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Abstract. Accurate segmentation of abdominal organs in magnetic res-
onance imaging (MRI) is essential for diagnosis and treatment planning.
However, this task is challenging due to the scarcity of labeled MRI
data and significant differences in appearance between MRI and com-
puted tomography (CT) images. Task 3 of the FLARE 2024 challenge
was launched to encourage the development of algorithms capable of
transferring knowledge from labeled CT scans to unlabeled MRI scans
for efficient abdominal organ segmentation under strict resource con-
straints. In this paper, we describe our contribution to this challenge by
utilizing nnU-Net combined with modality-independent neighborhood
descriptor (MIND) features to transfer labels from CT to MRI. Our
method achieved an average Dice Similarity Coefficient (DSC) of 57.7%
and an average Normalized Surface Dice (NSD) of 59.8% on the valida-
tion set, with an average running time of 20 seconds and an area under
the GPU memory-time curve of 73,607 MB. These results demonstrate
that our approach effectively addresses the challenges of cross-modality
abdominal organ segmentation under resource constraints, highlighting
the potential of modality-independent descriptors for label transfer in
medical imaging.
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1 Introduction

Accurate organ and lesion segmentation in medical imaging is crucial for improv-
ing diagnostic accuracy, treatment planning, and monitoring the progression of
diseases. In recent years, segmentation challenges in medical imaging have driven
significant advancements in algorithm development, particularly in the field of
abdominal cancer segmentation. However, the task of abdominal organ segmen-
tation on pathological scans presents unique challenges due to the wide variety
of cancer types, lesion sizes, and corresponding differences in the appearances of
organs.

Task 3 of the FLARE 2024 challenge builds on earlier iterations of the FLARE
challenge, shifting the focus to abdominal organ segmentation on MRI images.
The challenge provides a dataset consisting of 2,050 CT scans and more than
4,800 MRI scans. The provided CT scans are the same as in Task 2, comprising 50
fully labeled scans and 2,000 unlabeled / pseudolabeled scans. The MRI images
on the other hand are completely unlabeled and span different sequences such
as T1, T2, DWI and different contrast enhanced sequences. The main difficulty
in this task is the knowledge transfer between modalities.

Moreover, hard constraints on inference VRAM usage and time limit the
possible network architectures, forcing careful trade-offs between model com-
plexity, ensembling strategies, and test-time augmentations. This necessitates
efficient models that can achieve high segmentation accuracy while remaining
within resource limitations.

Domain adaptation is an active area of research in the field of medical imag-
ing. Most work in this field focuses on shifts due to different centers, imaging pro-
tocols or populations, where common test-time adaptation methods [24,10,14,3]
show promising performance. However, these methods are typically not applied
in the context of modality transfer. In the field of multimodal deformable image
registration, MIND descriptors [7,8] are used to obtain a modality-independent
representation of an image.

This manuscript describes our approach for abdominal organ segmentation on
MRI images, learning from CT images in Task 3 of the FLARE 2024 challenge.
We employ nnU-Net [11] with modifications to achieve efficient inference and
adhere to resource and time constraints during inference. MIND descriptors are
used to transfer labels from the CT images to the MRI images.

2 Method

Our contribution builds upon the state-of-the-art nnU-Net framework [11]. Due
to the time and resource constraints imposed during inference, we cannot use
the proposed default U-Net configuration, let alone the newly proposed ResEncL
configuration [12].
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2.1 Proposed Method

Our method consists of multiple steps. First, we train a default nnU-Net on
the MIND descriptors [7,8] of the 50 labeled CT scans and use this model for
inference on the MIND descriptors of the T1 images from the unlabeled MRI
dataset. In the next step, we filter the 1,331 T1 images to select images with all
13 organ labels present, which leaves us with 99 images for training of the next
model. This model, trained specifically on T1 images, is then used to generate
labels for the missing 1,232 T1 images. Finally, the labels are transferred to the
rest of the images through affine transformation, to account for slight differences
in the image space between different sequences from the same patient. The final
model is then trained on the full 4,817 MRI images together with the 50 CT
images. As an ablation we also train a model only on the MRI images.

Preprocessing We used z-score normalization for all training steps. The images
were resampled to the spacing given in Table 1

Table 1. Spacings used for resampling in the different trainings.

