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ABSTRACT

The processing mechanisms underlying language and image understanding in large vision-
language models (LVLMs) have been extensively studied. However, the internal reason-
ing mechanisms of LVLMs for spatiotemporal understanding remain poorly understood.
In this work, we introduce a systematic, circuit-based framework designed to investigate
how spatiotemporal visual semantics are represented and processed within these LVLMs.
Specifically, our framework comprises three circuits: ➀ visual auditing circuit, ➁ semantic
tracing circuit, and ➂ attention flow circuit. Through the lens of these circuits, we discover
that visual semantics are highly localized to specific object tokens–removing these tokens
can degrade model performance by up to 92.6%. Furthermore, we identify that inter-
pretable concepts of objects and actions emerge and become progressively refined in the
middle-to-late layers of LVLMs. In contrary to the current works that solely focus on ob-
jects in one image, we reveal that the middle-to-late layers of LVLMs exhibit specialized
functional localization for spatiotemporal semantics. Our findings offer significant mech-
anistic insights into spatiotemporal semantics analysis of LVLMs, laying a foundation for
designing more robust and interpretable models.

1 INTRODUCTION

Large vision-language models (LVLMs) have emerged as powerful tools for understanding multimodal data
by integrating video and linguistic information to produce text outputs (Liu et al., 2023b;a; Maaz et al., 2023;
Zhang et al., 2024b). The predominant architecture for LVLMs integrates a pre-trained visual encoder with a
pre-trained large language model (LLM) via a trainable adapter network (Li et al., 2022; Moon et al., 2023;
Chen et al., 2023). This adapter module performs cross-modal feature alignment by converting the image
encoder’s visual semantics into continuous token embeddings (i.e., soft prompts) that are compatible with
the language model’s input space (Merullo et al., 2023; Liu et al., 2024; Yu et al., 2025; Pan et al., 2025).

A systematic characterization of video semantics’s impact on language modality is essential, as it governs:
(I) the quality of vision-language alignment(Radford et al., 2021a; Zhang et al., 2024a); and (II) the design
principles for high-performance LVLMs with robust reasoning capabilities (Pang et al., 2024; Woo et al.,
2024; Park et al., 2024; Wang et al., 2025a). Unfortunately, most prior research focused on the interpretabil-
ity of the visual encoder’s embedding generation (Tong et al., 2024; Rajaram et al., 2024; Vilas et al., 2023),
or its interaction with text tokens with individual image inputs (Palit et al., 2023; Hakimov & Schlangen,
2023), with limited focus on understanding the underlying mechanisms for spatiotemporal reasoning. The
limitations of these methods are evident: ➊ they lack an in-depth exploration of how LLMs utilize visual in-
formation, and ➋ they fail to analyze how visual semantics interact with the discrete semantics within LLMs
across the spatiotemporal dimension. In other words, the ways in which LLMs interact with spatiotemporal-
rich visual data like videos remain largely unexplored, and demand deeper investigation (Yin et al., 2023).
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Figure 1: Our Tracing Circuit Framework. We systematically analyze LVLMs by decomposing the circuit’s
information flow into three modules: ➀ visual auditing, ➁ semantic tracing, and ➂ attention flow.

Existing video LVLMs typically leverage image-pretrained models and adapt them to video understanding
via fine-tuning on video data. The mainstream methods achieve this mostly by designing projectors, such as
Q-former (Li et al., 2023a), MLPs (Li et al., 2023b; Jin et al., 2024), or spatiotemporal pooling layers (Cheng
et al., 2024) that can explicitly aggregate the spatiotemporal information contained in multiple video frames
from a CLIP encoder (Radford et al., 2021b), or by continually pre-training the CLIP encoder on video
data to better capture video information (Lin et al., 2023). However, such approaches inherently introduce
biases because the structure and meaning of soft prompts derived from video are unclear, given that they do
not map directly to discrete language tokens (Merullo et al., 2023). This raises a crucial question: how are
these soft video representations understood and utilized during language model decoding, and do existing
interpretability tools for language input generalize to this new modality?

Therefore, in this paper, we systematically evaluate the entire pipeline of LVLMs by dissecting it into three
distinct circuits, meticulously tracing the information flow within each, as shown in Fig. 1. Specifically, Cir-
cuit ➀ aims to address whether visual semantics can be explicitly traced in both visual and semantic spaces.
In this circuit, we examine how specific visual semantics are localized within visual tokens after projection,
and assess changes in model performance when text injection is applied as an interference. Going further,
Circuit ➁ delves into how visual semantics are processed at the neuron level within LLMs. Specifically, we
utilize the language head to unembed hidden states into the explicit semantic space, and observe how knowl-
edge evolves from shallow to deep layers. Lastly, Circuit ➂ seeks to understand how the model generates
content given a specific visual context. We intervene in this reasoning process by blocking attention flow for
specific layers or tokens, and then observe the corresponding changes in model performance. By carefully
tracing the information flow within each circuit, we list key findings and principal contributions as follows:

✤ Emergent Semantics. We observe that video concept outputs from Circuit ➀, after undergoing cross-
modality attention alignment (Circuit ➂), can be semantically traced by LLM Circuit ➁. During LVLM
inference, unlike existing image-trained LVLMs (Darcet et al., 2024), the concepts for video embedding
are highly localized to the patch positions corresponding to their original location in each frame. To
validate this, we ablate the object tokens and observe a significant performance degradation of 63.23% in
the LLaVA-NeXT and 41.83% in LLaVA-One-Vision (LLaVA-OV) series models.

