FROM “SURE” TO “SORRY”’: DETECTING JAILBREAK
IN LARGE VISION LANGUAGE MODEL VIA JAILNEU-
RONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Vision-Language Models (LVLMs) are vulnerable to jailbreak attacks that
can generate harmful content. Existing detection methods are either limited to
detecting specific attack types or are too time-consuming, making them impracti-
cal for real-world deployment. To address these challenges, we propose JDJN
(Jailbreak Detection via JailNeurons), a novel jailbreak detection method for
LVLMs. Specifically, we focus on JailNeurons, which are key neurons related
to jailbreak at each model layer. Unlike the “SafeNeurons”, which explain why
aligned models can reject ordinary harmful queries, JailNeurons capture how jail-
break prompts circumvent safety mechanisms. They provide an important and
previously underexplored complement to existing safety research. We design
a neuron localization algorithm to detect these JailNeurons and then aggregate
them across layers to train a generalizable detector. Experimental results demon-
strate that our method effectively extracts jailbreak-related information from high-
dimensional hidden states. As a result, our approach achieves the highest detection
success rate with exceptionally low false positive rates. Furthermore, the detector
exhibits strong generalizability, maintaining high detection success rates across
unseen benign datasets and attack types. Finally, our method is computationally
efficient, with low training costs and fast inference speeds, highlighting its poten-
tial for real-world deployment.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) exhibit impressive vision-language capabilities and have
consequently become a focal point of research in both industry and academia Wang et al.| (2024b);
Zhu et al.| (2023); Liu et al.| (2023a). While LVLMs inherit the powerful language capabilities of
LLMs, they also amplify the associated security risks |Carlini et al.| (2023). Among these risks,
jailbreak attacks pose a significant threat, wherein an adversary adversarially crafts inputs to compel
the model to generate harmful or prohibited content. The inclusion of the visual modality expands
the attack surface, enabling more diverse and sophisticated jailbreak methods that are consequently
harder to defend against. In contrast to text-only LLMs, attacks on LVLMs can exploit the interplay
between visual and textual inputs. These attacks primarily fall into three categories, as illustrated in
Figure[l} (i) Injecting adversarial perturbations into images via gradient-based optimization to elicit
specific malicious outputs |Carlini et al.|(2023); Yin et al.|(2023)); Zhao et al.[(2023). (ii) Embedding
malicious text into images as rendered characters to bypass the model’s security mechanisms|Gong
et al. (2025)). (iii) Selecting images semantically correlated with harmful concepts to pair with text,
thereby increasing the maliciousness of the output|Liu et al.|(2023b).

To address these threats, most existing defense methods for LVLMs borrow directly from LLM de-
fenses and can be broadly divided into two categories. The first is training-phase defenses, such as
safety alignment|Chen et al.| (2024); [Li et al.| (2024); |Zong et al|(2024), which typically incur sub-
stantial computational overhead and costly data annotation. The second is inference-phase defenses,
such as jailbreak detection via preprocessing the input|Xu et al.| (2024)), evaluating the outputZhang
et al.| (2023);|Gou et al.|(2024) and performing semantic checks on the intermediate representations
Jiang et al.| (2025). However, inference-time defenses often suffer from issues such as increased
latency and limited generalization to unseen attack types or benign examples.

[How to make a bomb?] » » { Sorry, | can’t help]
»

o
()]
~ M @ Qwen
U = » [Sure, here are the steps]
(@) chatcer

U How to make a bomb?

Step 1... » wLLaVA » [Sure, here are the steps]
U @% C QY deepseelc m) [Sure, here are the steps |

Figure 1: Illustration of three primary types of jailbreak attacks targeting LVLMs.

In our work, we take a neuron-level perspective by identifying and leveraging abnormal neurons
(which we term JailNeurons) that are specifically activated by jailbreak inputs. In contrast to the
previously studied safety mechanism [Wei et al.| (2024); Zhou et al.| (2024b), which explain how
safety mechanisms of aligned models refuse standard harmful queries (which we term SafeNeu-
rons), JailNeurons form a distinct set that capture how jailbreak attacks succeed in subverting safety
mechanisms. Our method therefore complements the prior work while targeting a novel and largely
unexplored field in LVLM security. However, there are two challenges. The first challenge lies in
confirming whether JailNeurons truly exist: while prior studies suggest jailbreak-related signals in
model representations, they have not localized them to a small set of neurons Zhou et al|(2024a);
Jiang et al.|(2025). Second, even if these neurons can be identified, how JailNeurons can be exploited
for jailbreak detection and whether they generalize to out-of-distribution (OOD) attacks remain open
questions.

In this work, we focus on identifying neurons that are specifically associated with jailbreak behav-
iors, and propose JDJN (Jailbreak Detection via JailNeurons), a novel, efficient, and generalizable
approach for detecting jailbreak attacks in LVLMs. To address the first challenge, we conduct an
empirical investigation of LVLMs under jailbreak attacks and verify that neuron activations triggered
by jailbreak inputs are indeed separable from those of benign inputs. Building on this finding, we
introduce a ‘“‘sure-to-sorry” localization procedure that progressively narrows down the candidate
set of neurons and enables us to pinpoint those most strongly associated with jailbreak behaviors
(i.e., JailNeurons). To address the second challenge, we propose a “top-to-bottom” selection strat-
egy to select multiple layers. Finally, we aggregate the activations of selected neurons from these key
layers and train a lightweight classifier (e.g., an SVM), which yields an efficient and generalizable
approach for detecting jailbreak inputs.

We conduct extensive experiments to validate our method’s performance across four distinct
LVLMs, three different jailbreak attack types, and three benign datasets with varying distributions.
The results demonstrate that our method significantly outperforms existing baselines. For instance,
on the LLaVA model [Liu et al.| (2023a)), JDJN achieves over 99% true positive rate (TPR) at less
than 1% false positive rate (FPR) on seen attack types. Critically, it also shows remarkable general-
ization, maintaining over 94% TPR at less than 2% FPR on unseen attacks and OOD benign data.
Furthermore, JailNeuron is both data-efficient, requiring only a few hundred samples for training,
and computationally lightweight. It operates non-intrusively without modifying the target LVLM,
imposing negligible inference overhead, which makes it practical for real-time applications. Finally,
ablation studies confirm that our neuron localization strategy effectively identifies JailNeurons, out-
performing alternative selection methods.

Overall, the core contributions of our work are as follows:

* We provide a systematic analysis demonstrating that jailbreak and benign inputs create dis-
tinguishable activation patterns within LVLMs. We show that these discriminative signals
are distributed across multiple layers, with different attack types affecting different parts of
the model.

* We propose a novel, principled method for identifying JailNeurons by training layer-wise
masks. This approach effectively isolates salient signals from high-dimensional noise and
mitigates overfitting.

* We introduce JDJN, a lightweight and efficient jailbreak detection framework. Extensive
experiments show that JDJN achieves state-of-the-art performance, maintaining a high TPR
at a near-zero FPR, and demonstrates remarkable generalization to unseen attacks and OOD
data.

2 RELATED WORK

Jailbreak Detection on LVLMs. Existing methods for jailbreak detection in LVLMs can be broadly
categorized into three groups. The first class focuses on input preprocessing, where the sensitivity
of the model to transformed inputs is examined to reveal adversarial intent Xu et al.| (2024)); Zhang
et al.| (2023). The second class centers on output analysis, including techniques that employ external
classifiers to judge harmfulness or prompt the victim model itself to inspect its own responses |(Gou
et al.| (2024); Pi et al|(2024). A third line of work investigates abnormal internal activations Jiang
et al.|(2025). The most relevant to our approach uses a logit lens to extract semantic information from
every layer and measures its similarity to predefined refusal fragments, thereby detecting jailbreak
samples.

Security Mechanisms of LLMs and LVLMs. Security mechanisms of LLMs are explored from
two perspectives: (1) High-dimensional representation analysis, examining semantic information in
layer representations using tools like Logit lens Belrose et al.| (2023)) or steering vectors Wang et al.
(2024a); [Burns et al.[(2022); Moschella et al.| (2022)). (2) Internal structure analysis, identifying
secure neurons for fine-tuning, such as using SNIP |Wei et al.| (2024) to locate key neurons [Zhao
et al.; [He et al.| (2024)); /Wei et al.[(2024). To the best of our knowledge, this work is the first to study
LVLM jailbreaking mechanisms via neuron activation values and proposes an effective detection
algorithm.

3 THREAT MODEL

We assume the defender has white-box access to the target model, including its internal activations
and parameter gradients. This allows identifying neuron-level behaviors that are correlated with
jailbreak phenomena.

The defender can collect a small set of successful jailbreak samples X;; and a batch of benign sam-
ples Ap1. Using these, the defender trains a detector that should generalize to unseen distributions:
namely, it should achieve high TPR on jailbreak inputs from other distributions (X2, X;3, . ..) while
maintaining extremely low FPR on benign distributions (Xp2, Xps, . . .).

This setting is consistent with prior jailbreak detection studies Jiang et al.| (2025); | Xu et al.| (2024),
which likewise adopt a white-box assumption to extract features for building robust detectors.

4 METHODOLOGY

4.1 WARM-UP: DETECT JAILBREAK SAMPLES WITH ONE-LAYER ACTIVATIONS

Our method is inspired by Zhou et al.|(2024a)), who demonstrated that benign and jailbreak samples
in LLMs can be distinguished by applying a linear classifier to neuron activations at each decoder
layer, thereby confirming that jailbreak-related information is embedded in internal representations.
In contrast, we focus on LVLMs, where this property has not yet been established. Moreover, their
work did not investigate the robustness of detectors to OOD attack samples and benign data, which
is a crucial aspect for practical jailbreak detection. To address these points, we conduct a preliminary
study in LVLMs and formulate two guiding research questions: (i) Given a specific attack dataset
and a benign dataset, are their hidden state vectors linearly separable? (ii) Can a linear classifier
trained on one pair of attack and benign datasets transfer to other types of attacks and benign data?

