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Abstract

A robot’s instantaneous sensory observations do not always reveal task-relevant
state information. Under such partial observability, optimal behavior typically
involves explicitly acting to gain the missing information. Today’s standard robot
learning techniques struggle to produce such active perception behaviors. We
propose a simple real-world robot learning recipe to efficiently train active percep-
tion policies. Our approach, asymmetric advantage weighted regression (AAWR),
exploits access to “privileged” extra sensors at training time. The privileged sen-
sors enable training high-quality privileged value functions that aid in estimating
the advantage of the target policy. Bootstrapping from a small number of poten-
tially suboptimal demonstrations and an easy-to-obtain coarse policy initialization,
AAWR quickly acquires active perception behaviors and boosts task performance.
In evaluations on 8 manipulation tasks on 3 robots spanning varying degrees of
partial observability, AAWR synthesizes reliable active perception behaviors that
outperform all prior approaches. When initialized with a “generalist” robot policy
that struggles with active perception tasks, AAWR efficiently generates information-
gathering behaviors that allow it to operate under severe partial observability for
manipulation tasks. Website:https://penn-pal-lab.github.io/aawr/

1 Introduction

Any organism needs to extract information from the world via its sensory apparatus to make decisions,
solve tasks, and survive. One strategy is to have high bandwidth and sophisticated sensors like the
human eye, to sense as much information as possible and embrace the “blooming, buzzing confusion
of the senses” [1] this entails, subject to natural limits, such as a local field of view. Another strategy
is to use the ability to move around in the world to gather new information and overcome our sensory
limitations - we scan our eyes across a crowded party to find a friend, and polish our glasses to
get a clearer view. Such information gathering behaviors are called active [2] or interactive [3]
perception based on whether they only move a sensor around the world or if they also alter the
world. In the following, we will use “active perception” as shorthand to refer to all such behaviors,
except when the distinction is particularly pertinent. In this work, we are interested in learning active
perception behaviors to compensate for the limitations of various sensory setups in robots, ranging
for entirely blind robots operating purely from proprioception, to robots operating with sophisticated
multi-camera setups.

It has been hard to learn useful active perception behaviors for robotics, and not for lack of trying
[2–13]. Of the techniques commonly in vogue for robotics, imitation learning is ill-suited because
acquiring optimal active perception demonstrations can be cumbersome and unnatural (e.g. forcing a
teleoperator to look through wrist cameras). In theory, RL should be able to learn active perception
behaviors from interaction, but in practice it is too sample-inefficient even in fully observed settings,
leave alone the partially observed settings where active perception is relevant. Moreover, sim-to-real
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Figure 1: Left: A robot with a single wrist image struggles to find objects in a heavily occluded scene.
Right: An active perception policy searches through potential hiding spots to find the target object.

transfer is hard for such tasks because it is tied closely to sensory capabilities, and many sensory
observations of interest, including depth, LIDAR, RGB cameras, audio, touch, contact, force sensors,
etc., are all hard to simulate well enough to reliably learn transferable behaviors. This difficulty is
also reflected in the inability of today’s state-of-the-art generalist policies trained on massive amounts
of robot tele-operation data to perform even simple search tasks, as we will show in experiments.

We demonstrate that bootstrapping from suboptimal demonstrations and incorporating rewards in an
offline-to-online RL algorithm is a viable approach for synthesizing active perception behaviors. Crit-
ically, the RL algorithm must be designed appropriately, and we theoretically derive that asymmetric
access to extra sensors for critics and value functions is important to correctly estimate supervision
signals for the policy in partially observed settings. Specifically, we take a weighted behavior cloning
approach, by extending advantage weighted regression (AWR) [14–17] to incorporate privileged,
training-time only observations. We call this approach Asymmetric AWR(AAWR). As an example,
in one experiment, we give critics access to privileged closed-loop object sensors to train open-loop
policies that only receive proprioception and the initial object position. In another experiment, we
give critics access to privileged segmentation masks to train search policies in visually cluttered
scenes.

Our key contributions are as follows: (1) We efficiently train real-world active perception policies
by introducing AAWR, which uses privileged value functions to better supervise the policy. (2)
We provide theoretical justification for using privileged advantage estimates for AWR in POMDPs,
by showing that maximizing the expected policy improvement in a POMDP results in the AAWR
objective. (3) We demonstrate that AAWR effectively learns a variety of active and interactive
perception behaviors in 8 different settings - over varying types of partial observability, multiple
types of simulated and real robots, and varied tasks.

2 Related Work

Active perception policies are frequently trained to optimize information-theoretic objectives such as
uncertainty reduction and next best viewpoint selection[18–22]. Such approaches are used for task-
agnostic applications like object tracking [9, 23], scene reconstruction [12, 24, 25], pose estimation
[13], or free-space navigation [21]. However, such approaches are not applicable to our setting in a
variety of ways. First, many assume the ability to freely query views of a scene, without regard to task
constraints [18, 20]. In our manipulation settings with clutter, there are many informative viewpoints
that are difficult to reach due to physical constraints. Next, such information-theoretic metrics are
not task-relevant - to locate a toy, a human may naturally look in drawers, shelves, cabinets, or other
storage areas. But these information-theoretic metrics do not incorporate such task information, and
may find the unseen back of a shelf just as interesting. In short, for training active perception policies
for robots, we desire a more task-centric active perception approach that considers the constraints
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of the task and does perception-improving behavior to maximize the task success rate, instead of a
task-agnostic metric.

Imitation and reinforcement learning are natural ways to synthesize task-relevant active perception
policies, by using demonstrations and reward functions. Some prior works[5, 6] use imitation learning
to train active perception policies on real robots, but performance is bounded by the demonstrator.
However, acquiring optimal active perception demonstrations can be quite cumbersome (e.g. forcing
human tele-operators to look through wrist cameras). On the other hand, RL approaches do not impose
this burden, but real-world RL approaches for active perception [26, 27] require heavy instrumentation
(e.g. for constructing task-specific volumetric maps), limiting generality. Without such assumptions,
RL methods are often limited to simulation due to sample inefficiencies [19, 28, 29]. Sim2real
transfer, however, is not easily applicable to active perception tasks. This is because active perception
tasks are closely related to sensory capabilities, and accurately simulating sensors (e.g. RGB, depth,
touch, etc.) is difficult. Relative to prior work, we propose an RL method that efficiently learns active
perception behavior on real robots while requiring minimal instrumentation (e.g. uncalibrated RGB
cameras) at inference time.

To do this, we operate in an asymmetric training setting, exploiting privileged information [30]
during training time to improve policy training [31, 32]. Privileged information approaches have
been widely successful in solving partially observed tasks [33, 34] and have been deployed on real
world robots with sim2real transfer [35–38]. As mentioned above however, it is difficult to perform
sim-to-real transfer for active perception problems. Further, asymmetric RL approaches for sim2real
[36, 37] are designed to exploit billions of privileged simulator state transitions [39], infeasible for
privileged training in the real world, where we only have small amounts of potentially noisy privileged
observations. We develop a new “asymmetric advantage weighted regression” RL algorithm that is
more capable of learning efficiently in the real world, exploiting privileged additional sensors.

3 Asymmetric Reinforcement Learning in Active Perception POMDPs

Consider a robot tasked with finding a toy in a cluttered room using just its wrist camera, as seen
in Figure 1. The toy’s location is hidden to the robot, and it must scan the scene with its wrist
camera in an efficient search path to find the toy quickly. These types of tasks where the robot has
limited sensing but the reward and dynamics is dependent on some hidden environment state (e.g. toy
location), are naturally modelled by partially observed Markov decision processes (POMDPs) [40].

A POMDP is represented by the tuple (S,A,O, T,R,E, P, γ) where S is the state space, A the
action space, and O the observation space. The dynamics are described by the transition density
T (st+1 | st, at), the reward density R(rt | st, at), the observation density E(ot | st), and the initial
state density P (s0). For the search task of Figure 1, the state would include the robot position and
toy location, while the observation would be the wrist camera view. The goal of policy synthesis in a
POMDP is to find an optimal policy π∗ that maximizes the expected return J(π) = Eπ[

∑∞
t=0 γ

trt],
where the discount factor γ weights the importance of future rewards. In a POMDP, such a π∗

generally requires access to the complete history ht = (o0, a0, . . . , ot) ∈ H of past observations
and actions. This contrasts with an MDP, a special case of POMDP with st = ot, in which the
optimal policy depends only on the current state. Back to POMDPs, it is usually impractical to learn
a policy conditioned on the full history, since its input space would grow exponentially with time.
Instead, it is common to consider an “agent state” f : H → Z that is recurrent in the sense that
zt = f(ht) = u(f(ht−1), at−1, ot), such as a sliding window. Then, the policy π ∈ Π = Z → ∆(A)
must map from the agent state. Interestingly, when using an agent state and such policies, the POMDP
can be transformed into an equivalent MDP whose state (st, zt) includes both the environment state
and the agent state, with policies π ∈ Π conditioned on the latter state only [41–44].