✤ Knowledge Evolution. During the forward pass in Circuit ➁, empirical results reveal that visual soft
prompts drive knowledge evolution, leading to the concurrent emergence of explainable object tokens and
related temporal concepts (e.g., actions, position changes) in the mid to late layers. Specifically, a higher
correspondence rate in 25∼30-th layers in LLaVA-NeXT and 20∼25-th layers in LLaVA-OV.
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✤ Functional Localization. We demonstrate clear functional localization within the LLM backbone, as de-
picted in Circuit ➂. Our findings indicate that the middle-to-late layers are most critical for interpreting
object information from video frames. Through ablation studies, we measured the performance degra-
dation of 29.5% in accuracy when masking object-related tokens specifically from layers 15 to layer 25.

2 BACKGROUND

In this section, we describe the methodology for processing images and queries through LVLMs and present
the experimental details related to our ablation studies.

2.1 NOTATION

Video Pre-processing. The input frame V undergoes pre-processing, where it is first cropped into a square
and resized accordingly. The frame is then divided into a total of N image patches. The CLIP ViT-L/14
image encoder, fC, processes these patches to generate initial features. An adapter network then maps these
features to the language model’s input space, resulting in a set of N visual tokens EV = {e1, . . . , eN} ∈
RN×dt , where dt is the dimensionality of the language model’s input embeddings.

Combined Input. For the text input, given a tokenized prompt sequence Q = (q1, . . . , qM ), the embedding
layer of the language model LM maps these tokens into embeddings: EQ = LM(Q) ∈ RM×dt . The
final input to the language model is formed by concatenating the adapted image embeddings and the text
embeddings: X = [EV ;EQ] ∈ R(N+M)×dt which is subsequently fed into the language model.

Dataset Curation. We curate the challenging subset of samples from the STAR benchmark (Wu et al.)
to isolate tasks requiring genuine video understanding. First, we select key frames with clear actions and
retain only questions where video information is indispensable, filtering out those solvable by static images
or common sense. We then keep the sample only if LVLM correctly answers with the original frame but
fails when the critical object is masked. This process evaluates the model’s visual reasoning capabilities,
independent of contextual biases. Sample frames are provided in Appendix A.

3 ANALYZING VISUAL SEMANTICS VIA CIRCUITS

We propose the hypothesis-driven methodology to dissect the internal computational circuits of LVLMs.
Our approach surgically manipulates tokens and tracks their transformation across layers to explicitly test
the predictions of our theoretical framework (detailed in Appendix B).

3.1 CIRCUIT ➀: VISUAL INFORMATION AUDITING

Methodology. Circuit ➀ focuses on assessing the impact of specific visual information by manipulating
video embeddings. We define EV as the set of visual tokens extracted from a video. we then identify the
subset EO ⊆ EV hypothesized to contain information about the particular object of interest. The remaining
tokens, EC = EV \EO, are considered contextual. As illustrated in Fig. 2, our approach modifies the video
embedding by replacing these hypothesized object tokens EO with uninformative embeddings. Specifically,
these uninformative embeddings are computed as the mean embedding across all visual tokens derived from
10,000 images randomly sampled from the ImageNet (Deng et al., 2009) validation dataset. This replace-
ment strategy allows us to precisely control the presence of object-specific visual information within the
video embeddings without introducing extraneous noise. To evaluate the impact of this manipulation, we
design two distinct question formats:

• Open-ended questions: We formulate specific questions targeting both objects and actions depicted in the
video, such as “Which object did the person throw in the video?” Crucially, these questions are designed
to be answered solely based on the provided video key frames. To facilitate a controlled comparison, we
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Figure 2: Overview of the circuits experiments. Our methodology comprises three key interventions: ➀
Ablating specific visual token subsets; ➁ tracing the semantic evolution of tokens across layers using logit
lens; and ➂ masking attention pathways to analyze information flow within the LVLM.

pre-fill the model’s response with a prompt “The object is” and then analyze the next generated token
before and after the visual token ablation.

• Close-ended questions: We prompt the model with binary questions, for instance, “Is there a/an [object]
in this video?” We then assess the impact of ablation by comparing the model’s next token prediction. A
change from “Yes” to “No” after the ablation of tokens in EO serves as an indicator that the ablated tokens
were crucial for the model’s identification of the object.