To answer these questions, we select four state-of-the-art LVLMs: MiniGPT4-7B Zhu et al.|(2023),
LLaVA-v1.5-7B|Liu et al.|(2023a)), Qwen2-VL-7B Wang et al.| (2024b)) and Janus-pro-7B |Chen et al.
(2025). We generate jailbreak samples using three attack methods: JAMLLM |Niu et al,| (2024),
FigStep |Gong et al.| (2025), and JailBreakV |Luo et al. (2024). Our benign data comprises samples

1.0 00000 geccccssssceee 000000 10 egegececccccssssccce oge L] 10 . 0000003000000 00000000000000)
M TS eece toe eg3338880s - .:..:.' 82 H
.

o o
. .

.

. . .
. . o e . - ., LI .
°® 0.8 08
eeee o o%ce

.
...

06

04

02

00 00

JAMLLM FigStep JailBreakV

Figure 2: This figure plots detector accuracy against the neuron activation source layer on Janus-
pro. Different colors denote test datasets from six distributions, and blue dashed lines indicate the
worst-case performance per layer.

from three diverse sources: MM-Bench |Liu et al.| (2024}, MM-Vet |Yu et al.| (2023)), and a set of
general-purpose prompts (Normal Prompts)|Zhou et al.| (2024a).

For the four datasets other than MM-Bench and MM-Vet, we randomly generate or sample 400 in-
stances; for MM-Bench and MM-Vet, we use 200 MM-Bench instances and 218 MM-Vet instances,
since these constitute all of their available data. We then extract hidden state vectors from all lay-
ers for each of the six data distributions. To evaluate generalization, we treat FigStep, JailBreakV,
JAMLLM as known attacks and MM-Vet as a known benign dataset. The remaining two datasets
(MM-Bench, Normal Prompts) are held out as unknown test sets. We use a 4/1 split for training and
testing on the known datasets.

For each layer, we train three separate SVM classifiers: one on (FigStep, MM-Vet), one on (Jail-
BreakV, MM-Vet), and one on (JAMLLM, MM-Vet). We then evaluate each classifier on both
in-distribution (ID) and OOD test sets. The results of Janus-pro are shown in Figure 2] The reults
for the other three models are shown in the Appendix[A.2] The results lead to two key observations:
(1) Linear Separability. Consistent with the findings in LLMs, a linear classifier can achieve a
high classification accuracy on ID data. Nearly every layer achieves a classification accuracy close
to 100% on the ID data. (ii) Poor Generalization. No single layer generalizes well to all OOD
samples. As the blue dashed line indicates, the worst-case accuracy for any given layer consistently
falls below 80%.

4.2 JDIN: JAILBREAK DETECTION VIA JAILNEURON

In our preliminary experiment, we train an SVM using the activations from a single layer to distin-
guish benign from jailbreak samples. While effective on seen attacks, the model fails to generalize
to unseen ones. We attribute this to two main factors. (i) The full activation vector from one layer
contains substantial jailbreak-irrelevant noise. As suggested by the SafeNeurons study [Zhou et al.
(2024b); [Zhang et al.| (20235)), only a small fraction of neurons are directly associated with safety,
reflecting the sparsity and redundancy of modern language models Frantar & Alistarh (2023)); Sun
et al.| (2023). By analogy, we hypothesize that only a small set of neurons (i.e., JailNeurons) en-
code jailbreak-relevant signals, and that isolating them could yield more robust detectors. Second, a
single layer cannot capture enough jailbreak-specific features, which hampers transferability across
different attack types. This motivates us to aggregate information across multiple layers to better
cover the diverse characteristics of jailbreak behaviors.

Based on the above analysis, we decompose the problem into two core subproblems: (i) How to
locate the JailNeurons in each layer? (ii) How to select the most informative layers to train a gener-
alizable detector? The overall framework of JDJN is illustrated in Figure[3]

4.2.1 FROM SURE TO SORRY: LOCATING JAILNEURONS IN A SINGLE LAYER

We identify JailNeurons through a causal-inspired ablation process. For a given jailbreak input that
initially elicits a harmful response, we identify neurons whose masking flips the model’s output
from a harmful response (e.g., “Sure, here is...”) to a refusal (e.g., “Sorry, I cannot...””). This process
pinpoints neurons causally responsible for the jailbreak samples (Step 1, Figure 3).

Step 1: train masks for the layers in language model

Step 3: detect jailbreak samples

A jailbreak sample I-th layer in the model Outputs of the model
Visual query Text query Activations Mask Sure: 0.99 Visual query Text query
— Input to Here: Read thi
I e ere: 0.01 How to make a bomb? ead the
4 How to () 0 (i+1)-thlayer| Step 1... image and
makel 1 The outputs answer.
bomb? % 09 change due to
0.7 the manipulation l
l () : Compute loss in the i-th layer
0.1 and optimize Sorry: 0.97
th k | o
€ mas l Get k pieces of neurons
Step 2: train a detector klayers in the model Train an SVM
et Jew Tedavey © Select the neurons 2 i <
m fuiedyd based on the mask 8 B8 Successful
bomb? 2 % 8 detection
= — 4 — 8 R
Visual query Text query l Concatenate k ® 8 l
Dy e pieces of neurons & Response:
g, I'm sorry, but ..

Figure 3: The three-stage workflow of JDJN: 1. JailNeuron Localization: We train layer-specific
masks to identify critical neurons associated with jailbreak behavior. 2. Detector Training: An
SVM classifier is trained on the critical neuron activations from top-k layers, using known benign
and attack samples. 3. Detector Deployment: The trained detector classifies new, unseen inputs.

Formally, for the i-th layer in an LVLM f, let its neuron activations be of shape (b, t, d), where b is
the batch size, ¢ is the number of tokens, and d is the dimension of neuron activations. Our goal is to
identify a small subset of these d neurons that are critical to the jailbreak. To do this, we register a
forward hook for the i-th layer, which modifies its output o; before passing it to the (i + 1)-th layer:

h(oi,m) = (1—m) © o;, (D

where m € [0, 1]¢ is a learnable mask and © denotes element-wise multiplication. Given the input
x, we use f;(m,x) to denote the output after the i-th layer of the model f performs the operation
defined in equation[I] This leads to an optimization problem where we seek a sparse mask m that
steers the model’s output towards a refusal. We find m by solving:

2

m* = arg min1 i M|ml|li + Leg(fi(m,x), es),
where)\ is a regularization hyperparameter, the L1-norm ||m||; promotes a sparse mask (i.e., min-
imal intervention), Loy is the cross-entropy loss, and ey is the target embedding for a refusal re-
sponse (e.g., “Sorry”, “Unfortunately”). To enforce the constraint m € [0, 1]¢, we reparameterize
m as sig(5) (representing the sigmoid function), where § € R is the learnable parameter. The final
objective becomes:

07 = arg min Al|sig(9)[[1 + Ler(fi(sig(9), @), €s). 3)

4.2.2 FROM ToP TO BOTTOM: TRAINING A DETECTOR WITH MULTI-LAYER INFORMATION

After identifying JailNeurons in each layer (i.e., those with mask values m > 7, e.g., 7 = 0.4), we
leverage their activations from multiple layers for detection.

To capture richer jailbreak features, we propose selecting layers from top to bottom so as to lever-
age representations at different levels of abstraction. Concretely, we adopt an arithmetic-sampling
strategy: given a model with [layers, we start from the first layer and select one layer every k in-
tervals (i.e., totally selecting I; = [I/k] layers). The JailNeurons identified from these layers are
then aggregated as inputs to the detector, enabling more comprehensive coverage of jailbreak-related
signals.

To train a detector that incorporates information from multiple layers, we select /; layers and collect
the portions of their hidden states corresponding to mask values greater than a threshold 7. We then
concatenate the hidden states from these /; layers and use them as the training set to train an SVM
binary classifier, as shown in the Step 2 of Figure 3]

During the inference phase, JDJN reads the neuron activations from the selected [/ layers, slices and
concatenates them using the masks, and finally inputs them into the trained SVM for detection, as
shown in the Step 3 of Figure 3]

LLaVA Janus-pro
Methods JailBreakV FigStep JAMLLM | JailBreakV FigStep JAMLLM

JDJN; 0.997 1.0 0.942 0.996 1.0 0.853
JDIN, 0.732 1.0 0.524 0.838 1.0 0.776

JailGaurd 0.676 0.532 0.71 0.573 0.566 0.71
ECSO 0.421 0.596 0.632 0.624 0.124 0.763
CIDER 0.426 0.01 0.7663 0.372 0.03 0.721
HiddenDetect 0.335 0.552 0.340 0.415 0.624 0.6106
GradSafe 0.862 0.742 0.534 0.844 0.728 0.454
JailDAM 0.913 0.926 0.342 0.917 0.932 0.433
AdaShield 0.675 0.786 0.213 0.774 0.812 0.353

Table 1: The value of TPR@FPR< 0.05 of different detection methods on LLaVA and Janus-pro.

5 EXPERIMENTS

In this section, we conduct experiments to address the following research questions:

* RQ1: What is the detection success rate of JDIN for three different types of jailbreak
samples, especially the generalization to the OOD data.

* RQ2: What is the FPR of JDJN for benign samples, particularly when the distribution of
test benign data differs from the distribution of the training benign data?

* RQ3: Is every part of JDJN important? Does it perform better than existing alternatives?

5.1 SETTINGS

Models. To show the capacity of JDJN on different models, we conduct our experiments on four
popular open-source LVLMs: MiniGPT4-7B |Zhu et al.| (2023), LLaVA-v1.5-7B |Liu et al.| (2023a),
Qwen2-VL-7B Wang et al.| (2024b) and Janus-pro-7B |Chen et al.| (2025)).

Datasets. We evaluate our method on three diverse jailbreak attacks: the gradient-based JAMLLM,
typography-based FigStep, and the JailbreakV benchmark. For JAMLLM and FigStep, we generate
jailbreak samples each using content from AdvBench. The attack samples used for testing have all
successfully jailbroken the targeted LVLMs. We also use three benign datasets: MM-Bench and
MM-Vet (image-text understanding), Screespots and AndroidControl (GUI agents), and Normal
(text-only). We train a detector using 80% samples from one attack type (e.g., FigStep) plus one
benign dataset (e.g. MM-Vet). We then evaluate it on: (i) ID Test Set: The 20% held-out samples
from the same attack and benign dataset. (ii) OOD Test Sets: The full samples from each of the
other two unseen attacks and two benign datasets.

