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Abstract
Recently, large-scale language-image generative
models have gained widespread attention and
many works have utilized generated data from
these models to further enhance the performance
of perception tasks. However, not all generated
data can positively impact downstream models,
and these methods do not thoroughly explore how
to better select and utilize generated data. On the
other hand, there is still a lack of research ori-
ented towards active learning on generated data.
In this paper, we explore how to perform active
learning specifically for generated data in the long-
tailed instance segmentation task. Subsequently,
we propose BSGAL, a new algorithm that online
estimates the contribution of the generated data
based on gradient cache. BSGAL can handle un-
limited generated data and complex downstream
segmentation tasks effectively. Experiments show
that BSGAL outperforms the baseline approach
and effectually improves the performance of long-
tailed segmentation.

1. Introduction
Data is one of the driving forces behind the development
of artificial intelligence. In the past, securing high-quality
data was a time-consuming and laborious task. Yet, a large
amount of high-quality data is crucial for a model to achieve
breakthrough performance. Therefore, many active learning
methods have emerged to explore the most informative sam-
ples from massive unlabeled data to achieve better model
performance with minimal annotation costs. Currently, the
rapid development of generative models has made it possible
to obtain massive amounts of high-quality data, including
long-tailed data, at a relatively low cost. In the field of
visual perception, there have been many works utilizing
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generated data to improve perception tasks, including clas-
sification (Azizi et al., 2023), detection (Chen et al., 2023),
and segmentation (Wu et al., 2023b). However, they often
directly use generated samples as mixed training data (Yang
et al., 2023) or as data augmentation (Zhao et al., 2023)
without exploring how to better filter and utilize the data for
downstream models.

On the other hand, existing data mining and filtering meth-
ods, such as active learning, have only been validated on
real data and are not suitable for generated data, as there
are differences between generated data and real data regard-
ing characteristics and usage scenarios. The differences are
mainly as follows: 1) Existing data analysis methods are
aimed at a limited data pool, while the scale of generated
data is almost infinite. 2) Active learning is often carried
out under a specified annotation budget. Thanks to the de-
velopment of conditional generative models, the annotation
cost of generated data can be almost negligible. However,
this results in an unclear and uncertain quality of annotation
in generated data compared to expert annotations. 3) There
are differences in the distribution between real data and gen-
erated data, while the target data of previous methods do
not have obvious distribution differences.

In response to the aforementioned challenges, we propose
a novel problem called “Generative Active Learning for
Long-tailed Instance Segmentation” (see Figure 1), which
investigates how to utilize generated data effectively for
downstream tasks. We focus on long-tailed instance seg-
mentation for three main reasons. First, data collection for
long-tailed categories is exceedingly arduous, and how to
do classification well is currently a focus in the segmenta-
tion field (Kirillov et al., 2023; Li et al., 2023a; Yuan et al.,
2024; ?; Zou et al., 2023; Liu et al., 2023). Given that
generated data has demonstrated the potential to alleviate
this difficulty (Zhao et al., 2023; Xie et al., 2023; Fan et al.,
2024), it is necessary to introduce generated data for long-
tail segmentation tasks. Second, the quality requirements for
generated data in long-tailed instance segmentation tasks
are very high, and not all generated data can have a pro-
moting effect. Therefore, it is necessary to further explore
how to screen generated data. Third, this task itself is very
comprehensive and challenging, which has more guiding
significance for migration to real-world scenarios.
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Figure 1. Comparison between Traditional Active Learning and
Generative Active Learning frameworks. (a) Traditional Active
Learning relies on a human oracle, therefore the annotation is
accurate but with a limited budget, so the model is required to
select the most informative unlabeled data. (b) Generative Active
Learning, which relies on a generative oracle, has an unlimited
labeled pool. However, the quality of annotation varies greatly, so
the model must judiciously accept data.

Here, our objective is to design a generative active learning
pipeline targeted at long-tailed image segmentation tasks.
Inspired by data-influence analysis methods (Ling, 1984;
Koh and Liang, 2017), we first use the change of the loss
value to provide an estimation of the contribution of a single
generated instance in the ideal case, as discussed in Sec-
tion 4.1. Employing the first-order Taylor expansion, we
introduce an approximate contribution estimation function
based on the gradient dot product, which avoids repeated
calculations on the test set in the offline setting. Based on
this technique, we conduct a toy experiment on CIFAR-
10 (Krizhevsky et al., 2009) in Section 5.1.1 along with
a qualitative analysis of each sample on the LVIS dataset
in Section 5.2.2, which preliminarily verify the feasibility
of our approach. Subsequently, in Section 4.2 we explore
how to apply this evaluation function to the actual segmen-
tation training process. We propose the Batched Streaming
Generative Active Learning algorithm (BSGAL), which al-
lows for online acceptance or rejection of each batch of
generated data. Additionally, based on the first-order gra-
dient approximation, we maintain a gradient cache based
on momentum updates to enable a more stable contribution
estimation. Finally, experiments are carried out on the LVIS
dataset, establishing that our method outperforms both unfil-
tered or CLIP-filtered counterparts under various backbones.
Notably, in the long-tailed category, there is an over 10%
improvement in APr (Gupta et al., 2019). In addition, We
conduct a series of ablation experiments to delve into the
particulars of our algorithmic design, including the choice
of loss, the way of contribution estimation, and the sam-
pling strategy of the test set. To summarize, our primary
contributions are detailed below:

• We introduce a novel problem called “Generative Ac-

tive Learning for Long-tailed Instance Segmentation”:
how to design an effective method focused on the suc-
cessful using generated data, aimed at enhancing the
performance of downstream segmentation tasks. Ex-
isting data analysis methods are neither directly appli-
cable to generated data nor have they been affirmed as
efficient for such data.

• We propose a batched streaming generative active learn-
ing method (BSGAL) based on gradient cache to es-
timate generated data contribution. This pipeline can
adapt to the actual batched segmentation training pro-
cess, handle unlimited generative data online, and ef-
fectively enhance the performance of the model.