We choose the subset of tokens to ablate in four ways: (1) Random Tokens: as a baseline, we ablate n
tokens in the video embedding. ER ⊂ EV (2) Register Tokens: Following Darcet et al. (2024), we identify
register tokens that encode global image features. Specifically, we select tokens whose L2 norms are more
than two standard deviations above the mean norm within each key frame. (3) Object Tokens: We select a
set of tokens EO corresponding to those image patches fully contained within the object’s bounding box. (4)
Object Tokens with buffer: We expand the object token set EO to include spatially adjacent tokens. We
experiment with two buffer sizes: 1-Buffer, which includes immediately neighboring tokens, and 2-Buffer,
which includes all tokens within a two-position radius of any object token.
Observation ➊. The performance drop caused by removing object-specific tokens was substantially
more pronounced than that observed when ablating control tokens. As shown in Table 1, selectively
replacing tokens from object regions with uninformative embeddings significantly degrades the model’s
question-answering performance. For instance, on LLaVA-NeXT-V, ablating approximately 573 object to-
kens caused a catastrophic 92.6% performance drop on open-ended questions. On the other hand, removing
a far greater number of random tokens (900) resulted in a minimal drop of only 10.7%. This finding strongly
suggests that crucial semantic information is embedded within the video tokens and is spatially localized to
object-relevant regions of the frame. To mitigate potential model-specific bias and validate the robustness of
our findings, we replicated these experiments on both LLaVA-NeXT and LLaVA-OV, whose variants were
trained on only images (-I) or on videos and images (-V), observing consistent results across all models.
Observation ➋. Text injection of semantic concepts led to significant improvement in the model’s
question-answering performance. Motivated by our ablation findings, we investigated whether explicitly
providing object concepts as text could enhance performance. We performed the text injection experiment
(Fig. 3), where we replaced the object’s visual tokens with the embedding of its textual label (e.g., ”towel”).
The results were striking. In our open-ended QA setting, models that had previously failed due to object
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Table 1: Accuracy (%) from visual token ablation on question-answering performance across various mod-
els. The ↓ symbol indicates the magnitude of this performance drop. For object-based ablation, ‘m/n’
represents the average number of ablated tokens in the LLaVA-NeXT and LLaVA-OV models, respectively.
Ablating object tokens causes a substantially greater performance drop compared to ablating an equivalent
number of control tokens, demonstrating that crucial semantic information is spatially localized.

Ablation Tokens LLaVA-NeXT-I LLaVA-NeXT-V LLaVA-OV-I LLaVA-OV-V
Type Number Open Close Open Close Open Close Open Close

Control Groups (Low Tokens)
Baseline 0 100.0↓0 100.0↓0 100.0↓0 100.0↓0 100.0↓0 100.0↓0 100.0↓0 100.0↓0
Register 13 96.6↓3.4 98.3↓1.7 98.0↓2.0 98.2↓1.8 84.7↓15.3 98.2↓1.8 90.3↓9.7 96.9↓3.1

Object-based Ablation
304/404 18.1↓81.9 45.9↓54.1 17.3↓82.7 62.3↓37.7 40.5↓59.5 67.9↓32.1 60.8↓39.2 78.8↓21.2

Object 413/539 10.0↓90.0 34.5↓65.5 12.5↓87.5 49.3↓50.7 33.6↓66.4 53.3↓46.7 52.6↓47.4 67.1↓32.9
573/694 9.3↓90.7 27.8↓72.2 7.4↓92.6 44.9↓55.1 30.9↓69.1 45.9↓54.1 51.7↓48.3 63.0↓37.0

Control Groups (High Tokens)
100 97.7↓2.3 99.1↓0.9 97.7↓2.3 98.4↓1.6 85.2↓14.8 98.0↓2.0 90.5↓9.5 97.1↓2.9
350 94.0↓6.0 98.8↓1.2 95.5↓4.5 98.7↓1.3 84.7↓15.3 97.7↓2.3 89.6↓10.4 96.5↓3.5

Random 500 94.0↓6.0 98.6↓1.4 93.3↓6.7 98.7↓1.3 84.9↓15.1 97.7↓2.3 89.4↓10.6 96.5↓3.5
700 90.6↓9.4 98.3↓1.7 91.4↓8.6 98.4↓1.6 85.4↓14.6 97.7↓2.3 88.6↓11.4 96.7↓3.3
900 89.4↓10.6 98.0↓2.0 89.3↓10.7 98.4↓1.6 85.3↓14.7 97.2↓2.8 90.4↓9.6 97.1↓2.9

Figure 3: Text injection experiment. The result shows the performance change when visual object tokens are
replaced by their corresponding embedded textual labels. Error injection indicates wrong concept injection.

ablation (e.g., 17.3% accuracy) achieved an accuracy of 82.9% after text injection. This demonstrates not
only the complete reversal of the performance degradation but significant overall improvement. This finding
yields two critical insights: First, models can effectively ground its reasoning in explicit textual semantics.
Second, the symbolic text label provides a cleaner, more powerful semantic signal than the corresponding
visual tokens. This confirms that the model’s performance is fundamentally dependent on object-level con-
ceptual information. We conducted supplementary experiments to verify that our conclusions generalize to
larger-scale model size in Appendix C.

