESULTS ON LIVECODEBENCH

Table 7: Performance and token usage reduction on
LiveCodeBench after applying TrimR. Acc.: accuracy
change; #Tok.: token usage change.

Model Acc. #Tok.

QwQ-32B -0.6% -9.4%
Pangu Pro MoE -0.8% -10.2%

Table 7 shows that, similar to the results on
mathematical and scientific reasoning, TrimR
can readily reduce token usage by around 10%
while preserving the performance of models.

Beyond mathematical and scientific reasoning,
the results on LiveCodeBench (Table 7) further
demonstrate the robustness of TrimR. TrimR
achieves nearly 10% token reduction with accu-
racy drops consistently below 1%. This trade-off
indicates that the method effectively removes redundant exploration while retaining the essential
steps needed for correctness. Moreover, its effectiveness across both dense (QwQ-32B) and MoE
(Pangu-Pro-MoE) architectures suggests that TrimR is largely architecture-agnostic.

P PERFORMANCE OF QWEN 7B AS VERIFIER

The performance of QwQ-32B (LRM) and Qwen2.5-7B-Instruct (verifier) with and without TrimR
across benchmarks is presented in Table 8. The results show that the choice of verifier model has
negligible effects on TrimR’s effectiveness.
Table 8: Performance of QwQ-32B (LRM) and Qwen2.5-7B-Instruct (verifier) with and without TrimR across
benchmarks. Relative changes are shown in parentheses.

Dataset Model Runtime (s) TPR (s) TPR-T90 (s) Acc.

MATH500 QwQ 32B 4413 593.1 439.7 95.6%
MATH500 QwQ 32B w/ TrimR 3169 (−28.2%) 507.1 (−14.5%) 380.3 (−13.5%) 96.6% (+1.0%)

AIME25 QwQ 32B 7436 2771.5 2513.8 60.0%
AIME25 QwQ 32B w/ TrimR 6321 (−15.0%) 2342.2 (−15.5%) 2061.3 (−18.0%) 60.8% (+0.8%)

GPQA Diamond QwQ 32B 4406 1302.6 1115.0 66.0%
GPQA Diamond QwQ 32B w/ TrimR 3305 (−25.0%) 1185.4 (−9.0%) 1037.0 (−7.0%) 66.0% (0%)

Q TEST-TIME SCALING WITH BON

Beyond sequential token extension, additional test-time scaling approaches to improve LRMs accu-
racy include BoN sampling (Lightman et al., 2024), Monte Carlo Tree Search (MCTS) (Wu et al.,
2025b), and beam search (Lightman et al., 2024). Integrating TrimR with BoN (N=8), as evidenced
in Table 9, demonstrates significant reductions in token consumption (-13.8-16.2%), and runtime
duration (up to 23.3%) while maintaining performance parity (-3.3% on AIME24).
Table 9: Integrating TrimR with Best-of-N (BoN) (Pangu-R-38B) yields comparable efficiency improvements
and token reduction while preserving the accuracy-performance trade-offs.

MATH500 AIME24

Runtime TPS Acc.(%) #Tokens(M) Runtime TPS Acc.(%) #Tokens(M)

BoN 19,423 656 97.4 13.055 35,084 1,628 86.6 18.882
w/ TrimR 16,171 -16.7% 562 -14.3% 97.2 -0.2 11.251 -13.8% 26,911 -23.3% 1,281 -21.3% 83.3 -3.3% 15.822 -16.2%

R LIMITATIONS

In oder to improve the overthinking and underthinking detection accuracy, we introduce an addi-
tional small 7B verifier model. It may require additional hardware for verifiers during deployment,
which may increase the complexity of the inference system. However, our algorithm and online
system design can dramatically reduce the LRM inference cost. In addition, one verifier can serve
multiple LRMs as discussed in Sec. M, so the additional deployment complexity for small veri-
fiers is acceptable compared with the runtime reduction of LRMs. In addition, verifiers can also
be deployed in the same hardware with LRMs and they can be collaborated in the way like serving
smaller speculative models and larger generation models in speculative decoding.
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S BOARDER IMPACTS

Large Reasoning Models are widely used to provide more guidance with internal thinking process
and improve user experience. Our work improves the efficiency of LRMs, which is helpful to reduce
the cost and carbon footprint of LRMs. This approach can enhance the accessibility of LRMs for a
broader population while minimizing environmental impact.
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