Training CT Descriptors T1 images All MRI All MRI+CT
Spacing [2.5, 0.8, 0.8] [2.5, 0.75, 0.75] [2.6, 0.78, 0.78] [2.5, 0.78, 0.78]

Training: We use the default configurations, generated by nnU-Net for all train-
ings. The respective patch sizes for each training are given in 2. All generated
configurations consist of 6 resolution stages. We keep the batch size at 2 for all
initial trainings to prevent overfitting on the small datasets and only increase
it to 4 for the final trainings on the large dataset. Figure 1 shows a schematic
overview of the generated network architeture.

Table 2. Patch sizes used for each training.

Training CT Descriptors T1 images All MRI All MRI+CT
Spacing 40x224x192 40x192x256 40x192x256 40x192x224

Inference: nnUNet’s inference pipeline is not optimized for single image in-
ference like it is the task in this challenge. We therefore make several small
adjustments to the default pipeline to minimize resource usage and prediction
time. First, we disable all test time augmentations and calculate the argmax
directly on the raw logits instead of the softmax probabilities. Second, we swap
the default skimage-based resampling function for the much faster torch resam-
pling, significantly speeding up segmentation export in exchange for a slight loss
in performance.
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Fig. 1. Schematic network architecture of the U-Net created by nnU-Net’s default
configuration.
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3 Experiments

3.1 Dataset and evaluation measures

The training dataset was curated from more than 30 medical centers under
the license permission, including TCIA [2], LiTS [1], MSD [21], KiTS [?,9], au-
toPET [6,5], AMOS [13], LLD-MMRI [?], TotalSegmentator [25], and AbdomenCT-
1K [20], and past FLARE Challenges [17,18,19]. The training set includes 2,050
abdomen CT scans and over 4,000 MRI scans. The validation and testing sets in-
clude 110 and 300 MRI scans, respectively, which cover various MRI sequences,
such as T1, T2, DWI, and so on. The organ annotation process used ITK-
SNAP [28], nnU-Net [11], MedSAM [15], and Slicer Plugins [4,16].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 3.

Table 3. Development environments and requirements.

System Ubuntu 20.04
CPU AMD Ryzen 9 3900X processor
RAM 64GB DDR4-3600 RAM
GPU (number and type) One NVIDIA RTX3090 GPU with 24GB VRAM
CUDA version 12.1
Programming language Python 3.11
Deep learning framework torch 2.4.0

Training protocols We used the default nnU-Net pipeline of data augmenta-
tions, consisting of spatial - i.e. rotations, mirroring - and intensity transforma-
tions, without further modifications. The final models were selected by expected
inference times and performance on the public validation set.

3.3 Test Set Submission

Task 3 of the FLARE challenge allowed for only one submissions to the final test
set. We therefore submitted the model trained with isotropic spacing of 2.5mm,
which showed better performance than the half resolution model on the public
validation set (see table 5).
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Table 4. Training protocols.

Network initialization random
Batch size 4
Patch size 40×192×224
Total epochs 1000
Optimizer SGD
Initial learning rate (lr) 1e-2
Lr decay schedule PolyLR Scheduler
Loss function Soft Dice loss + Cross Entropy loss
Number of model parameters 30.71M

4 Results and Discussion

4.1 Quantitative results on validation set

The results of the final submission on the public validation set are shown in
table 5. The model trained on the MRI images together with the 50 CT images
generally performs better than the model trained only on the MRI images, with
an increase of 3.1 points in DSC and 3.3 points in NSD. Only for the kidneys and
aorta, training only on MRI images performs better than training on MRI and
CT images together. For some classes, the MRI model seems to have significant
problems in correctly segmenting the structures. This is especially apparent for
the esophagus with a Dice of only 17.1, but also classes like the adrenal glands,
pancreas, and duodenum seem to suffer from the modality transfer.

Table 5. Quantitative evaluation results of the submitted method trained on MRI and
CT images and the ablation trained on MRI only on the public validation set.

Target Public Validation Public Validation (Ablation)
DSC(%) NSD(%) DSC(%) NSD(%)

Liver 87.2± 7.4 83.0± 13.1 86.5± 11.2 82.4± 15.2
Right Kidney 89.0± 9.4 84.6± 11.3 90.5± 8.9 87.0± 9.8

Spleen 63.2± 22.2 51.9± 23.8 52.4± 27.2 43.5± 26.0
Pancreas 37.6± 19.1 48.7± 23.0 35.7± 19.8 46.1± 24.1

Aorta 82.5± 13.4 84.3± 15.4 84.1± 12.4 85.8± 14.6
Inferior vena cava 47.3± 19.6 42.1± 19.5 43.5± 21.7 38.1± 20.9