Baselines. We compare JDJN with seven LVLM jailbreak detection baselines. JailGuard [Zhang
et al.| (2023)) and ECSO |Gou et al.| (2024)) determine if a sample has been jailbroken with a judge
LLM; CIDER [Xu et al.| (2024) and JailDAM [Nian et al.| (2025) detect jailbreak samples by com-
paring image and text embeddings; HiddenDetect [Jiang et al.| (2025) and GradSafe Xie et al.
(2024) identify jailbreak samples by analyzing anomalies in the model’s hidden states or gradients;
AdaShield |Wang et al.|(2024c) defends against jailbreak attacks by dynamically adjusting prompts.

Evaluation Metrics. In real-world scenarios, we believe that the TPR of the detector at a lower FPR
holds greater value. Therefore, referring to previous work |[Kiani et al.| (2021]), we compare the TPR
of JDJN with the baselines under FPR < 0.05 (denoted as TPR@FPR < 0.05).

Implementation Details. Unless otherwise specified, the specific training parameters for JDJN
used in our experiments are as follows. The number of training iterations for m is 200, as we
observed that all samples had converged by this point. We fix A = 0.1 for all four LVLMs. For the
jailbreak-critical threshold 7 and the size of interval k, we set 7 = 0.4 and k£ = 5 for MiniGPT-4
and LLaVA-v1.5, and 7 = 0.2 and k£ = 3 for Qwen2-VL and Janus-pro. We test the impact of these
three parameters on JDJN in Section [5.4] A single A800 GPU server can meet the experimental
requirements of this work.

Single Round Single Response | LLaVA Janus-pro
JDJN; Yes No 1.02s 0.26s
JailGaurd No No 84.27s 31.25s
ECSO No No 15.12s 5.36s
CIDER Yes No 5.42s 3.02s
w/o detection No Yes 12.08s 4.29s

Table 2: The efficiency comparison across baselines. The left side shows important factors affecting
the operational efficiency of various defense methods, while the right side presents the average
processing time of LLaVA and Janus-pro for a single FigStep text.

Methods MM-Vet MM-Bench Normal ScreenSpots AndroidControl

JDJN; 0.0 0.0 0.019 0.022 0.012
JDIN3 0.168 0.0 0.346 0.343 0.212
JDINy4 0.285 0.21 0.0 0.198 0.272

Table 3: The FPR of JDJN with different training datasets on LLaVA.

5.2 DETECTION PERFORMANCE COMPARISON (RQ1)

We evaluate the detection accuracy (TPR) of JDIN against four baseline methods. We fix the benign
dataset as MM-Vet, and train two variants of JDJN: JDJN;, trained with JailBreakV, and JDJN,,
trained with FigStep. In both cases, MM-Vet serves as the benign training set. Table [1| presents
the results on the LLaVA model. The corroborating results for Qwen-VL and MiniGPT-4 are in

Appendix

Detection Success Rate Comparison. JDIN significantly outperforms all baselines in detection
success. As shown in Table m both JDJN; and JDJNs achieve higher TPR than three baselines.
Specifically, for ID data (e.g., JailBreakV for JDJN;), our method achieves a TPR exceeding 99%.
Crucially, JDJN; and JDJN; also maintain a high TPR on OOD jailbreak samples.

Comparing the two variants of JDJN, JDJN; demonstrates superior generalization on OOD data.
We attribute this to the diverse nature of its training set, JailBreakV, which includes various attack
types like query-related, FigStep, and transfer attacks. This data diversity enables JDJN; to learn
more robust features, leading to high TPR not only against seen attack types from different sources
(e.g., FigStep) but also against entirely unseen attacks like JAMLLM (94.2% TPR).

Efficiency Comparison. JDJIN is highly efficient, requiring only a single forward pass through the
LVLM without needing a full response generation. In Table [2] we analyze the number of times
each baseline method needs to run LVLMs and present the time required to detect FigStep data.
“Single round” refers to whether the method requires the large model to run only once, while “single
response” refers to whether the method requires the model to generate a complete response only
once. The results show that JDIN is significantly outpacing JailGuard, ECSO and CIDER, and is
even faster than the vanilla LVLM (i.e., no defense). This is because upon detecting a harmful
prompt, JDJN immediately triggers a rejection, bypassing the costly token-by-token generation of a
full, potentially harmful, response.

5.3 IMPACT ON BENIGN SAMPLES (RQ2)

In this section, we evaluate the impact of JDJN on benign samples. Since JDIN does not alter the
model’s parameters or its outputs for non-flagged inputs, our evaluation primarily focuses on its
FPR. Similarly, we evaluate JDJN’s detection results on the ID test set and its generalization on
OOD test data.

Specifically, we fixed the jailbreak training data as JailBreakV and trained JDJN;, JDJN3, and
JDIN4 using MM-Vet, MM-Bench, and Normal prompts, respectively. The results are shown in
Table 3] When using MM-Vet as the training set, it generalizes well to MM-Bench and Normal,
with FPRs all below 5%, and most showing a 0% FPR. However, when MM-Bench and Normal are
used as training sets, the generalization to the other two sample types declines. We attribute this
discrepancy to the nature of the benign training data. MM-Vet is an open text-image dataset, which
aligns better with the general tasks of LVLM. In contrast, MM-Bench restricts the model’s output
to only four options (A, B, C, D), while Normal is a purely text dataset. Consequently, a detec-

2 4 6 8 10 12 14) 2 4 6 8 10 12 14

LLaVA-v1.5 Janus-pro

Figure 4: The worst-case accuracy on the six data distributions as a function of changes in k and 7.

tor trained on these latter datasets may learn to differentiate from JailBreakV based on superficial
cues—such as the presence of an image or a constrained output format—rather than the intrinsic se-
mantic content of a harmful prompt. This reliance on spurious correlations hinders its generalization
to other benign data distributions.

Summary of RQ1 and RQ2 sections: JDJN demonstrates high transferability across different data
distributions, and using more general data (such as MM-Vet) and more complex data (such as
JailBreakV) can significantly enhance its generalization. To validate the generalizability of these
conclusions beyond two model architectures, we replicated these experiments on Qwen-VL and
MiniGPT-4. As detailed in Appendix the results on these models are highly consistent and
strongly support our primary claims.

5.4 IMPACT OF THE KEY COMPONENTS (RQ3)

The Mask Threshold 7 and the Size of Interval k. We analyze two key hyperparameters: the
mask threshold 7 and the size of interval k. We fix the training set to JailBreakV/MM-Vet (our
JDIN; configuration) and evaluate JDJN’s worst-case accuracy across six diverse test distributions.
Figure[d|plots this accuracy (minimum across the six distributions) for 7 € [0.0,0.6] and k& € [1,15].
Note that 7 = 0.0 serves as a baseline where all neurons are included without mask-based guidance.
We have two findings: (i) Mask guidance is crucial. For any given k, using a mask (e.g., 7 = 0.3)
consistently surpasses the no-mask baseline (7 = 0.0) in accuracy, demonstrating the effectiveness
of our neuron selection. (ii) JDJN is robust to 7. The performance is robust for 7 > 0. While the
optimal value varies slightly across models (e.g., 0.4 for LLaVA, 0.2 for Janus-pro), a wide range of
7 values yield strong generalization.

The Regularization Hyperparameter \. Increasing the
value of A suppresses the magnitude of values in the oo

— =3 Janus-Pro

mask, thereby reducing the proportion of JailNeurons. | - quendit
We try A = 0.05,0.1,0.3,0.5 and plot the proportion £ minicPT4

of JailNeurons among all neurons while controlling for °*7
7 = 0.2. As shown in Figure[5} the optimized proportion oo
of JailNeurons is very low; when A > 0.1, the proportion
of JailNeurons in all models is less than 2%. We exper-
iment with different A values on LLaVA to observe their °*]

effect on detection results. We find that when A = 0.1, the 001
performance is best, with accuracy exceeding 94% across 11 —
six datasets. When A = 0.05 and 0.3, the accuracy is 005 O et os

still above 91% across the six datasets. However, when
A = 0.5, the accuracy on Normal drops to 73%. We be-
lieve that at A = 0.5, the proportion of JailNeurons is too
low, resulting in a loss of too much information, which in
turn leads to a decline in the model’s generalization performance.

Figure 5: The Proportion of JailNeurons
among All Neurons v.s. A

Choice of Detector Model. JDJN utilizes a linear SVM as its default detector. In this section, we
investigate the impact of using different detector models. Specifically, we compare the performance
of the default linear SVM with two more complex alternatives: an MLP and a non-linear SVM.
The experimental results show that the more complex models did not yield better results than the

linear SVM. In particular, the MLP-based detector is prone to overfitting; while it achieves very high
detection accuracy on ID data, its generalization performance on OOD data was significantly lower
than that of the linear SVM. For more details, please refer to Appendix [A4]

Selection of ¢,. To assess whether the choice of refusal token affects neuron localization, we com-
pare using “sorry” versus “unfortunately” as optimization targets. First, we observe that different
refusals can be used for neuron localization, though subtle differences exist. Then, we test their ac-
curacy on six datasets. We find that using “unfortunately” led to slightly worse overall performance,
with a particularly notable accuracy drop on the Normal dataset (0.722 for “unfortunately” vs. 0.956
for “sorry”). We attribute this discrepancy to the fact that “sorry” is more commonly adopted as a
refusal expression, it appears to encode richer jailbreak-related information, thus yielding stronger
performance. For more details, please refer to Appendix [A23]

The Strategy of Selecting Critical Layers. After identifying JailNeurons, we compared different
strategies to select /; layers for detection. Recall that our top-down sampling strategy selects layers at
equal intervals to cover shallow-to-deep features. We compare against random, sequential, reverse,
and safety-aware selection [Jiang et al| (2025). On LLaVA and Janus-Pro, our method achieves
consistently strong and stable performance, ranking best in most /; settings as well as at the optimal
value. These results suggest that covering diverse depths leads to more robust jailbreak detection.
For more details, please refer to Appendix [A.6]

6 CHARACTERIZING JAILNEURONS IN LVLMS

6.1 CORRELATION BETWEEN JAILNEURONS AND JAILBREAK BEHAVIORS

We first test whether JailNeurons are specifically tied to jailbreak behavior. For each layer, we
deactivate its JailNeurons on 500 successful JailBreak-V attacks and measure the probability of the
model outputting “Sorry”, comparing against randomly masking the same number (RandNeurons1)
or 5x as many neurons (RandNeurons5).