3.1 Background: Advantage Weighted Regression (AWR) for Markov Decision Processes

Advantage weighted regression (AWR) [15] is a policy iteration algorithm for fully observed MDPs
whose policy update objective is written as a behavior cloning loss, weighted by the estimated
advantage of the transition. AWR is presented as a versatile algorithm that is able to leverage
offline / off-policy data as well as on-policy data. More formally, at each iteration, AWR seeks
to find a policy π : S → ∆(A) that maximizes the expected surrogate improvement, η̂(π) =
Es∼dµ(s) Ea∼π(a|s) A

µ(s, a) ≈ J(π)−J(µ) with respect to a behavior policy µ, under KL constraint
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Es∼dµ(s) [KL(π(· | s) ∥ µ(· | s)] ≤ ε. The behavior policy µ typically corresponds to the mixture
of all past policy iterates that generated the dataset of online interactions Don. When relaxing the
KL constraint with multiplier β > 0, optimizing this soft-constrained objective is equivalent to
maximizing the final AWR objective:

LAWR(π) = E
s∼dµ(s)

E
a∼µ(a|s)

[
exp

(
Aµ(s, a)/β

)
log π(a | s)

]
. (1)

The original AWR algorithm [15] used either a return-based estimate or a TD(λ) estimate of the
advantage, by learning a value function with Monte Carlo estimation. Followup works [16, 17] used
a critic-based estimate of the advantage by learning a Q-function with TD learning, which improves
sample efficiency by better leveraging off-policy samples. We build on these latter works. For more
detailed background on AWR and related approaches, see Appendix B.

3.2 The Need for Asymmetric Training in POMDPs

We now derive the AWR objective for POMDPs, showing why it requires asymmetry during training.
We also show that the unprivileged value functions associated with a naive application of symmetric
AWR cannot be learned by TD learning.

Asymmetric and Symmetric AWR for POMDPs. We aim to train a policy π : Z → ∆(A) to
maximize the return in POMDP with an AWR-like objective. We consider the asymmetric learning
paradigm in which the environment state s available during training. We introduce the asymmetric
AWR (AAWR) objective:

LAAWR(π) = E
(s,z)∼dµ(s,z)

E
a∼µ(a|z)

[
exp

(
Aµ(s, z, a)/β

)
log π(a | z)

]
(2)

where Aµ(s, z, a) = Qµ(s, z, a) − V µ(s, z) is the privileged advantage function, with Qµ(s, z, a)
and V µ(s, z) the privileged critic and value functions, formally defined in Appendix C. See Figure 2
for a visual overview of the loss.

Figure 2: Top row: The policy receives the partial observation. Bottom row: Privileged observations
are given to the critic networks to estimate the advantage. The advantage estimates are used as
weights in the loss, providing privileged supervision to the policy. update opt to o+

If the environment state s is unavailable at all times, one natural strategy is to solely use agent state z
to estimate the advantage. We call this unprivileged variant the symmetric AWR (SAWR) objective,
which is just Equation (2) with environment state s removed from all terms.

Why is LAAWR the right objective to implement AWR for POMDPs? To show this, we start by
observing that the original AWR objective was derived as a constrained policy improvement in an
MDP setting. To apply AWR to the POMDP setting with a policy π ∈ Π = Z → ∆(A), we can
consider the equivalent MDP with state (s, z), as discussed in Section 3. We then closely follow the
original derivation in this MDP by additionally constraining the policy to be in Π = Z → ∆(A).
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Theorem 1 (Asymmetric Advantage Weighted Regression). For any POMDP and agent state
f : H → Z , the Lagrangian relaxation with Lagrangian multiplier β > 0 of the following con-
strained optimization problem,

max
π∈Π

E
(s,z)∼dµ(s,z)

E
a∼π(a|z)

[Aµ(s, z, a)] (3)

s.t. E
(s,z)∼dµ(s,z)

[KL(π(· | z) ∥ µ(· | z)] ≤ ε (4)

is equivalent to the following optimization problem: maxπ∈Π LAAWR(π).

The proof is given in Appendix C and concludes the validity of the AAWR objective. In addition, we
also show in Appendix D that optimizing the SAWR objective does not recover the correct solution,
because an advantage estimator depending on agent state z only is insufficient for estimating the
advantage of the equivalent MDP, whose state is (s, z). In the example in Figure 1, it is clear that a
privileged advantage estimator with knowledge of the toy location will better estimate the success of
the search task.

Implementation Details. To instantiate asymmetric advantage weighted regression, we train V µ
θ

and critic Qµ
ϕ networks to compute the advantage, mirroring extensions [16, 17] of AWR that train

critics to better leverage off-policy data instead of relying on MC returns. To train the networks,
we choose IQL [45], a well known Q-learning algorithm known for its effectiveness in offline RL,
offline-to-online RL finetuning [46] and real robot RL [47] tasks. The networks are trained using
IQL’s expectile regression objective, see Appendix A for details.

In our POMDPs, in the symmetric setting, the unprivileged advantage estimator would be
Âµ

QV (zt, at) = Qµ
ϕ(zt, at) − V µ

θ (zt). In the asymmetric setting, the privileged advantage esti-
mator would instead be Âµ

QV (st, zt, at) = Qµ
ϕ(st, zt, at) − V µ

θ (st, zt). In Appendix E, we show
that the privileged value functions are the fixed point of the Bellman equations described by IQL’s
objective. In contrast, we show that the unprivileged value functions are not the fixed point of their
corresponding Bellman equations, which further motivates the use of AAWR instead of SAWR.

We consider an asymmetric learning setting in which the state st or privileged observations opt from
additional sensors are available during training time. The privileged critics take in either observation
and state (ot, st), or the augmented observation (o+t = (ot, o

p
t )) while the policy only receives ot.

Algorithm 1 AAWR Offline-to-Online

Require: policy π, critics Q,V , buffers Doff,Don
1: for i = 1 to Noff do
2: Update Q,V using Doff and IQL loss
3: Update π using Doff and Eq. 2
4: for i = 1 to Non do
5: Collect {(ot, o+t , at, rt, ot+1, o

+
t+1)}Tt=1 with π

6: Don ← Don ∪ {(ot, o+t , at, rt, ot+1, o
+
t+1)}Tt=1

7: Update Q,V using Don,Doff and IQL loss
8: Update π using Don,Doff and Eq. 2

We follow the offline-to-online RL
paradigm [16, 45, 47–50] where the pol-
icy and value functions are first pre-
trained on offline data using offline RL,
and then are further fine-tuned with on-
line interaction in the environment.

▶ Offline Pretraining. Following lines
1-3 of Algorithm 1: Given the offline
data Doff, we update Q,V using the IQL
objective and π with the Equation (2) for
Noff gradient steps.

▶ Online Finetuning. Next, in lines 4-8 of Algorithm 1: We execute the policy in the environment
and store online transitions into buffer Don. We sample an equal number of transitions from both
buffers to form a batch, following best practice from prior work [47, 51]. Using the batch, we update
Q,V using the IQL objective and π with the Equation (2), similar to the offline phase.

4 Experiments

In our experiments, we evaluate AAWR’s ability to learn active and interactive perception behaviors
in a variety of tasks. We aim to answer the following questions. Does AAWR learn active perception
behaviors more efficiently than other approaches? Does AAWR work in both offline-to-online and
purely offline training settings? Does AAWR work with different types of partial observability and
robot embodiment? Does active perception improve the ability of modern generalist policies to solve
partially observed tasks?
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4.1 Task setups

We evaluate AAWR in 8 different tasks, spanning both simulated and real world setups, see Figure 3
for images of all tasks. The tasks are grouped into simulated active perception tasks: Camouflage
Pick, Fully Obs. Pick, AP Koch, and real active/interactive perception tasks: Blind Pick, Bookshelf-
P, Bookshelf-D, Shelf-Cabinet, Complex. In Table 1, we detail task properties like sensor setups,
rewards, demonstrations, training budget, etc.

In the π0 handoff tasks (Blind Pick, Bookshelf-P, Bookshelf-D, Shelf-Cabinet, Complex), we
report the relative improvement of the learned methods compared to an engineered exhaustive
search baseline. We use two metrics to evaluate the search behavior. First, Search is a score of
the policy behavior with the following rubric: 1) the target appears in wrist camera frame, 2) the
policy approaches the target, and 3) the policy remains fixated on the target after 5 timesteps. Next,
Completion is the rate at which π0 successfully grabs the object after switching from the active
perception policy. All metrics are normalized by the path length of the policy to take completion
speed into account. See Appendices F to H for comprehensive descriptions of the tasks.