Takeaway ➊. Object-specific semantics are spatially localized within visual tokens. Replacing these
visual tokens with their symbolic text labels significantly boosts accuracy, indicating that semantic-
rich conceptual inputs more effectively drive the model’s reasoning than by the raw, and potentially
noisy, visual features themselves.

3.2 CIRCUIT ➁: SEMANTIC TRACING

Our goal is to understand where and how the model translates raw visual inputs into abstract textual mean-
ings. To achieve this, we employ the logit lens approach (Nostalgebraist, 2020), which allows us to probe the
intermediate representations at each layer. Specifically, for any given video token ei at layer l, we decode its
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LLaVA-NeXT-I LLaVA-NeXT-V

LLaVA-OV-I LLaVA-OV-V
Figure 4: Quantitative analysis of semantic tracing. Both metrics show a sharp increase in the mid-to-late
layers, indicating that abstract semantic concepts are consolidated deep within the network.

hidden state h(l)
i by projecting it through the model’s language head, WLM , to observe the vocabulary distri-

bution it implies. The top-ranked word reveals the model’s ”interpretation” of that visual patch at that stage
of processing. Using this technique, we perform both quantitative and qualitative analyses to investigate the
emergence of object-level concepts and the model’s ability to capture temporal dynamics.

Metric Definition. We propose two metrics to quantitatively track the emergence of semantic concepts
within embeddings across layers. For a given object represented by N visual tokens, let h(l)

i denote the
hidden state of the i-th token at layer l. Our metrics evaluate how accurately this hidden state can be
decoded into the correct textual label wcorrect from the vocabulary W . Our analysis focuses exclusively on
the internal representations of visual tokens within the LLM backbone during the prefill stage.

• Correspondence Rate C
(l)
R is a hard metric that measures the fraction of all visual tokens at a given layer

l whose hidden states decode to the correct semantic label of the primary object.

C
(l)
R =

1

N

N∑
i=1

I
(
argmax

w∈W

(
softmax(WLMh

(l)
i )

)
w
= wcorrect

)
. (1)

• Answer Probability A
(l)
P offers a softer measure of confidence by computing the average logit probability

of the correct object token across all visual tokens at layer l.

A
(l)
P =

1

N

N∑
i=1

exp
(
(WLMh

(l)
i )wcorrect

)
∑

w′∈W exp
(
(WLMh

(l)
i )w′

) . (2)

Observation ➌. C(l)
R and the A

(l)
P increase sharply in the mid-to-late layers. As shown in Fig. 4, abrupt

rise in the mid-to-late layers suggests that abstract semantic representations are largely absent in early layers
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Figure 5: Qualitative example of semantic tracing illustrating how the model captures temporal dynamics.
The sequence from (a) to (d) shows the evolution of the top-3 most frequent word groups for the single token
position. The predictions shift from semantics related to an initial state (e.g., sitting) to those reflecting the
completed action (e.g., standing), highlighting the model’s ability to track actions over time.

and are instead progressively formed and refined as features propagate through the network. Late-layer
visual tokens demonstrate the strong spatial correspondence, where each token’s embedding aligns with the
semantic identity of the object in its original patch location.

Observation ➍. Visual tokens in late layers locally encode object semantics. We find that the activation
vector for an individual visual token in the final layers aligns closely with the text embedding of the object
contained within its corresponding image patch. As illustrated in Fig. 5, a visual token from a patch contain-
ing ”towel” develops representation with high semantic similarity to the text embedding of the word ”towel”.
This demonstrates that the model consolidates abstract object representations at the individual token level.

Observation ➎. LVLMs exhibits strong capabilities in capturing temporal dynamics for action recog-
nition. As shown in Fig. 5, for a sequence where a person stands up, we observe that tokens semantically
related to “sitting” emerge in the initial frames. These tokens then diminish and are replaced by tokens
corresponding to “standing” in the later frames. This progression demonstrates the model’s capacity to track
the evolution of actions over time and make predictions based on the most salient temporal cues.

Takeaway ➋. By tracing representations layer-by-layer, we pinpoint the emergence of semantic un-
derstanding to the model’s mid-to-late layers. Abstract concepts, absent in early layers, sharply
consolidate deep in the network, where individual visual tokens evolve to match the symbolic mean-
ing of their patch content. This dynamic, token-level consolidation enables the model to not only
identify objects but also track the evolution of actions over time (more interactive samples in D).

3.3 CIRCUIT ➂: ATTENTION FLOW

Our prior experiments demonstrated the presence of object-specific information in a particular region of the
video embedding; however, it remained unclear whether the contextual information within these embeddings
inherently encoded temporal details processable by an LLM decoder. In this section, we investigate whether
LLMs can leverage localized object information within video embeddings for temporal reasoning. Specifi-
cally, we explore if this can occur without reliance on the broader contextual cues. This investigation aims
to disambiguate the extent to which LLMs can derive temporal understanding from isolated, object-centric
features. We conduct all experiments on the LLaVA-NeXT series model.