• We carry out experiments on the LVIS dataset and
demonstrate that our method outperforms both unfil-
tered and CLIP-filtered methods. Our model surpasses
the baseline by +1.2 on APbox and +3.62 on APr. We
also conduct more comprehensive analysis experiments
on the design or hyperparameters of our method.

2. Related work
2.1. Generative Data Augmentation

Generative data augmentation (GDA) refers to using gener-
ative models to synthesize additional data for augmentation.
With the continuous improvement in the capabilities of gen-
erative models (Goodfellow et al., 2020; Saharia et al., 2022;
Rombach et al., 2022b), GDA has become a popular tech-
nique for improving model performance. Several works
use GDA in perceptual tasks such as classification (Feng
et al., 2023; Zhang et al., 2023; Azizi et al., 2023), detec-
tion (Zhao et al., 2023; Chen et al., 2023), and segmenta-
tion (Li et al., 2023b; Wu et al., 2023b;a; Xie et al., 2023).
Early works (Zhang et al., 2021; Li et al., 2022) involve
the use of generative models like Generative Adversarial
Networks (GANs) (Goodfellow et al., 2020) to generate
additional training data. With the evolution of diffusion
models, recent works (Azizi et al., 2023; Li et al., 2023b;
Wu et al., 2023b; Yang et al., 2023; Zhao et al., 2023) favor
using high-quality diffusion models such as Imagen (Sa-
haria et al., 2022) and Stable Diffusion (Rombach et al.,
2022b) for data generation. X-Paste (Zhao et al., 2023) has
proven the strategy of using copy-paste to be more effec-
tive than directly using generated data for mixed training,
and for the first time demonstrated that using generated
data can enhance the performance of segmentation models
on the long-tailed segmentation dataset LVIS (Gupta et al.,
2019). Therefore, we consider it as the baseline for our
work. However, while previous works have investigated the
effects of GDA on different tasks, there has been limited
exploration on how to better filter and utilize generative data
for downstream perception models.
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2.2. Active Learning and Data Analysis

Analysis of the information or contribution of data samples
to a model has been extensively studied long before the
advent of deep learning. Among them, two fields are most
relevant to our work, one is active learning, and the other is
training data influence analysis.

Active learning (Ren et al., 2021) mainly focuses on how
to explore the most informative samples from massive unla-
beled data to achieve better model performance with mini-
mal annotation costs. Generally speaking, active learning
can be divided into two categories. One is uncertainty-based
active learning, which measures the uncertainty of samples
by the posterior probability of the predicted category (Lewis
and Catlett, 1994; Lewis, 1995; Goudjil et al., 2018) or the
entropy of the predicted distribution (Joshi et al., 2009; Luo
et al., 2013), and then selects the most uncertain samples
for annotation. The other is diversity-based active learn-
ing, which is based on clustering (Nguyen and Smeulders,
2004) or core-set (Sener and Savarese, 2018) methods. They
attempt to mine the most representative samples from the
data to achieve minimal annotation costs. Recently, active
learning in deep learning also tends to adopt a batch-based
sample querying method (Ash et al., 2020), which is con-
sistent with our work. The most relevant work to our work
is VeSSAL (Saran et al., 2023), which does batched active
learning in a streaming setting and samples in a gradient
space. Another relatively related work (Mahapatra et al.,
2018) trains a GAN on medical images, using the GAN to
generate more data for active learning.

Training data influence analysis (Hammoudeh and Lowd,
2022) explores the relationship between training data sam-
ples and model performance, which can be divided into
retraining-based (Ling, 1984; Roth, 1988; Feldman and
Zhang, 2020) and gradient-based (Koh and Liang, 2017;
Yeh et al., 2018). The most typical retraining-based method
is Leave-One-Out (Ling, 1984; Jia et al., 2021), which mea-
sures the contribution of a sample to the model by removing
a sample from the training set and then retraining the model.
However, this method is obviously impractical for mod-
ern large-scale datasets. Therefore, many gradient-based
methods have emerged recently, which use gradients to
approximate the change of loss, such as using first-order
Taylor expansion or Hessian matrix, to estimate the influ-
ence of samples. The most relevant work to ours is TracIn
(Pruthi et al., 2020), which implements heuristic dynamic
estimation through first-order gradient approximation and
stored checkpoints. Unlike our work, the ultimate goal of
TracIn is to estimate and filter out mislabeled samples in the
training set through self-influence. Moreover, TracIn is only
applicable to small-scale classification datasets, it is difficult
to migrate to larger and complex tasks like segmentation,
let alone handle nearly infinite generated data. Our work

Algorithm 1 Pipeline for copy-paste baseline
Require: labeled real data R, generated data G, batch size

B, number of iterations T , pretrained segmentation
network f with parameters θ, maximum number of
paste instances K for each image

1: for t = 1 to T do
2: Sample a batch of real data Rb ∈ R

3: for Ir ∈ Rb do
4: Get a random number k from [0,K]
5: Sample k instances from G in a class-balanced way

to get Îr, Ŷr = Copypaste(Gb, Ir)
6: end for
7: Train f on this augmented data R̂b and update θ
8: end for
9: return: Final segmentation network f with parameters

θ

succeeds in designing an automated pipeline for utilizing
generated data to enhance downstream perception tasks.

Most importantly, the above work is all done on relatively
simple classification tasks, and only a few works have ex-
plored more complex perception tasks such as detection
(Shrivastava et al., 2016; Liu et al., 2021) and segmentation
(Jain and Grauman, 2016; Vezhnevets et al., 2012; Casanova
et al., 2020), but they are all aimed at real data. Our work
is the first to explore the generated data on the complex
perception task of long-tail instance segmentation.