4.2 Baselines

We compare against symmetric advantage weighted regression (AWR) without privileged information.
Its implementation is identical to that of AAWR, except for the inputs of the critic and value networks.
Next, we compare against standard behavior cloning (BC), which performs imitation learning on the
successful trajectories in the dataset.

4.3 Results

Simulated Active Perception tasks. Fig. 4 shows these results, and videos are in Supp and website.
First, we compare against AWR and BC on two simulated active perception tasks with varied degrees
of observability, Camouflage Pick and Fully Obs. Pick. In both tasks, AAWR outperforms its non-
privileged counterpart AWR, and BC in Camouflage Pick and Fully Obs. Pick, by approximately 2x
and 3x respectively. While the gains from using privileged observations are in line with expectations
for Camouflage Pick, where inferring the tiny marble from RGB is difficult, it is interesting to see
gains even in a fully observable task, where the object position is always clearly inferable from vision.
We hypothesize this is because the non-privileged critic needs to learn to extract the object position
from pixels, whereas the privileged critic does not.

Figure 3: We setup 8 different environments with diverse sensor setups and tasks to evaluate active
perception behavior. Bottom row, we label the hiding spots for target objects.
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Table 1: The 8 tasks vary in embodiment, nature of partial observability, privileged sensors, reward,
demo quantity and quality, and training budget.

Task
Platform

Target Obs.
Privileged Obs.

Reward
Demos

Offline Steps
Online Steps Description

Camouflage Pick
Sim. Koch

Side Cam
True Obj. Pos

Sparse
100 suboptimal

20K
80K

Pick up barely
visible object

Fully Obs. Pick
Sim. xArm

Side Cam
True Obj. Pos

Sparse
100 suboptimal

20K
20K

Pick up fully
visible object

Blind Pick
Real Koch

Joints, Init Obj. Pos
Obj. Pos Estimate

Dense
100 suboptimal

20K
1.2K

Pick object from
just proprioception

Bookshelf-P
Real Franka

Wrist Cam, Joints
Bbox, Mask

Dense
∼150 suboptimal

100K
0

Look for object &
switch to π0

Bookshelf-D
Real Franka

Wrist Cam, Joints
Bbox, Mask

Dense
∼100 suboptimal

100K
0

Look for object &
switch to π0

Shelf-Cabinet
Real Franka

Wrist Cam, Joints
Bbox, Mask

Dense
∼30 suboptimal

100K
0

Look for object &
switch to π0

Complex
Real Franka

Wrist Cam, Joints
Bbox, Mask

Dense
∼200 suboptimal

100K
0

Look for object &
switch to π0

AP Koch
Sim. Koch

Wrist Cam
True Obj. Pos

Sparse
100 suboptimal

100K
900K

Locate then pick
up object

Figure 4: Evaluation curves for the simulated experiments, over 10 seeds per method. The shaded
regions indicate the offline pretraining phase. AAWR outperforms baselines in all simulated tasks.

Real Interactive Perception task. Here, we continue comparing to AWR and BC, this time including
purely offline variants of AAWR and AWR, on the Blind Pick task in the real world. As seen in
Table 2, both offline and online variants of AAWR outperform its unprivileged counterparts, and BC.
Among the offline methods, BC performs worst, exhibiting jerky and inaccurate movements. Both
offline AWR and offline AAWR demonstrate better approaching and picking behavior, but offline
AWR missed grasps and released the block frequently. See videos on the website.

Table 2: Koch Interactive Perception.

Method Grasp % Pick %
BC 47 41
Off. AWR 65 62
On. AWR 71 55
Off. AAWR (ours) 88 71
On. AAWR (ours) 94 89

Offline AAWR demonstrates more suboptimal behav-
ior, such as releasing the candy after grasping. We
observed that after online finetuning, the suboptimal
behavior of offline AAWR is reduced, and online
AAWR demonstrates the most consistent and robust
open-loop picking behavior. Online AAWR reliably
places its gripper over the object for grasping. In
cases when the object slips from its grasp, the policy
attempts to regrasp at the original location.

Handholding Foundation VLA Policies for Real Active Perception tasks. We find that π0, a
generalist foundation policy for manipulation tasks, is not good at searching tasks such as finding
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Table 3: Active perception handoff tasks: Relative improvement of methods over exhaustive search,
in search and completion efficiency metrics. Bold = best, underline = second best.

Method Bookshelf-P Bookshelf-D Shelf-Cabinet Complex

Search Completion Search Completion Search Completion Search Completion

AAWR 4.14 2.91 3.36 7.93 5.86 3.51 1.72 1.64
AWR 3.84 0.00 2.30 2.65 4.77 1.07 0.23 0.46
BC 0.58 0.57 2.36 3.56 0.78 0.49 1.28 0.72
π0 0.07 0.15 0.32 0.70 0.12 0.15 0.45 0.78
VLM+π0 0.16 0.21 0.13 0.28 0.26 0.16 0.15 0.26

target objects in a cluttered scene from just a wrist camera (see in Figure 3). π0 is fundamentally
limited by not having memory, which is required to learn POMDP behaviors as mentioned in Section 3.
We now evaluate our approach’s ability to generate helper policies that condition on history (see
Appendix F) to handhold π0 policies up to a configuration from which they could reasonably succeed.
To achieve this, we propose a switching framework for the policy where an active perception policy
is first run, and an object detector periodically checks the wrist image for the target object. Once the
object is detected across two consecutive intervals, the robot switches to π0 to grasp the object.

We set up four realistic active perception tasks where the robot must search through a cluttered scene
to find a target object and grasp it up (see Figure 3). In the Bookshelf-P and Bookshelf-D tasks, we
place a target object (either a toy pineapple or duck) on one of the three shelves, requiring the robot
to scan the shelves both vertically and horizontally and stop at good viewpoint. In the Shelf-Cabinet
task, we add an additional cabinet with drawers and hiding spots near its top and inside cabinet door,
increasing the complexity of the search. Finally, in Complex task, we add an additional shelf on the
floor, whose shelves are completely occluded from all side camera viewpoints.

First, as a starting point of comparison, we engineer an Exhaustive baseline that methodically goes
through all hiding spots in the scene. This baseline will consistently find the object but will have
very long episode lengths. Next, we again compare to AWR and BC as helper policies. In addition,
similar to the Hierarchical VLM-VLA baseline proposed in [52], we compare against π0 itself, and a
VLM+π0 variant that queries the Gemini-2.5 VLM [53] to generate language commands that are
executed by π0. As mentioned earlier in Section 4.1, we use the Search metric to judge the searching
behavior, and Completion metric to measure how useful the active perception policy is for π0. For
each method, we divide their metrics with Exhaustive search’s corresponding metrics, resulting in
the relative improvement. See Appendix F for more baseline details and the un-normalized metrics of
each method.

For the Bookshelf-P, Bookshelf-D, Complex tasks, we collected 250 demonstrations split among
four demonstrators with varying qualities, resulting in a mixed dataset of about 50% π0 success rate.
For Shelf-Cabinet, we collected a smaller but higher quality dataset of just 35 trajectories with about
74% success rate. We perform offline training of AAWR, AWR, and BC on the same demonstration
dataset, and for the same amount of gradient steps, before evaluating in the real world.

Figure 5: Example rollouts of AAWR vs AWR in the cabinet shelf task. AAWR explores the top left
of the cabinet and locates the target object while AWR fails to adequately explore the full scene.
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As seen in Table 4, AAWR consistently outperforms baselines in all metrics, learning sensible active
perception behavior to aid a generalist policy. AAWR always outperforms non privileged AWR and
BC, thus validating the usefulness of privileged information and the use of offline RL over supervised
learning. We find that π0 and VLM+π0 both search poorly - they tend to take inefficient movements
and fail to track the object.

In the Bookshelf tasks, AAWR first learns to zoom out of the scene to see multiple shelves, then scans
from bottom to up, and then approaches the target object once located. The AWR and BC baselines
follow a relatively fixed search path that approaches the shelf, but the policies failed to efficiently
scan the shelves. Even if they luckily glimpse the target object, they do not fixate on the object,
reducing their search score and π0 success rate. In the Shelf-Cabinet task, AAWR searches through
the right bookshelf, before moving to the left cabinet. Both AWR and BC do not thoroughly search
the scene, preventing them from finding objects placed in the left cabinet’s drawer. In Complex,
AAWR searches the bottom shelf, the right shelf, and then the left cabinet (see Figure 1). See Figure 5
and the website for examples.