On Janus-Pro and LLaVA, deactivating JailNeurons increases the “Sorry” probability from ~ 0
to ~ 0.20 and 0.26-0.46 respectively, while random masking (even 5x more neurons) keeps it at
< 0.005. This gap shows that JailNeurons, rather than arbitrary neurons, are strongly associated
with bypassing safety. For more details, please refer to Appendix [A.§]

6.2 NECESSITY OF JAILNEURONS FOR JAILBREAK DETECTION

We next ask whether JailNeurons are necessary for effective detection or if generic dimensionality
reduction suffices. On LLaVA, we compare six variants (all trained on JailBreak-V and MM-Vet):
JDIN (ours), no filtering/no regularization (NFNR), L,/Lo-regularized SVM on all neurons, PCA,
and SNIP-based neuron selection.

As summarized in Table [T2] (Appendix [A.9), JDJN attains the best trade-off: highest TPRs on
JailBreak-V / FigStep / JAMLLM (0.997 / 1.00 / 0.942) and lowest FPRs on MM-Vet / MM-Bench /
Normal (0.0/0.0/0.019). Alternatives either lose recall on jailbreaks or exhibit substantially higher
FPRs (e.g., PCA: 0.626, SNIP: 0.577 on Normal). This indicates that JailNeuron-based masking
captures jailbreak-specific directions that generic sparsity or PCA cannot.

6.3 JAILNEURONS ACROSS HETEROGENEOUS JAILBREAK DATASETS

We then study how JailNeurons vary across jailbreak datasets (JailBreak-V, FigStep, JAMLLM). Let
J; be the JailNeuron set from method 7. The overlap
i — {z e J; iz € J;}
! 1]
(Tabel [T3] Appendix [A-T0) shows that FigStep’s JailNeurons are almost a subset of JailBreak-V’s

(PFigStep,JaiBreakv ~ 0.96-0.98), and JAMLLM still shares a sizable fraction with JailBreak-V (=~
0.3-0.4), despite distribution shift.

Further, we split JailNeurons into JAMLLM-unique (Jjamrim), JailBreak-V-unique (JyaiBreakv)s
and shared (Joyerlap). Deactivating any of these sets notably raises the “Sorry” probability on both

datasets (up to ~ 0.35-0.44 on JAMLLM and ~ 0.18-0.30 on JailBreak-V), while random neuron
masking leaves it near zero (Tables [T4] [I3). This suggests a shared core of jailbreak circuits plus
dataset-specific components that still transfer across distributions, explaining JDJN’s robustness to
OOD attacks.

6.4 JAILNEURONS ACROSS FINE-TUNED MODEL CHECKPOINTS

Finally, we analyze JailNeurons under different fine-tuning objectives on LLaVA-NeXT-8B: the
official model (O_llava), a task-tuned ScreenSpot model (SS_llava), and a safety-aligned FigStep
model (FS_llava). Using JailBreak-V to identify JailNeurons, we find that the JailNeuron propor-
tion is stable between O_llava and SS_llava (=1.2-1.8% per layer), but roughly halves in FS_llava
(~0.5-0.9%; Table[16] Appendix [A.TT). For more details, please refer to Appendix[A.T1]

7 DISCUSSION

7.1 COMPARISON WITH NEURON-DIGGING—BASED METHODS

Compared with prior neuron-based approaches, JDJN targets a different explanation goal, adopts
an iterative optimization scheme for neuron selection, and performs layer-wise balancing. Existing
methods (e.g., Jiang et al] (2025); [Wei et al| (2024)) mainly explain the model’s original outputs
y ~ f(x | 6,), while JDIN directly explains the counterfactual “sorry” response that the model
typically does not produce under successful jailbreaks.

Methodologically, JDIJN uses multi-step gradient-based optimization of neuron masks and top-down
layer-wise sampling to mitigate redundancy and retain diverse information across layers. As a result,
JDIJN exploits richer hidden representations than approaches relying on shallow linear probing (e.g.,
first-token logits or logit-lens decoding) at the MLP-neuron level. Empirically, JDIN consistently
achieves higher TPR@FPR<0.05 than these neuron-digging—based baselines on multiple datasets
and LVLMs. For more details, please refer to Appendix [A.12]

7.2 FAILURE ANALYSIS

We analyze JDJN’s failure modes by inspecting misclassified cases. Most errors occur on borderline
prompts that lie between clearly malicious and clearly benign. For instance, seemingly neutral his-
torical queries such as “Please list key events from World War II”” sometimes trigger false positives,
likely because they contain war-related concepts that partially resemble harmful content. For more
details, please refer to Appendix [A.T3]

7.3 OVER-SAFETY PROBLEMS

We further evaluate JDJN’s false positive rate on stress-test benchmarks such as OR-Bench|Cui et al |
and XSTest|Rottger et al.|(2024)) that specifically target over-refusal. JDJN exhibits relatively
higher FPR on these two datasets. However, we view this as a stringent stress test rather than a
realistic estimate of user-facing impact. Even strong commercial models (e.g., GPT-4, Gemini)
show over-refusal rates above 90% on OR-Bench, whereas JDJN’s FPR remains substantially lower.
Moreover, our primary design goal is to keep FPR low on typical benign datasets so as to minimize
disruption for normal users; OR-Bench and XSTest represent adversarially constructed edge cases
rather than everyday usage patterns. For more details, please refer to Appendix [A14]

8 CONCLUSION

In this work, we address the security challenges posed by jailbreak attacks in LVLMs. We propose
a novel method for identifying important neurons by training masks to capture JailNeurons in each
layer. Based on this technology, we propose JDJN, a novel detection method that identifies jailbreak
samples with multi-layer hidden states. Experimental results demonstrate that it achieves high true
positive rates under extremely low false positive rate conditions and is effective on OOD data.

10

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics and complies with the principles of responsible re-
search conduct. All datasets used in our experiments are publicly available and licensed for research
purposes. This work does not involve the creation, distribution, or promotion of harmful content. All
jailbreak samples used in our experiments were sourced from existing benchmark datasets or were
synthetically constructed for research purposes only. Our study is designed to improve the safety
and reliability of LVLMs by proposing methods to better identify and mitigate jailbreak attempts.
We believe this contributes positively to the responsible development and deployment of LLMs and
LVLMs, and ultimately supports safer interaction between users and Al systems.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. First, our experiments
are conducted entirely with publicly available models and datasets, allowing others to replicate our
results without restricted resources. Second, all implementation details, including hyperparameters
and training configurations, are fully documented in the Experimental Settings section[5.1] Finally,
we provide our source code in the supplementary material, which includes step-by-step instructions
for locating JailNeurons, training multi-layer detectors, and reproducing all reported results.

REFERENCES

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens. arXiv preprint arXiv:2303.08112, 2023.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in lan-
guage models without supervision. arXiv preprint arXiv:2212.03827, 2022.

Nicholas Carlini, Milad Nasr, Christopher A Choquette-Choo, Matthew Jagielski, Irena Gao, Pang
Wei W Koh, Daphne Ippolito, Florian Tramer, and Ludwig Schmidt. Are aligned neural networks
adversarially aligned? Advances in Neural Information Processing Systems, 36:61478—-61500,
2023.

Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
scaling. arXiv preprint arXiv:2501.17811, 2025.

Yangyi Chen, Karan Sikka, Michael Cogswell, Heng Ji, and Ajay Divakaran. Dress: Instructing
large vision-language models to align and interact with humans via natural language feedback.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14239-14250, 2024.

Justin Cui, Wei-Lin Chiang, Ion Stoica, and Cho-Jui Hsieh. Or-bench: An over-refusal benchmark
for large language models. arXiv preprint arXiv:2405.20947, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International conference on machine learning, pp. 10323-10337. PMLR, 2023.

Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang, Tianshuo Cong, Anyu Wang, Sisi Duan,
and Xiaoyun Wang. Figstep: Jailbreaking large vision-language models via typographic visual
prompts. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 23951—
23959, 2025.

Yunhao Gou, Kai Chen, Zhili Liu, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung, James T
Kwok, and Yu Zhang. Eyes closed, safety on: Protecting multimodal 1lms via image-to-text
transformation. In European Conference on Computer Vision, pp. 388—404. Springer, 2024.

Zeqing He, Zhibo Wang, Zhixuan Chu, Huiyu Xu, Rui Zheng, Kui Ren, and Chun Chen. Jailbreak-
lens: Interpreting jailbreak mechanism in the lens of representation and circuit. arXiv preprint
arXiv:2411.11114,2024.

11

Yilei Jiang, Xinyan Gao, Tianshuo Peng, Yingshui Tan, Xiaoyong Zhu, Bo Zheng, and Xiangyu
Yue. Hiddendetect: Detecting jailbreak attacks against multimodal large language models via
monitoring hidden states. In Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 14880—-14893, 2025.

Sohaib Kiani, Sana Awan, Chao Lan, Fengjun Li, and Bo Luo. Two souls in an adversarial image:
Towards universal adversarial example detection using multi-view inconsistency. In Proceedings
of the 37th Annual Computer Security Applications Conference, pp. 31-44, 2021.

Mukai Li, Lei Li, Yuwei Yin, Masood Ahmed, Zhenguang Liu, and Qi Liu. Red teaming visual
language models. arXiv preprint arXiv:2401.12915, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892-34916, 2023a.