3. Preliminary
Formally, in generated data augmented instance segmen-
tation tasks, we have a set of labeled real data R =
{(Ir,Yr)} and a set of generated data (with noisy label)
G = {(Ig,Yg)} where I is the image and Y is the label
for instance segmentation. Our goal is to effectively utilize
the existing data R and G to train a segmentation network
f parameterized by θ to achieve optimal performance on
unseen test data U = {(Iu,Yu)}, that is, minimize the loss
on the test set LU(θ) =

∑
(Iu,Yu)∈U ℓ(Iu,Yu; θ) , where ℓ

represents the loss of the segmentation network. The most
direct way to utilize the two types of data is to perform
joint training, and X-Paste proves that using the copy-paste
(Ghiasi et al., 2021) method to add instances from Ig to real
images Ir can achieve better results. Although our method
is universal, we build it upon a copy-paste baseline. For the
convenience of subsequent description, we record this opera-
tion as Copypaste such that Îr, Ŷr = Copypaste(Gb, Ir),
where Gb ∈ G is a subset sampled from G, Îr and Ŷr rep-
resent the image and the label obtained after pasting the
instance in Gb to Ir.

As shown in Algorithm 1, it displays the overall process of
our baseline, which does not consider the different impacts
each sample could impose on the model. In other words,
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our aim is to identify a function, ϕ(g, θ), capable of gauging
the contribution of any given generated sample g ∈ G to
the current model f . Then, via this scoring mechanism, we
can filter and retain the most helpful samples for the model
and simultaneously discard those that are useless or even
harmful to the model.

4. Our method
4.1. Estimation of Contribution in the Ideal Scenario

Here we first provide the ideal estimation of the contribution
of an independent sample. Assuming that a target test set U
is given, the contribution of g ∈ G to f can be measured by
calculating the change in the loss of f on U, that is,

ϕ(g, θ) = LU(θ)− LU(θ +∆θg) (1)

where ∆θg represents the one-step gradient update on g,
that is,

∆θg = −α∇θℓ(Ig,Yg; θ) (2)

where α represents the learning rate.

Moreover, we can employ the classic first-order Taylor ex-
pansion to approximate ϕ(g, θ), which has also been widely
used in previous work (Pruthi et al., 2020; He et al., 2023).
Note that, it is possible to use more sophisticated methods
here, e.g., Koh and Liang (2017).

Lemma 4.1. The loss of a network f on a dataset U can be
approximated by a first-order approximation:

LU(θ +∆θ) = LU(θ) + ∆θT∇θLU(θ) +O(∆θ2) (3)

So the contribution of g to f can be approximated by:

ϕ(g, θ) ≈ ϕa(g, θ) = α∇θℓ(Ig,Yg; θ)
T∇θLU(θ) (4)

Remark 4.2. Advantages of first-order approximation:
In the case of a fixed test set U, it eliminates the need for
multiple forward computations on U, requiring only one
forward computation and one backward propagation. so it
brings the possibility expand the scale of U. Besides, the
fact that there is no need to update the weights makes our
subsequent designs more flexible.
Remark 4.3. (Test set) In real-world scenarios, the test set
U is typically unknown. A straightforward solution might
be to reserve a part of the training set R as an unseen test
set. However, this approach poses issues for datasets with
significant category imbalance, such as LVIS, where certain
long-tailed categories only appear once in the training set.
In light of this, we resort to a strategy that involves sampling
a subset of R to serve as the test set U for each iteration.
See Section 5.2.2 for more details.

4.2. Batched Streaming Generative Active Learning

While we have proposed an ideal estimation of contribution
in the preceding section, it is not directly transferable to a
real segmentation training process. The specific reasons are
as follows:

1. In the previous discussion, we posit that g ∈ G is an
independent sample, yet we actually paste multiple
instances from G to Ir. This results in reciprocal influ-
ences among these instances, as well as interactions
with Ir.

2. We conduct batch data training, eliminating the possi-
bility of estimating each instance individually, as this
would provoke excessive computation.

3. Our model undergoes constant updates. Therefore,
even the same sample’s contribution to the model
varies under different training stages. Furthermore,
given the near-infinite data pool, the entire training
process closely resembles a streaming process(Saran
et al., 2023). After each data entry, we must decide
whether to include this data in the present update.

For the first and second points, we redefine the contribution
function ϕ(g, θ) so that it can simultaneously consider the
mutual influence between multiple instances and the real
image Ir, and can also adapt to batch data training.

Definition 4.4. Specifically, for a certain iteration t, we
introduce a batch of data Rb and the corresponding instances
Gb to be pasted. We will paste Gb to each image in Rb in
a predefined random way to get R̂b = Rb ⊕ Gb. Then our
contribution function ϕ(Gb,Rb, θ) can be defined as

ϕ(Gb,Rb, θ) = LU (θ +∆θRb
)− LU (θ +∆θ

R̂b
) (5)

where ∆θ
R̂b

represents a one-step gradient update on R̂b:

∆θ
R̂b

= −α∇θLR̂b
(θ) (6)

Likewise, ∆θRb
represents a one-step gradient update on

Rb.

In response to the third point, based on Definition 4.4, we
can propose an algorithm called Batched Streaming Genera-
tive Active Learning (BSGAL), as shown in Algorithm 2.

The basic idea is to calculate the loss and gradient of the
model on R̂b and Rb respectively and use the two updated
models to calculate the loss on Ub. Then measure the con-
tribution of Gb with the difference of two losses. Ultimately,
we decide whether to accept this batch of generated data.

As pointed out in Remark 4.2, there are some advantages of
using one-order approximation. Building upon Lemma 4.1,

4



Generative Active Learning for Long-tailed Instance Segmentation

Algorithm 2 Batched streaming generative active learning
(BSGAL)
Require: labeled real data R, generated data G, batch size

B, number of iterations T , pretrained segmentation
network f with parameters θ, maximum number of
paste instances K for each image, one step learning rate
α, contribution threshold τ

1: for t = 1 to T do
2: Sample a batch of real data Rb ∈ R with batch size

Baccept.
3: for (Ir,Yr) ∈ Rb do
4: Get a random number k from [0,K]
5: Sample k instances in a class-balanced way from

G to get Îr, Ŷr = Copypaste(Gb, Ir)
6: end for
7: Merge all the augmented image and label pairs to get

R̂b = Rb ⊕ Gb

8: Calculate loss on Rb and R̂b and get the gradient
∇θLRb

(θ) and ∇θLR̂b
(θ)