4.3.1 Comparing to other privileged approaches

We have demonstrated the success of AAWR in learning active and interactive perception behaviors in
various tasks. But one natural question is how does AAWR compare against other popular approaches
that leverage privileged information? On the simulated Active Perception Koch task, we compare
AAWR against Distillation [39], which first trains a privileged expert policy and then distills it into a
partially observed policy. We also compare against a variational information bottleneck approach
(VIB) [54], which gives the policy regularized access to privileged information. See Appendix H for
details.

As seen in Figure 4, only AAWR is able to get 100% on the task by learning to scan the workspace,
while other privileged baselines stagnate. Distillation gets high initial success of 80%, but never
improves. It learns a suboptimal strategy of approaching the center of the workspace. This fails if the
object is in the workspace corners, since the robot will never see the corners. This behavior arises
due to the privileged expert, which does not need to scan the workspace to know where the object is.
As a result, the distilled student cannot ever discover active perception behavior. In contrast, despite
starting with suboptimal state-expert demos, AAWR is able to discover the active perception behavior
through online interaction and exploration. VIB collapses during evaluation because privileged
information is not available, even though it was trained to minimally use privileged information. See
the website for videos of the policies.

5 Conclusion and Limitations

We aim to train active perception policies in the real world to allow robots to overcome their sensory
limitations, a useful problem for which current approaches have shown limited success. We propose
asymmetric advantage weighted regression (AAWR), a simple weighted behavior cloning technique
that leverages privileged observations during training to efficiently train active perception policies.
We provide a theoretical justification for AAWR, by deriving the validity of the AAWR objective for
POMDP as opposed to its symmetric counterpart. Then, we show that AAWR successfully learns
active and interactive perception behaviors in 8 different simulated and real world tasks. Despite our
promising results, there is much room for future work.

Future work may seek to fine-tune generalist foundation policies to execute active perception be-
haviors, instead of relying on a switching policy architecture. In addition, other forms of privileged
information could be leveraged beyond additional sensors or object detectors, such as privileged
policy expert actions, or information about the future execution of the trajectory. Instead of using
prespecified privileged information, useful features from the additional information could also be
explicitly selected through representation learning. Finally, because this work overcomes limitations
of existing methods for active perceptions tasks, it would be worth exploring the scalability of AAWR
to tasks with longer horizons where information-gathering challenges compound.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide experimental evidence and theoretical analysis for our claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We outline limitations in the conclusions section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide proofs and assumptions for all theoretical claims in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide experimental details in the main text and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will release code for the algorithm and environments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See appendix for all details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See appendix for all details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss such things in a section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We don’t foresee a high risk for misuse .
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credit the assets we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: We will release the trained weights of our model.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human experiments were conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No humans experiments were conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: We do not use LLMs as a core part of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Figure 2 Revised

To reviewers - we noticed that our Figure 3 is not renderable in certain PDF software due to its high
resolution. We found that the Mac Preview software works, but not Adobe. The following is the
revised figure that is viewable. We will update the main paper figure when it becomes possible.

Task Platform Target Sensors Priv. Sensors Training Properties

Camouflage Pick Sim. Koch Side Cam True Obj. Pos Off2On Hard-to-see objects
Fully Obs. Pick Sim. xArm Side Cam True Obj. Pos Off2On No occlusion
Blind Pick Real Koch Joints, Init Obj. Pos Obj. Pos Estimate Off2On Interactive Perception
Bookshelf-P Real Franka Wrist Cam, Joints Bbox, Mask Offline Active Perception + Handoff
Bookshelf-D Real Franka Wrist Cam, Joints Bbox, Mask Offline Active Perception + Handoff
Shelf-Cabinet Real Franka Wrist Cam, Joints Bbox, Mask Offline Active Perception + Handoff
Complex Real Franka Wrist Cam, Joints Bbox, Mask Offline Active Perception + Handoff
AP Koch Sim Koch Wrist Cam True Obj. Pos Off2On Active Perception

Figure 6: We setup 8 different environments with diverse sensor setups and tasks to evaluate active
perception behavior. Bottom row: we label potential hiding spots for target objects.

A AAWR Implementation Details

Instead of the standard policy evaluation of the AWR algorithm [15–17], we use implicit Q-learning
(IQL) [45] and its optimistic policy evaluation, for its effectiveness in offline, and offline-to-online
[46] and real robots [47] tasks. The IQL algorithm learns both a value function V µ

θ and a critic
Qµ

ϕ. Extending IQL to our POMDPs, in the symmetric setting, the unprivileged advantage estimator
would be Âµ

QV (zt, at) = Qµ
ϕ(zt, at)− V µ

θ (zt). In the asymmetric setting, the privileged advantage
estimator would instead be Âµ

QV (st, zt, at) = Qµ
ϕ(st, zt, at)− V µ

θ (st, zt).

The privileged Q-function is trained using the 1-step TD error.

LQ(ϕ) = E
(st,zt,rt,st+1,zt+1)∼D

[
(rt + γV µ

θ (st+1, zt+1)−Qµ
ϕ(st, zt, at))

2

]
(5)

The privileged value function is trained to conservatively approximate the maximization
maxa Q

µ
ϕ(s, z, a) using an asymmetric L2 loss (expectile regression):

LV (θ) = E
(st,zt,at)∼D

[
|τ − 1{Qµ

ϕ(st,zt,at)−V µ
θ (st,zt)<0}|(Q

µ
ϕ(st, zt, at)− V µ

θ (st, zt))
2

]
(6)

where τ ∈ (0, 1) is the expectile. As τ → 0, the loss increasingly penalizes overestimates of V . The
unprivileged value functions are trained analogously.
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Algorithm 2 AAWR Offline-to-Online

Require: policy π, critics Q,V , buffers Doff,Don
1: for i = 1 to Noff do
2: Update Q,V using Doff and Eq. 5 and Eq. 6
3: Update π using Doff and Eq. 2
4: for i = 1 to Non do
5: Collect {(ot, o+t , at, rt, ot+1, o

+
t+1)}Tt=1 with π

6: Don ← Don ∪ {(ot, o+t , at, rt, ot+1, o
+
t+1)}Tt=1

7: Update Q,V using Don,Doff and Eq. 5, Eq. 6
8: Update π using Don,Doff and Eq. 2

Note that when τ = 0.5, it corresponds
to the standard 1-step TD update. In Ap-
pendix E, we show that the privileged
value functions are the fixed point of the
Bellman equations described by Eq. 5
and Eq. 6. In contrast, we show that the
unprivileged value functions are not the
fixed point of their corresponding Bell-
man equations, which further motivates
the use of AAWR instead of SAWR.

We train the models in an offline-to-
online manner. Following lines 1-3 of Algorithm 2: during the offline stage, Q,V, π are updated Doff
for Noff gradient steps on the offline dataset. After offline training, on-policy trajectories are collected
by executing the target policy in the environment. These trajectories are added to the online buffer
Don. Following [47], we use symmetric sampling where 50% of samples are from Doff and the other
50% are from Don.

B Advantage Weighted Regression Estimators

The original AWR algorithm [15] used a return-based estimate of the advantage Âµ
V (st, at) =∑∞

k=0 γ
krt+k − V̂ µ(st) where V̂ µ(st) is an approximation of the value function, learned by mini-

mization of,

LMC(V̂ ) = E
st∼dµ(st)

[( ∞∑
k=0

γkrt+k − V̂ (st)
)2]

. (7)

Future works have instead used a critic-based estimate of the advantage Âµ
Q(st, at) = Qµ

ϕ(st, at)−
Ea∼π(a|st) Q

µ
ϕ(st, a) [16, 17] where Qµ

ϕ(st, at) is an approximation of the critic function, learned by
minimization of,

LTD(Q̂) = E
st∼dµ(st)

E
at∼π(at|st)

[(
rt + γQ̂′(st+1, at+1)− Q̂(st, at)

)2]
. (8)

The typical learning procedure of AWR is summarized in Algorithm 3.