Methodology. To precisely control the information flow during the LLM’s prediction of the first token, we
introduce a targeted attention masking strategy. This mask is applied to hypothesize and restrict attention
between different token and layer subsets. We partition the LLM’s layers into five distinct windows: Early
layers, Early-to-middle layers, Middle layers, Middle-to-late layers, and Late layers. Specifically, we define
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the mask for all heads at each window. For each of these windows, we quantify the impact of blocking
attention on two key metrics: the decrease in accuracy and the prediction probability degradation for the
correct token. This analysis is conducted under two distinct masking scenarios:

• Object-centric masking: Attention is blocked from object tokens EO and their buffer to the final token.
• Contextual masking: Attention is blocked from all non-object tokens EC to the final token.

Model Condition Early Early- Mid Mid- Late All
(From*) Mid Late Layers

Object-centric masking

LLaVA-NeXT-I
O 0.19 0.20 0.24 0.25 0.23 0.29
O+1 0.20 0.23 0.25 0.28 0.27 0.35
O+2 0.23 0.23 0.26 0.28 0.26 0.39

LLaVA-NeXT-V
O 0.25 0.26 0.27 0.30 0.27 0.32
O+1 0.25 0.26 0.29 0.33 0.29 0.38
O+2 0.25 0.26 0.31 0.33 0.32 0.42

Contextual masking

LLaVA-NeXT-I
C 0.82 0.99 0.89 0.66 0.44 0.99
C+1 0.83 0.97 0.86 0.59 0.39 0.97
C+2 0.83 0.97 0.86 0.54 0.39 0.97

LLaVA-NeXT-V
C 0.49 0.91 0.89 0.92 0.62 0.97
C+1 0.47 0.90 0.86 0.88 0.56 0.94
C+2 0.46 0.90 0.83 0.87 0.52 0.92

Table 2: Accuracy drop for LLaVA-NeXT models
across various layer windows after attention knockout.
Masking conditions: O, object tokens; O+1/2, object
with 1/2 buffer; C, all tokens except the object; C+1/2,
all tokens except the object with 1/2 buffer.

LL
aV

A-
Ne

XT
-V

Probability Drop (%)
O

O+1

O+2

Early Late

LL
aV

A-
Ne

XT
-I

O

O+1

O+2

C

C+1

C+2

C

C+1

C+2

Figure 6: Answer probability drop under
attention knockout across various layers.

Analysis. This structured approach allows us to investigate the specific contributions of object-related versus
general contextual information at different depths of the LLM.

Observation ➏. Masking contextual information in LLMs incurs greater performance degradation
than masking object-centric regions when generating the first token. This finding suggests that the mod-
els rely on contextual cues for reasoning, rather than simply retrieving the object to formulate an answer(As
shown in Table 2 and Fig. 6). Our results further indicate that contextual and fine-grained information are
processed at different network depths when LLM generated the first token.

Observation ➐. The performance drop from masking contextual information is the most pronounced
in the early-to-mid layers, whereas masking fine-grained details primarily impacts the mid-to-late
layers. This suggests a two-stage reasoning process: models first integrate contextual information in earlier
layers before shifting focus to fine-grained details in later layers to generate the final output. Interestingly,
the layers that are most sensitive to masking differ between image-trained and video-trained models. For
image-trained models, the performance degradation is concentrated in the early-to-mid layers, while for
video-trained models, the impact is centered on the mid-layers.

Takeaway ➌. LVLM employs ”two-stage” reasoning process when generating the first token. It first
grounds its linguistic state by integrating broad visual context in the early-to-mid layers. Subse-
quently, it refines its prediction by focusing on localized object details in the mid-to-late layers. This
demonstrates a context-first, detail-later strategy for translating visual dynamics into language.
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4 RELATED WORK
4.1 INTERPRETABILITY OF LARGE LANGUAGE MODELS

Recent research has increasingly focused on LLM interpretability, with three mainstream approaches emerg-
ing in this domain(Singh et al., 2024; Wang et al., 2025b). The first approach employs circuit analysis
methods, which assume that only a subset of parameters within the model are crucial, thereby allowing the
model to be simplified into a sparse circuit; representative works include Hanna et al. (2023), who con-
structed computational graphs to understand numerical comparison mechanisms, and Yao et al. (2024), who
explored knowledge circuit variations across different scenarios such as knowledge editing and in-context
learning. The second research approach, known as causal tracing, focuses on tracking causal pathways dur-
ing model data processing to analyze modules that contribute significantly to outputs. This line of research,
pioneered by ROME (Meng et al., 2022a), has led to methods for precisely editing factual knowledge within
models and has been extended to various architectures and tasks (Meng et al., 2022b; Sharma et al., 2024;
Geva et al., 2023; Zhao et al., 2023; Yu & Ananiadou, 2024). The third approach utilizes unembedding
space projection, where internal model representations are projected onto token spaces to gain interpretabil-
ity insights. Geva et al. (2021) demonstrated this concept for feed-forward networks, while Dar et al. (2023)
extended it to other model parameters, showing that both training and fine-tuning parameters can be in-
terpreted within embedding spaces. While these methods have considerably enhanced our understanding
of language model internals, they focus predominantly on textual processing. Multimodal interpretability,
particularly the analysis of visual-textual integration remains an under-explored frontier.