9: Sample a batch of data Ub ∈ R as test set with batch
size Btest

10: Calculate the contribution ϕ(Gb,Rb, θ) using Equa-
tion (5)

11: if ϕ(Gb,Rb, θ) > τ then
12: Train f on this augmented data R̂b and update θ
13: else
14: Train f on this real data Rb and update θ
15: end if
16: end for
17: return: Final segmentation network f with parameters

θ

we can further approximate ϕ(Gb,Rb, θ) as

ϕ(Gb,Rb, θ) ≈ α∇θ(LR̂b
(θ)− LRb

(θ))T∇θLU (θ) (7)

So the Algorithm 2 can be further simplified by using Equa-
tion (7) in Line 10.
Remark 4.5. (Batch size) It is crucial to note that three dis-
tinct batch sizes here, one is the batch size Btrain for model
update, one is the batch size Baccept for calculating the data
contribution to determine whether to accept, and the other
is the batch size Btest of the test set formed by sampling.
These three are not necessarily identical. Ideally, a smaller
Baccept is preferable – when the batch size is reduced to 1,
it allows for a more accurate per-image estimation. In the
actual implementation process, we execute this algorithm
independently on each GPU, except for summing up all
losses when updating the model. Consequently, the batch
size Btrain = Baccept ×#GPU .

Usually, due to the limitation of GPU memory, Ub can only
take a very small batch size Btest, which will lead to the
instability and inaccuracy of the estimation of ϕ(Gb,Rb, θ).
Thanks to the one-order approximation, we can consider

Algorithm 3 Contribution estimation based on gradient
cache
Require: gradient ∇θLRb

(θ), gradient ∇θLR̂b
(θ), mo-

mentum coefficient β, current iteration t, model pa-
rameters θ, sampled test set Ub

1: Calculate loss on Ub to get LUb
and get the grad

∇θLUb
(θ)

2: if t == 1 then
3: Initialize grad cache C = ∇θLUb

(θ)
4: else
5: Update the grad cache with the grad of current batch

C = βC+ (1− β)∇θLUb
(θ)

6: end if
7: Calculate the contribution of Gb as ϕ(Gb,Rb, θ) =

α∇θ(LR̂b
(θ)− LRb

(θ))TC

8: return: ϕ(Gb,Rb, θ)

more test data when calculating ϕ(Gb,Rb, θ). Specifically,
we can keep a grad cache to record the grad obtained on
other batches in the previous iterations. Every time we get
the current batch ∇θLUb

(θ), we will update the grad cache
in a momentum way. Then when calculating ϕ(Gb,Rb, θ),
we use the grad in the grad cache to replace the grad of the
current batch, which is equivalent to expanding the scale of
Ub, thereby achieving a more stable estimation.

However, this batch size Btest is not the bigger the better.
Our subsequent experiments prove that if we use the grad
cache to approximate the entire training set R as Ub, it will
lead to a decrease in the performance of the model. We
believe that this is caused by overfitting. When we approxi-
mate the entire training set R as Ub, we can only screen out
samples similar to the training set R, thereby inhibiting the
diversity of the data. Diversity is also an important factor
considered in many active learning works. We believe that
the design here parallels the idea of diversity-based active
learning (Sener and Savarese, 2018; Geifman and El-Yaniv,
2017) using a core-set, with the only difference being that
core-set methods mine the most representative samples from
unlabeled data, while we randomly sample some from the
labeled real data to act as a kind of “core-set”. In our task,
the diversity of generated data is particularly crucial for
long-tailed categories, which can effectively bridge the gap
between scarce training data and real-world distribution.
Therefore, we need to balance the stability of the estimation
and the diversity of the data. Thus, we use the momentum
method to update the grad cache, which can ensure the sta-
bility of the estimation to a certain extent, and at the same
time will not inhibit the diversity of the data.

The modified contribution estimation algorithm for the final
BSGAL is shown in Algorithm 3.
Remark 4.6. (Extension to offline learning) Offline learn-
ing needs to satisfy the following two assumptions: 1. The
generated data is limited or small in scale. 2. The model pa-
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rameters will not change significantly during the fine-tuning
process. Our method can also be easily extended to the case
of offline learning. Specifically, we only need to use a fixed
model, and then use the entire dataset R as the test set U.
Forward and backward once on the entire dataset, we can
get the gradient ∇θLU(θ) for the entire dataset. Then we
can use this gradient to calculate the contribution of each
generated sample. Using Equation (4), we can estimate the
contribution of each generated sample.

5. Experiments
First, we perform some analytical experiments in an offline
setting(as discussed in Remark 4.6) to verify the feasibility
of our method and also to facilitate a better understanding of
our method for readers. Then, we conduct the main experi-
ments under the online setting, compared with our baseline.
Key ablation studies are also conducted to substantiate the
efficiency of our method. Detailed information about the
implementation can be found in Appendix A.

5.1. Offline Setting

5.1.1. CIFAR-10

In this section, we conduct a toy experiment on CIFAR-10
(Krizhevsky et al., 2009) to verify our method. The original
CIFAR-10 dataset comprises five splits within the training
set, each containing 10,000 images, and a test set equally
housing 10,000 images. We use the first split in the training
set as our training set R, and the remaining 4 splits are added
with noise of different scales (40,100,200,400) to simulate
the generated data G. We use the model trained only on
the first split to perform offline mining and then use 1000
images in the first split as test set U. By estimating the
contribution of each sample, we can draw the distribution
of the contribution of samples on different splits.

As shown in Figure 2, it is observable that with the esca-
lating scale of noise, the distribution of contributions pro-
gressively shifts to the left. This indicates that excessive
noise tends to negatively impact the model. Note that the
split with a noise of 0 is our training set, so we can see that
the contribution values of these samples are concentrated
around zero. In other words, these samples can no longer
bring positive effects to the model because they have been
fully utilized in previous training. This observation is con-
sistent with some previous active learning work (Cai et al.,
2013; Ash et al., 2021; Saran et al., 2023), where they also
estimate the amount of information or the difficulty level
of samples through gradients. However, they do not con-
sider the positive or negative contributions but only select
samples with larger absolute values. We further conduct
quantitative experiments, as shown in Table 1, to prove that
using our method to select data can effectively improve the
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Figure 2. The distribution of contributions under different noise
scales.