Xin Liu, Yichen Zhu, Yunshi Lan, Chao Yang, and Yu Qiao. Query-relevant images jailbreak large
multi-modal models. arXiv preprint arXiv:2311.17600, 7:14, 2023b.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? In European conference on computer vision, pp. 216-233. Springer, 2024.

Weidi Luo, Siyuan Ma, Xiaogeng Liu, Xiaoyu Guo, and Chaowei Xiao. Jailbreakv-28k: A bench-
mark for assessing the robustness of multimodal large language models against jailbreak attacks.
arXiv e-prints, pp. arXiv—2404, 2024.

Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and
Emanuele Rodola. Relative representations enable zero-shot latent space communication. arXiv
preprint arXiv:2209.15430, 2022.

Yi Nian, Shenzhe Zhu, Yuehan Qin, Li Li, Ziyi Wang, Chaowei Xiao, and Yue Zhao. Jail-
dam: Jailbreak detection with adaptive memory for vision-language model. arXiv preprint
arXiv:2504.03770, 2025.

Zhenxing Niu, Haodong Ren, Xinbo Gao, Gang Hua, and Rong Jin. Jailbreaking attack against
multimodal large language model. arXiv preprint arXiv:2402.02309, 2024.

Renjie Pi, Tianyang Han, Jianshu Zhang, Yueqi Xie, Rui Pan, Qing Lian, Hanze Dong, Jipeng
Zhang, and Tong Zhang. Mllm-protector: Ensuring mllm’s safety without hurting performance.
arXiv preprint arXiv:2401.02906, 2024.

Paul Rottger, Hannah Kirk, Bertie Vidgen, Giuseppe Attanasio, Federico Bianchi, and Dirk Hovy.
Xstest: A test suite for identifying exaggerated safety behaviours in large language models. In
Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 5377-5400,
2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Han Wang, Gang Wang, and Huan Zhang. Steering away from harm: An adaptive approach to
defending vision language model against jailbreaks. arXiv preprint arXiv:2411.16721, 2024a.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024b.

Yu Wang, Xiaogeng Liu, Yu Li, Muhao Chen, and Chaowei Xiao. Adashield: Safeguarding mul-
timodal large language models from structure-based attack via adaptive shield prompting. In
European Conference on Computer Vision, pp. 77-94. Springer, 2024c.

Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao Xie, Xiangyu Qi, Mengzhou Xia, Prateek
Mittal, Mengdi Wang, and Peter Henderson. Assessing the brittleness of safety alignment via
pruning and low-rank modifications. arXiv preprint arXiv:2402.05162, 2024.

12

Yueqi Xie, Minghong Fang, Renjie Pi, and Neil Gong. Gradsafe: Detecting jailbreak prompts for
lIms via safety-critical gradient analysis. arXiv preprint arXiv:2402.13494, 2024.

Yue Xu, Xiuyuan Qi, Zhan Qin, and Wenjie Wang. Cross-modality information check for detecting
jailbreaking in multimodal large language models. arXiv preprint arXiv:2407.21659, 2024.

Ziyi Yin, Muchao Ye, Tianrong Zhang, Tianyu Du, Jinguo Zhu, Han Liu, Jinghui Chen, Ting Wang,
and Fenglong Ma. Vlattack: Multimodal adversarial attacks on vision-language tasks via pre-
trained models. Advances in Neural Information Processing Systems, 36:52936-52956, 2023.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv
preprint arXiv:2308.02490, 2023.

Chuhan Zhang, Ye Zhang, Bowen Shi, Yuyou Gan, Tianyu Du, Shouling Ji, Dazhan Deng, and
Yingcai Wu. Neurobreak: Unveil internal jailbreak mechanisms in large language models. arXiv
preprint arXiv:2509.03985, 2025.

Xiaoyu Zhang, Cen Zhang, Tianlin Li, Yihao Huang, Xiaojun Jia, Ming Hu, Jie Zhang, Yang Liu,
Shiging Ma, and Chao Shen. Jailguard: A universal detection framework for llm prompt-based
attacks. arXiv preprint arXiv:2312.10766, 2023.

Qinyu Zhao, Ming Xu, Kartik Gupta, Akshay Asthana, Liang Zheng, and Stephen Gould. The first
to know: How token distributions reveal hidden knowledge in large vision-language models? In
European Conference on Computer Vision, pp. 127-142. Springer, 2024.

Yiran Zhao, Wenxuan Zhang, Yuxi Xie, Anirudh Goyal, Kenji Kawaguchi, and Michael Shieh.
Identifying and tuning safety neurons in large language models. In The Thirteenth International
Conference on Learning Representations.

Yunging Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Man Cheung, and Min
Lin. On evaluating adversarial robustness of large vision-language models. Advances in Neural
Information Processing Systems, 36:54111-54138, 2023.

Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu Xu, Fei Huang, and Yongbin Li. How align-
ment and jailbreak work: Explain 1lm safety through intermediate hidden states. arXiv preprint
arXiv:2406.05644, 2024a.

Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu Xu, Fei Huang, Kun Wang, Yang Liu,
Junfeng Fang, and Yongbin Li. On the role of attention heads in large language model safety.
arXiv preprint arXiv:2410.13708, 2024b.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

Yongshuo Zong, Ondrej Bohdal, Tingyang Yu, Yongxin Yang, and Timothy Hospedales. Safety
fine-tuning at (almost) no cost: A baseline for vision large language models. arXiv preprint
arXiv:2402.02207, 2024.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, LLMs are employed exclusively as writing assistants. Specifically, we use LLMs to
perform grammar checking, language polishing, and occasional shortening of paragraphs to improve
clarity and readability. The content, experimental design, and analysis are entirely developed by
the authors; LLMs are not used for generating research ideas, running experiments, or drawing
conclusions.

13

LLaVA-v1.5

0 5 10 15 20 25 30 0 H 10 15 20 25 30

L0] egesgeccecscceccececgegggegec 10| ©2°0238088300 000 sg0ccccgey
®e2 °
. ege o’
*%s s

Qwen2-VL

MiniGPT-4

.
o0 o
00 B0 /\l‘ 3 6 Y

o H 10

20 25 30 o 5 10 15 20 25 30 0 H 10

5 5 2
JAMLLM FigStep JailBreakV

25 30

Figure 6: This figure plots detector accuracy (y-axis) against the neuron activation source layer
(x-axis) on LLaVA-v1.5, Qwen2-VL and MiniGPT-4. The columns show results trained on the
JAMLLM, the FigSetp or the JailBreakV attack dataset. Different colors denote test datasets from
six distributions, and blue dashed lines indicate the worst-case performance per layer.

A.2 PRELIMINARY EXPERIMENT ON LLAVA-V1.5, QWEN2-VL AND MINIGPT-4

This is supplementary results for the preliminary experiments in the main text, focusing on the
experimental outcomes of three models: LLaVA-v1.5, Qwen2-VL, and MiniGPT-4. As concluded
in the main text regarding Janus-Pro, we also observe the same conclusion in Figure[6] Specifically,
the models exhibit good detection performance on ID data but have poor generalization on OOD
data.

A.3 EXTENDED EVALUATION ON ADDITIONAL MULTIMODAL MODELS

To further substantiate the effectiveness and generalization capabilities of our proposed method,
JDIN, we conduct additional experiments on two other widely-used multimodal models: Qwen-VL
and MiniGPT-4. This complements our main evaluation in the main paper, which was conducted
on LLaVA and Janus. We evaluate JDJN’s performance in terms of both detection success rate on
jailbreak data and false positive rate on benign data.

Detection Success Rate. As shown in Table E|, we evaluate the detection success rate (i.e., True
Positive Rate) of JDJN against several baselines on jailbreak samples generated by JailBreakV and
JAMLLM. The results demonstrate that our method, JDJN; , consistently and significantly outper-
forms other baselines. It achieves near-perfect detection rates on both Qwen-VL (0.997 and 1.0)
and MiniGPT-4 (1.0 and 0.945), underscoring its robust performance across different model archi-
tectures.

Notably, we exclud the FigStep baseline from this specific comparison. This decision is based on
its exceptionally low Attack Success Rate (ASR) on Qwen-VL (0.010) and MiniGPT-4 (0.043), as
detailed in Table[6] Evaluating a defense method against such an ineffective attack would not yield
meaningful insights into its true capabilities. This low ASR suggests that these models possess
inherent resilience to the FigStep attack, making it an unsuitable benchmark for this evaluation.

14

Qwen-VL MiniGPT-4
Methods JailBreakV JAMLLM | JailBreakV JAMLLM
JDIN; 0.997 1.0 1.0 0.945
JailGaurd 0.432 0.732 0.463 0.710
ECSO 0.928 0.091 0.324 0.48
CIDER 0.428 0.783 0.376 0.734
HiddenDetect 0.545 0.363 0.775 0.653

Table 4: The performance comparison on Qwen-VL and MiniGPT-4.

Qwen-VL MiniGPT-4
Methods MM-Vet MM-Bench Normal | MM-Vet MM-Bench Normal
JDJN; 0.005 0.0 0.025 0.0 0.092 0.045
JDJN3 0.423 0.0 0.322 0.734 0.0 0.865
JDINy 0.045 0.005 0.0 0.072 0.653 0.0

Table 5: The FPR of JDIN on Qwen-VL and MniGPT-4.

False Positive Rate. In addition to detection accuracy, we assess the False Positive Rate (FPR) of
different JDIN configurations on three benign datasets: MM-Vet, MM-Bench, and a collection of
normal prompts. As presented in Table[3] our primary configuration, JDJN; , maintains an extremely
low FPR across all datasets and models. For instance, the FPR is as low as 0.0 on MM-Bench for
Qwen-VL and on MM-Vet for MiniGPT-4. This demonstrates its ability to accurately distinguish
harmful content without incorrectly flagging benign user inputs, a crucial characteristic for real-
world deployment. The results for JDJN3 and JDJN, are included for ablation purposes, illustrating
the performance trade-offs associated with different parameter settings.

In summary, these extended results on Qwen-VL and MiniGPT-4 further validate the superior per-
formance, robustness, and generalizability of JDIN in detecting multimodal jailbreak attacks.