4.2 INTERPRETABILITY OF VIDEO LANGUAGE MODELS

Existing work on visual model interpretability primarily focuses on two key areas: visual encoder embed-
ding generation and the interaction between visual inputs and textual tokens. Research on visual encoder
embedding generation has explored the integration of pre-trained language models with visual processing,
with works investigating how frozen transformer blocks can process visual tokens, how attention misalign-
ment leads to hallucinations, and how visual and textual embedding spaces can be effectively bridged (Pang
et al., 2024; Woo et al., 2024; Park et al., 2024). Studies examining visual-textual interactions have focused
on understanding fundamental visual processing capabilities in multimodal systems, including work on iden-
tifying systematic shortcomings in vision-language models (Tong et al., 2024; Verma et al., 2024), extracting
computational subgraphs for visual concept recognition (Rajaram et al., 2024), and reverse-engineering Vi-
sion Transformers to understand categorical representation building (Vilas et al., 2023). More recently,
research has begun addressing video data processing in large models, with Li et al. (2024) identifying tem-
poral reasoning bottlenecks in Video LLMs and Joseph et al. (2025) developing tools for accelerating visual
mechanistic interpretability research. However, these studies have not yet analyzed how visual semantics
interact with LLMs’ internal discrete semantics across spatiotemporal dimensions, leaving a significant gap
in understanding how LLMs process complex visual information over time.

5 CONCLUSION AND LIMITATION
In this paper, we introduced a circuit-based framework to provide a mechanistic interpretation of spatiotem-
poral reasoning in LVLMs, revealing a clear information processing pipeline. Our analysis shows that visual
semantics are first spatially localized in specific object tokens. These tokens are then processed by the LLM,
where abstract object and action concepts emerge and consolidate in the mid-to-late layers. Finally, the
model exhibits functional localization through a two-stage reasoning process: it grounds its understanding
in the broad context using early-to-mid layers before refining its answer with object-specific details in the
mid-to-late layers. These findings offer a coherent explanation of LVLM reasoning, moving beyond black-
box evaluations toward a more principled understanding. However, our work remains observational, as we
have not yet leveraged these findings through interventional methods like “circuit surgery” to causally probe
the reasoning process or enhance model robustness against failures like hallucinations. Future work will
focus on leveraging the findings to create more robust and interpretable LVLMs.
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USAGE OF LARGE LANGUAGE MODELS

We declare that LLMs were used solely for language polishing purposes in this work. Specifically, after
completing the initial draft entirely through human effort, we employed LLM assistance exclusively for
grammatical refinement and improving the clarity of English expression to meet academic writing standards.
All intellectual contributions, from conceptualization to initial manuscript preparation, were performed by
the human authors. The use of LLM was limited to post-writing language enhancement, similar to traditional
proofreading services, ensuring that non-native English speakers can present their research with appropriate
linguistic quality while maintaining complete authorship and originality of the scientific content.
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APPENDIX

A FRAMES VISUALIZATION

This section visualizes sample input keyframes from the videos to provide a clearer understanding of the
data used in our experiments. Each row in Figure 7 represents a distinct video sequence fed into the LVLMs
for analysis. These examples are representative of the scenarios in our dataset, encompassing a variety of
everyday actions, objects, and environments. By visualizing the raw inputs, we aim to illustrate the visual
complexities, such as changes in viewpoint, object scale, and partial occlusions, that the model must handle
to perform accurate semantic reasoning.

Figure 7: Visualization of Input Keyframes. Each row displays a sequence of frames provided to the model
as input for a specific video. The red bounding boxes highlight the ground-truth object pertinent to the task’s
question (e.g., the object being picked up, kicked, or taken). It is important to note that these bounding boxes
are included here for clarity and were not provided to the model during inference.

B THEORETICAL FRAMEWORK FOR VISUAL SEMANTIC CIRCUITS

In this section, we propose the theoretical framework built on three core principles that we hypothesize
govern the internal computations of LVLMs: Information Localization, Progressive Semantic Refinement,
and a Two-Stage Reasoning flow. We model the LVLM as a probabilistic system to formalize these principles
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into specific, falsifiable predictions. This framework provides a principled foundation for understanding and
predicting the model’s behavior, which we then validate through targeted experiments.

B.1 PROBABILISTIC MODEL FORMULATION

Let V be a video represented by a sequence of key frames, and Q be a textual question. The LVLM, denoted
by M, aims to generate an answer A. The process begins by encoding the video V into a set of N visual
tokens, EV = {e1, e2, . . . , eN}. The question Q is tokenized into M text tokens, EQ = {q1, . . . , qM}. The
model then computes the probability of an answer A:

P (A|V,Q) = M(EV , EQ). (3)

Central to our investigation is the hypothesis that the set of visual tokens EV can be partitioned into the
subset EO containing primary information about the specific object o, and the complementary subset EC

containing contextual information, such that EV = EO ∪ EC and EO ∩ EC = ∅.