Algorithm 3 Advantage Weighted Regression

Require: policy π, critic V , buffer Don
1: for i = 1 to Non do
2: Collect {(st, at, rt, st+1)}Tt=1 with π
3: Don ← Don ∪ {(st, at, rt, st+1)}Tt=1
4: Update V using Don and minimizing Eq. 7
5: Update π using Don and maximizing Eq. 1

C Asymmetric Advantage Weighted Regression Derivation

In this section, we derive the AWR objective for POMDPs, which results in the AAWR objective.
Since we consider a POMDP and an agent state f : H → Z , we can consider the equivalent
environment-agent state MDP [42–44], whose state is (s, z), and restrain the class of fully observable
policies Π+ = S × Z → ∆(A) for this MDP to the agent-state policies,

Π− =
{
π+ ∈ Π+ | ∃π ∈ Π : π+(a | s, z) = π(a | z),∀s ∈ S, ∀z ∈ Z, ∀a ∈ A

}
. (9)

Since Π− ⊆ Π+, we have π− ∈ Π+ and we can derive the AWR objective using this restricted set
of policies following similar steps as Peng et al. [15]. In the following, we use π ∈ Π to denote
the partially observable policy π(a | z) corresponding to π− ∈ Π− with π−(a | s, z) = π(a | z).
Before deriving the AWR objective for the equivalent environment-agent state MDP, let us define the
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(normalized) discounted visitation measure of a policy π ∈ Π in this MDP as,

dπ(s, z) = (1− γ)

∞∑
t=0

γtp(st = s, zt = z). (10)

In the following, we denote the current policy π−
k with µ−, and its corresponding partially observable

policy with µ Since we work in the environment-agent state MDP, we consider the usual value
functions definitions, where the state is (s, z),

Qµ−
(s, z, a) = Eµ−

[ ∞∑
t=0

γtrt

∣∣∣∣∣s0 = s, z0 = z, a0 = a

]
(11)

V µ−
(s, z) = Eµ−

[ ∞∑
t=0

γtrt

∣∣∣∣∣s0 = s, z0 = z

]
. (12)

Now, let us derive an objective to improve the policy. We want to maximize the policy improvement,
η(π−) = J(π−)− J(µ−). (13)

The policy improvement is related to the advantage function of µ− [55],

η(π−) = Eπ−

[ ∞∑
t=0

γtrt

]
− Eµ−

[ ∞∑
t=0

γtrt

]
(14)

= Eπ−

[ ∞∑
t=0

γtrt

]
− E

[
V µ−

(s0, z0)
]

(15)

= Eπ−

[ ∞∑
t=0

γtrt − V µ−
(s0, z0)

]
(16)

= Eπ−

[ ∞∑
t=0

γt(rt + γV µ−
(st+1, zt+1)− V µ−

(st, zt)) + V µ−
(s0, z0)− V µ−

(s0, z0)

]
(17)

= Eπ−

[ ∞∑
t=0

γt(rt + γV µ−
(st+1, zt+1)− V µ−

(st, zt))

]
(18)

= Eπ−

[ ∞∑
t=0

γtAµ−
(st, zt, at)

]
(19)

=

∞∑
t=0

γtEπ−
[
Aµ−

(st, zt, at)
]

(20)

= (1− γ) E
(s,z)∼dπ(s,z)

E
a∼π(a|z)

[
Aµ−

(s, z, a)
]

(21)

where Aµ−
(s, z, a) = Qµ−

(s, z, a)−V µ−
(s, z). The objective η(π−) may be inefficient to optimize,

due to the dependence of the expectation on π− through dπ . Instead, we thus choose to optimize an
off-policy surrogate objective where the samples are generated from policy µ,

η̂(π−) = (1− γ) E
(s,z)∼dµ(s,z)

E
a∼π(a|z)

[
Aµ−

(s, z, a)
]

(22)

In practice, we thus seek to approximately solve the following constrained optimization problem at
each iteration,

π−
k+1 ∈ argmax

π−∈Π−
E

(s,z)∼dµ(s,z)
E

a∼π(a|z)

[
Aµ−

(s, z, a))
]

(23)

s.t. KL(π−(· | s, z) ∥ µ−(· | s, z)) ≤ ϵ (24)

Now that we have identified the desired constrained optimization problem, let us prove Theorem 1,
which states that its relaxation corresponds to the AAWR objective.
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Theorem 1 (Asymmetric Advantage Weighted Regression). For any POMDP and agent state
f : H → Z , the Lagrangian relaxation with Lagrangian multiplier β > 0 of the following con-
strained optimization problem,

max
π∈Π

E
(s,z)∼dµ(s,z)

E
a∼π(a|z)

[Aµ(s, z, a)] (3)

s.t. E
(s,z)∼dµ(s,z)

[KL(π(· | z) ∥ µ(· | z)] ≤ ε (4)

is equivalent to the following optimization problem: maxπ∈Π LAAWR(π).

Proof. Starting from Eq. 23, we note that two additional constraints are hidden in π− ∈ Π−. The first
one is

∫
a∈A π(a | s, z) = 1, ∀s ∈ S, ∀z ∈ Z . The second one is π− ∈ Π− ⊆ Π+, or equivalently,

π−(a | s1, z) = π−(a | s2, z), ∀s1, s2 ∈ S, ∀z ∈ Z, ∀a ∈ A.

Following similar steps as Peng et al. [15], by relaxing the KL constraint in a Lagrangian multiplier
with multiplier β,

π∗(a | s, z) ∝ µ−(a | s, z) exp
(
1

β
Aµ−

(s, z, a)

)
(25)

∝ µ(a | z) exp
(
1

β
Aµ−

(s, z, a)

)
(26)

We now substitute back the two additional constraint as additional constraints, so that we
project the solution on the manifold of policies Π−. By minimizing the KL divergence
E(s,z)∼dµ(s,z) [KL(π∗(· | s, z) ∥ π(· | z)] to that target, we obtain

πk+1 = argmax
π∈Π

E
(s,z)∼dµ(s,z)

E
a∼µ(a|z)

[
log π(a | z) exp

(
1

β
Aµ−

(s, z, a)

)]
(27)

This concludes the proof, for µ = πk.

With the additional constraint that we use a parametrized policy πθ ∈ ΠΘ, we obtain

θk+1 = argmax
θ∈Θ

E
(s,z)∼dµ(s,z)

E
a∼µ(a|z)

[
log πθ(a | z) exp

(
1

β
Aµ−

(s, z, a)

)]
(28)

Eq. 27 corresponds to the AAWR objective, and Eq. 28 is the AAWR objective in the context of
parametrized function approximators.

D Problem with Symmetric Advantage Weighted Regression

While the asymmetric value functions followed the classical definitions in the environment-agent
state MDP, the symmetric value functions are not standard because z is not a Markovian state. We
select the following definition: Aµ(z, a) = Qµ(z, a)− V µ(z) with,

Qµ−
(z, a) = E

s∼dµ− (s|z)

[
Eµ−

[ ∞∑
t=0

γtrt

∣∣∣∣∣s0,= s, z0 = z, a0 = a

]]
(29)

V µ−
(z) = E

s∼dµ− (s|z)

[
Eµ−

[ ∞∑
t=0

γtrt

∣∣∣∣∣s0 = s, z0 = z

]]
(30)

By definition, this choice provides unbiased symmetric value functions under the distribution
dµ−(s, z) induced by the current policy µ−.

Qµ−
(z, a) = E

s∼dµ− (s|z)

[
Qµ−

(s, z, a)
]

(31)

V µ−
(z) = E

s∼dµ− (s|z)

[
V µ−

(s, z)
]

(32)

Let us now prove Theorem 2, which proves that the symmetric AWR (SAWR) objective is different
from the asymmetric AWR (AAWR) objective.
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Theorem 2 (Symmetric Advantage Weighted Regression). In general, for a POMDP and an agent
state f : H → Z , we have argmaxπ∈Π LSAWR ̸= argmaxπ∈Π LAAWR.

Proof. Combining Eq. 29 and Eq. 30, we have,

Aµ−
(z, a) = E

s∼dµ− (s|z)

[
Aµ−

(s, z, a)
]

(33)

Now, it is straightforward to see that the SAWR objective,

LSAWR(π) = E
(s,z)∼dµ(s,z)

E
a∼µ(a|z)

[
exp

(
Aµ−

(z, a)/β
)
log π(a | z)

]
(34)

= E
(s,z)∼dµ(s,z)

E
a∼µ(a|z)

[
exp

(
E

s∼dµ− (s|z)

[
Aµ−

(s, z, a)
]
/β

)
log π(a | z)

]
(35)

does not correspond to the AAWR objective,

LAAWR(π) = E
(s,z)∼dµ(s,z)

E
a∼µ(a|z)

[
exp

(
Aµ−

(s, z, a)
)
log π(a | z)

]
. (36)

Indeed, we can apply Jensen’s strict inequality over the the strictly convex exponential function,
under the assumption that the distribution dµ−(s | z) is nondegenerate.

E Problem with Symmetric Temporal Difference Learning

Let us consider the asymmetric Bellman equations for the environment-agent state MDP,

Q̃µ−
(s, z, a) = Eµ−

[
rt + γQ̃µ−

(st+1, zt+1, at+1)
∣∣∣st = s, zt = z, at = a

]
. (37)

Since the underlying Bellman operator is γ-contractive, these equations have a unique solution Q̃µ−
.

Because the environment and agent states form a Markovian variable (s, z), by definition of Qµ−
,

we have Q̃µ−
= Qµ−

. As a consequence, we also have Ṽ µ−
= V µ−

where Ṽ µ−
is the unique fixed

point of its analogous Bellman operator.