Table 1. Using our method to select samples brings improvement
to the model.

Training set Accuracy (avg ± std)

only R 86.28 ± 0.55
R + all G 86.71 ± 0.21
R + selected G 87.61 ± 0.20

performance of the model.

5.1.2. LVIS

We further carry out offline experiments on the generated
data of LVIS categories, qualitatively examining the efficacy
of our method. We calculate the gradient ∇θLU(θ) pre-
emptively on the LVIS training set with a trained model.

This gradient then serves to estimate each instance’s contri-
bution. Subsequently, we rank these instances in decreasing
order of their contribution, facilitating per-image analysis.
As an illustrative example, we use a ‘bun’ category from
the LVIS, because we discover that Stable Diffusion does
not perform optimally within this category, often leading
to confusion between ‘bun’ and ‘bunny’, thereby resulting
in the generation of ambiguous data. As depicted in Fig-
ure 3, it can be observed that the instances having the most
significant contributions are nearly unambiguous, whereas
the instances with minimal contributions are mostly incor-
rect, resulting in rabbit images being generated. Therefore,
through our method, we can effectively filter out the gener-
ated data with ambiguity.

To verify the indispensability of online learning, we first use
the offline method to filter the generated data for training
and compare it with our baseline. As shown in Figure 4, the
offline method can only bring a slight improvement to the
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Table 2. Main results on LVIS. “+CLIP” means using CLIP to filter the generated data.

Method Backbone AP box APmask AP box
r APmask

r AP box
c APmask

c AP box
f APmask

f

Baseline R50 34.20 30.39 24.33 22.21 33.23 29.57 39.63 34.89
Baseline + CLIP R50 34.35 30.70 25.99 24.38 32.83 29.41 39.71 34.92
Ours R50 35.40 31.56 27.95 25.43 34.14 30.56 40.07 35.37

Baseline Swin-L 49.57 43.85 44.87 39.66 49.74 44.64 51.46 44.82
Baseline + CLIP Swin-L 49.80 44.51 45.28 40.62 49.33 44.96 52.30 45.72
Ours Swin-L 50.47 44.85 47.55 42.37 50.43 45.47 51.79 45.26

best
sample

worst
sample

image annotation

Figure 3. The best and worst samples found using our contribution
estimation function for a LVIS class ‘bun’.

final model performance. In addition, in the early stage of
model training, this performance improvement is still quite
obvious, but with the training process, this performance
improvement gradually diminishes. We conjecture that this
trend is likely due to the offline contribution estimation’s
reliance on the initial model, and as the model undergoes
training, the parameters change significantly, which leads to
the inaccuracy of the offline contribution estimation. There-
fore, the necessity arises for online contribution estimation.

5.2. Online Setting

5.2.1. MAIN RESULTS

To validate the effectiveness of our method in handling long-
tailed segmentation tasks, we perform experiments on the
LVIS (Gupta et al., 2019) dataset. A strong baseline —— X-
Paste (Zhao et al., 2023), is compared with our method. We
further examine the impact of the usage (or non-usage) of
CLIP (Radford et al., 2021), as mentioned in their paper, for
filtering generated data. Given that X-Paste does not open
source the generated data used, we have re-implemented the
data generation pipeline and generated thousands of images
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Figure 4. Performance of the model under different iterations.

for each category of LVIS. The specific generation details
are shown in the appendix. In addition, original X-Paste also
uses retrieval to obtain extra real data and uses Copy-Paste
to augment the real training data. Since the primary focus
of our methodology is on the selection of generated data,
to mitigate the influences from those additional factors, we
choose to refrain from using these tricks.

As shown in Table 2, following X-Paste, the segmentation
architecture we used is CenterNet2 (Zhou et al., 2021), and
we test two different backbones, ResNet50 (He et al., 2016)
and Swin-L (Liu et al., 2022). It can be observed that the
impact of filtration via CLIP is rather subtle, with the AP box

witnessing an increment of merely 0.1 ∼ 0.2 points. Fur-
thermore, we also find that CLIP filtering shows a more sig-
nificant improvement on APmask. Conversely, our method
continues to deliver substantial improvements across all cat-
egories when contrasted with the use of CLIP filtration. This
improvement is especially notable for long-tailed categories,
AP box

r increases by 2 ∼ 2.3, and APmask
r increases by 1 ∼

1.7.

5.2.2. ABLATION

Table 3. Comparison of different Ltest on contribution estimation.

Loss AP box APmask AP box
r APmask

r

cls 35.24 31.49 28.14 25.74
cls stage0 34.94 31.23 26.34 24.27

all 34.98 30.94 26.91 23.87
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Table 4. Comparison of different algorithms we designed.

Method AP box APmask AP box
r APmask

r AP box
c APmask

c AP box
f APmask

f

Loss estimate (Algorithm 2) 35.11 31.29 27.47 25.10 33.55 30.14 40.20 35.30
Grad estimate (Equation (7)) 35.24 31.49 28.14 25.74 33.67 30.31 40.12 35.34

Grad cache (Algorithm 3) 35.40 31.56 27.95 25.43 34.14 30.56 40.07 35.37
Grad cache (global) 35.07 31.38 26.84 24.82 33.74 30.36 40.18 35.40

Loss. The algorithm in Section 4.2 deploys two distinct
types of loss. First is the loss used to train and finally update
the model, Ltrain, which is subject to the original network
design. In our case, We utilize the loss in CenterNet2 (Zhou
et al., 2021). For the instance segmentation task, the actual
Ltrain is composed of multiple tasks and multiple stages of
Loss. Specifically, it can be written in the following form1:

Ltrain =

S∑
i=1

(Li
cls + Li

box + Li
mask) (8)

where S represents the number of stages, Li
cls, Li

box, Li
mask

represent the classification loss, regression loss, and seg-
mentation loss of the i-th stage, respectively.