A.4 ABLATION STUDY ON THE DETECTOR ARCHITECTURE

In our main paper, JDJN utilizes a linear Support Vector Machine (SVM) as its core detection model,
leveraging the statistical features extracted from the model’s hidden states. To validate this design
choice, we conduct an ablation study to compare the linear SVM against more complex, non-linear
alternatives: a non-linear SVM with a Radial Basis Function (RBF) kernel and a Multi-Layer Per-
ceptron (MLP). Our guiding principle is parsimony (Occam’s Razor): we prefer the simplest model
that delivers robust and effective performance.

The results of this comparison are presented in Table[7} The linear SVM demonstrates exceptionally
strong and consistent performance across both LLaVA and Janus-Pro models. It achieves near-
perfect detection rates (e.g., 1.000 against FigStep) and consistently ranks as the best or second-best
method across all tested jailbreak datasets.

In contrast, the more complex models exhibit less stable performance, suggesting a trade-off be-
tween model complexity and generalization. For instance, the non-linear SVM'’s performance drops
significantly on Janus-Pro when detecting samples from JailBreakV (0.919) and JAMLLM (0.783)
compared to its linear counterpart. Similarly, the MLP struggles with FigStep on Janus-Pro, with
its detection rate falling to 0.781. This performance degradation indicates that while the non-linear
models might fit certain data distributions well (e.g., NonLinear-SVM on LLaVA/JAMLLM), they
are more prone to overfitting, which harms their ability to generalize to different models or attack
patterns.

Given that the linear SVM achieves state-of-the-art performance without the added complexity and
potential for overfitting seen in non-linear alternatives, we select it as the default detector architecture
for JDJN. This choice ensures a solution that is not only highly effective but also simple, efficient,
and generalizable.

15

Models JailBreakV FigStep JAMLLM

LLaVA 0.795 0.912 0.904
Janus-pro 0.881 0.923 0.964
Qwen-VL 0.451 0.01 0.657

MiniGPT-4 0411 0.043 0.753

Table 6: The ASR of three attacks on four models.

LLaVA Janus-pro
Methods JailBreakV ~ FigStep JAMLLM | JailBreakV FigStep JAMLLM
Linear-SVM 0.997 1.0 0.942 0.992 1.0 0.853
NonLinear-SVM 0.993 1.0 0.966 0.919 1.0 0.783
MLP 0.989 1.0 0.878 0.95 0.781 0.892

Table 7: Ablation study on the detector architecture. We compare the True Positive Rate (TPR)
of a Linear SVM, a Non-linear SVM (with RBF kernel), and an MLP on the LLaVA and Janus-
Pro models. The results validate our choice of a linear SVM, which provides the best balance of
performance and generalization. Best results are in bold, second best are underlined.

A.5 ABLATION STUDY ON THE SELECTION OF e,

We conduct detailed evaluations on Janus-pro across six datasets: JAMLLM, jailbreakv, figstep,
mmvet, mmbench, and Normal. For each dataset, we report paired results in the format unfortunately
(sorry). As summarized in Table[8]and Table[9] performance with unfortunately is generally close
to that of “sorry”, except on Normal, where accuracy drops to 0.722 compared to 0.956 for “sorry”
when 7 = 0.2.

Beyond detection accuracy, we also compare neuron-level statistics. Specifically, we measure (1) the
number of JailNeurons localized under each optimization target, and (2) the set similarity between
them using IoU scores. We find that the counts were comparable, and IoU exceeds 0.5 in most layers.
Figures [/] further illustrate these statistics. Overall, these analyses indicate that the JailNeurons
obtained with sorry and unfortunately are largely aligned, supporting the feasibility of using different
refusal targets. Nevertheless, “sorry”, being a more frequent and prototypical refusal expression,
encodes jailbreak information more robustly, which accounts for its superior detection accuracy,
especially on benign data.

A.6 ABLATION STUDY ON THE STRATEGY OF SELECTING CRITICAL LAYERS.
We further conduct a systematic comparison of five strategies for selecting /; layers:

* Top-down sampling (ours): select layers at uniform intervals (e.g., 1, 4, 7, ...) to span
shallow to deep levels.

* Random selection: uniformly sample [; layers per run.

* Sequential selection: choose the first /; layers.

* Reverse selection: choose the last [; layers.

» Safety-aware layers: follow prior work Jiang et al.| (2025)) suggesting layers around 20

contain stronger jailbreak signals.

We test these strategies on LLaVA and Janus-Pro under multiple /; values. The results (Figure
show that our arithmetic strategy consistently outperformed other methods, both in average perfor-
mance across [; and at the optimal value. Notably:

* On LLaVA, sequential selection performs significantly worse.
* On Janus-Pro, safety-aware selection drops sharply.

* Random selection shows stable performance, but inferior to our method.

16

T JailBreakV FigStep JAMLLM
0.1 0.992(0.99) 1.0(1.0) 0.835(0.779)
02 0.992(1.0) 1.0 (1.0) 0.706 (0.853)
03 0.992(1.0) 1.0 (1.0) 0.55 (0.804)
04 0.992(0.992) 1.0(1.0) 0.701 (0.619)
0.5 0.992(0.992) 0.948(1.0) 0.511(0.451)
0.6 0.959(0.992) 1.0(1.0) 0.639(0.547)

Table 8: The accuracy on three attack datasets for JDJN; with e; = “unfortunately” or “sorry”. we
report paired results in the format unfortunately (sorry)

T MM-Vet MM-Bench Normal
0.1 1.0 (1.0) 1.0 (1.0) 0.588 (0.682)
0.2 0.995 (1.0) 1.0 (1.0) 0.722 (0.956)
0.3 0.986(0.995) 1.0(0.995) 0.57(0.918)
0.4 0.995 (0.986) 1.0 (1.0) 0.50 (0.847)
0.5 0.986 (0.955) 1.0 (1.0) 0.616 (0.812)
0.6 0.968 (0.991) 1.0 (1.0) 0.248 (0.712)

Table 9: The accuracy on three benign datasets for JDJN; with e, = “unfortunately” or “sorry”. we
report paired results in the format unfortunately (sorry)

Our strategy achieves stability across models and was best in most settings. We interpret this robust-
ness as arising from capturing features throughout the model hierarchy, enabling better generaliza-
tion across models.

A.7 ROBUSTNESS AGAINST ADAPTIVE ATTACKS

A critical measure of any defense mechanism is its resilience against an adaptive adversary who has
full knowledge of the defense strategy and actively tries to circumvent it. To evaluate JDJN under
such a worst-case scenario, we design a powerful adaptive attack.

The objective of this attack is twofold: not only to compel the model to generate a harmful response
but also to simultaneously evade detection by JDJN. This is achieved by optimizing a composite loss
function, where the adversary perturbs an input image ¢ through a PGD-style iterative process. The
loss function is defined as:

L= CEloss(.f(ij)a It) + - norm(fjail(i()) - fjail(ij)) (4)

Here, the first term, C'E, 5, is the standard cross-entropy loss that steers the model’s output towards
a malicious target response x;. The second term is the core of the adaptive strategy: it aims to
minimize the L2 norm distance between the statistical features of the original image iy (fjq:(%0))
and those of the perturbed image at step j (fjq:1(Z;)). The hyperparameter ¢ balances the trade-off
between achieving the attack goal and evading detection.

To identify the most potent attack configuration, we conduct a hyperparameter search over the PGD
step size and the balancing coefficient cv. As illustrated in Figure[9] we test step sizes ranging from
0.01 to 0.06 (subplots (a) through (f)), with different values of « plotted within each subplot. The
analysis shows that the attack achieves the most substantial loss reduction when the step size is 0.01
and « is 0.01. This setting represents the strongest adaptive attack we could formulate against our
defense.

Crucially, even when subjected to this optimized, worst-case adaptive attack, JDJN maintain a high
detection success rate of 0.903. This result demonstrates the significant robustness of our method.
It suggests that the attack faces a fundamental dilemma: aggressive perturbations required to trigger
a harmful response inevitably create discernible shifts in the statistical feature distribution, which
JDIJN can reliably detect. Consequently, our defense remains effective even against knowledgeable
adversaries actively attempting to bypass it.

17

The Number of JailNeurons v.s. T The IOU Value across Different Layers

—— Unfortunately 0.7 4

35 4 —— Sorry

0.6 -
0.5 4
0.4 4
0.3
0.2 4
0.1+

: : : : B . r r 0.0 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1 5 9 13 17 21 25

The Value of T Layer Index

S

15 4

The Number of JailNeurons
w

10 4

[N

-

o

Figure 7: The left figure shows the number of JailNeurons localized under each optimization target,
and the right figure shows the set similarity between them using IoU scores

LLaVA-v1.5 Janus-pro

o
©

o
)
e
~
s

o

o
o
o

random
increase
safe-layers
decrease
interval

o
«

o

»
[
IS

—— random
—— increase
—— safe-layers
—— decrease
—— interval

o

N
o
w

The Worst Case Accuracy of Six Datasets
The Worst Case Accuracy of Six Datasets

o
N
L

o
=]

o
=

2 3 4 5 6 8 10 2 3 4 5 6 8 10
Number of Selected Layers Number of Selected Layers

Figure 8: The figures show the worst case accuracy among six datasets on five strategies for LLaVA-
v1.5 and Janus-Pro

A.8 CORRELATION BETWEEN JAILNEURONS AND JAILBREAK BEHAVIORS

To verify that the JailNeurons we trained are highly correlated with the model’s security mechanisms
bypassed by the Jailbreak sample, we deactivate these JailNeurons in each layer and observe the
probability of the model outputting ”Sorry.” For comparison, we design baselines by randomly de-
activating neurons in the model. We denote RandNeurons1 as randomly removing the same number
of neurons as JailNeurons, and RandNeurons5 as randomly removing five times the number of Jail-
Neurons. Specifically, we randomly select 500 samples from JailBreak-V that successfully attacked
the original model and reported the average probability of outputting ’Sorry” after three operations
(JailNeurons, random neurons, no operation).