Let us now consider the symmetric Bellman equations for the environment-agent state MDP,

Q̃µ−
(z, a) = E

s′∼dµ− (s′|z)

[
Eµ−

[
rt + γQ̃µ−

(zt+1, at+1)
∣∣∣st = s′, zt = z, at = a

]]
. (38)

It is interesting to note that, by bootstrapping with Q̃µ−
, this Q-function considers the distribution of

the state (st+1, zt+1 | st, zt, at) from the second timestep to be p(zt+1 | st, zt, at)dµ−(st+1|zt+1)
instead of the true distribution p(st+1, zt+1 | st, zt, at). As a result, by telescoping, we obtain,

Q̃µ−
(z, a) = E

s∼dµ− (s|z)

[ ∞∑
t=0

γtEµ−

[
E

s′t∼dµ− (s′t|zt)
r(s′t, zt, at)

∣∣∣∣∣s0 = s, z0 = z, a0 = a

]]
(39)

where r(s, z, a) = E[rt | st = s, zt = z, at = a]. It contrasts with the true Q-function, which writes,

Qµ−
(s, z, a) = Eµ−

[ ∞∑
t=0

γtrt

∣∣∣∣∣s0 = s, z0 = z, a0 = a

]
(40)

= E
s∼dµ− (s|z)

[ ∞∑
t=0

γtEµ−
[r(st, zt, at)|s0 = s, z0 = z, a0 = a]

]
(41)

It can be concluded that the unprivileged fixed point Q̃µ−
and the unprivileged Q-function Qµ−

can be different, as soon as the distribution p(st, zt, at | s0, z0, a0) is different from p(zt, at |
s0, z0, a0)d

µ−
(st | zt) at any timestep t.
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F Active Perception Experimental Details

F.1 Task Definition

In these tasks, the robot must find objects placed out of view in cluttered environments. Similar to
how a human may try to find ingredients in a messy kitchen, the robot must move its camera around
occluders, zoom into hard to see spots (i.e. behind drawers), and zoom out to increase its overall view
of the scene.

In this experiment, we train a “helper” active perception policy that searches the scene for the target
object, and once located, hands off control to a generalist VLA policy to pick up the object. This
addresses a weakness of such generalist policies - that they are typically trained in fully observed
situations, and do not generalize to partial observations.

We set up four tasks, ordered in increasing complexity, where the robot must either find a toy
pineapple or duck. Objects and visual distractors are randomly placed at the beginning of each
episode, the bookshelf and cabinet are placed in same position.

• Bookshelf-P and Bookshelf-D: The robot must find either the pineapple or duck in a
three-tier vertical bookshelf with multiple visual distractors (Fig. Figure 8).

• Shelf-Cabinet: We make the scene more difficult by adding a cabinet on the left side. The
cabinet creates additional hiding spots on its top drawer and shelf over the drawer.

• Complex: In addition to the bookshelf and cabinet, we add a horizontal bookshelf. There
are several completely occluded spots, such as the bottom cabinet drawer and objects placed
in the horizontal bookshelf.

F.2 Metrics

Search %: a 3-point rubric for grading search behavior, see Figure 7 for an example.

1. Policy spots the target object anywhere in the image [33%].
2. Policy moves until target object falls into the target region of viewpoint [66%].
3. Policy fixates on the target object inside the target region [100%].

π0 %: the grasping success rate of π0 (100 timestep limit), after switching from the active perception
policy.

Average search time: mean number of steps for the policy to complete the first two stages of the
rubric (finding and approaching). Episodes that fail to reach the first two stages count as a timeout
(Tmax = 300 steps).

Figure 7: The Search % metric gives points for spotting, approaching, and fixating on the object.

F.3 Hardware and Scene Setup

We used the DROID robot setup[56], which consists of a 7 DoF Franka Emika Panda Robot Arm, a
Robotiq 2F-85 parallel-jaw gripper, a wrist-mounted ZED Mini RGB-D camera and two side-mounted
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Figure 8: Robot hardware configuration: Franka
Panda arm with wrist & side view camera.

Figure 9: The Complex task has heavy occlusion
in the left cabinet, and bookshelf on the floor.

ZED 2 stereo cameras. The DROID set-up enables the usage of the generalist VLA policy π0 [57],
specifically the FAST-DROID checkpoint.

F.4 Policy Design

1. Observation Space:

• Partial observation: wrist RGB 84×84 image, end effector position of last 6 timesteps,
occupancy grid feature.

• Privileged observation: Segmentation mask and bounding box of the target object.

2. Action Space: Cartesian and angular velocities of end effector frame,
at = [vx, vy, vz, ωroll, ωpitch, ωyaw]. We use action chunks of length 5.

The search policy and privileged critic networks are constructed using an encoder / head architecture.
We first detail the input processing steps below, as they are shared for AAWR, AWR and BC network:

The wrist image is first fed into a frozen DINO-V2[58] encoder (ViT-S14) , and the resulting DINO-
V2 features are reduced into a 256 × 16 dimensional latent using PCA. Next, the occupancy grid
feature is constructed by projecting the historical camera rays (inferred through the gripper position)
into the XZ dimension of the robot frame, resulting in a 2D occupancy grid where elements are 1 if
the camera ray has passed through it in the episode.

The search policy takes in the wrist image features, a history of the last 6 gripper positions, and the
occupancy grid feature. The occupancy grid is first processed through a convolutional encoder, and
then is concatenated alongside the gripper position history and wrist image features. This latent is
then fed into a small MLP to generate the action prediction.

The privileged critic networks also use the same inputs as the search policy, and take in an additional
privileged target object segmentation mask. The mask is processed using a small convolutional
encoder, and is concatenated with the other inputs.

To handoff from the search policy to π0, we implement the following logic. Every 5 timesteps,
we query an object detector to see if a target object is detected. If the target object detected in the
previous query from 5 timesteps ago and the current query, then we handoff to π0. This consecutive
mechanism was implemented to prevent premature switching to π0, since the object detector is not
perfect and sometimes gives false positives. We find that the consecutive criteria rules out false
positives and switches correctly when the target object is within view.

F.5 Reward Design

The reward function incentivizes the robot to locate, approach, and fixate on the target object.
Viewpoints that score highly under this reward function feature the object prominently in the top-
center region of the wrist image. We chose to incentivize putting the object in this target region
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because the grippers occupy the bottom half of the wrist image, and find that this particular viewpoint
optimizes for grasping success of π0.

To define the reward, we first need privileged information about the object location and size in
the wrist view image. To obtain object detection and segmentation of the target object, we used
the DINO-X [59] API and the GroundedSAM [60] Model for Open-World Object Detection and
segmentation. We use a color segmentation mask to break the tie when the object detector detects
multiple potential target objects.

During the training phase, we infer the wrist camera images with DINO-X, obtain the bounding box
and mask of the target object, and label the reward for offline RL training. See Figure 10 for examples
of the object detection and reward pipeline.

The reward function consists of three terms:

(i) Distance reward

rdist = 1− tanh
(
10 · D(c,c∗)

1000

)
, D(c, c∗) ∈ [0, 1000] px,

where c, c∗ are the centroids of the bounding box, and target region, and D is the L1 distance.
This term smoothly saturates to 1 as the bounding box center approaches the image center.

(ii) Mask–area reward

rarea =
clip

(
mask_area, 1000, 50000

)
50000

,

which is proportional to the mask area subject to lower and upper limits, encouraging the robot
to find viewpoints where the object is prominently in view.

(iii) Mask–overlap reward
roverlap = 1

[
mask_overlap > 0.10

]
,

gives a sparse binary bonus once the object mask intersects with the target region, defined as
IoU > 10% with a 128× 128 region centered at c∗.

The per-step reward is then composed as

Rt = 0.5 rdist + 0.3 rarea + 10 roverlap ,

Demonstrations We collect demonstrations using the 5-DoF 3Dconnexion SpaceMouse. During
teleoperation, we label trajectories as successful if π0 successfully grabs the target object after
switching from the teleoperator. The demonstrations are collected with four different teleoperators,
with success rates for the demonstrations roughly between 50-70%. We initially collect up to 250
demonstrations per task, but then we curate the dataset, dropping out trajectories with mislabeled
object detections, noisy/faulty sensor readings, etc. After filtering, we end up with 152 demonstrations
for Bookshelf-P, 109 for Bookshelf-D, 35 for Shelf-Cabinet, and 195 for Complex.

F.6 Baselines

Please watch the videos on our website (RW-RL Project Page) to better compare the differences
among baselines.

1. AWR: Advantage-Weighted Regression, no access to privileged observations.
2. BC: Filtered Behaviour Cloning, trained on successful trajectories only.
3. Exhaustive: Hard-coded baseline that goes over every possible hiding location in a fixed

order. This "brute-force" method gets high Search% score but takes much longer to search
search.