Second is the test loss Ltest used to estimate the contri-
bution, which does not need to be consistent with Ltrain.
Considering that the main purpose of introducing generated
data is to improve classification on long-tailed categories,
Lcls may play a dominant role. Thus, we compare the ef-
fects of different Ltest on contribution estimation in Table 3.

In this experiment, we are based on Equation (7), where
“cls” denotes using all stages of Lcls “cls stage0” denotes
only using the first stage of Lcls, and “all” denotes using
all Loss in Ltrain. The findings indicate that if only the
Lcls of first stage is used, the efficiency of contribution
estimation diminishes. Additionally, utilizing all losses
within Ltrain does not surpass the performance of solely
exploiting Lcls, which also verifies our assumption that Lcls

dominates in contribution estimation, and other losses may
cause interference. Therefore, our final decision is to rely
singularly on Lcls for estimating contribution.

Contribution estimation. We are interested in whether
the three algorithms proposed in Section 4.2 are effective.
Therefore, we conduct comparative experiments here, and
the specific results are presented in Table 4.

We observe that there’s not a significant difference in per-
formance among the three algorithms, all of which demon-
strated efficacy when compared to the baseline. Overall,
Algorithm 3 has the best effect, which is also the algorithm
we finally adopted. Hence, our proposed method of using
a larger test set Ub, ensuring a smoother and more stable
contribution estimation by updating the grad cache with

1In CenterNet2, there is only one stage for mask loss. In
addition, there are some other losses, which are not listed for
simplicity.

momentum, is proven effective. Compared with Grad esti-
mate and Loss estimate, it can be proved that the first-order
approximation will not bring significant performance loss.

As discussed in Section 4.2, there exists a trade-off between
the stability of the estimation and the diversity of the filtered
data. To verify this, we additionally added the fourth ex-
periment, where we use global average pooling to estimate
the contribution. Specifically, We modify the original up-
date method C = βC+ (1− β)∇θLUb

(θ) to be related to
the current iteration t, C = t−1

t C+ 1
t∇θLUb

(θ). That is,
C = 1

t

∑t
i=1 ∇θiLUi

b
(θi).

However, this modification incurs a slight performance drop.
We believe that this is due to enforcing the generated data to
align with the distribution of the entire training set and sup-
pressing the diversity of the data. For long-tailed categories
with relatively few real data, this diversity is quite signifi-
cant. That’s why using global average pooling, AP box

r and
APmask

r have a significant drop, while APmask
f exhibits

an improvement. Correspondingly, Grad estimate, which
solely uses the current batch to estimate the contribution of
the test set, is most conducive to ensuring data diversity, so
the performance of AP box

r and APmask
r is the best.

Table 5. Comparison of different sampling strategies for Ub.

Strategy AP box APmask AP box
r APmask

r

all classes 35.21 31.38 26.75 24.21
pasted classes 35.40 31.56 27.95 25.43
all images 35.15 31.26 26.59 23.75

Sampling strategy. We compare three different sampling
test set strategies: 1. Sample from all classes: Sample
uniformly from all categories, and then sample uniformly
from the image pool corresponding to the sampled category.
2. Sample from pasted classes: Sample uniformly from the
categories in the generated data Gb used in this batch, and
then sample uniformly from the image pool corresponding
to the sampled category. 3. Sample from all images: Sample
uniformly from all image pools.

As indicated in Table 5, it is evident that the approach of uni-
formly sampling from pasted categories delivers the most
effective performance, thus we finalize on this sampling
strategy. Especially in AP box

r and APmask
r , the improve-

ment of this sampling strategy is the most obvious. Com-
pared with sampling from all images, sampling from class
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Table 6. Comparison of random batch-level dropout and our
method.

Method AP box APmask AP box
r APmask

r

Random Dropout 34.73 30.96 25.05 22.69
Our method 35.40 31.56 27.95 25.43

can better ensure the balance of categories, thereby enhanc-
ing the impact on rare categories. As for the comparison
with sampling from all classes, sampling from pasted classes
is more directional, so the estimation of the contribution is
more accurate, leading to a boost in overall performance.

Random batch-level dropout. Our algorithm is essentially
to accept or reject the generated data on a batch-by-batch
basis. Therefore, when the contribution evaluation of the
data is completely invalid, our algorithm degenerates into
a random batch-level dropout. To verify that it is not this
random dropout that brings performance improvement, we
conduct a random batch-level Dropout experiment with the
same acceptance rate. Table 6 shows that although random
dropout will also bring a slight improvement, compared
with our method, there is still a very obvious gap, which
shows that the improvement brought by our method is not
entirely due to random dropout.

6. Conclusion
In this paper, we propose a new problem, how to design
an effective method to realize the effective screening and
utilization of generated data, to further improve the perfor-
mance of downstream perception tasks. To address this
problem, we propose a gradient-based generated data con-
tribution estimation method and embed it into the actual
training process. We design a complete pipeline that can
automatically generate data to improve the performance of
downstream perception tasks. Experiments prove that our
method can achieve better performance than unfiltered or
CLIP-filtered methods on long-tailed segmentation tasks.
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A. Implementation Details
A.1. Dataset

We choose LVIS (Gupta et al., 2019) as the dataset for our experiments. LVIS is a large-scale instance segmentation
dataset, comprising approximately 160,000 images with over 2 million high-quality instance segmentation annotations
across 1203 real-world categories. The dataset is further divided into three categories: rare, common, and frequent, based on
their occurrence across images. Instances marked as ‘rare’ appear in 1-10 images, ‘common’ instances appear in 11-100
images, whereas ‘frequent’ instances appear in more than 100 images. The overall dataset exhibits a long-tail distribution,
closely resembling the data distribution in the real world, and is widely applied under multiple settings, including few-shot
segmentation (Liu et al., 2023) and open-world segmentation (Zhu et al., 2023; Wang et al., 2022). Therefore, we believe
that selecting LVIS allows for a better reflection of the model’s performance in real-world scenarios. We use the official
LVIS dataset splits, with about 100,000 images in the training set and 20,000 images in the validation set.