Right adrenal gland 43.3± 17.7 59.8± 19.2 41.9± 20.5 57.3± 24.0
Left adrenal gland 35.9± 21.0 49.7± 22.3 30.6± 23.4 42.4± 27.4

Gallbladder 55.8± 27.7 43.3± 28.7 47.5± 30.5 35.9± 29.9
Esophagus 17.1± 17.4 28.6± 21.6 12.6± 16.2 21.9± 22.2
Stomach 60.6± 15.1 61.1± 15.6 55.8± 18.4 56.3± 19.0

Duodenum 39.1± 18.7 51.9± 21.3 36.2± 20.9 48.1± 24.3
Left kidney 91.9± 4.5 88.8± 6.0 92.7± 3.7 89.9± 6.4

Average 57.7± 9.2 59.8± 10.5 54.6± 10.7 56.5± 12.0
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4.2 Qualitative results on validation set

Figure 2 shows qualitative results of the submitted methods on four cases from
the public validation set. The submitted method generally performs well on
most abdominal organs. However, the method tends to undersegment target
structures. This is more pronounced in predictions from the model trained on
MRI images only.
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Fig. 2. Qualitative results of the submitted method, trained on MRI and CT images
and the ablation trained on MRI only, on four example cases. The upper two rows
show cases, where the model performs well, the lower two rows show examples of bad
predictions and a near total failure, respectively.

4.3 Segmentation efficiency results on validation set

Table 6 shows running time and VRAM utilization of both submissions on 8
selected cases from the public validation set. The model complies with the time
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limit for all of the 8 cases. However, as the testing was performed on a signif-
icantly better GPU, it is expected that the model might exceed the time limit
for exceptionally large cases in the final testing.

Table 6. Quantitative evaluation of segmentation efficiency in terms of the running
time and GPU memory consumption. Total GPU denotes the area under GPU Memory-
Time curve. Evaluation GPU platform: NVIDIA RTX3090 (24G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
amos_0507 (320, 290, 72) 15.6 5109 55128
amos_0540 (192, 192, 100) 13.4 4980 44871
amos_0546 (576, 468, 72) 19.9 5284 74444
amos_0557 (512, 152, 512) 21.2 5204 75588
amos_7236 (400, 400, 115) 19.7 5397 73898
amos_7324 (256, 256, 80) 15.4 5087 54271
amos_7799 (432, 432, 40) 23.6 5848 98605
amos_8082 (1024, 1024, 82) 32.6 4927 112053

4.4 Results on final testing set

Table 7. Segmentation performance on the test set.

DSC (%) NSD (%)
Avgerage Median Avgerage Median
41.8± 29.8 56.6 (7.7, 67.8) 42.6± 31.6 56.5 (3.7, 70.7)

Table 8. Segmentation efficiency on the test set.

Runtime (s) GPU (GB)
Avgerage Median Avgerage Median
19.1± 4.9 18.4 (16.1, 20.6) 1136.2± 414.1 1069.4 (913.3, 1236.7)

Tables 7 and 8 show the final results for segmentation performance and effi-
ciency on the test set, respectively.

4.5 Limitation and future work

In our contribution, we relied on MIND descriptors to transfer the labels between
modalities. These MIND descriptors should be modality independent, however,
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they show differences, especially at the borders of structures. This might, for
example, explain the observed undersegmentation of the final model. Including
the CT scans for training at the earlier steps, especially when training on the
T1 images only, might help with this issue, as inclusion of CT images seems to
help with clearer boundaries.

An approach we briefly tried but did not pursue further is the registration of
the CT images to the MRI images. We extracted the most similar CT-MRI pairs
using perceptual hashing [26] and then applied the pretrained and further fine-
tuned uniGradICON [23,22] on these pairs. The results looked very promising,
however, in order to comply with the challenge rules, we could not use the
pretrained model but instead had to train from scratch on the given CT and
MRI data. Unfortunately, the results of these trainings were not convincing and
we consequently dropped the idea.

5 Conclusion

In this paper, we addressed the challenge of abdominal organ segmentation on
MRI scans, learning from labeled CT images, in the context of Task 3 of the
FLARE 2024 challenge. Our approach to this task utilized nnU-Net, training
multiple models to effectively transfer the labels from CT to MRI. The final
model achieved competitive performance on the public validation set, however,
it tends to undersegment and fails for some structures like the esophagus.
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