4. VLM+π0: This baseline decomposes the task using a VLM for high level task planning and
the π0 VLA for low level movement as proposed in HiRobot [52]. This approach commonly
used in works that solve long-horizon tasks with only foundation models. In practice, we
query the Gemini-2.5-Flash [53] model with a task prompt template, which includes a series
of searching-related instructions that the low-level VLA can follow. Then, we ask Gemini to
choose among them. The prompt template is attached below.
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Figure 10: An example reward trajectory in Complex scene. Notice the trajectory is given a high
peak reward when the detected pineapple overlap on top of the square area.

� �
You are an expert robot operator using the pi0 policy , a general -purpose robot foundation

model. It receives a natural language command and executes on the Franka Panda
robot arm.

Your job is to provide natural -language instructions to help a single -armed robot with a
parallel -jaw gripper complete a tabletop manipulation task.

---
The overall task is:
find a <|>TARGET_OBJECT_NAME <|> in the scene. The robot has a wrist -mounted camera and

can perform short sequences of actions , such as opening drawers , scanning
compartments , and moving its camera viewpoint.

Given the following constraints:
- The <|>TARGET_OBJECT_NAME <|> might be ** partially or fully occluded **.
- It could be located ** inside drawers**, ** behind objects**, or **on shelves **.
---
Your job is to break this task down into smaller instructions that robot can complete
Every few seconds we will ask you to provide a natural language instruction for the robot

.
We will provide two images: (1) an external view of the robot and (2) a view from a

camera mounted on the robot ’s wrist.

Your instruction should refer to relevant objects that you see in the images , and should
help the robot make progress towards completing the overall task (<|>OVERALL_TASK
<|>).

To help you , we’ve prepared a list of instructions for you to choose from:
---
look around for the <|>TARGET_OBJECT_NAME <|>
open the top drawer
open the bottom drawer
look inside the top drawer
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look inside the bottom drawer
look behind the toys
look behind the blue block
look behind the green block
look on the top shelf
look on the bottom shelf
move the red block to the side
move the blue block to the side
move the green block to the side
move griper to the right
move griper to the left
move griper to the center
move griper to the front
move griper to the back
move griper to the top
move griper to the bottom
find the <|>TARGET_OBJECT_NAME <|> and pick it up
pick up the <|>TARGET_OBJECT_NAME <|>
---
Here is the external view:
<|>CURRENT_IMAGE <|>
Here is the wrist view:
<|>CURRENT_WRIST_IMAGE <|>
Please provide an instruction for the robot to follow. Write the instruction in all lower

case with no punctuation. Just provide the instruction; do not provide additional
explanation.� �

Listing 1: Prompt Template for VLM+π0 baseline

Figure 11: Failure analysis of AAWR, AWR, and BC policies in all 4 tasks. For each policy, we show
the number of times each policy completes the first, second and third stage of the Search % rubric.
AAWR completes all three stages the most, while AWR and BC fail to consistently approach and
fixate on the target object.

F.7 Results

As seen in Table 4, AAWR consistently outperforms baselines in all metrics, learning sensible active
perception behavior to aid a generalist policy. We report the mean and standard error over 18 trials for
all metrics. AAWR always outperforms non privileged AWR and BC, thus validating the usefulness
of privileged information and the use of offline RL over supervised learning. The Exhaustive baseline
often has high search progress and π0% success rate, but is much slower than AAWR, showing that
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Table 4: Un-normalized metrics for active perception handoff tasks, AAWR consistently outperforms
baselines. Bold = best, underline = second best.

Method Bookshelf-P Bookshelf-D Shelf-Cabinet Complex

Search %
↑

π0 %
↑

Steps
↓

Search %
↑

π0 %
↑

Steps
↓

Search %
↑

π0 %
↑

Steps
↓

Search %
↑

π0 %
↑

Steps
↓

AAWR 92.4±5.0 44.4±16.6 36.6±4.7 81.3±6.2 44.4±11.7 26.9±2.0 78.2±7.0 40.0±11.0 46.3±4.5 54.8±8.5 20.0±8.9 121.0±30.1

AWR 79.6±5.6 0.0±0.0 34.0±2.7 62.6±6.5 16.7±8.8 30.2±10.1 52.3±6.1 10.0±6.7 38.0±13.9 13.2±5.0 10.0±6.7 217.0±29.3

BC 29.9±13.5 20.0±12.6 84.0±9.2 47.7±4.0 16.7±8.8 22.5±2.1 28.1±5.5 15.0±8.0 125.0±29.6 46.4±8.5 10.0±6.7 138.0±30.4

π0 11.0±11.0 16.7±15.2 263.3±36.7 66.7±21.1 33.3±19.2 229.7±44.8 10.0±10.0 10.0±9.5 280±20.0 29.6±15.3 20.0±12.6 252.5±31.7

Exhaustive 64.2±1.8 44.0±11.7 105.4±9.0 96.0±2.7 22.2±9.8 106.7±8.6 52.8±5.0 45.0±11.1 183.0±15.3 78.2±7.8 30.0±10.2 297.0±30.8

VLM+π0 31.4±10.2 27.8±10.6 322.3±31.9 33.2±17.1 16.7±16.7 281.8±18.1 28.2±7.3 15.0±8.0 382±12.6 14.8±10.2 10.0±9.5 374.7±25.3

AAWR learns to search efficiently. We find that π0 and VLM+π0 both search poorly - they tend to
take inefficient movements and fail to track the object. In Figure 11, we break down the failures of
the active perception policies in each task by recording the number of stages completed in the 3-point
rubric. Across all tasks, AAWR completes the task (all three stages) the most. AWR and BC often
spot the object, but do not consistently approach and fixate on the object.

In the Bookshelf tasks, AAWR first learns to zoom out of the scene to see multiple shelves, then
scans from bottom to up, and then approaches the target object once located. The AWR and BC
baselines follow a relatively fixed search path that approaches the shelf, but the policies failed to
efficiently scan the shelves. Even if they luckily glimpse the target object, they do not fixate on the
object, reducing their search score and π0 success rate. See Figure 5 for a visualization.

In the Shelf-Cabinet task, AAWR searches through the right bookshelf, before moving to the left
cabinet. Both AWR and BC do not thoroughly search the scene, preventing them from finding objects
placed in the left cabinet’s drawer.

In Complex, AAWR searches the bottom shelf, the right shelf, and then the left cabinet (see Figure 1).
See the website for comprehensive success and failure recordings of the policies over all tasks.

F.8 Dataset ablation on the Complex task.

The original demonstration dataset for Complex consists of 195 demonstrations, collected by four
different teleoperators. As a result, the dataset is quite diverse, suboptimal (success rate of 60%),
and potentially hard to learn behaviors from. We found that all policies trained on the initial dataset
struggled to reproduce certain behaviors, in particular moving to the left side of the scene, despite the
existence of such trajectories in the dataset.

Table 5: We ablate the demonstration dataset of the Complex task, and find that all approaches benefit
from a smaller but more optimal demonstration source. AAWR still outperforms all baselines.

Method Complex Complex (Clean Demos)

Search %
(↑)

π0 %
(↑)

Steps
(↓)

Search %
(↑)

π0 %
(↑)

Steps
(↓)

AAWR 54.8 20.0 121.0 73.2 50.0 43
AWR 13.2 10.0 217.0 33.2 40.0 67
BC 46.4 10.0 138.0 31.5 15.0 77
π0 29.6 20.0 252.5 29.6 20.0 252.5

Exhaustive 78.2 30.0 297.0 78.2 30.0 297.0
VLM+π0 14.8 10.0 374.7 14.8 10.0 374.7

We found clean data may be very important for learning active perception behavior. To prove this,
we perform a dataset ablation, by collecting a small 50 trajectory dataset from only one expert
teleoperator, who has a high success rate of 94%. As seen in Table 5, all approaches improve using a
more optimal dataset. AAWR still outperforms baselines, as it consistently approaches and fixates
on the objects, maximizing the success rate of π0 after handoff. In contrast, AWR and BC do not
approach and fixate target object as well as AAWR, often switching to π0 when the target object is
barely in view or in an odd location with respect to the gripper.
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Figure 12: Hardware configuration: Koch robot
with RGB-D camera in the back.

Figure 13: Koch robot picking up the target ob-
ject.

G Blind Pick Details

Task Definition In this real world experiment, the Koch robot must pick up a small rectangular
candy (1 cm × 1 cm × 2 cm). It operates blindly since it is given only the initial object position and
its own joint positions during the episode. Interactive perception is required to solve the task, since
the robot must sense when the object is gripped using its proprioception and then proceed to lift it up.