A.2. Data Generation

Our data generation and annotation process is consistent with Zhao et al. (2023), and we briefly introduce it here. We first
use StableDiffusion V1.5 (Rombach et al., 2022a) (SD) as the generative model. For the 1203 categories in LVIS (Gupta
et al., 2019), we generate 1000 images per category, with image resolution 512 × 512. The prompt template for generation is
“a photo of a single {CATEGORY NAME}”. We use U2Net (Qin et al., 2020), SelfReformer (Yun and Lin, 2022), UFO (Su
et al., 2023), and CLIPseg (Lüddecke and Ecker, 2022) respectively to annotate the raw generative images, and select the
mask with the highest CLIP score as the final annotation. To ensure data quality, images with CLIP scores below 0.21 are
filtered out as low-quality images. During training, we also employ the instance paste strategy provided by Zhao et al. (2023)
for data augmentation. For each instance, we randomly resize it to match the distribution of its category in the training set.
The maximum number of pasted instances per image is set to 20.

In addition, to further expand the diversity of generated data and make our research more universal, we also use other
generative models, including DeepFloyd-IF (Shonenkov et al., 2023) (IF) and Perfusion (Tewel et al., 2023) (PER), with
500 images per category per model. For IF, we use the pre-trained model provided by the author, and the generated images
are the output of Stage II, with a resolution of 256×256. For PER, the base model we use is StableDiffusion V1.5. For
each category, we fine-tune the model using the images croped from the training set, with 400 fine-tuning steps. We use the
fine-tuned model to generate images.

Table 7. Comparison of different generated data.

Method Generated Data AP box APmask AP box
r APmask

r AP box
c APmask

c AP box
f APmask

f

Baseline SD 34.00 30.33 24.48 22.65 32.71 29.27 39.62 34.89
Baseline SD + IF 34.15 30.39 26.12 23.76 32.40 28.97 39.62 34.89
Baseline SD + IF + Per 34.20 30.39 24.33 22.21 33.23 29.57 39.63 34.89
BSGAL SD 34.82 31.21 26.76 24.84 33.28 30.01 40.08 35.34
BSGAL SD + IF 35.13 31.34 26.83 24.32 33.92 30.57 40.13 35.29
BSGAL SD + IF + Per 35.40 31.56 27.95 25.43 34.14 30.56 40.07 35.37

We also explore the effect of using different generated data on the model performance (see Table 7). We can see that
based on the original StableDiffusion V1.5, using other generative models can bring some performance improvement, but
this improvement is not obvious. Specifically, for specific frequency categories, we found that IF has a more significant
improvement for rare categories, while PER has a more significant improvement for common categories. This is likely
because IF data is more diverse, while PER data is more consistent with the distribution of the training set. Considering that
the overall performance has been improved to a certain extent, we finally adopt the generated data of SD + IF + PER for
subsequent experiments.

A.3. Model Training

Follow Zhao et al. (2023), We use CenterNet2 (Zhou et al., 2021) as our segmentation model, with ResNet-50 (He et al.,
2016) or Swin-L (Liu et al., 2022) as the backbone. For ResNet-50, the maximum training iteration is set to 90,000 and the
model is initialized with weights first pretrained on ImageNet-22k then finetuned on LVIS (Gupta et al., 2019), as Zhao
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Figure 5. Model performances when using different amount of generated data.

et al. (2023) did. And we use 4 Nvidia 4090 GPUs with a batch size of 16 during training. As for Swin-L, the maximum
training iteration is set to 180,000 and the model is initialized with weights pretrained on ImageNet-22k, since our early
experiments show that this initialization can bring a slight improvement compared to the weights trained with LVIS. And we
use 4 Nvidia A100 GPUs with a batch size of 16 for training. Besides, due to the large number of parameters of Swin-L, the
additional memory occupied by saving the gradient is large, so we actually use the algorithm in Algorithm 2.

The other unspecified parameters also follow the same settings as X-Paste (Zhao et al., 2023), such as the AdamW (Loshchilov
and Hutter, 2017) optimizer with an initial learning rate of 1e−4.

A.4. Data Amount

In this work, we have generated over 2 million images. Figure 5 shows the model performances when using different amount
of generated data(1%,10%,40%,70%,100%). Overall, as the amount of generated data increases, the performance of the
model also improves, but there is also some fluctuation. Our method is always better than the baseline, which proves the
effectiveness and robustness of our method.

A.5. Contribution Estimation

As mentioned in Section 4.2, we use ∇θ(LR̂b
(θ)− LRb

(θ))T∇θLUb
(θ) to estimate the contribution of Gb.

Here we actually consider both the direction and the magnitude of the gradient. It is worth mentioning that many previous
works actually mainly consider the magnitude of the gradient, for example, the data with large gradient magnitude has more
information and should be annotated (Cai et al., 2013) or the wrong outlier data should be filtered (Pruthi et al., 2020).

If we only consider the direction, it is equivalent to normalizing each gradient first, and then calculating, then our calculation

formula becomes Gb =
∇θ(LR̂b

(θ)−LRb
(θ))T∇θLUb

(θ)

∥∇θ(LR̂b
(θ)−LRb

(θ))∥2∥∇θLUb
(θ)∥2

.

Thus, we essentially calculate the cosine similarity. Then we conducted an experimental comparison, as shown in Table 8,
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Table 8. Comparison of using grad normalization or not.

Normalize AP box APmask AP box
r APmask

r AP box
c APmask

c AP box
f APmask

f

× 35.05 31.27 26.78 24.34 33.79 30.32 40.10 35.39√
35.40 31.56 27.95 25.43 34.14 30.56 40.07 35.37

Figure 6. Illustration of noisy images exhibiting various noise scales and categories. Each row, from top to bottom, signifies different
noise levels, specifically 0, 40, 100, 200, and 400, respectively. All images are sourced from the CIFAR-10 dataset.

we can see that if we normalize the gradient, our method will have a certain improvement. In addition, since we need to keep
two different thresholds, it is difficult to ensure the consistency of the acceptance rate. So we adopt a dynamic threshold
strategy, pre-set an acceptance rate, maintain a queue to save the contribution of the previous iter, and then dynamically
adjust the threshold according to the queue, so that the acceptance rate stays at the pre-set acceptance rate.