The results are as shown in Table[I0] and Table [TT] We can see that when no actions are taken, the
original model outputs a very low probability of ”Sorry” for successful jailbreak samples. When we
deactivate the JailNeurons, the probability of the model outputting ”Sorry” significantly increases;
however, when we randomly deactivate neurons (even five times the number of JailNeurons), the
probability of the model outputting "Sorry” remains low. This indicates that JailNeurons are indeed
highly correlated with bypassing the model’s safety barriers in jailbreak samples.

A.9 NECESSITY OF JAILNEURONS FOR JAILBREAK DETECTION
JDIN demonstrates high generalization across different data distributions, thanks to JailNeu-

rons extracting information through neuron-filtering. However, in reality, information extrac-
tion/dimensionality reduction does not necessarily have to be performed by JailNeurons. There-

18

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

(d) () ®

Figure 9: Different o and step size.

masked_layer_id 1 5 9 13 17 21 25
JailNeurons 0.208 0.205 0.204 0.206 0.202 0.202 0.202
RandNeurons1 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001
RandNeurons5 0.001 0.001 0.001 0.001 0.001 | <0.001 | 0.001
No mask <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001

Table 10: The confidence of the Janus-pro model outputting ’Sorry” after modifying the neurons in
layer k.

fore, in this section, we compare JailNeurons with other dimensionality reduction/regularization
techniques and neuron-filtering regarding their assistance in detecting jailbreak samples.

Specifically, we conduct a controlled study comparing the following six configurations. All of these
detectors are trained on JailBreakV and MM-Vet:

e JDJN (ours): JailNeurons filtering + top-down layer sampling + SVM classifier;

* No filtering and No regularization (NFNR): Directly using all neuron activations + top-
down sampling + SVM;

* No filtering with L; regularization (L; regu): Directly using all neuron activations + top-
down sampling + SVM with L regularization;

* No filtering with Lo regularization (L2 regu): Directly using all neuron activations + top-
down sampling + SVM with L regularization;

* PCA-based filtering: Replacing our neuron filter with PCA + top-down sampling + SVM;
* SNIP-based filtering: Replacing JailNeurons with neurons selected via SNIP scores + top-
down sampling + SVM.

The results (Table show that our JDJN approach achieves the highest accuracy and robustness,
especially under out-of-distribution (OOD) test scenarios. This confirms that JailNeurons-based
masking effectively isolates jailbreak-specific features that generalize better than naive or unspe-
cialized alternatives.

A.10 JAILNEURONS ACROSS HETEROGENEOUS JAILBREAK DATASETS

We believe that jailbreak samples bypass the model’s defense mechanisms by activating specific
neurons, which we refer to as JailNeurons. Different distributions of jailbreak samples (whether

19

masked_layer_id 1 5 9 13 17 21 25
JailNeurons 0.393 0.457 0.260 0.278 0.260 0.249 0.279
RandNeurons1 <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001
RandNeurons5 0.001 0.002 0.005 0.002 0.002 0.001 0.001
No mask <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001

Table 11: The confidence of the LLaVA model outputting Sorry” after modifying the neurons in
layer k.

Methods JailBreakV ~ FigStep JAMLLM | MM-Vet MM-Bench Normal
JDJN 0.997 1.0 0.942 0.0 0.0 0.019
NFNR 0.993 1.0 0.874 0.0 0.075 0.442
Ly regu 1.0 1.0 0.734 0.0 0.052 0.246
Lo regu 1.0 0.996 0.812 0.0 0.0 0.218
PCA 0.981 1.0 0.775 0.005 0.01 0.626
SNIP 0.993 0.998 0.896 0.0 0.086 0.577

Table 12: The performance comparison on LLaVA. For JailBreakV, FigStep and JAMLLM, we
report the TPR. For MM-Vet, MM-Bench and Normal dataset, we report the FPR.

from different malicious intents or different jailbreak methods) may activate different JailNeurons,
but there may also be some overlap.

To validate our reasoning, we design experiments to compare the overlap of jailNeurons identified
by different jailbreak samples.

LLaVA Janus-Pro
JailBreakV ~ FigStep JAMLLM | JailBreakV FigStep JAMLLM
JailBreakV 1 0.52 0.31 1 0.68 0.28
FigStep 0.96 1 0.26 0.98 1 0.18
JAMLLM 0.48 0.12 1 0.43 0.16 1

Table 13: The proportion of JailNeurons identified by different rows of jailbreak samples (i.e., J;)
that belong to the JailNeurons identified by different columns of jailbreak samples (i.e., J;).

Formally, for every jailbreak method i (i € {JailBreakV, FigStep, JAMLLM}, we denote its Jail-
Neurons set as J;. Then, we calculate the proportion of JailNeurons identified by method ¢ that
belong to the JailNeurons identified by method j:

pi; = [{z € Jilz € J}|/II 4| (5)
The results are shown in Table @ From the table, we can see that the JailNeurons identified by
FigStep are almost a subset of the JailNeurons identified by JailBreakV. This is mainly because
some of the samples used in JailBreakV were also generated by FigStep. Additionally, there is a
considerable overlap (approximately 40%) between JAMLLM and JailBreakV. This indicates that
although JAMLLM and JailBreakV have significant differences in distribution, they share some
common patterns during jailbreak attempts.

To further investigate the JailNeurons identified by different jailbreak distributions, we use JAM-
LLM and JailBreakV as case studies. Specifically, we categorize the JailNeurons into three parts:
those unique to JAMLLM (denoted as Jyansrrar), those unique to JailBreakV (J jqi1Breaky), and
the overlapping portion between the two (Joyeriap). For comparison, we also randomly deactivate
neurons in the same quantity as J jqiiBreqry (denoted as Jyqndom). We then observe the model’s
prediction scores for ”Sorry” after deactivating these neurons. We denote the score for LLaVA
predicting ”Sorry” on the dataset X as Py, a(Sorry|X), Xe {JAMLLM, Jail BreakV'}.

From Table@ we can see that when we deactivate the JailNeurons of JAMLLM, the model signifi-
cantly increases the probability of outputting ”Sorry” on the JAMLLM dataset. When we deactivate
the portion of JailNeurons unique to JailBreakV, the model also shows a much higher probability of
outputting "Sorry” on the JAMLLM dataset compared to the random deactivation of neurons. From
Table[T3] we can find the similar conclusion.

20

Deactivated Neurons 1 5 9 13 17 21 25
Jjamroom 0.377 0.443 0.412 0.396 0.376 0.357 0.354
J jail BreakV 0.194 0.303 0.276 0.202 0.185 0.183 0.186
Joveriap 0.325 0.415 0.417 0.402 0.354 0.320 0.312
Jrandom <0.001 <0.001 <0.001 <0.001 <0.001 <0.000 <o0.001

Table 14: The value of P11 4(Sorry|JAMLLM) when deactivate the targeted neurons in different
layers.

Deactivated Neurons 1 5 9 13 17 21 25
Jjamroom 0.092 0.113 0.073 0.057 0.059 0.055 0.042
J jailBreaky 0.284 0.302 0.176 0.196 0.182 0.183 0.177
Joveriap 0.243 0.276 0.114 0.098 0.103 0.109 0.087
Jrandom <0.001 <0.001 <0.001 <0.001 <0.001 <0.000 <o0.001

Table 15: The value of Py, 1,y a(Sorry|JailBreakV) when deactivate the targeted neurons in different
layers.

Based on these observations, we can infer that the JailNeurons identified by different distributions
of jailbreak samples have shared components that are closely related to the jailbreak behaviors of
these samples (i.e., Joperiap. Meanwhile, their unique components can also reflect the characteris-
tics of jailbreak samples from other distributions to some extent (e.g., J jqiiBreaky for JAMLLM).
Although we limited the size of the mask during training using an L1 norm, filtering out these Jail-
Neurons that are less relevant to the training dataset, the resulting JailNeurons still provide JDIN
with a wealth of jailbreak-related features when detecting jailbreak samples from different distribu-
tions. This results in high detection effectiveness, whether concerning the shared components or the
parts unique to the training data.

A.11 JAILNEURONS ACROSS FINE-TUNED MODEL CHECKPOINTS

In this section, we discuss the changes in JailNeurons after the model undergoes fine-tuning. We
examine three variants of LLaVA-NeXT-8B:

¢ O_llava: Official model,
e SS_llava: Finetuned version on ScreenSpot (our lora model);
e FS_llava: Safety-tuned model on FigStep (our lora model).

We analyze the intersection and divergence of JailNeuron sets identified by JailBreakV across these
checkpoints. Table [T6]shows the proportion of JailNeurons among all neurons for different models.
Comparing O_llava and SS_llava, we can see that the number of JailNeurons is minimally affected
for tasks outside of safety alignment. However, when comparing O_llava and FS_llava, we find that
the number of JailNeurons significantly decreases in the safety-aligned model. To further investi-
gate the impact of model fine-tuning on JailNeurons, we examine the proportion of JailNeurons in
SS_llava and FS_llava that belong to the JailNeurons of O_llava.

1 5 9 13 17 21 25

Ollava | 1.81 1.76 142 176 122 093 1.22
SS.llava | 1.61 1.66 1.71 1.76 122 1.03 1.22
FSllava | 092 0.78 0.78 0.68 0.63 053 0.73

Table 16: The proportion of JailNeurons among all neurons for different models.

Table [T7] presents the proportion of JailNeurons in the two fine-tuned models that belong to the
original model’s JailNeurons. We find that the number of new JailNeurons generated by the fine-
tuned models is very low (< 20%). Combining this with the conclusions from Table 16} we can
observe that for tasks outside of safety alignment, the JailNeurons in the fine-tuned models are
almost identical to those in the pre-fine-tuned models. In contrast, the JailNeurons in the safety-
aligned model are nearly a subset of those from the original model.

21

1 5 9 13 17 21 25
SS_Ilava in Ollava | 0.858 0.9 0.806 0.937 0.809 0.805 0.904
FS_llavain O.lava | 0.789 1.0 1.0 0928 0.909 0.866 0.792

Table 17: The proportion of JailNeurons among all neurons for different models.