• Observation: Initial object position, and current robot joint positions.
– Partial observation: joint positions and initial Cartesian position of the target.
– Privileged observation: real time Cartesian position of the target at each timestep.

• Action Space: Cartesian position commands relative to robot base and gripper joint control.

Hardware and Scene Setup We utilized a Kochv1.1 robot[61], an open-source, low-cost, 5 DoF
robotic arm. The robot arm is operated via a Cartesian position controller respect to the robot base
frame. The forward and inverse kinematic computations is computed in a MuJoCo simulation model
synchronized with real robot’s joint positions in real-time.

To get the privileged cartesian position of the object, we set up a RealSense D455i RGBD camera
pointed towards the robot workspace. We calibrate the D455i using an ArUco marker, and then use
color segmentation to filter the point cloud to estimate the 3d position of the object on the table. The
target object is randomly placed within a 10cm square region in front of the robot at the start of each
trial.

Data Collection Data for the Koch robot experiment was collected by executing approximately
100 demonstration episodes, in total containing around 3000 transitions. The demonstrations were
gathered from a noisy hand-coded script, resulting in a success rate of approximately 20%.

Reward Design

1. Distance penalty The distance penalty is the reward term where we introduce privileged
information: the real-time position of the target object. Th reward term is computed by:

rt = −∥xt − x∗∥ ,
where xt is the current Euclidean position of the target object computed via color seg-
mentation and the depth camera, x is the current Euclidean position of the robot’s end
effector.

2. Grasp reward Using robot proprioception, we can determine if the gripper has a firm
grasp on an object. More specifically, if the gripper receives a closing command, but the
actuator cannot rotate the gripper to the commanded position, a firm grasp is detected by
proprioception. Therefore, we have:

rgrasp = kgrasp1{graspedt=True}
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3. Success reward A larger reward when the robot fully accomplishes the task: picking up the
target object and lifts it 7 cm above the robot’s base. In particular, the reward is given by:

rsuccess = kgrasp1{zee−zbase>0.07∧graspedt=True},

where zee is the z-axis position of the end effector, zbase is the z-axis position of the robot
base.

Baselines

1. BC: Behavior Cloning using offline successful demonstrations only.
2. AWR: Advantage Weighted Regression trained both offline and online.
3. AAWR: Asymmetric Advantage Weighted Regression leveraging privileged information

during offline and online training phases.

Metrics Performance is evaluated across 40 trials per method with the following metrics:

1. Grasp %: Percentage of trials in which the robot successfully grasped the object.
2. Pick %: Percentage of trials where the robot successfully grasped and lifted the object.

Online Training and Evaluation All methods underwent an initial 20,000-step offline pretrain-
ing phase followed by online fine-tuning using 1,200 transitions ( 40-50 episodes), each lasting
approximately 20 minutes.

During evaluation, for each trial, a policy has 30 timesteps to accomplish the task. Evaluation results
confirmed AAWR’s superior performance in grasping and picking success rates and demonstrated
notably effective retrying behaviors following failed initial attempts.

H Simulated Experimental Details

H.1 Camouflage Pick

The Camouflage Pick experiment requires a simulated Koch robot to pick up a tiny, hard-to-see
marble initialized in a 10×10 cm region. (see Figure 6).

• Observation Space:
– Partial observation: 3rd person 84×84 image of the robot and marble.
– Privileged observation: robot and marble positions using simulator state

• Action Space: Cartesian velocity of end effector frame and gripper position
• Reward Function: Sparse reward that gives +1 if the marble is in gripper and altitude is over 7cm.
• Demonstrations: We collect 100 demos using a hand-coded script. The script is not perfect and

gets around 30% success rate.
• Offline / Online budget: 20K offline, 80K online

We compare against symmetric AWR, the non-privileged version of AAWR, and BC. We train BC for
20,000 offline steps, periodically checkpointing and evaluating it, and report the highest performing
checkpoint. We pretrain AWR and AAWR for 20,000 offline steps. Then, we do online finetuning for
80,000 environment steps. While training, we periodically evaluate the policies by recording their
average success over 100 trials. The success metric is the sparse reward function.

We train all models with a batch size of 256, learning rate of 0.0001, and the Adam optimizer. For
online finetuning following [47], we use an update-to-date ratio of 1 , performing gradient updates
after every episode. For AWR and AAWR, we use an advantage temperature of 10.

We instantiate separate networks for the for the policy and value/critic networks. We use the same
encoder / head recipe for all models, following [47]. We use a CNN to process the RGB image into a
50-dimensional latent, and a MLP to process the privileged information into a 50-dimensional latent.
The latents are then fed into a MLP to get the output.
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As seen in Figure 4, AAWR outperforms baselines. AWR and BC frequently completely miss the
marble, while AAWR displays more accurate picking behavior. Even after picking, the small marble
frequently slips out of the grasp, making the success rate for all of the policies rather low. See the
website for videos.

H.2 Fully Observed Pick

The Fully Observed Pick experiment requires a simulated xArm6 robot to pick up a block. To make
the scene as fully observable as possible, we make the xArm6 robot invisible except for its grippers,
making occlusion of the object by the robot impossible (see Figure 6). The object is randomly
initialized in a 25× 25cm region in front of the arm.

• Observation Space:

– Partial observation: 3rd person 84×84 image of the robot and block.
– Privileged observation: robot and object positions using simulator state

• Action Space: Cartesian velocity of end effector frame and gripper position

• Reward Function: Sparse reward that gives +1 if the block is in gripper and altitude is over 10cm.

• Demonstrations: 100 demos using a hand-coded script. The script is not perfect and gets around
30% success rate.

• Offline / Online budget: 20K offline, 20K online

We use the same baselines, hyperparameters, network, and evaluation configuration as the Camouflage
Pick experiment. The only change is the offline / online budget - 20K steps offline, and 20K steps
online.

Figure 14: Fully Obs. Pick: AWR places the gripper near but not over the block.

Results are in Figure 4. AAWR effectively solves the task with near perfect success rate, learning
to accurately localize and grasp the object. AWR shows two failure modes. First, it struggles with
positioning the gripper over the block. It often places the gripper in front of the block, which looks
like a reasonable grasp from the camera angle, but is in reality quite off from the block (see Figure 14).
Next when it is able to grasp the block, it does not lift up the block. BC displays similar failure
modes. See the website for videos of the policies.

H.3 Active Perception Koch

In this task, we equip the simulated Koch robot with a wrist camera with a small field of view, and
task it to pick up a cube randomly initialized in a 10×20 cm region in front of it. (see Figure 6).

• Observation Space:

– Partial observation: Frame-stacked (past 3) grayscale wrist camera images of size 84× 84.
– Privileged observation: object positions using simulator state

• Action Space: Cartesian velocity of end effector frame and gripper position

• Reward Function: Sparse reward that gives +1 if the object is in gripper and altitude is over 7cm.
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• Demonstrations: We collect 100 demos using a hand-coded script. The scripted behavior uses
state information to command the robot to go over the block and pick it up. The script is not perfect
and gets around 30% success rate.

• Offline / Online budget: 100K offline, 900K online

We compare against other approaches that use privileged information. The first is Distillation [39, 62],
which features a two-stage training process. In the first stage, teacher acquisition, a privileged teacher
policy is trained on the collected successful demonstrations. In the second phase, distillation, the
teacher is distilled into a student policy. Following [62], the distillation phase is performed over
online rollouts from the student policy. In our setup, after the first stage, the teacher policy is able to
get near perfect success rate on the task, although note that it is using privileged information to do so.

The second baseline is a variational information bottleneck approach VIB [54] that trades off the RL
return with a KL penalty for accessing privileged information. Concretely, this penalty is implemented
by defining a privileged latent that comes from the posterior z ∼ p(· | o+), and constraining the
posterior to the unprivileged gaussian prior N (0, I) via KL divergence. During training, the policy
π(a | o, z) uses the latent from the privileged posterior, and during evaluation uses a latent sampled
from the unprivileged prior. The RL agent should learn to minimally use privileged information,
since usage will negatively impact its overall return. We conduct sweeps over different weights of the
KL term β = 0.01, 0.1, 0.5, 1, 10, report the performance of the best performing weight (β = 0.5).

All baselines are implemented in the same codebase, using the same encoder / head architecture
configuration as AAWR. We conduct sanity checks to make sure the baselines work, such as making
sure the privileged teacher and VIB policy with the privileged latent get high success rates.

As seen in Figure 4, only AAWR learns to do active perception by scanning the workspace, getting
near 100% success rate during evaluation time. The distilled student learns a suboptimal behavior
of just approaching the center of the workspace, because its privileged teacher never displays the
scanning behavior. VIB does poorly during evaluation with no access to privileged information, even
though it was trained to minimally use privileged information.
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