B.2 PRINCIPLE OF INFORMATION LOCALIZATION

We begin with the hypothesis that to answer a specific question, the LVLM does not treat all visual tokens
equally. Instead, we propose the Principle of Information Localization: task-critical information is spatially
concentrated in the subset of tokens corresponding to the object of interest. Let this subset be EO, with the
remainder being contextual tokens EC .

This principle leads to a direct, testable prediction. The informational value of a token set can be quantified
by the degradation in model performance upon its ablation. We model this degradation as the KL divergence
between the original and ablated posterior distributions:

Ldrop(ES) = DKL (P (A|EV , EQ) ∥ P (A|EV \ ES , EQ)) . (4)

Our principle predicts that the information is concentrated in EO. Formally, if we ablate the object tokens
EO, the resulting information loss should be significantly greater than ablating any other random subset of
tokens ER of the same size. This leads to the following inequality, which we aim to verify experimentally:

EER⊂EV ,|ER|=|EO| [Ldrop(ER)] ≪ Ldrop(EO). (5)

Furthermore, we hypothesize that the model internally reasons over abstract concepts. This predicts that
injecting a clean, symbolic representation of the object, ewcorrect , should be even more effective than the noisy
visual tokens EO. This can be formalized as:

P (A∗|ewcorrect , EC , EQ) > P (A∗|EO, EC , EQ). (6)

The ablation and injection experiments presented in Table 1 were designed to test these formal predictions.

B.3 HYPOTHESIS OF PROGRESSIVE SEMANTIC REFINEMENT

We hypothesize that visual information is not processed into its final semantic form in a single step. Instead,
we propose the model of Progressive Semantic Refinement, where hidden states associated with visual tokens
transition from encoding low-level perceptual features in early layers to abstract, language-aligned concepts
in later layers.

Let h(l)
i be the hidden state for a token i at layer l. Let S(wcorrect) be the semantic space associated with the

correct object concept, represented by its text embedding ewcorrect . Our hypothesis predicts that for an object
token i ∈ EO, its representation h

(l)
i will become progressively more aligned with this semantic space as it

passes through the network. We can formalize this predicted monotonic increase in alignment for layers l
beyond a critical depth lcrit using a similarity metric:

sim(h
(l)
i , ewcorrect) is a monotonically increasing function of l for l > lcrit. (7)
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To test this prediction, we employ the logit lens technique, which projects intermediate hidden states into the
vocabulary space. We measure the Correspondence Rate (C(l)

R ) and Answer Probability (A(l)
P ) to track this

alignment across layers. The experimental results in Figure 4 are used to validate the existence and location
of the predicted critical layer depth lcrit.

B.4 THE TWO-STAGE REASONING HYPOTHESIS

Building on the previous principles, we hypothesize that the model’s reasoning is not monolithic but follows
an efficient, cognitively plausible two-stage process.

1. Stage 1 (Contextual Grounding): In the early layers (Learly), the model first processes contextual
tokens (EC) to establish a general understanding of the scene and the query.

2. Stage 2 (Focal-Point Refinement): In the late layers (Llate), after the context is established, the
model focuses its attention on the specific object tokens (EO) to extract fine-grained details neces-
sary for a precise answer.

This hypothesis can be formalized by considering the sensitivity of the final prediction to attention weights
at different layers. Let ∇

α
(l)
S

logP (a∗1) be the gradient of the log-probability of the correct answer with
respect to the attention weights from a set of tokens S at layer l. Our two-stage hypothesis predicts a shift in
sensitivity: ∑

l∈Learly

∥∥∥∇α
(l)
C

logP (a∗1)
∥∥∥ >

∑
l∈Learly

∥∥∥∇α
(l)
O

logP (a∗1)
∥∥∥ , (8)

∑
l∈Llate

∥∥∥∇α
(l)
O

logP (a∗1)
∥∥∥ >

∑
l∈Llate

∥∥∥∇α
(l)
C

logP (a∗1)
∥∥∥ . (9)

These inequalities formalize the ”context-first, detail-later” strategy as a testable prediction. We designed
the attention masking experiments in Table 2 to directly probe these sensitivities and validate our two-stage
reasoning hypothesis.

C SCALING EXPERIMENTS

We conducted supplementary experiments to verify that our conclusions generalize to larger-scale models.
We replicated our core analyses on the LLaVA-NeXT-34B model variants, with results that closely mirror
those presented in the main body of the paper. The visual token ablation study on the 34B models reaf-
firms the principle of spatial localization for semantic information. Ablating object-specific tokens incurs
significantly more substantial performance degradation than removing larger quantity of random tokens (in
Table 3).