A.6. Toy Experiment

The following are the specific experimental settings implemented on CIFAR-10: We employed a simple ResNet18 as the
baseline model and conducted training over 200 epochs, and the accuracy after training on the original training set is 93.02%.
The learning rate is set at 0.1, utilizing the SGD optimizer. A momentum of 0.9 is in effect, with a weight decay of 5e-4. We
use a cosine annealing learning rate scheduler. The constructed noisy images are depicted in Figure 6. A decline in image
quality is observed as the noise level escalates. Notably, when the noise level reaches 200, the images become significantly
challenging to identify. For Table 1, we use Split1 as R, while G consists of ‘Split2 + Noise40’, ‘Split3 + Noise100’, ‘Split4
+ Noise200’,

A.7. A Simplification Only Forward Once

In Section 4.2, we actually need one more forward on Rb compared to our baseline. However, we can simplify it to only one
forward. The specific reason is that as mentioned in Table 3, we only use the classification loss, Lcls this loss is actually the
sum of the cross entropy loss of each instance, and whether this instance is generated or real is known during the training
process. so the loss can be further distangled as Lcls = Lreal +Lgen +Lneg , where Lreal is the loss of real instances, Lgen

is the loss of generated instances, and Lneg is the loss of negative instances. Consequently, we can use ∇θLgen to replace
∇θ(LR̂b

(θ)− LRb
(θ))
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B. More ablations
Momentum Coefficient β. In Algorithm 3, we introduce a momentum coefficient β to update the grad cache. Here we
explore the effect of different β on the model performance. A larger beta signifies a greater focus on global information,
while a smaller beta indicates a higher attention to the current test batch Ub. Detailed results are presented in Table 9.
Observations suggest that when β is 0.1, the performance is the best, which is also the β we finally adopted.

Table 9. Comparison of different β for updating grad cache.

β AP box APmask AP box
r APmask

r

0.05 35.14 31.24 27.24 24.50
0.10 35.40 31.56 27.95 25.43
0.30 34.84 31.18 26.12 24.32
0.50 34.87 31.03 25.80 22.88
0.80 34.50 30.72 24.37 21.89

Contribution threshold τ . In Algorithm 3, we incorporate a contribution threshold τ , intended for filtering the produced
data. Here we investigate the impact of varying values of τ on the model’s performance. The larger τ implies a stricter
filtration of the generated data, while the smaller τ signifies a looser filtering of the generated data. The specific results are
shown in Table 10. We can see the performance is optimal when τ equals -0.05, which is also the τ we eventually settle on
for our final model.

Table 10. Comparison of different τ for filtering generated data.

τ AP box APmask AP box
r APmask

r

-0.10 34.68 30.80 26.60 24.40
-0.05 35.40 31.56 27.95 25.43
0.00 34.72 30.98 24.96 22.79
0.05 34.29 30.55 23.75 21.71

Online learning vs. Offline learning We compare online learning and offline learning under different iterations. The result
is shown in Figure 9.

C. Discussion
C.1. Comparing with existing methods

Table 11. Comparing with existing methods

Method Data Scale Downstream Cost Quality Domain Diff

Traditional Active Learning Limited
√

High
√ √

Generated Data Filtering Methods Unlimited × Low × ×
Generative Active Learning Unlimited

√
Low ×

√

We’ve drawn the Table 11, analyzing our setting compared to previous active learning or generative data filtration methods.
We’ve conducted analysis from aspects of data scale, whether it’s oriented towards downstream tasks, label quality, labeling
costs, and whether there exists domain difference (between generated and real data).

C.2. Analysis of the computational cost

We recorded the training duration and GPU memory usage for training 90,000 iterations with 4 Nvidia 4090 GPUs. It can
be observed that our method based on Grad cache increases the GPU memory usage compared to Loss estimate, but it
significantly reduces the training time. Compared with our Baseline, the additional time and memory overheads are within
an acceptable range.
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Table 12. Analysis of the computational cost of different algorithms

Methods Total Time Max Memory per GPU

Baseline 17h 6534M
Loss estimate (Algorithm 2) 31h 7114M
Grad cache (Algorithm 3) 21h 9836M

C.3. Future work

We hope that this paper can provide more inspiration to the academic community on how to utilize generated data and how
to design better data analysis methods. It should be pointed out that our method is not limited to specific tasks or specific
model architectures. In this work, for the convenience of comparison with the baseline, we use the same dataset and model
architecture as the baseline. We hope that in future work, we can further verify it on more tasks and model architectures. At
the same time, we can also design more flexible and controllable evaluation functions to better utilize generated data. For
example, in this paper, when filtering the data with a gradient, there is a trade-off between diversity and consistency. For rare
categories in the data, due to the small number of real data itself, diversity should be considered more, while for common
categories, due to the large number of real data itself, consistency should be considered more. Therefore, in the future, we
can consider adopting a dynamic strategy for different categories. In the long run, our current research is done under the
premise of a fixed generative model. A more ideal situation is to involve the generative model in this loop, further optimizing
the generative model based on the downstream model’s feedback, to achieve a true “generative model in the loop”.

D. Visualization
D.1. Selected and Discarded Samples

We show some samples selected and discarded by our method in Figure 7. Our proposed method is able to select high-quality
samples (best sample) while filtering out low-quality samples (worst sample), which can effectively improve the data learning
efficiency of the model. For example, our method is capable of identifying accurately segmented data for applesauce. In
cases where applesauce is not present in the generated raw image or is not encompassed within the segmentation mask, our
method can discard such samples. For alarm clocks, our method tends to choose images with more complex appearances.

D.2. Instance Augmentation

We present some augmented data in Figure 8. By randomly pasting generated samples onto the LVIS training set, we
effectively enrich the complexity of the scenes and thus increase the model’s learning efficiency on the generated data.
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Figure 7. Examples of selected and discarded samples.
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Figure 8. Examples of augmented data.
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Figure 9. Performance of the model under different iterations.
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