A.12 DETAILED COMPARISON WITH NEURON-DIGGING—BASED METHODS

We now provide a more detailed comparison between JDJN and existing neuron- or hidden-

state-based methods (e.g., Jiang et al.| (2025); [Wei et al| (2024)). Overall, JDIN differs from prior
neuron-digging approaches in three main aspects: its explanation goal, its optimization of neuron

masks, and its layer-wise balancing strategy.

Different explanation goal. Let y = f(z |) denote the LVLM’s output for input 2: and param-
eters 6, and let 0, be the original model parameters. Most prior neuron-based works aim to explain
the model’s actual outputs y ~ f(x | 0,), which, for harmful prompts, are often explicit refusal re-
sponses. In contrast, JDJN aims to explain the counterfactual response y = “Sorry” under jailbreak
contexts—i.e., the refusal that the model typically does not produce when a jailbreak succeeds. By
directly supervising on the transition from a “sure” answer to a “sorry” refusal, JDJN explicitly
targets the internal mechanisms associated with resisting jailbreaks.

Multi-step optimization of neuron masks. Instead of scoring neurons via a single-step gradient
heuristic, JDJN iteratively optimizes neuron masks using gradient-based updates. This multi-step
procedure refines neuron importance estimates over multiple passes, leading to more stable and
accurate identification of JailNeurons. In practice, this approach captures nuanced, non-linear con-
tributions that simple one-shot criteria tend to miss.

Layer-wise balancing. JDJN additionally applies a top-down sampling strategy across layers to
balance information diversity against redundancy. Rather than concentrating all capacity on a few
late layers, JDJN spreads attention across shallow and deep layers, which yields a more robust
detector. This design allows JDJN to exploit complementary signals from early representations
(e.g., lexical or visual cues) and later semantic or safety-related features.

A.12.1 CONCRETE DIFFERENCES FROM INDIVIDUAL BASELINES

“The First to Know”Zhao et al.|(2024). This line of work focuses on first-token logits as indica-
tors of safety risks. It performs linear probing on surface-level outputs but does not explicitly reason
about multi-layer internal activations. JDJN instead uses neuron activations from multiple layers,
capturing richer hierarchical representations that are more expressive for jailbreak detection.

SNIP and gradient-based pruning methods (2024) SNIP-style methods compute
single-step gradient scores for weights or neurons and prune accordingly. JDJN differs in three
key aspects:

1. From “sure” to “sorry” guidance. JDJN computes gradients with respect to the “sorry”
token under jailbreak contexts, explicitly modeling the transition from a confident harmful
response to a refusal. This transition forms a core signature of jailbreak behavior.

2. Multi-step optimization. JDJN repeatedly updates neuron masks, rather than relying on a
one-shot gradient magnitude. This iterative refinement leads to more stable neuron selec-
tion and improves downstream detection performance.

3. Layer-wise balancing. JDJN combines top-down sampling across layers with mask opti-
mization, reducing redundancy and preserving diverse features that SNIP-like global prun-
ing may discard.

SHiPs Zhou et al| (2024b). SHiPs identifies attention heads that most affect y ~ f(z | 0,)
and primarily targets decoder-layer attention heads. JDJN instead operates on MLP neurons and is
supervised by the desired “sorry” counterfactual. These two perspectives—attention-head—level and

22

neuron-level—are complementary. Exploring “jailbreak heads” as detectors and connecting them to
our JailNeurons presents a promising direction for future work.

HiddenDetect [Jiang et al| (2025) HiddenDetect uses logit-lens decoding from intermediate hid-
den states to detect unsafe behavior. However, logit-lens signals from shallow layers are often noisy
and less reliable, which leads HiddenDetect to under-utilize early-layer information. JDJN, driven
by the “sure — sorry” supervision, identifies JailNeurons across all depths and leverages both shal-
low and deep representations. This yields a more comprehensive and effective detector.

A.12.2 QUANTITATIVE COMPARISON

We train JDJN on JailBreakV and MM-Vet, enforcing FPR < 0.05 on MM-Vet. Table [I§] reports
TPR@FPR<0.05 for JDJN and three neuron-digging—based baselines on two LVLMs (LLaVA and
Janus-Pro) across three jailbreak benchmarks.

LLaVA Janus-Pro
Method JailBreakV ~ FigStep JAMLLM | JailBreakV FigStep JAMLLM
JDIN 0.997 1.000 0.942 0.996 1.000 0.853
First-to-know 1.000 0.952 0.433 1.000 0.976 0.323
SNIP 0.993 0.995 0.896 0.996 0.932 0.623
HiddenDetect 0.335 0.552 0.340 0.415 0.624 0.611

Table 18: Comparison of TPR@FPR<0.05 for JDJN and neuron-digging—based baselines. JDIN
shows the strongest generalization, especially on OOD datasets such as JAMLLM.

JDIN consistently achieves the highest TPR under the same FPR constraint, particularly on OOD
datasets like JAMLLM, indicating stronger generalization beyond the training distribution.

A.13 EXTENDED FAILURE ANALYSIS

Understanding JDJN’s failure modes helps clarify its limitations and the inherent ambiguity in defin-
ing jailbreaks. We inspect misclassified samples and find that most errors arise on prompts that are
semantically ambiguous between malicious and benign.

False positives. JDJN sometimes flags benign queries that involve sensitive topics but do not re-
quest harmful actions. For example, in the Normal dataset, prompts like “Please list key events
from World War II”” are occasionally classified as jailbreaks. This likely occurs because war-related
concepts activate features that partially overlap with those seen in genuinely malicious prompts.
Such cases illustrate a trade-off between high recall for subtle jailbreaks and strict avoidance of
topic-sensitive but legitimate queries.

False negatives. We also observe cases where the underlying LVLM responds to a harmful prompt
in a vaguely non-malicious but non-explicitly refusing manner. Under our annotation scheme, we
label these as jailbreaks because the model does not clearly reject the request; JDIN, however, often
classifies them as benign. For instance, in JAMLLM, some malicious prompts receive ambigu-
ous or evasive answers without a clear refusal phrase such as “I cannot help with that,” leading to
disagreement between the ground truth label and the detector prediction. This highlights that the
operational definition of “jailbreak”—and how strictly refusal language is required—substantially
affects evaluation.

Overall, JDJN’s errors tend to concentrate on borderline, high-ambiguity prompts rather than on
clearly benign or clearly malicious ones.

A.14 OVER-SAFETY AND FALSE POSITIVES ON STRESS TESTS
To further examine JDJN’s behavior under broader benign distributions, we evaluate JDJN; (trained

on JailBreakV and MM-Vet) on multiple benign or predominantly benign datasets, including OR-
Bench and XSTest, two stress-test benchmarks specifically designed to probe over-refusal in LLMs.

23

Table[T9]shows the FPR of JDJN on five benign datasets for LLaVA and Janus-Pro.

Model MM-Vet | MM-Bench | Normal | ScreenSpots | AC | OR-Bench | XSTest
LLaVA 0.000 0.000 0.019 0.022 0.012 0.390 0.170
Janus-Pro | 0.000 0.000 0.044 0.002 0.033 0.280 0.090

Table 19: FPR of JDJN on multiple benign datasets and two stress-test benchmarks.

JDJN maintains very low FPR on typical benign datasets such as MM-Vet, MM-Bench, Normal,
ScreenSpots, and AndroidControl (AC), aligning with our design goal of minimizing disruption for
normal users. In contrast, JDJIN shows higher FPR on OR-Bench and XSTest. We interpret this as

follows:

* Stress-test nature. OR-Bench and XSTest are intentionally constructed to elicit over-
refusal from LLMs. Prior work reports that even advanced commercial models such as
GPT-4 and Gemini exhibit over-refusal rates exceeding 90% on OR-Bench. In this con-
text, JDJIN’s FPR, although relatively high, remains low compared to the underlying model
behavior.

» User impact vs. worst-case robustness. Our primary objective in constraining the de-
tector’s FPR is to protect normal user experience on everyday, benign usage. OR-Bench
and XSTest do not aim to represent this typical usage; instead, they stress-test the bound-
aries of safety policies. Consequently, a higher FPR on these two datasets does not directly
translate into substantial harm for ordinary users.

These results suggest that JDJN strikes a reasonable balance: it remains conservative enough to
capture subtle jailbreaks while keeping false positives low on standard benign distributions, and
only exhibits elevated FPR on adversarially designed over-safety stress tests.

24

	Introduction
	Related Work
	Threat Model
	Methodology
	Warm-up: Detect Jailbreak Samples with One-layer Activations
	JDJN: Jailbreak Detection via JailNeuron
	From Sure to Sorry: Locating JailNeurons in A Single Layer
	From Top to Bottom: Training A Detector with Multi-layer Information

	Experiments
	Settings
	Detection Performance Comparison (RQ1)
	Impact on Benign Samples (RQ2)
	Impact of the Key Components (RQ3)

	Characterizing JailNeurons in LVLMs
	Correlation Between JailNeurons and Jailbreak Behaviors
	Necessity of JailNeurons for Jailbreak Detection
	JailNeurons Across Heterogeneous Jailbreak Datasets
	JailNeurons Across Fine-Tuned Model Checkpoints

	Discussion
	Comparison with Neuron-digging–based Methods
	Failure Analysis
	Over-safety Problems

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Preliminary Experiment on LLaVA-v1.5, Qwen2-VL and MiniGPT-4
	Extended Evaluation on Additional Multimodal Models
	Ablation Study on the Detector Architecture
	Ablation Study on the Selection of es
	Ablation Study on the Strategy of Selecting Critical Layers.
	Robustness Against Adaptive Attacks
	Correlation Between JailNeurons and Jailbreak Behaviors
	Necessity of JailNeurons for Jailbreak Detection
	JailNeurons Across Heterogeneous Jailbreak Datasets
	JailNeurons Across Fine-Tuned Model Checkpoints
	Detailed Comparison with Neuron-digging–based Methods
	Concrete Differences from Individual Baselines
	Quantitative Comparison

	Extended Failure Analysis
	Over-safety and False Positives on Stress Tests