Furthermore, our semantic tracing analysis on the 34B architecture, depicted in Figure 8, reveals a conceptual
emergence pattern consistent with our earlier observations. Both the Correspondence Rate and Answer
Probability remain negligible through the initial layers before exhibiting a sharp, concurrent rise beginning
around layer 40. This trend indicates that abstract, language-aligned concepts are consolidated in the deeper
layers of the network, irrespective of model scale. These scaling experiments provide robust evidence that
the mechanisms of semantic localization and late-stage conceptual formation are fundamental properties of
the tested LVLM architectures.
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Ablation Tokens LLaVA-NeXT-34B-I LLaVA-NeXT-34B-V

Type Number Open Close Open Close

Control Groups (Low Tokens)
Baseline 0 100.0↓0 100.0↓0 100.0↓0 100.0↓0
Register 13 55.3↓44.68 96.9↓3.14 55.3↓44.68 1.8↓98.2

Object-based Ablation
304 9.3↓90.75 29.8↓70.16 14.6↓85.37 11.7↓88.35

Object 413 5.8↓94.24 21.1↓78.88 10.7↓89.32 11.3↓88.72
573 5.8↓94.24 18.0↓82.02 10.3↓89.74 11.8↓88.21

Control Groups (High Tokens)
100 54.3↓45.72 96.9↓3.14 93.1↓6.92 29.7↓70.26

Random 350 55.5↓44.5 96.5↓3.49 88.5↓11.54 31.0↓68.97
500 54.5↓45.55 96.3↓3.66 83.1↓16.92 30.8↓69.23
900 59.9↓40.14 96.8↓3.17 78.3↓21.67 29.7↓70.33

Table 3: Accuracy (%) from visual token ablation
on question-answering performance across 34B models.
The ↓ symbol indicates the magnitude of this perfor-
mance drop.

LLaVA-NeXT-34B-I

LLaVA-NeXT-34B-V

Figure 8: Quantitative analysis of semantic trac-
ing on 34B model size.

Prompt 
USER: The input consists of a sequence of key 
frames from a video. Question: Which object was 
taken by the person?
ASSISTANT: The object is the

Response: Towel

Answer: Towel

Figure 9: Qualitative example of the model correctly identifying an object. The user asks which object was
taken by the person. The model correctly identifies the ”Towel”. The accompanying table shows the layer-
by-layer semantic tracing for visual and text tokens.
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D QUALITATIVE EXAMPLES

We provide additional qualitative examples to visually illustrate the findings from our circuit-based analysis.
These examples showcase the model’s process of interpreting video frames to answer specific questions
about objects and actions. Each figure includes the input video frames, the posed question, the model’s
response, and a table showing the semantic evolution of key tokens across different layers, as analyzed
through our semantic tracing circuit (Circuit ➁). More examples in the anonymous interactive demo website.

Prompt 
USER: The input consists of a sequence of key 
frames from a video. Question: Which object was 
thrown by the person?
ASSISTANT: The object is the

Response: Green shirt that the person is throwing.

Answer: Clothes

Figure 10: Qualitative example where the model is prompted to identify a thrown object. The model success-
fully responds that a ”Green shirt” was thrown, correctly identifying both the object and its color. The table
illustrates the semantic trace, showing how the model processes the visual information through its layers.

E ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics and aims to enhance the understanding of the internal spa-
tiotemporal reasoning mechanisms within LVLMs through circuit-based analysis, in order to drive the de-
velopment of more robust and interpretable models. The experiments are based entirely on public academic
datasets (e.g., the STAR benchmark), and we acknowledge that these contain videos of human activities,
which were used solely for their intended academic analytical purposes. To ensure research integrity, we
explicitly state that LLMs were used only for language polishing after the manuscript was written, and that
all core scientific contributions originate from the human authors.

18

https://quaitivesamples.netlify.app/


846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

F REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of this research. All experiments are based on publicly
available models (the LLaVA-NeXT and LLaVA-OV series) and datasets (the STAR benchmark). We detail
our methods for filtering and processing data from the STAR benchmark in the ”Dataset Curation” part of
Section 3, and provide visualization samples of keyframes in Appendix A. The core methodology of our
research, including the specific settings, intervention methods, and evaluation metrics for the three analyti-
cal circuits (Visual Information Auditing, Semantic Tracing, and Attention Flow), is thoroughly elaborated
in Section 3 (Subsections 3.1, 3.2, and 3.3), which includes key mathematical formulas and parameter def-
initions. The theoretical framework supporting our experimental design is fully formalized in Appendix B.
Furthermore, an anonymous interactive demo website is provided in Appendix D for reviewers to explore
additional qualitative results. We believe these detailed descriptions are sufficient to support the reproduction
of this work. All code will be made available upon acceptance of the manuscript.

Prompt 
USER: The input consists of a sequence of key 
frames from a video. Question: Which object was 
picked up by the person? 
ASSISTANT: The object is the

Response: Box of shoes

Answer: Box

Figure 11: Qualitative example demonstrating the model’s ability to recognize an object being picked up.
The model correctly identifies the object as a ”Box of shoes”. The semantic tracing table displays the
evolution of token representations across five layers that contribute to this accurate identification.
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